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ABSTRACT

This work aims to tackle a major challenge in offline Inverse Reinforcement
Learning (IRL), namely the reward extrapolation error, where the learned reward
function may fail to explain the task correctly and misguide the agent in unseen
environments due to the intrinsic covariate shift. Leveraging both expert data and
lower-quality diverse data, we devise a principled algorithm (namely CLARE)
that solves offline IRL efficiently via integrating “conservatism” into a learned
reward function and utilizing an estimated dynamics model. Our theoretical anal-
ysis provides an upper bound on the return gap between the learned policy and the
expert policy, based on which we characterize the impact of covariate shift by ex-
amining subtle two-tier tradeoffs between the “exploitation” (on both expert and
diverse data) and “exploration” (on the estimated dynamics model). We show that
CLARE can provably alleviate the reward extrapolation error by striking the right
“exploitation-exploration” balance therein. Extensive experiments corroborate the
significant performance gains of CLARE over existing state-of-the-art algorithms
on MuJoCo continuous control tasks (especially with a small offline dataset), and
the learned reward is highly instructive for further learning (source code).

1 INTRODUCTION

The primary objective of Inverse Reinforcement Learning (IRL) is to learn a reward function from
demonstrations (Arora & Doshi, 2021; Russell, 1998). In general, conventional IRL methods rely
on extensive online trials and errors that can be costly or require a fully known transition model
(Abbeel & Ng, 2004; Ratliff et al., 2006; Ziebart et al., 2008; Syed & Schapire, 2007; Boularias
et al., 2011; Osa et al., 2018), struggling to scale in many real-world applications. To tackle this
problem, this paper studies offline IRL, with focus on learning from a previously collected dataset
without online interaction with the environment. Offline IRL holds tremendous promise for safety-
sensitive applications where manually identifying an appropriate reward is difficult but historical
datasets of human demonstrations are readily available (e.g., in healthcare, autonomous driving,
robotics, etc.). In particular, since the learned reward function is a succinct representation of an
expert’s intention, it is useful for policy learning (e.g., in offline Imitation Learning (IL) (Chan &
van der Schaar, 2021)) as well as a number of broader applications (e.g., task description (Ng et al.,
2000) and transfer learning (Herman et al., 2016)).

This work aims to address a major challenge in offline IRL, namely the reward extrapolation error,
where the learned reward function may fail to correctly explain the task and misguide the agent in
unseen environments. This issue results from the partial coverage of states in the restricted expert
demonstrations (i.e., covariate shift) as well as the high-dimensional and expressive function ap-
proximation for the reward. It is further exacerbated due to no reinforcement signal for supervision
and the intrinsic reward ambiguity therein.1 In fact, similar challenges related to the extrapolation

∗Part of this work was done when Sheng Yue, Wei Shao, and Sen Lin worked at Arizona State University.
†Corresponding author: renju@tsinghua.edu.cn
1The reward ambiguity refers to the fact that same behavior can be optimal for many reward functions.
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error in the value function have been widely observed in offline (forward) RL, e.g., in Kumar et al.
(2020); Yu et al. (2020; 2021). Unfortunately, to the best of our knowledge, this challenge remains
not well understood in offline IRL, albeit there is some recent progress (Zolna et al., 2020; Garg
et al., 2021; Chan & van der Schaar, 2021). Thus motivated, the key question this paper seeks to
answer is: “How to devise offline IRL algorithms that can ameliorate the reward extrapolation error
effectively?”

We answer this question by introducing a principled offline IRL algorithm, named conservative
model-based reward learning (CLARE), leveraging not only (limited) higher-quality expert data but
also (potentially abundant) lower-quality diverse data to enhance the coverage of the state-action
space for combating covariate shift. CLARE addresses the above-mentioned challenge by appro-
priately integrating conservatism into the learned reward to alleviate the possible misguidance in
out-of-distribution states, and improves the reward generalization ability by utilizing a learned dy-
namics model. More specifically, CLARE iterates between conservative reward updating and safe
policy improvement, and the reward function is updated via improving its values on weighted expert
and diverse state-actions while in turn cautiously penalizing those generated from model rollouts. As
a result, it can encapsulate the expert intention while conservatively evaluating out-of-distribution
state-actions, which in turn encourages the policy to visit data-supported states and follow expert
behaviors and hence achieves safe policy search.

Expert data Diverse data Model-based synthetic data

“Exploitation” “Exploration”

Tradeoff

Tradeoff

Figure 1: An illustration of the two-tier tradeoffs in CLARE.

Technically, there are highly nontrivial two-tier tradeoffs that CLARE has to delicately calibrate:
“balanced exploitation” of the expert and diverse data, and “exploration” of the estimated model.2
As illustrated in Fig. 1, The first tradeoff arises because CLARE relies on both exploiting expert
demonstrations to infer the reward and exploiting diverse data to handle the covariate shift caused
by the insufficient state-action coverage of limited demonstration data. At a higher level, CLARE
needs to judiciously explore the estimated model to escape the offline data manifold for better gen-
eralization. To this end, we first introduce the new pointwise weight parameters for offline data
points (state-action pairs) to capture the subtle two-tier exploitation-exploration tradeoffs. Then, we
rigorously quantify its impact on the performance by providing an upper bound on the return gap
between the learned policy and the expert policy. Based on the theoretical quantification, we derive
the optimal weight parameters whereby CLARE can strike the balance appropriately to minimize
the return gap. Our findings reveal that the reward function obtained by CLARE can effectively
capture the expert intention and provably ameliorate the extrapolation error in offline IRL.

Finally, extensive experiments are carred out to compare CLARE with state-of-the-art offline IRL
and offline IL algorithms on MuJoCo continuous control tasks. Our results demonstrate that even
using small offline datasets, CLARE obtains significant performance gains over existing algorithms
in continuous, high-dimensional environments. We also show that the learned reward function can
explain the expert behaviors well and is highly instructive for further learning.

2 PRELIMINARIES

Markov decision process (MDP) can be specified by tuple M .
= ⟨S,A, T, R, µ, γ⟩, consist-

ing of state space S , action space A, transition function T : S × A → P(S), reward function
R : S × A → R, initial state distribution µ : S → [0, 1], and discount factor γ ∈ (0, 1). A
stationary stochastic policy maps states to distributions over actions as π : S → P(A). We de-
fine the normalized state-action occupancy measure (abbreviated as occupancy measure) of policy π

2The exploration in the context of this manuscript refers to enhancing the generalization capability of the
algorithm by escaping the offline data manifold via model rollout.
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under transition dynamics T as ρπ(s, a) .= (1− γ)
∑∞
h=0 γ

h Pr(sh = s|T, π, µ)π(a|s). The objec-
tive of reinforcement learning (RL) can be expressed as maximizing expected cumulative rewards:
maxπ∈Π J(π)

.
= Es,a∼ρπ [R(s, a)], where Π is the set of all stationary stochastic policies that take

actions in A given states in S .3

Maximum entropy IRL (MaxEnt IRL) aims to learn the reward function from expert demonstra-
tions and reason about the stochasticity therein (Ziebart et al., 2008; Ho & Ermon, 2016). Based on
demonstrations sampled from expert policy πE , the MaxEnt IRL problem is given by

min
r∈R

(
max
π∈Π

αH(π) + Es,a∼ρπ [r(s, a)]
)
− Es,a∼ρE [r(s, a)] + ψ(r), (1)

with H(π)
.
= −

∫∫
ρπ(s, a) log π(a|s) ds da being the γ-discounted causal entropy, R a family

of reward functions, α ≥ 0 the weight parameter, and ψ : RS×A → R ∪ {∞} a convex reward
regularizer Fu et al. (2018); Qureshi et al. (2018). Problem (1) looks for a reward function assigning
higher rewards to the expert policy and lower rewards to other policies, along with the best policy
under the learned reward function. Although enjoying strong theoretical justification and achieving
great performance in many applications, MaxEnt IRL has to solve a forward RL problem in the inner
loop that involves extensive online interactions with the environment.

Offline IRL is the setting where the algorithm is neither allowed to interact with the environment
nor provided reinforcement signals. It only has access to static dataset D = DE ∪ DB consisting
of expert dataset DE

.
= {(si, ai, s′i)}

DE
i=1 and diverse dataset DB

.
= {(si, ai, s′i)}

DB
i=1 collected by

expert policy πE and behavior policy πB , respectively. The goal of offline IRL is to infer a reward
function capable of explaining the expert’s preferences from the given dataset.

3 CLARE: CONSERVATIVE MODEL-BASED REWARD LEARNING

A naive solution for offline IRL is to retrofit MaxEnt IRL to the offline setting via estimating a
dynamics model using offline data (e.g., in Tanwani & Billard (2013); Herman et al. (2016)). Unfor-
tunately, it has been reported that this naive paradigm often suffers from unsatisfactory performance
in high-dimensional and continuous environments Jarrett et al. (2020). The underlying reasons for
this issue include: (1) the dependence on full knowledge of the reward feature function, and (2) the
lack of effective mechanisms to tackle the reward extrapolation error caused by covariate shift (as
stated in Section 1). Nevertheless, we believe that utilizing a learned dynamics model is beneficial
because it is expected to provide broader generalization by learning on additional model-generated
synthetic data (Yu et al., 2020; 2021; Lin et al., 2021). With this insight, this work focuses on the
model-based offline IRL method that is robust to covariate shift while enjoying the model’s gener-
alization ability.

