Published as a conference paper at ICLR 2023

CLARE: CONSERVATIVE MODEL-BASED REWARD
LEARNING FOR OFFLINE INVERSE REINFORCEMENT
LEARNING

Sheng Yue'; Guanbo Wang?, Wei Shao®; Zhaofeng Zhang”, Sen Lin’; Ju Ren'¢{
Junshan Zhang?

!Tsinghua University, 2Tongji University, University of California, Davis,

4 Arizona State University, >Ohio State University, °Zhongguancun Laboratory

ABSTRACT

This work aims to tackle a major challenge in offline Inverse Reinforcement
Learning (IRL), namely the reward extrapolation error, where the learned reward
function may fail to explain the task correctly and misguide the agent in unseen
environments due to the intrinsic covariate shift. Leveraging both expert data and
lower-quality diverse data, we devise a principled algorithm (namely CLARE)
that solves offline IRL efficiently via integrating “conservatism” into a learned
reward function and utilizing an estimated dynamics model. Our theoretical anal-
ysis provides an upper bound on the return gap between the learned policy and the
expert policy, based on which we characterize the impact of covariate shift by ex-
amining subtle two-tier tradeoffs between the “exploitation” (on both expert and
diverse data) and “exploration” (on the estimated dynamics model). We show that
CLARE can provably alleviate the reward extrapolation error by striking the right
“exploitation-exploration” balance therein. Extensive experiments corroborate the
significant performance gains of CLARE over existing state-of-the-art algorithms
on MuJoCo continuous control tasks (especially with a small offline dataset), and
the learned reward is highly instructive for further learning (source code).

1 INTRODUCTION

The primary objective of Inverse Reinforcement Learning (IRL) is to learn a reward function from
demonstrations (s ; s). In general, conventional IRL methods rely
on extensive online trials and errors that can be costly or require a fully known transition model
(, ; ;

; ,), struggling to scale in many real world apphcations To tackle this
problem thls paper studies offline IRL, with focus on learning from a previously collected dataset
without online interaction with the environment. Offline IRL holds tremendous promise for safety-
sensitive applications where manually identifying an appropriate reward is difficult but historical
datasets of human demonstrations are readily available (e.g., in healthcare, autonomous driving,
robotics, etc.). In particular, since the learned reward function is a succinct representation of an
expert’s intention, it is useful for policy learning (e.g., in offline Imitation Learning (IL) (

s)) as well as a number of broader applications (e.g., task description (s
) and transfer learning (s).

This work aims to address a major challenge in offline IRL, namely the reward extrapolation error,
where the learned reward function may fail to correctly explain the task and misguide the agent in
unseen environments. This issue results from the partial coverage of states in the restricted expert
demonstrations (i.e., covariate shift) as well as the high-dimensional and expressive function ap-
proximation for the reward. It is further exacerbated due to no reinforcement signal for supervision
and the intrinsic reward ambiguity therein.! In fact, similar challenges related to the extrapolation

*Part of this work was done when Sheng Yue, Wei Shao, and Sen Lin worked at Arizona State University.
TCorresponding author: renju@tsinghua.edu.cn
'The reward ambiguity refers to the fact that same behavior can be optimal for many reward functions.

https://github.com/shaunyue/clare

Published as a conference paper at ICLR 2023

error in the value function have been widely observed in offline (forward) RL, e.g., in
(); (;). Unfortunately, to the best of our knowledge, this challenge remains
not well understood in offline IRL, albeit there is some recent progress (

,). Thus motivated, the key question this paper seeks to
answer is: “How to devise offline IRL algorithms that can ameliorate the reward extrapolation error
effectively?”

We answer this question by introducing a principled offline IRL algorithm, named conservative
model-based reward learning (CLARE), leveraging not only (limited) higher-quality expert data but
also (potentially abundant) lower-quality diverse data to enhance the coverage of the state-action
space for combating covariate shift. CLARE addresses the above-mentioned challenge by appro-
priately integrating conservatism into the learned reward to alleviate the possible misguidance in
out-of-distribution states, and improves the reward generalization ability by utilizing a learned dy-
namics model. More specifically, CLARE iterates between conservative reward updating and safe
policy improvement, and the reward function is updated via improving its values on weighted expert
and diverse state-actions while in turn cautiously penalizing those generated from model rollouts. As
a result, it can encapsulate the expert intention while conservatively evaluating out-of-distribution
state-actions, which in turn encourages the policy to visit data-supported states and follow expert
behaviors and hence achieves safe policy search.

Trade ’1)// _|
Expert data Diverse data Model-based synthetic data
g - b v
“Exploitation” ——— Tradeoff ——— “Exploration”

Figure 1: An illustration of the two-tier tradeoffs in CLARE.

Technically, there are highly nontrivial two-tier tradeoffs that CLARE has to delicately calibrate:
“balanced exploitation” of the expert and diverse data, and “exploration” of the estimated model.”
As illustrated in Fig. 1, The first tradeoff arises because CLARE relies on both exploiting expert
demonstrations to infer the reward and exploiting diverse data to handle the covariate shift caused
by the insufficient state-action coverage of limited demonstration data. At a higher level, CLARE
needs to judiciously explore the estimated model to escape the offline data manifold for better gen-
eralization. To this end, we first introduce the new pointwise weight parameters for offline data
points (state-action pairs) to capture the subtle two-tier exploitation-exploration tradeoffs. Then, we
rigorously quantify its impact on the performance by providing an upper bound on the return gap
between the learned policy and the expert policy. Based on the theoretical quantification, we derive
the optimal weight parameters whereby CLARE can strike the balance appropriately to minimize
the return gap. Our findings reveal that the reward function obtained by CLARE can effectively
capture the expert intention and provably ameliorate the extrapolation error in offline IRL.

Finally, extensive experiments are carred out to compare CLARE with state-of-the-art offline IRL
and offline IL algorithms on MuJoCo continuous control tasks. Our results demonstrate that even
using small offline datasets, CLARE obtains significant performance gains over existing algorithms
in continuous, high-dimensional environments. We also show that the learned reward function can
explain the expert behaviors well and is highly instructive for further learning.

2 PRELIMINARIES

Markov decision process (MDP) can be specified by tuple M = (S, A, T, R, u,~), consist-
ing of state space S, action space A, transition function 7' : & x A — P(S), reward function
R : S x A — R, initial state distribution 1 : S — [0, 1], and discount factor v € (0,1). A
stationary stochastic policy maps states to distributions over actions as 7 : S — P(A). We de-
fine the normalized state-action occupancy measure (abbreviated as occupancy measure) of policy 7

The exploration in the context of this manuscript refers to enhancing the generalization capability of the
algorithm by escaping the offline data manifold via model rollout.

Published as a conference paper at ICLR 2023

under transition dynamics 7" as p™ (s, a) = (1 —) >_ne, v" Pr(sp, = s|T, 7, p)m(als). The objec-
tive of reinforcement learning (RL) can be expressed as maximizing expected cumulative rewards:
maxyern J(m) = Eg 40 [R(s, a)], where IT is the set of all stationary stochastic policies that take
actions in A given states in S.*

Maximum entropy IRL (MaxEnt IRL) aims to learn the reward function from expert demonstra-
tions and reason about the stochasticity thereln (,). Based on
demonstrations sampled from expert policy 7%, the MaxEnt IRL problem is given by

i (K Q) + B 1(5,0)]) = Boepo 0] 4 000), m
with H(7) = — [[p™(s,a)logm(als) ds da being the vy-discounted causal entropy, R a family
of reward functions, o > 0 the weight parameter, and 1/ : RS*A — R U {oo} a convex reward
regularizer (); (). Problem (1) looks for a reward function assigning

higher rewards to the expert policy and lower rewards to other policies, along with the best policy
under the learned reward function. Although enjoying strong theoretical justification and achieving
great performance in many applications, MaxEnt IRL has to solve a forward RL problem in the inner
loop that involves extensive online interactions with the environment.

Offline IRL is the setting where the algorithm is neither allowed to interact with the environment
nor provided reinforcement signals. It only has access to static dataset D = Dg U Dp consisting
of expert dataset Dr = {(s:,a;, sl)}DE and diverse dataset Dp = {(s;,a;,5})}2% collected by
expert policy 7% and behavior policy 77, respectively. The goal of offline IRL is to 1nfer a reward
function capable of explaining the expert’s preferences from the given dataset.