As illustrated in Fig. 1, there are two-tier subtle tradeoffs that need to be carefully balanced between
exploiting the offline data and exploring model-based synthetic data. On one hand, the higher-quality
expert demonstrations are exploited to infer the intention and abstract the reward function therein,
while the lower-quaity diverse data is exploited to enrich data support. On the other hand, it is
essential to prudently explore the estimated dynamics model to improve the generalization capability
while mitigating overfitting errors in inaccurate regions. To this end, we devise conservative model-
based reward learning (CLARE) based on MaxEnt IRL, where the new pointwise weight parameters
are introduced for each offline state-action pair to capture the tradeoffs subtly. We elaborate further
in what follows.

As outlined below, CLARE iterates between (I) conservative reward updating and (II) safe policy
improvement, under a dynamics model (denoted by T̂ ) learned from offline dataset.

(I) Conservative reward updating. Given current policy π, dynamics model T̂ , and offline datasets
DE and DB , CLARE updates reward funtion r based on the following loss:

L(r|π) .= ZβEs,a∼ρ̂π [r(s, a)]︸ ︷︷ ︸
penalized on model rollouts

− Es,a∼ρ̃E [r(s, a)]︸ ︷︷ ︸
increased on expert data

−Es,a∼ρ̃D [β(s, a)r(s, a)]︸ ︷︷ ︸
weighting expert and diverse data

+Zβψ(r)︸ ︷︷ ︸
regularizer

, (2)

3For convenience, we omit a constant multiplier, 1/(1 − γ), in the objective for conciseness, i.e., the
complete objective function is given by maxπ∈Π Es,a∼ρπ [R(s, a)/(1− γ)].
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where ρ̃D(s, a) .= (|DE(s, a)|+ |DB(s, a)|)/(DE +DB) is the empirical distribution of (s, a) in
the union dataset D = DE ∪ DB and ρ̃E .

= |DE(s, a)|/DE is that for expert dataset DE ; ρ̂π is the
occupancy measure when rolling out π with dynamics model T̂ ; and ψ denotes a convex regularizer
mentioned above. One key step is to add an additional term weighting the reward of each offline
state-action by β(s, a), which is a “fine-grained control” for the exploitation of the offline data. For
the data deserving more exploitation (e.g., expert behaviors with sufficient data support), we can set a
relatively large β(s, a); otherwise, we decrease its value. Besides, it can also control the exploration
of the model subtly (consider that if we set all β(s, a) = 0, Eq. (2) reduces to MaxEnt IRL, enabling
the agent to explore the model without restrictions). Here, Zβ

.
= 1 + Es′,a′∼ρ̃D [β(s′, a′)] is a

normalization term. The new ingredients beyond MaxEnt IRL are highlighted in blue.

Observe that in Eq. (2), by decreasing the reward loss, CLARE pushes up the reward on good of-
fline state-action that characterized by larger β(s, a), while pushing down the reward on potentially
out-of-distribution ones that generated from model rollouts. This is similar to COMBO (Yu et al.,
2021) in spirit, a state-of-the-art offline forward RL algorithm, and results in a conservative re-
ward function. It can encourage the policy to cautiously exploring the state-actions beyond offline
data manifold, thus capable of mitigating the misguidance issue and guiding safe policy search. In
Section 4, we will derive a closed-form optimal β(s, a) that enables CLARE to achieve a proper
exploration-exploitation trade-off by minimizing a return gap from the expert policy.

(II) Safe policy improvement. Given updated reward function r, the policy is improved by solving

max
π∈Π

L(π|r) .= ZβEs,a∼ρ̂π [r(s, a)] + αĤ(π), (3)

where α ≥ 0 is a weight parameter, and Ĥ(π)
.
= −

∫∫
ρ̂π(s, a) log π(a|s) ds da is the γ-discounted

causal entropy induced by the policy and learned dynamics model. Due to the embedded expert
intention and conservatism in the reward function, the policy is updated safely by carrying out
conservative model-based exploration. One can use any well-established MaxEnt RL approach to
solve this problem by simulating with model T̂ and reward function r. It is worth noting that for
Problem (3) in this step, the practical implementation of CLARE works well with a small number
of updates in each iteration (see Sections 5 and 6).

4 THEORETICAL ANALYSIS OF CLARE

In this section, we focus on answering the following question: “How to set β(s, a) for each offline
state-action pair to strike the two-tier exploitation-exploration balance appropriately?” To this end,
we first quantify the impact of the tradeoffs via bounding the return gap between the learned policy
and expert policy. Then, we derive the optimal weight parameters to minimize this gap. All the
detailed proofs can be found in Appendix B. Notably, this section works with finite state and action
spaces, but our algorithms and experiments run in high-dimensional and continuous environments.

4.1 CONVERGENCE ANALYSIS

We first characterize the policy learned by CLARE, in terms of β(s, a) and empirical distributions
ρ̃E and ρ̃D. Before proceeding, it is easy to see CLARE is iteratively solving the min-max problem:

min
r∈R

max
π∈Π

αĤ(π) + ZβEρ̂π
[
r(s, a)

]
− Eρ̃D

[
β(s, a)r(s, a)

]
− Eρ̃E

[
r(s, a)

]
+ Zβψ(r)︸ ︷︷ ︸

.
=L(π,r)

. (4)

For dynamics T , define the set of occupancy measures satisfying Bellman flow constraints as

CT
.
=

{
ρ ∈ R|S||A| : ρ ≥ 0 and

∑
a

ρ(s, a) = µ(s) + γ
∑
s′,a

T (s|s′, a)ρ(s′, a) ∀s ∈ S
}
. (5)

We first provide the following results for switching between policies and occupancy measures, which
allow us to use πρ to denote the unique policy for occupancy measure ρ.
Lemma 4.1 (Theorem 2 in Syed et al. (2008)). If ρ ∈ CT , then ρ is the occupancy measure for sta-
tionary policy πρ(a|s)

.
= ρ(s, a)/

∑
a′ ρ(s, a

′), and πρ is the only stationary policy with occupancy
measure ρ.
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Lemma 4.2 (Lemma 3.2 in Ho & Ermon (2016)). Denote H̄(ρ)
.
= −

∑
s,a ρ(s, a) log

ρ(s,a)∑
a′ ρ(s,a′)

.
Then, H̄ is strictly concave, and for all π ∈ Π and ρ ∈ CT , H(π) = H̄(ρπ) and H̄(ρ) = H(πρ)
hold true, where πρ(a|s)

.
= ρ(s, a)/

∑
a′ ρ(s, a

′).

Based on Lemma 4.1 and Lemma 4.2, we have the follow results on the learned policy.
Theorem 4.1. Assume that β(s, a) ≥ −ρ̃E(s, a)/ρ̃D(s, a) holds for (s, a) ∈ D. For Problem (4),
the following relationship holds:

min
r∈R

max
π∈Π

L(π, r) = max
ρ̂∈CT̂

αH̄(ρ̂)− ZβDψ

(
ρ̂,
ρ̃E + βρ̃D

Zβ

)
, (6)

with Dψ(ρ1, ρ2)
.
= ψ∗(ρ2 − ρ1), where ψ∗ is the convex conjugate of ψ.

Notably, by selecting appropriate forms of reward regularizers ψ, Dψ can belong to a wide-range of
statistical distances. For example, if ψ(r) = αr2, then Dψ(ρ1, ρ2) = 1

4αχ
2(ρ1, ρ2); if ψ restricts

r ∈ [−Rmax, Rmax], then Dψ(ρ1, ρ2) = 2RmaxDTV(ρ1, ρ2) (Garg et al., 2021). Theorem 4.1
implies that CLARE implicitly seeks a policy under T̂ whose occupancy measure stays close to an
interpolation of the empirical distributions of expert dataset DE and union offline dataset D. The
interpolation reveals that CLARE is trying to trade off the exploration of the model and exploitation
of offline data by selecting proper weight parameters β(s, a). For example, if β(s, a) = 0 for all
(s, a) ∈ D, CLARE will completely follow the occupancy measure of the (empirical) expert policy
by explore the model freely. In contrast, if β(s, a) increases with ρ̃D(s, a), the learned policy will
look for richer data support.

Remarks. Looking deeper into Eq. (6), the target occupancy measure can be expressed equiva-
lently as (1+βDE/D)ρ̃E+(βDS/D)ρ̃B

Zβ
, after rearranging terms in the above interpolation. As a result,

CLARE also subtly balances the exploitation between the expert and diverse datasets to extract
potentially valuable information in the sub-optimal data.

4.2 STRIKING THE RIGHT EXPLORATION-EXPLOITATION BALANCE

Next, we show how to set β(s, a) properly to achieve the right two-tier balance.

Recall that J(π) .
= Es,a∼ρπ [R(s, a)] is the return achieved by policy π. The next result provides a

upper bound on the return gap between J(π) and J(πE), which hinges on the intrinsic trade-offs.
Theorem 4.2. Suppose |R(s, a)| ≤ 1 for any s ∈ S, a ∈ A. For any stationary policy π, let ρ̂π

denote the occupancy measure of π under estimated model T̂ . We have that

J(πE)− J(π) ≤ C · Es,a∼ρ̂π
[
DTV

(
T (·|s, a), T̂ (·|s, a)

)]
+ 2

(
DTV(ρ̂

π, ρ̃E) +DTV(ρ̃
E , ρE)

)
,

(7)

where C .
= 2γ

1−γ , and ρE is the occupancy measure of expert policy πE under true dynamics T .

Remarks. Theorem 4.2 indicates that a good policy learned from the estimated model not only
follows the expert behaviors but also keeps in the “safe region” of the learned model, i.e., visiting
the state-actions with less model estimation inaccuracy. Under the concentration assumption, the
following holds with probability greater than 1− δ:

J(πE)− J(π) ≤ Es,a∼ρ̂π
[

CCδ√
|DE(s, a)|+ |DB(s, a)|

]
︸ ︷︷ ︸

(a)

+2DTV(ρ̂
π, ρ̃E)︸ ︷︷ ︸

(b)

+2DTV(ρ̃
E , ρE)︸ ︷︷ ︸

(c)

,

where D(s, a) .
= {(s′, a′) ∈ D : s′ = s, a′ = a}. It aligns well with the aforementioned

exploration-exploitation balance: 1) Term (a) captures the exploitation of offline data support; 2)
Term (b) captures the exploitation of expert data and the exploration of the model (recall that ρ̂π is
the occupancy measure of rolling out π with T̂ ); and 3) Term (c) captures the distributional shift in
offline learning. Importantly, the result in Theorem 4.2 connects the true return of a policy with its
occupancy measure on the learned model. This gives us a criteria to evaluate the performance of
a policy from offline. Define c(s, a) .

= C · DTV(T (·|s, a), T̂ (·|s, a)) and cmin .
= mins,a c(s, a).

Subsequently, we derive the policy that minimizes the RHS of Eq. (7).
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Algorithm 1: Conservative model-based reward learning (CLARE)
Input: expert data DE , diverse data DB , bar u, learning rate η, policy regularizer weight λ
Learn dynamics model T̂ represented by an ensemble of neural networks using all offline data;
Set weight β(s, a) for each offline state-action tuple (s, a) ∈ DE ∪ DB by Eq. (11);
Initialize the policy πθ and reward function rϕ parameterized by θ and ϕ respectively;
while not done do

(Safe policy improvement) Run a MaxEnt RL algorithm for some steps with model T̂ and
current reward function rϕ to update policy πθ, based on L(πθ|rϕ)− λDKL(π

b∥πθ);
(Conservative reward updating) Update rϕ by ϕ← ϕ− η∇ϕL(rϕ|πθ) for a few steps;

end

Theorem 4.3. Under the same conditions as in Theorem 4.2, the optimal occupancy measure mini-
mizing the upper bound of Eq. (7) is given as follows:

ρ̂∗(s, a) =


ρ̃E(s, a) + ∆ρ, if c(s, a) ≤ cmin,

0, if c(s, a) > cmin + 2,

ρ̃E(s, a), otherwise.
(8)

where ∆ρ
.
=

∑
s′,a′ 1[c(s

′,a′)−cmin>2]·ρ̃E(s′,a′)

|Nmin| and Nmin
.
= {(s, a) ∈ D : c(s, a) ≤ cmin}.

As shown in Theorem 4.3, the “optimal” policy leaned on model T̂ conservatively explores the
model by avoiding the visit of risky state-actions. Meantime, it cleverly exploits the accurate region,
such that it does not deviate large from the expert. Now, we are ready to derive the optimal values
of the weight parameters.
Corollary 4.1. Suppose that when ρ̃D(s, a) = 0, c(s, a) > cmin holds for each (s, a) ∈ S × A.
Under the same condition as in Theorem 4.3, if β(s, a) are set as

β∗(s, a) =


∆ρ

ρ̃D(s,a)
, if c(s, a) ≤ cmin and ρ̃D(s, a) > 0,

− ρ̃E(s,a)
ρ̃D(s,a)

, if c(s, a) > cmin + 2 and ρ̃D(s, a) > 0,

0, otherwise,

(9)

then it follows that

min
r∈R

max
π∈Π

L(π, r) = max
π

αH̄(ρ̂π)− ZβDψ(ρ̂
π, ρ̂∗). (10)

Corollary 4.1 provides the value of β(s, a) for each (s, a) ∈ D such that the learned reward function
can guide the policy to minimize the return gap in Eq. (7). It indicates that the right exploitation-
exploration trade-off can be provably balanced via setting the weight parameters properly. In par-
ticular, β∗ assigns positive weight to the offline state-action with accurate model estimation and
negative weight to that with large model error. It enables CLARE to learn a conservative reward
function that pessimistically evaluates the our-of-distribution states and actions, capable of amelio-
rating the extrapolation error in unseen environments. However, the optimal weights require the
model error, c(s, a), which is typically hard to obtain (especially in high-dimensional and contin-
uous spaces). Section 5 will solve this problem by extending this result with the aid of the model
ensembles and uncertainty quantification techniques.

5 PRACTICAL IMPLEMENTATION

Learning dynamics models. Following the state-of-the-art model-based methods (Yu et al., 2020;
2021), we model the transition dynamics by an ensemble of neural networks, each of which outputs
a Gaussian distribution over next states, i.e., {T̂i(s′|s, a) = N (µi(s, a),Σi(s, a))}Ni=1.

Weights in continuous environments. The ideas of achieving CLARE in continuous environ-
ments are 1) to approximately see the offline data as sampled from a large discrete space, and 2)
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to use an uncertainty quantification technique for quantifying the model error. Specifically, because
state-action pairs are basically different from each other in this setting, we let ρ̃D(s, a) = 1/D
and ρ̃E(s, a) = 1/DE , and employ the uncertainty estimator, c(s, a) = maxi∈[N ] ∥Σi(s, a)∥F , pro-
posed in Yu et al. (2020) for model error evaluation. Guided by the analytical results in Corollary 4.1,
we compute the weights for each (s, a) ∈ D via slight relaxation as follows:

β(s, a) =


N ′′D
N ′DE

, if c(s, a) ≤ u,
− D
DE
· 1[(s, a) ∈ DE ], if c(s, a) > u,

0, otherwise,
(11)

where N ′ .
=
∑

(s,a)∈D 1[c(s, a) ≤ u] and N ′′ .
=
∑

(s,a)∈DE
1[c(s, a) > u]. Here, coefficient u

is a user-chosen hyper-parameter for controlling the conservatism level of CLARE. If one wants
the learned policy to be trained more conservatively on offline data support, u should be small;
otherwise, u can be chose to be large for better exploration.

Reward and policy regularizers. In the experiments, we use ψ(r) = r2 as the reward regularizer.
Additionally, when updating the policy, we use a KL divergence as a regularizer with empirical
behavior policy πb induced by a subset of the offline dataset, D′ ⊂ D, as follows:

DKL(π
b∥π) .= Es∈D′

[
Ea∼πb(·|s)

[
log πb(a|s)

]
− Ea∼πb(·|s)

[
log π(a|s)

] ]
,

where πb(a|s) =
∑

(s′,a′)∈D′ 1[s
′=s,a′=a]∑

(s′,a′)∈D′ 1[s′=s]
if (s, a) ∈ D′, and πb(a|s) = 0 otherwise. It can be im-

plemented by adding −Es,a∼D′ [log π(a|s)] to the actor loss. The intuition is to encourage the actor
to perform in support of the real data for accelerating safe policy improvement. While this regular-
ization lacks theoretical guarantees, we empirically find that it can indeed speed up the training.

Practical algorithm design. The pseudocode of CLARE is depicted in Algorithm 1. The policy im-
provement phase can be implemented by the standard implementation of SAC (Haarnoja et al., 2018)
with a change of the additional policy regularizer. We elaborate more details in the Appendix A.

6 EXPERIMENTS

Next, we use experimental studies to evaluate CLARE and answer the following key questions: (1)
How does CLARE perform on the standard offline RL benchmarks in comparison to existing state-
of-the-art algorithms? (2) How does CLARE perform given different dataset sizes? (3) How does
the “conservatism level”, u, affect the performance? (4) How fast does CLARE converge? (5) Can
the learned reward function effectively explain the expert intention?

To answer these questions, we compare CLARE with the following existing offline IRL methods on
the D4RL benchmark (Fu et al., 2020): 1) IQ-LEARN (Garg et al., 2021), a state-of-the-art model-
free offline IRL algorithm; 2) AVRIL (Chan & van der Schaar, 2021), another recent model-free
offline IRL method; 3) EDM (Jarrett et al., 2020), a state-of-the-art offline IL approach; and 4)
Behavior Cloning (BC). To demonstrate the poor performance of the naive approach using a sim-
ple combination of IRL with model-based offline forward RL (MORL) method, we also consider
a baseline algorithm, namely MOMAX, by directly using COMBO (Yu et al., 2021) in the inner
loop of MaxEnt IRL. We present the results on continuous control tasks (including Half-Cheetah,
Walker2d, Hopper, and Ant) consisting of three data qualities (random, medium, and expert). Ex-
perimental set-up and hyperparameters are described in detailed in Appendix A.
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Figure 2: CLARE against other algorithms on all tasks over different dataset sizes consisting of
expert and medium data equally.
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Table 1: Results on D4RL datasets. For each task, the experiments are carried out with three different
data combinations: 1) 10k expert tuples, 2) 5k expert and 5k medium tuples, and 3) 5k expert and 5k
random tuples. The data scores below for 1), 2), and 3) correspond to expert, medium, and random
data, respectively. We tune IQ-LEARN, EDM, and AVRIL based on their publicly available source
code. Results are averaged over 7 random seeds. The highest score across all algorithms is bold.