3 CLARE: CONSERVATIVE MODEL-BASED REWARD LEARNING

A naive solution for offline IRL is to retrofit MaxEnt IRL to the offline setting via estimating a

dynamics model using offline data (e.g., in (); ()). Unfor-
tunately, it has been reported that this naive paradigm often suffers from unsatisfactory performance
in high-dimensional and continuous environments (). The underlying reasons for

this issue include: (1) the dependence on full knowledge of the reward feature function, and (2) the
lack of effective mechanisms to tackle the reward extrapolation error caused by covariate shift (as
stated in Section 1). Nevertheless, we believe that utilizing a learned dynamics model is beneficial
because it is expected to pr0V1de broader generalization by learning on additional model-generated
synthetic data (R s). With this insight, this work focuses on the
model-based offline IRL method that is robust to covariate shift while enjoying the model’s gener-
alization ability.

As illustrated in Fig. 1, there are two-tier subtle tradeoffs that need to be carefully balanced between
exploiting the offline data and exploring model-based synthetic data. On one hand, the higher-quality
expert demonstrations are exploited to infer the intention and abstract the reward function therein,
while the lower-quaity diverse data is exploited to enrich data support. On the other hand, it is
essential to prudently explore the estimated dynamics model to improve the generalization capability
while mitigating overfitting errors in inaccurate regions. To this end, we devise conservative model-
based reward learning (CLARE) based on MaxEnt IRL, where the new pointwise weight parameters
are introduced for each offline state-action pair to capture the tradeoffs subtly. We elaborate further
in what follows.

As outlined below, CLARE iterates between (I) conservative reward updating and (II) safe policy
improvement, under a dynamics model (denoted by 7T') learned from offline dataset.

(I) Conservative reward updating. Given current policy 7w, dynamics model f, and offline datasets
Dg and D, CLARE updates reward funtion r based on the following loss:

L(r|m) = ZgEs ampr[r(s,a)] = Eg quper(s,a)] —Eg o5 [B(s,a)r(s, a)] + Zgip(r), (2)
——

penalized on model rollouts increased on expert data ~ weighting expert and diverse data regularizer

3For convenience, we omit a constant multiplier, 1/(1 —), in the objective for conciseness, i.e., the
complete objective function is given by max e Es,a~p~ [R(s,a)/(1 — 7)].

Published as a conference paper at ICLR 2023

where 5P (s,a) = (|Dg(s,a)| + |Dgp(s,a)|)/(Dg + Dg) is the empirical distribution of (s,a) in
the union dataset D = Dg U Dp and p¥ = |Dg(s,a)|/Dg is that for expert dataset Dg; p™ is the
occupancy measure when rolling out 7 with dynamics model 7'; and i) denotes a convex regularizer
mentioned above. One key step is to add an additional term weighting the reward of each offline
state-action by 3(s, a), which is a “fine-grained control” for the exploitation of the offline data. For
the data deserving more exploitation (e.g., expert behaviors with sufficient data support), we can set a
relatively large 3(s, a); otherwise, we decrease its value. Besides, it can also control the exploration
of the model subtly (consider that if we set all 5(s, a) = 0, Eq. (2) reduces to MaxEnt IRL, enabling
the agent to explore the model without restrictions). Here, Zg = 1 + E, ., ;p[3(s',a’)] is a
normalization term. The new ingredients beyond MaxEnt IRL are highlighted in blue.

Observe that in Eq. (2), by decreasing the reward loss, CLARE pushes up the reward on good of-
fline state-action that characterized by larger §(s, a), while pushing down the reward on potentially
out-of-distribution ones that generated from model rollouts. This is similar to COMBO (s
) in spirit, a state-of-the-art offline forward RL algorithm, and results in a conservative re-
ward function. It can encourage the policy to cautiously exploring the state-actions beyond offline
data manifold, thus capable of mitigating the misguidance issue and guiding safe policy search. In
Section 4, we will derive a closed-form optimal (s, a) that enables CLARE to achieve a proper
exploration-exploitation trade-off by minimizing a return gap from the expert policy.