Dataset type Environment Data score CLARE BC IQ-LEARN EDM AVRIL MOMAX

Exp. & Rand.

Walker2d 1.9 2873.8 17.8 256.9 165.5 100.9 -525.4
Hopper 18.4 1891.5 110.2 523.6 178.8 178.3 0.7

Ant -64.4 1960.0 -427.6 -247.2 -3000.9 1000.1 113.8
Half-Cheetah -505.1 1113.7 -86.7 123.9 -346.7 -1093.5 -11.0

Exp. & Med.

Walker2d 3496.3 3613.4 1674.2 1676.8 175.7 184.0 19.6
Hopper 1422.7 2135.0 947.0 2049.8 194.4 183.7 27.6

Ant 3969.0 3879.4 2146.0 222.2 -3001.5 1001.0 -33.2
Half-Cheetah 4667.8 4888.6 2375.0 2957.7 -298.3 -1195.6 -0.2

Exp.

Walker2d 5010.4 4990.5 1665.7 2445.4 189.7 194.1 23.2
Hopper 3603.2 2604.5 1436.1 2854.4 192.5 183.9 34.5

Ant 5172.8 3940.3 1797.9 375.4 -3000.6 1000.2 48.1
Half-Cheetah 10748.7 4975.1 242.4 3750.5 -299.5 -619.0 -0.4
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Figure 3: Performance of CLARE. 1) Impact of u: Figure 3(a) shows the impact of user-chosen
parameter u on the performance using 10k expert tuples. 2) Convergence speed: Figures 3(c) and
3(b) show the convergence of CLARE using 10k expert and 10k medium tuples. In each iteration,
CLARE carries out policy improvement by total 10k gradient updates (total 500 epochs with 20
gradient steps per epoch) for the actor and critic networks using SAC. 3) Recovered reward: Fig-
ure 3(d) shows the result of training SAC via replacing the underlying reward by the one learned
from CLARE.
Results on MuJoCo control. To answer the first question and validate the effectiveness of the
learned reward, we evaluate CLARE on different tasks using limited state-action tuples sampled
from D4RL datasets. The ranges of standard deviations of the results in Exp. & Rand., Exp. & Med.
and Exp. are 156.4-280.5, 15.7-127.8 and 42.4-89.5, respectively. As shown in Table 6, CLARE
yields the best performance by a significant margin on almost all datasets, especially with low-
quality data thereof. It demonstrates that the reward function learned by CLARE can effectively
guide offline policy search while exploiting the useful knowledge in the diverse data.

Results under different dataset sizes. To answer the second question, we vary the total numbers
of state-action tuples from 2k to 100k and present the results on different tasks in Figure 2. CLARE
reaches expert performance on each task with sufficient data. Albeit with very limited data, CLARE
also achieves strong performance over existing algorithms, revealing its great sample efficiency.

Results under different u. To answer the third question, we normalize the uncertainty measure to
[0, 1] and vary u from 0.1 to 1.0. Due to Eq. (11), a smaller u corresponds to a more conservative
CLARE. As illustrated in Figure 3(a), the performance becomes better with the decrease of u value.
It validates the importance of the embedded conservatism in alleviating the extrapolation error. We
empirically find that the performance with respect to u varies in different tasks. Thus, we treat it as
a hyper-parameter to tune In practice.

Convergence speed. To answer the fourth question, we present the results on the convergence
speed of CLARE in Figure 3(b), revealing its great learning efficiency. It showcases that CLARE
converges in 5 iterations with totally less than 50k gradient steps.

8
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Recovered reward function. To answer the last question, we evaluate the learned reward function
by transferring it to the real environment. As demonstrated in Figure 3(c), the reward function is
highly instructive for online learning. It implies that it can effectively reduce the reward extrap-
olation error and represent the task preferences well. Surprisingly, compared to the true reward
function, the policy trained via the learned one performs more stably. The reason is that the learned
one incorporates conservatism and thus is capable of penalizing risks and guide safe policy search.

7 RELATED WORK

Offline IRL. To side-step the expensive online environmental interactions in classic IRL, offline
IRL aims to infer a reward function and recover the expert policy only from a static dataset with no
access to the environment. Klein et al. (2011) extend the classic apprenticeship learning (i.e., Abbeel
& Ng (2004)) to batch and off-policy cases by introducing a temporal difference method, namely
LSTD-µ, to compute the feature expectations therein. Klein et al. (2012) further introduce a linearly
parameterized score function-based multi-class classification algorithm to output reward function
based on an estimate of expert feature expectation. Herman et al. (2016) present a gradient-based
solution that simultaneously estimates the feature weights and parameters of the transition model
by taking into account the bias of the demonstrations. Lee et al. (2019) propose Deep Successor
Feature Networks (DSFN) that estimates feature expectations in an off-policy setting. However, the
assumption of full knowledge of the reward feature functions in Klein et al. (2011); Herman et al.
(2016); Lee et al. (2019); Jain et al. (2019); Pirotta & Restelli (2016); Ramponi et al. (2020) is often
unrealistic, because the choice of features is problem-dependent and can become a very hard task
for complex problems (Arora & Doshi, 2021; Piot et al., 2014). To address this problem, Piot et al.
(2014) propose a non-parametric algorithm, called RCAL, using boosting method to minimize di-
rectly the criterion without the step of choosing features. Konyushkova et al. (2020) propose two
semi-supervised learning algorithms that learn a reward function from limited human reward anno-
tations. Zolna et al. (2020) further propose ORIL that can learn from both expert demonstrations
and a large unlabeled set of experiences without human annotations. Chan & van der Schaar (2021)
use a variational method to jointly learn an approximate posterior distribution over the reward and
policy. Garg et al. (2021) propose an off-policy IRL approach, namely IQ-Learn, implicitly repre-
senting both reward and policy via a learned soft Q-function. Nevertheless, these methods primarily
concentrate on offline policy learning with learning reward function being an intermediate step. Due
to the intrinsic covariate shift, these methods may suffer from severe reward extrapolation error,
leading to misguidance in unseen environments and low learning efficiency.

Offline IL. Akin to offline IRL, offline imitation learning (offline IL) deals with training an agent to
directly mimic the actions of a demonstrator in an entirely offline fashion. Behavioral cloning (BC
(Ross & Bagnell, 2010)) is indeed an intrinsically offline solution, but it fails to exploit precious
dynamics information. To tackle this issue, several recent works propose dynamics-aware offline
IL approaches, e.g., Kostrikov et al. (2019); Jarrett et al. (2020); Chang et al. (2021); Swamy et al.
(2021). In contrast to directly mimicking the expert as done in offline IL, offline IRL explicitly learns
the expert’s reward function from offline datasets, which can take into account the temporal structure
and inform what the expert wishes to achieve, rather than simply what they are reacting to. It enables
agents to understand and generalize these “intentions” when encountering similar environments and
therefore makes offline IRL more robust (Lee et al., 2019). In addition, the learned reward function
can succinctly explain the expert’s objective, which is also useful in a number of broader applications
(e.g., task description Ng et al. (2000) and transfer learning Herman et al. (2016)).

8 CONCLUSION

This paper introduces a new offline IRL algorithm (namely CLARE) to approaching the reward ex-
trapolation error (caused by covariate shift) via incorporating conservatism into a learned reward
function and utilizing an estimated dynamics model. Our theoretical analysis characterizes the im-
pact of covariate shift by quantifying a subtle two-tier exploitation-exploration tradeoffs, and we
show that CLARE can provably alleviate the reward extrapolation error by striking the right trade-
offs therein. Extensive experiments corroborate that CLARE outperforms existing methods in con-
tinuous, high-dimensional environments by a significant margin, and the learned reward function
represents the task preferences well.
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A EXPERIMENTAL DETAILS

In this section, we present necessary experimental details for reproducibility.

A.1 PRACTICAL IMPLEMENTATION DETAILS

In the experiment, our implementation is built upon the open source framework of offline RL al-
gorithms, provided at: https://github.com/polixir/OfflineRL, including data sam-
pling, policy testing, dynamics model structure, etc. The implementation of SAC in the pol-
icy improvement uses the open source code available at: https://github.com/pranz24/
pytorch-soft-actor-critic (under the MIT License). Additionally, the expert and di-
verse state-action pairs are sampled at random from the D4RL dataset provided at: https:
//github.com/rail-berkeley/d4rl (under the Apache License 2.0).

Model learning. Following the same line as in Yu et al. (2020; 2021), we model the transi-
tion dynamics by an ensemble of probabilistic neural networks, each of which takes the current
state and action as input and outputs a Gaussian distribution over next states, i.e., {T̂i(s′|s, a) =
N (µi(s, a),Σi(s, a))}Ni=1. Using offline state-action pairs, 7 models are trained independently via
maximum likelihood, each of which is represented as by a 4-layer feedforward neural network with
256 hidden units. The best 5 models are picked based on the validation prediction error on a held-out
set. During model rollouts, one model will be selected randomly from the ensemble.

Policy improvement. We represent both critic and actor as a 2-layer feedforward neural network
with 256 hidden units and Swish activation functions. In each iteration, we update the critic and
actor networks using SAC (Haarnoja et al., 2018) for 500 epochs (each has 20 gradient updates).
As described in Section 5, we use a KL divergence with the behavior policy to accelerate inner-loop
policy search. It is implemented by adding −Es,a∼D′ [log π(a|s)] (D′ ∈ D) to the actor loss. An
instantiation of the policy improvement can be found in Algorithm 2.

Algorithm 2: Safe policy improvement
Input: offline dataset D, policy regularizer weight λ, rollout horizon H , rollout batchsize B,

the number of epochs E, dynamics ensemble {T̂i}Ni=1, reward function rϕ, policy πθ
Initialize model buffer Dmodel ← ∅;
for epoch = 1 to E do

for b = 1 to B in parallel do
Sample state s1 from D as the initial state of the rollout;
for h = 1 to H do

Sample action ah ∼ πθ(·|sh);
Randomly pick dynamics T̂ from {T̂i}Ni=1 and sample sh+1 ∼ T̂ (·|sh, ah);
Compute rh ← rϕ(sh, ah);
Add sample (sh, ah, rh, sh+1) to Dmodel;

end
end
Sample batches from Dmodel and use SAC to update policy πθ with −Es,a∼D′ [log πθ(a|s)]
(D′ ∈ D) added on the policy loss;

end

Reward updating. We represent the reward function as a 4-layer feedforward neural network with
256 hidden units and Swish activate functions. In each iteration, the reward function is updated by
5 gradient steps with stepsize 5× 10−5, based on the following practical reward loss:

L(rϕ)
.
= ZβEDreplay

[
rϕ(s, a)

]
+ ZβEs,a∼D∪Dreplay

[
rϕ(s, a)

2
]

− Es,a∼DE

[
rϕ(s, a)

]
− Es,a∼D

[
β(s, a)rϕ(s, a)

]
. (12)

We use replay buffer Dreplay across iterations to save the simulated data for training stability. An
instantiation of reward updating is shown in Algorithm 3.

Practical algorithm. Based on Algorithms 2 and 3, a detailed CLARE algorithm is outlined in
Algorithm 4.

12
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Algorithm 3: Conservative reward updating
Input: expert data DE , diverse data DB , replay buffer Dreplay, model buffer Dmodel, reward

function rϕ, learning rate η, the number of steps T
Update replay buffer Dreplay ← Dreplay ∪ Dmodel;
for t = 1 to T do

Update the parameters of reward function rϕ by ϕ← ϕ− η∇L(rϕ);
end

Algorithm 4: Conservative model-based reward learning (CLARE)
Input: expert data DE , diverse data DB , bar u, learning rate η, policy regularizer weight λ
Learn dynamics model T̂ represented by an ensemble of neural networks using all offline data;
Set weight β(s, a) for each offline state-action tuple (s, a) ∈ DE ∪ DB by Eq. (11);
Initialize the policy πθ and reward function rϕ parameterized by θ and ϕ respectively;
Initialize replay buffer Dreplay ← ∅;
while not done do

(Safe policy improvement) Run Algorithm 2 to update policy πθ and get model buffer
Dmodel;

(Conservative reward updating) Run Algorithm 3 to update reward function rϕ;
end

A.2 HYPERPARAMETERS

We summarize the hyperparameters used in the evaluation as follows.

Conservatism level u. For all tasks, we normalize the uncertainty measure to [0, 1] and test u from
set {0.4, 0.6, 0.8}. The result is shown in Table 3. In each experiment, we select the u value that
achieves the maximum corresponding score.

Learning rates. For all experiments, the reward learning rate is η = 5×10−5. Our empirical studies
indicate that a relatively small reward learning rate leads to more stable training. Additionally, the
learning rates for actor and critic are both 3× 10−4, and that for dynamics model is 10−3.

Policy regularization. For all experiments, the policy regularization weight is λ = 0.25.

The additional hyperparameters are listed in Table A.2.

Table 2: Hyperparameters for CLARE. Instead of u, the hyperparameters used in the evaluation are
identical across different tasks (Half-Cheetah, Walker2d, Hopper, and Ant).

Hyperparameter Value

Reward learning rate (η) 5× 10−5

Rollout batchsize (B) 5000
Rollout horizon (H) 5
Policy regularization weight (λ) 0.25
Discount factor (γ) 0.99
# steps per reward updating (T ) 5
# epochs (E) 500
# steps per epoch 20
Actor learning rate 3× 10−4

Critic learning rate 3× 10−4

A.3 MORE EXPERIMENTAL RESULTS

We further evaluate CLARE by answering the following two questions: 1) Can CLARE exploit the
useful information from diverse datasets? 2) How does CLARE perform compared to the simple
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Table 3: Performance under different u values. We tune u from set {0.4, 0.6, 0.8}. For each MuJoCo
task, the experiments are carried out with three data combinations: 1) 10k expert state-action tuples,
2) 5k expert and 5k medium state-action tuples, and 3) 5k expert and 5k random state-action tuples.
The highest score across different u is bold.

Dataset type Environment u = 0.4 u = 0.6 u = 0.8

Exp. & Rand.

Walker2d 2896.93 2989.79 1083.17
Hopper 1187.22 1841.15 1508.09

Ant 2047.98 1496.09 1337.01
Half-Cheetah 453.03 1118.58 849.42

Exp. & Med.

Walker2d 3334.55 3680.78 3275.21
Hopper 1722.44 2107.90 1963.59

Ant 3568.49 3805.64 2635.30
Half-Cheetah 4955.23 4349.88 4000.17

Exp.

Walker2d 4674.52 4958.04 4742.20
Hopper 1954.04 2605.82 2328.22

Ant 2747.10 3925.90 3330.48
Half-Cheetah 5050.05 4942.20 4542.45

combination of MORL and (online) IRL methods? 3) What is the impact of reward weighting? 4)
What is the impact of expert sample sizes?

Exploitation on diverse data. Table 4 shows the results under different data combinations. By
using additional medium data, the performance can be improved over that only using 5k expert
tuples. The underlying rationale is: 1) The diverse datasets contain some good state-actions; 2) the
diverse data support enables CLARE to safely generalize to the states beyond expert data manifold.

Table 4: Impact of diverse data. For each MuJoCo task, the experiments are carried out with three
data combinations: 1) 10k expert state-action tuples, 2) 5k expert state-action tuples, 3) 5k expert
and 5k medium state-action tuples, and 4) 5k expert and 5k random state-action tuples.

Task Exp. (5k) & Rand. (5k) Exp. (5k) & Med. (5k) Exp. (5k) Exp. (10k)

Walker2d 2973.88 3613.49 2858.29 4990.57
Hopper 1891.55 2135.07 1885.76 2604.59
Ant 1960.05 3879.48 1978.08 3940.30
Half-Cheetah 1113.75 4888.64 1714.30 4975.17

Expert sample sizes. Table 5 shows the average returns (over 5 random seeds) under different expert
sample sizes with the fixed number of medium data (50k). It can corroborate our analytical results
that with a relatively sufficient data coverage of the empirical expert behaviors, the performance is
dominated by the expert sample size (combining Theorem 4.2, Theorem 4.3 and Corollary 4.1).

Table 5: Results under different expert sample sizes.
Dataset 2k 5k 10k 20k 50k 100k

Half-Cheetah 4753.9 4978.2 5206.5 7865.5 10930.1 11121.9
Hopper 1989.9 2273.4 2507.8 2991.8 3571.1 3566.4
Walker 3439.9 3632.2 4753.3 4982.4 4977.8 4991.3
Ant 3375.4 3866.5 3968.9 4385.7 4797.5 4910.6

Comparison to MOMAX. To demonstrate the poor performance of the naive approach using a
simple combination of IRL with model-based offline forward RL (MORL) method, we design a
baseline directly using a state-of-the-art MORL method, COMBO (Yu et al., 2021), in the inner loop
of MaxEnt IRL (Eq. (1)), called MOMAX. As shown in Figure 4, MOMAX does not work well in
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Figure 4: Comparison to MOMAX. Each experiment uses 10k expert and 10k medium state-actions.
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Figure 5: Ablation study of reward weighting. Each experiment uses 5k expert and 50k medium
state-action samples from the D4RL benchmark.

these continuous control tasks. It reveals the challenges of repurposing the online IRL methods in
the offline IRL setting.

Ablation study of reward weighting. Fig. 5 shows the impact of reward weighting on performance.
CLARE basically reduces to MaxEnt IRL with no reward weighting and thus can not deal with the
extrapolation error effectively in offline learning. Fig. 5 also demonstrates that the conservative
reward function can stabilize the training.