(II) Safe policy improvement. Given updated reward function r, the policy is improved by solving

max L(n|r) = ZgEg anp= (s, a)] + aH(m), (3)
S
where o > 0 is a weight parameter, and H () = — [f ™ (s,a)log m(als) ds da is the y-discounted

causal entropy induced by the policy and learned dynamics model. Due to the embedded expert
intention and conservatism in the reward function, the policy is updated safely by carrying out
conservative model-based exploration. One can use any well-established MaxEnt RL approach to
solve this problem by simulating with model T and reward function 7. It is worth noting that for
Problem (3) in this step, the practical implementation of CLARE works well with a small number
of updates in each iteration (see Sections 5 and 6).

4 THEORETICAL ANALYSIS OF CLARE

In this section, we focus on answering the following question: “How to set 5(s, a) for each offline
state-action pair to strike the two-tier exploitation-exploration balance appropriately?” To this end,
we first quantify the impact of the tradeoffs via bounding the return gap between the learned policy
and expert policy. Then, we derive the optimal weight parameters to minimize this gap. All the
detailed proofs can be found in Appendix B. Notably, this section works with finite state and action
spaces, but our algorithms and experiments run in high-dimensional and continuous environments.

4.1 CONVERGENCE ANALYSIS

We first characterize the policy learned by CLARE, in terms of 3(s, a) and empirical distributions
p¥ and pP. Before proceeding, it is easy to see CLARE is iteratively solving the min-max problem:

%17131 max oH (7) + ZgB s [r(s,a)] —Ezp [B(s,a)r(s,a)] —Eze [r(s,a)] + Zpp(r). (4)

=L(m,r)

For dynamics 7', define the set of occupancy measures satisfying Bellman flow constraints as

Cr = {p e RISIMI: p > 0and Zp(s,a) = pu(s)+ 72T(s|s’,a)p(s’,a) Vs € S}. (5)
a s'a
We first provide the following results for switching between policies and occupancy measures, which
allow us to use 7, to denote the unique policy for occupancy measure p.
Lemma 4.1 (Theorem 2 in (). If p € Cr, then p is the occupancy measure for sta-
tionary policy w,(als) = p(s,a)/ Y, p(s,a’), and 7, is the only stationary policy with occupancy
measure p.

Published as a conference paper at ICLR 2023

Lemma 4.2 (Lemma 3.2 in (2016)). Denote H(p) = =¥, , p(s,) log s~24 .

Then, H is strictly concave, and for all w € Il and p € Cr, H(w) = H(p™) and H(p) = H(m,)
hold true, where ,(al|s) = p(s,a)/ >,/ p(s,a’).

Based on Lemma 4.1 and Lemma 4.2, we have the follow results on the learned policy.

Theorem 4.1. Assume that 3(s,a) > —p¥(s,a)/pP (s,a) holds for (s,a) € D. For Problem (4),
the following relationship holds:

~F ~D
min max L(m,r) = max aH(p) — ZgDy (ﬁ, p;?) ; (6)

with Dy (p1, p2) = ¢¥*(p2 — p1), where * is the convex conjugate of 1.

Notably, by selecting appropriate forms of reward regularizers v, D, can belong to a wide-range of
statistical distances. For example, if 1(r) = ar?, then Dy (p1, p2) = 7=X(p1, p2); if 1 restricts
r € [-R™, R™], then Dy (p1, p2) = 2R™ Dyv(p1,p2) (,). Theorem 4.1
implies that CLARE implicitly seeks a policy under T whose occupancy measure stays close to an
interpolation of the empirical distributions of expert dataset D and union offline dataset D. The
interpolation reveals that CLARE is trying to trade off the exploration of the model and exploitation
of offline data by selecting proper weight parameters 5(s, a). For example, if 3(s,a) = 0 for all
(s,a) € D, CLARE will completely follow the occupancy measure of the (empirical) expert policy
by explore the model freely. In contrast, if 3(s, a) increases with 5 (s, a), the learned policy will
look for richer data support.