A.4 COMPUTATIONAL COMPLEXITY

We implement the code in PyTorch 1.11.0 on a server with a 32-Cores AMD Ryzen Threadripper
PRO 3975WX and a Intel GeForch RTX 3090 Ti. For all tasks, CLARE converges in one hour
(around 5-10 iterations with total 50k-100k gradient steps).

B PROOFS

In this section, we provide detailed proofs of main results in Section 4.

B.1 PROOF OF THEOREM 4.1

This proof is built on that for Ho & Ermon (2016, Proposition 3.1).

First, it follows from Eq. (4) that

L(π, r) = αĤ(π) + ZβEρ̂π
[
r(s, a)

]
− Eρ̃D

[
β(s, a)r(s, a)

]
− Eρ̃E

[
r(s, a)

]
+ Zβψ(r)

= αĤ(π) +
∑
s,a

(
Zβ ρ̂

π(s, a)− ρ̃D(s, a)β(s, a)− ρ̃E(s, a)
)
r(s, a) + Zβψ(r)

= αĤ(π) + Zβ
∑
s,a

(
ρ̂π(s, a)− ρ̃D(s, a)β(s, a) + ρ̃E(s, a)

Zβ

)
r(s, a) + Zβψ(r)
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= αĤ(π) + Zβ

(
Eρ̂π

[
r(s, a)

]
− Eρ̃I

[
r(s, a)

]
+ ψ(r)

)
.

(denoting ρ̃I(s, a) .= ρ̃D(s,a)β(s,a)+ρ̃E(s,a)
Zβ

)

where the last equality holds due to

Zβ = 1 + Es,a∼ρ̃D [β(s, a)]

=
∑
s,a

ρ̃E(s, a) + ρ̃D(s, a)β(s, a)

≥ 0. (from β(s, a) ≥ −ρ̃E(s, a)/ρ̃D(s, a) for (s, a) ∈ D)

Thanks to Lemma 4.1, there exists a one-to-one correspondence between Π and CT̂ . Thus, we can
rewrite

min
r∈R

max
π∈Π

L(π, r) = min
r∈R

max
ρ̂∈CT̂

αĤ(π) + Zβ

(
Eρ̂
[
r(s, a)

]
− Eρ̃I

[
r(s, a)

]
+ ψ(r)

)
︸ ︷︷ ︸

.
=L̄(ρ̂,r)

. (13)

It is easy to see that R is compact and convex. Besides, from the proof of Ho & Ermon (2016,
Proposition 3.1), CT̂ is also a compact and convex set. Accordingly, based on the concavity of H̄
(Lemma 4.2), the minimax theorem holds (Du & Pardalos, 2013), and hence we have

min
r∈R

max
ρ̂∈CT̂

L̄(ρ̂, r) = max
ρ̂∈CT̂

min
r∈R

L̄(ρ̂, r)

= max
ρ̂∈CT̂

αH̄(ρ̂) + Zβ

(
min
r∈R

Eρ̂
[
r(s, a)

]
− Eρ̃I

[
r(s, a)

]
+ ψ(r)

)
= max
ρ̂∈CT̂

αH̄(ρ̂) + Zβψ
∗(ρ̃I − ρ̃) (from the definition of convex conjugate)

= max
ρ̂∈CT̂

αH̄(ρ̂) + ZβDψ

(
ρ̃, ρ̃I

)
. (14)

Additionally, denote r∗ and ρ̂∗ as

r∗ ∈ argmin
r∈R

max
ρ̂∈CT̂

L̄(ρ̂, r), ρ̂∗ ∈ arg max
ρ̂∈CT̂

αH̄(ρ̂) + ZβDψ

(
ρ̃, ρ̃I

)
. (15)

Due to Eq. (14), (r∗, ρ̂∗) is a saddle point of L̄, and thus ρ̂∗ ∈ argmaxρ̂∈CT̂
L̄(ρ̂, r∗). By Lemma 4.1,

it is easy to see that policy π∗ (that corresponds to ρ̂∗) satisfies π∗ ∈ argmaxπ∈Π L(π, r
∗), thereby

completing the proof.

B.2 PROOF OF THEOREM 4.2

We present the following two lemmas before our main result.
Lemma B.1. Denoting p1(x, y) = q1(x)q1(y|x) and p2(x, y) = q2(x)q2(y|x) as two joint dis-
tributions over finite spaces, we can bound the total variation distance (TVD) between p1 and p2
as

DTV(p1, p2) ≤ Ex∼q1(x)
[
DTV(q1(·|x), q2(·|x))

]
+DTV(q1, q2). (16)

Proof. The proof is straight-forward:

DTV(p1, p2) =
1

2

∑
x,y

∣∣p1(x, y)− p2(x, y)∣∣
=

1

2

∑
x,y

∣∣q1(x)q1(y|x)− q2(x)q2(y|x)∣∣
=

1

2

∑
x,y

∣∣q1(x)q1(y|x)− q1(x)q2(y|x) + q1(x)q2(y|x)− q2(x)q2(y|x)
∣∣

≤ 1

2

∑
x,y

q1(x)
∣∣q1(y|x)− q2(y|x)∣∣+ 1

2

∑
x,y

q2(y|x)
∣∣q1(x)− q2(x)∣∣

16
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=
∑
x

q1(x) ·
1

2

∑
y

∣∣q1(y|x)− q2(y|x)∣∣+ 1

2

∑
x

∣∣q1(x)− q2(x)∣∣∑
y

q2(y|x)

= Ex∼q1(x)
[
DTV(q1(y|x), q2(y|x))

]
+DTV(q1, q2), (17)

where the last equality is obtained due to
∑
y q2(y|x) = 1.

Lemma B.2. Suppose that we have two Markov chain transition distributions T1(s′|s) and T2(s′|s),
and the initial state distributions are the same. Then, for each h ∈ [1, 2, . . . ), the TVD of state
marginals in time step h is bounded as

DTV(p
h
1 , p

h
2 ) ≤

h−1∑
h′=0

Es∼ph′
2

[
DTV

(
T1(·|s), T2(·|s)

)]
, (18)

where phi (s)
.
= Pr(sh = s | Ti, µ) for i = 1, 2.

Proof. First, we have∣∣∣ph1 (s)− ph2 (s)∣∣∣
=

∣∣∣∣∣∣
∑
s′

T1(s|s′)ph−1
1 (s′)−

∑
s′

T2(s|s′)ph−1
2 (s′)

∣∣∣∣∣∣
≤
∑
s′

∣∣∣T1(s|s′)ph−1
1 (s′)− T2(s|s′)ph−1

2 (s′)
∣∣∣

=
∑
s′

∣∣∣T1(s|s′)ph−1
1 (s′)− T1(s|s′)ph−1

2 (s′) + T1(s|s′)ph−1
2 (s′)− T2(s|s′)ph−1

2 (s′)
∣∣∣

≤
∑
s′

(
T1(s|s′)

∣∣∣ph−1
1 (s′)− ph−1

2 (s′)
∣∣∣+ ph−1

2 (s′)
∣∣T1(s|s′)− T2(s|s′)∣∣)

=
∑
s′

T1(s|s′)
∣∣∣ph−1

1 (s′)− ph−1
2 (s′)

∣∣∣+ Es′∼ph−1
2

[∣∣T1(s|s′)− T2(s|s′)∣∣] . (19)

Thus, we can write

DTV(p
h
1 , p

h
2 )

=
1

2

∑
s

∣∣∣ph1 (s)− ph2 (s)∣∣∣
≤1

2

∑
s

Es′∼ph−1
2

[∣∣T1(s|s′)− T2(s|s′)∣∣]+ 1

2

∑
s

∑
s′

T1(s|s′)
∣∣∣ph−1

1 (s′)− ph−1
2 (s′)

∣∣∣
(using Eq. (19))

=
1

2

∑
s

Es′∼ph−1
2

[∣∣T1(s|s′)− T2(s|s′)∣∣]+ 1

2

∑
s′

∣∣∣ph−1
1 (s′)− ph−1

2 (s′)
∣∣∣∑
s

T1(s|s′)

=Es′∼ph−1
2

[
1

2

∑
s

∣∣T1(s|s′)− T2(s|s′)∣∣]+ 1

2

∑
s′

∣∣∣ph−1
1 (s′)− ph−1

2 (s′)
∣∣∣

(using
∑
s T1(s|s′) = 1)

=Es′∼ph−1
2

[
DTV

(
T1(·|s′), T2(·|s′)

)]
+DTV(p

h−1
1 , ph−1

2 ) (20)

≤
h−1∑
h′=0

Es∼ph′
2

[
DTV

(
T1(·|s), T2(·|s)

)]
+DTV(p

0
1, p

0
2) (iteratively using Eq. (20))

=
h−1∑
h′=0

Es∼ph′
2

[
DTV

(
T1(·|s), T2(·|s)

)]
, (due to same initial state distributions)

which completes the proof.
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Observe that Lemma B.1 bounds the TVD of a joint distribution by the TVDs of its corresponding
conditional and marginal distributions, and that Lemma B.2 bounds the difference of two MDPs’
state visitations in each time step by the cumulative dynamics differences. Next, we provide the
following lemma that bounds the difference between the expert’s and learned policy’s occupancy
measures from above.

Lemma B.3. For each ρ̂ ∈ CT̂ , denote π̂ as its corresponding stationary policy, i.e., π̂ .
=

ρ̂(s, a)/
∑
a′ ρ̂(s, a

′), and ρπ̂ denote the occupancy measure of π̂ under true transition dynamics
T . Then, the following holds:

DTV(ρ
π̂, ρE) ≤ γ

1− γ
Es,a∼ρ̂

[
DTV

(
T (·|s, a), T̂ (·|s, a)

)]
+DTV(ρ̂, ρ̃

E) +DTV(ρ̃
E , ρE), (21)

where ρE is the occupancy measure of expert policy πE under the true transition dynamics.

Proof. For conciseness, let ρ1
.
= ρπ̂ and ρ2

.
= ρ̂. Using the triangle inequality, it is easy to see that

DTV(ρ1, ρ
E) ≤ DTV(ρ1, ρ2) +DTV(ρ2, ρ̃

E) +DTV(ρ̃
E , ρE), (22)

where ρ̃E is the empirical occupancy measure of expert policy πE . To boundDTV(ρ1, ρ2), denoting
ph1 (s, a)

.
= Pr(sh = s, ah = a | T , π̂, µ) and ph2 (s, a)

.
= Pr(sh = s, ah = a | T̂ , π̂, µ) (the

difference between them is marked in red), we can write

DTV(ρ1, ρ2) =
1

2

∑
s,a

∣∣ρ1(s, a)− ρ2(s, a)∣∣
=

1

2

∑
s,a

∣∣∣∣∣∣(1− γ)
∞∑
h=0

γhph1 (s, a)− (1− γ)
∞∑
h=0

γhph2 (s, a)

∣∣∣∣∣∣
(using the definition of occupancy measure in Section 2)

=
1− γ
2

∑
s,a

∣∣∣∣∣∣
∞∑
h=0

γh
(
ph1 (s, a)− ph2 (s, a)

)∣∣∣∣∣∣
≤ 1− γ

2

∞∑
h=0

∑
s,a

γh
∣∣∣ph1 (s, a)− ph2 (s, a)∣∣∣

= (1− γ)
∞∑
h=0

γh · 1
2

∑
s,a

∣∣∣ph1 (s, a)− ph2 (s, a)∣∣∣
= (1− γ)

∞∑
h=0

γh ·DTV

(
ph1 (s, a), p

h
2 (s, a)

)
≤ (1− γ)

∞∑
h=0

γhDTV

(
ph1 (s), p

h
2 (s)

)
, (23)

where ph1 (s)
.
= Pr(sh = s | T, π̂, µ), ph2 (s)

.
= Pr(sh = s | T̂ , π̂, µ), and the last inequation

holds due to Lemma B.1 (note that ph1 (s, a) = ph1 (s)π̂(a|s) and ph2 (s, a) = ph2 (s)π̂(a|s)).4 Denote
T1(s

′|s) .
=
∑
a T (s

′, a|s) and T2(s
′|s) .

=
∑
a T̂ (s

′, a|s), where we slightly overload notations
using T (s′, a|s) .= π̂(a|s)T (s′|s, a) and T̂ (s′, a|s) .= π̂(a|s)T̂ (s′|s, a). We obtain

DTV

(
T1(·|s), T2(·|s)

)
=

1

2

∑
s′

∣∣T1(s′|s)− T2(s′|s)∣∣
=

1

2

∑
s′

∣∣∣∣∣∑
a

T (s′, a|s)− T̂ (s′, a|s)

∣∣∣∣∣
4To avoid ambiguity, we use DTV(p

h
1 (s, a), p

h
2 (s, a)) and DTV(p

h
1 (s), p

h
2 (s)) to denote the TVDs between

the corresponding state-action distributions and state distributions respectively.
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≤ 1

2

∑
s′,a

∣∣∣T (s′, a|s)− T̂ (s′, a|s)∣∣∣
= DTV

(
T (s′, a|s), T̂ (s′, a|s)

)
≤ Ea∼π̂(a|s)

[
DTV

(
T (·|s, a), T̂ (·|s, a)

)]
.

(seeing π̂(a|s) as q1(x), q2(x), T (s′|s, a) as q1(y|x), and T̂ (s′|s, a) as q2(y|x), and then using Lemma B.1)

Based on that, the following holds:

DTV(ρ1, ρ2) ≤ (1− γ)
∞∑
h=0

γhDTV

(
ph1 (s), p

h
2 (s)

)
(from Eq. (23))

≤ (1− γ)
∞∑
h=1

γh
h−1∑
h′=0

Es∼ph′
2 (s)

[
DTV

(
T1(·|s), T2(·|s)

)]
(using fact DTV(p

0
1(s), p

0
2(s)) = DTV(µ, µ) = 0 and Lemma B.2)

≤ (1− γ)
∞∑
h=1

γh
h−1∑
h′=0

Es∼ph′
2 (s)

[
Ea∼π̂(a|s)

[
DTV

(
T (·|s, a), T̂ (·|s, a)

)]]
(using the above result)

= (1− γ)
∞∑
h=1

γh
h−1∑
h′=0

Es,a∼ph′
2 (s,a)

[
DTV

(
T (·|s, a), T̂ (·|s, a)

)]
(noting that ph2 (s, a) = ph2 (s)π̂(a|s))

= (1− γ)
∑
s,a

DTV

(
T (·|s, a), T̂ (·|s, a)

) ∞∑
h=1

γh
h−1∑
h′=0

ph
′

2 (s, a)

(expanding the expectation and rearranging terms)

= γ(1− γ)
∑
s,a

DTV

(
T (·|s, a), T̂ (·|s, a)

) ∞∑
h=1

h−1∑
h′=0

γh−1ph
′

2 (s, a)︸ ︷︷ ︸
.
=A

= γ(1− γ)
∑
s,a

DTV

(
T (·|s, a), T̂ (·|s, a)

) ∞∑
h=1

γh−1
∞∑
h′=0

γh
′
ph

′

2 (s, a)︸ ︷︷ ︸
.
=B

(B is derived by rearranging the terms in A)

= γ(1− γ)
∑
s,a

DTV

(
T (·|s, a), T̂ (·|s, a)

) ∞∑
h=1

γh−1 ρ2(s, a)

1− γ

(noting that ρ2(s, a) = (1− γ)
∑∞
h′=0 γ

h′
ph

′

2 (s, a))

=
∑
s,a

DTV

(
T (·|s, a), T̂ (·|s, a)

) ∞∑
h=1

γhρ2(s, a)

=
∑
s,a

ρ2(s, a)DTV

(
T (·|s, a), T̂ (·|s, a)

) ∞∑
h=1

γh

=
γ

1− γ
Es,a∼ρ2

[
DTV

(
T (·|s, a), T̂ (·|s, a)

)]
. (24)

Substituting Eq. (24) in Eq. (22) gives the desired result.

Denoting ρπ as the occupancy measure of π under underlying dynamics model T , We can write

J(πE)− J(ρπ) =
∑
s,a

ρE(s, a)R(s, a)−
∑
s,a

ρπ(s, a)R(s, a) (from the definition)
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=
∑
s,a

(
ρE(s, a)− ρπ(s, a)

)
R(s, a)

≤
∑
s,a

∣∣∣ρE(s, a)− ρπ(s, a)∣∣∣ (due to |R(s, a)| ≤ 1)

= 2DTV(ρ
π, ρE). (25)

Then, based on Lemma B.3, the desired result in Theorem 4.2 can be obtained by combining Eq. (25)
with Eq. (21).

B.3 PROOF OF THEOREM 4.3

Recall that c(s, a) = C ·DTV(T (·|s, a), T̂ (·|s, a)). We define

f(ρ)
.
= Es,a∼ρ[c(s, a)] + 2DTV(ρ, ρ̃

E)

=
∑
s,a

c(s, a)ρ(s, a) +
∣∣∣ρ(s, a)− ρ̃E(s, a)∣∣∣ . (26)

Thanks to Lemma 4.1, minimizing the RHS of Eq. (7) is equivalent to the following problem:

min
ρ∈P(S×A)

f(ρ). (27)

Let δ(s, a) .= ρ(s, a)− ρ̃E(s, a). Then, Problem (27) can be transformed to the following one:

min
δ

∑
s,a

c(s, a)δ(s, a) +
∣∣δ(s, a)∣∣ (28)

s.t.
∑
s,a

δ(s, a) = 0 (29)

δ(s, a) ≥ −ρ̃E(s, a) s ∈ S, a ∈ A. (30)

For conciseness, we rewrite Problem (28)-(30) as the following form:

min
δ

g(δ)
.
=

n∑
i=1

ciδi + |δi| (31)

s.t.
n∑
i=1

δi = 0 (32)

δi ≥ −ρ̃Ei i ∈ [n] (33)

where i corresponds to a state-action pair, n .
= |S| · |A|, [n] .= {1, 2, . . . , n}, and δ .

= {δi : i ∈ [n]}.
Due to Eq. (32) and Eq. (33), [n] can be divided into two disjoint sets, N1(δ)

.
= {i ∈ [n] : δi > 0}

and N2(δ)
.
= {i ∈ [n] : δi ≤ 0} (N1(δ) = ∅ iff all δi = 0). Thus, we can write

g(δ) =
∑

i∈N1(δ)

(ci + 1)δi +
∑

j∈N2(δ)

(cj − 1)δj . (34)

For any δ meeting Constraints (32) and (33), we denote δ′ (which should be δ′N1
if written in full)

satisfying δ′j = −1[cj − cmin
1 > 2] · ρ̃Ej for all j ∈ N2(δ), δ′i = 0 for all i ∈ N1(δ)\Nmin, and

δ′i =
∑
j∈N2(δ)

1[cj − cmin
1 > 2] · ρ̃Ej /|Nmin(δ)| for all i ∈ Nmin(δ), where Nmin(δ)

.
= {i ∈

N1(δ) : i ∈ argmini′∈N1(δ) ci′} and cmin
1

.
= mini∈N1(δ) ci. Then, we have

g(δ′) =
∑

i∈N1(δ)

(ci + 1)δ′i +
∑

j∈N2(δ)

(cj − 1)δ′j

=
∑

i∈Nmin(δ)

(ci + 1)δ′i +
∑

i′∈N1(δ)\Nmin(δ)

(ci′ + 1)δ′i′ +
∑

j∈N2(δ)

(cj − 1)δ′j

=
∑

i∈Nmin(δ)

(ci + 1)δ′i +
∑

i′∈N1(δ)\Nmin(δ)

(ci′ + 1)δ′i′ −
∑

j∈N2(δ)

1[cj − cmin
1 > 2] · (cj − 1)ρ̃Ej
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= (cmin
1 + 1)

∑
j∈N2(δ)

1[cj − cmin
1 > 2] · ρ̃Ej −

∑
j∈N2(δ)

1[cj − cmin
1 > 2] · (cj − 1) · ρ̃Ej

(due to δ′i′ = 0)

=
∑

j∈N2(δ)

1[cj − cmin
1 > 2] · (cmin

1 − cj + 2) · ρ̃Ej . (35)

Regarding g(δ), the following holds:

g(δ) =
∑

i∈N1(δ)

(ci + 1)δi +
∑

j∈N2(δ)

(cj − 1)δj

≥
∑

i∈N1(δ)

(cmin
1 + 1)δi +

∑
j∈N2(δ)

1[cj − cmin
1 > 2] · (cj − 1)δj

+
∑

j∈N2(δ)

1[cj − cmin
1 ≤ 2] · (cj − 1)δj

= −
∑

j∈N2(δ)

1[cj − cmin
1 > 2] · (cmin

1 + 1)δj +
∑

j∈N2(δ)

1[cj − cmin
1 > 2] · (cj − 1)δj

+ (cmin
1 + 1)

 ∑
i∈N1(δ)

δi +
∑

j∈N2(δ)

1[cj − cmin
1 > 2] · δj


+

∑
j∈N2(δ)

1[cj − cmin
1 ≤ 2] · (cj − 1)δj

(adding and subtracting −
∑
j∈N2(δ)

1[cj − cmin
1 > 2] · (cmin

1 + 1)δj)

=
∑

j∈N2(δ)

1[cj − cmin
1 > 2] · (cj − cmin

1 − 2)δj

+ (cmin
1 + 1)

 ∑
i∈N1(δ)

δi +
∑

j∈N2(δ)

1[cj − cmin
1 > 2] · δj


+

∑
j∈N2(δ)

1[cj − cmin
1 ≤ 2] · (cj − 1)δj

≥
∑

j∈N2(δ)

1[cj − cmin
1 > 2] · (cmin

1 − cj + 2)ρ̃Ej

+ (cmin
1 + 1)

 ∑
i∈N1(δ)

δi +
∑

j∈N2(δ)

1[cj − cmin
1 > 2] · δj


+

∑
j∈N2(δ)

1[cj − cmin
1 ≤ 2] · (cmin + 1)δj (noting that δj ≤ 0)

=
∑

j∈N2(δ)

1[cj − cmin
1 > 2] · (cmin

1 − cj + 2)ρ̃Ej

+ (cmin
1 + 1)

 ∑
i∈N1(δ)

δi +
∑

j∈N2(δ)

(
1[cj − cmin

1 > 2] + 1[cj − cmin
1 ≤ 2]

)
· δj


=

∑
j∈N2(δ)

1[cj − cmin
1 > 2] · (cmin

1 − cj + 2)ρ̃Ej + (cmin
1 + 1)

 ∑
i∈N1(δ)

δi +
∑

j∈N2(δ)

δj


︸ ︷︷ ︸

=0

(due to Constraint (32))

= g(δ′). (due to Eq. (35))
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Denoting G .
= {δ ∈ R|S|·|A| s.t. (32) and (33)}, we have the following fact:

δ′N1
= argmin

δ∈G(N1)

g(δ), (36)

where G(N1)
.
= {δ ∈ G : N1(δ) = N1 and N2(δ) = [n]\N1}. Due to Eq. (35), we have

min
δ∈G

g(δ) = min
N1⊂[n]

g(δ′N1
) = min

N1⊂[n]

∑
j∈[n]\N1

1[cj − cmin
1 > 2] · (cmin

1 − cj + 2) · ρ̃Ej . (37)

Let cmin .
= mini∈[n] ci and N ∗

1
.
= {i ∈ [n] : ci = cmin}. The following fact is true:

g(δ′N1
)− g(δ′N∗

1
) =

∑
j∈[n]\N1

1[cj − cmin
1 > 2] · (cmin

1 − cj + 2)

−
∑

j′∈[n]\N∗
1

1[cj′ − cmin > 2] · (cmin − cj′ + 2)

≥
∑

j∈[n]\N1

1[cj − cmin
1 > 2] · (cmin − cj + 2)

−
∑

j′∈[n]\N∗
1

1[cj′ − cmin > 2] · (cmin − cj′ + 2) (due to cmin ≤ cmin
1 )

≥ 0, (38)

where the last inequality holds because {j ∈ [n]/N1 : cj − cmin
1 > 2} is a subset of {j′ ∈ [n]/N ∗

1 :

cj′ − cmin > 2}. Thus, δ∗ .
= δ′N∗

1
= minδ∈G g(δ), and we can express δ∗ as

δ∗(s, a) =


∑

s′,a′ 1[c(s
′,a′)−cmin>2]·ρ̃E(s′,a′)

|Nmin| , if c(s, a) ≤ cmin

−ρ̃E(s, a), if c(s, a) > cmin + 2

0, otherwise

(39)

whereNmin = N ∗
1 . Due to δ(s, a) + ρ̃E(s, a) = ρ(s, a), we obtain the optimal solution of Problem

(27) as follows:

ρ∗(s, a) =


∑

s′,a′ 1[c(s
′,a′)−cmin>2]·ρ̃E(s′,a′)

|Nmin| + ρ̃E(s, a), if c(s, a) ≤ cmin

0, if c(s, a) > cmin + 2

ρ̃E(s, a), otherwise

(40)

thereby completing the proof.

B.4 PROOF OF COROLLARY 4.1

Because c(s, a) > cmin when ρ̃D(s, a) = 0, if ρ̃D(s, a) = 0, then ρ∗(s, a) = 0 holds. The desired
result can be easily obtained by seeing β∗(s, a)ρ̃D(s, a) as δ∗(s, a) in the proof of Theorem 4.3.

B.5 MINIMIZING A CHI-SQUARED DIVERGENCE

The f -divergence between two distributions ρ1 and ρ2 is defined as

Df (ρ1∥ρ2) = Eρ2

[
f

(
ρ1
ρ2

)]
= sup

g
EX∼ρ1 [g(X)]− EX∼ρ2

[
f∗(g(X))

]
(41)

where f∗ is the convex conjugate. The χ2-divergence is the f -divergence with f(x) = (x− 1)2 and
f∗(y) = y2

4 + y, i.e.,

χ2(ρ1, ρ2) = sup
g
EX∼ρ1 [g(X)]− EX∼ρ2

[
g(X)2

4
+ g(X)

]
(42)
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By interpreting g = −r and X = (s, a), the following holds:

χ2(ρ1, ρ2) = sup
r
E(s,a)∼ρ2

[
r(s, a)

]
− E(s,a)∼ρ1 [r(s, a)]−

1

4
E(s,a)∼ρ2

[
r(s, a)2

]
(43)

Thus, using a convex reward regularizer ψ(r) = r2

4δ enables CLARE to minimize a χ2-divergence
between the target policy and learned policy, i.e., maxρ̂∈CT̂

αH̄(ρ̂)− Zβδ · χ2(ρ̂, ρ̂∗).

23


	Introduction
	Preliminaries
	CLARE: conservative model-based reward learning
	Theoretical analysis of CLARE
	Convergence analysis
	Striking the right exploration-exploitation balance

	Practical implementation
	Experiments
	Related work
	Conclusion
	Experimental details
	Practical implementation details
	Hyperparameters
	More experimental results
	Computational complexity

	Proofs
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Theorem 4.3
	Proof of Corollary 4.1
	Minimizing a Chi-squared divergence