Remarks. Looking deeper into Eq. (6), the target occupancy measure can be expressed equiva-

~E ~B
lently as (1+8Dp/D)p - +(BDs/D)b” after rearranging terms in the above interpolation. As a result,

f)
CLARE also subtly balances the exploitation between the expert and diverse datasets to extract
potentially valuable information in the sub-optimal data.

4.2 STRIKING THE RIGHT EXPLORATION-EXPLOITATION BALANCE

Next, we show how to set (s, a) properly to achieve the right two-tier balance.

Recall that J(7) = E, 4~ ,~[R(s, a)] is the return achieved by policy 7. The next result provides a
upper bound on the return gap between .J () and .J(7¥), which hinges on the intrinsic trade-offs.
Theorem 4.2. Suppose |R(s,a)| < 1forany s € S,a € A. For any stationary policy 7, let p™
denote the occupancy measure of ™ under estimated model T. We have that

J(@F) = (1) < O Bunpr [Drv(TCls, @), T([s.0)) | +2 (Drv (7. 57) + Drv (6. 0"))
(7

where C = % and p¥ is the occupancy measure of expert policy w% under true dynamics T.

Remarks. Theorem 4.2 indicates that a good policy learned from the estimated model not only
follows the expert behaviors but also keeps in the “safe region” of the learned model, i.e., visiting
the state-actions with less model estimation inaccuracy. Under the concentration assumption, the
following holds with probability greater than 1 — §:

CCs
VIDg(s,a)| + [Dp (s, a)|

()

where D(s,a) = {(s',a’) € D : ' = s,a’ = a}. Tt aligns well with the aforementioned
exploration-exploitation balance: 1) Term (a) captures the exploitation of offline data support; 2)
Term (b) captures the exploitation of expert data and the exploration of the model (recall that 5™ is
the occupancy measure of rolling out 7 with 7°); and 3) Term (c) captures the distributional shift in
offline learning. Importantly, the result in Theorem 4.2 connects the true return of a policy with its
occupancy measure on the learned model. This gives us a criteria to evaluate the performance of
a policy from offline. Define ¢(s,a) = C - Dpy(T(+|s,a), T(-|s,a)) and ¢™™ = ming , c(s, a).
Subsequently, we derive the policy that minimizes the RHS of Eq. (7).

+2 DTV(:&W’ ﬁE) +2 DTV(ﬁEv pE)a
(b) (©

J(7P) = J(7) < Esanpr [

Published as a conference paper at ICLR 2023

Algorithm 1: Conservative model-based reward learning (CLARE)

Input: expert data Dg, diverse data Dp, bar u, learning rate 7, policy regularizer weight A
Learn dynamics model 7" represented by an ensemble of neural networks using all offline data;
Set weight (s, a) for each offline state-action tuple (s,a) € Dg U Dpg by Eq. (11);
Initialize the policy 7y and reward function r4 parameterized by 6 and ¢ respectively;
while rnot done do
(Safe policy improvement) Run a MaxEnt RL algorithm for some steps with model 7" and
current reward function r, to update policy g, based on L(mg|rg) — ADk1(7°||7g);
(Conservative reward updating) Update r4 by ¢ <— ¢ — nV 4 L(rg|mg) for a few steps;
end

Theorem 4.3. Under the same conditions as in Theorem 4.2, the optimal occupancy measure mini-
mizing the upper bound of Eq. (7) is given as follows:

7 (5,0) + Ay, ifc(s,a) < ™,
p*(s,a) =<0, ifc(s,a) > ™ 42, (8)
P (s,a), otherwise.

s 7y_ _min GE (s a .
where A, = = Zatar el ’a‘j)\,c_ ‘ 27 and Npin = {(s,a) € D : ¢(s,a) < ™0},

As shown in Theorem 4.3, the “optimal” policy leaned on model T conservatively explores the
model by avoiding the visit of risky state-actions. Meantime, it cleverly exploits the accurate region,
such that it does not deviate large from the expert. Now, we are ready to derive the optimal values
of the weight parameters.

Corollary 4.1. Suppose that when pP(s,a) = 0, c(s,a) > ¢™ holds for each (s,a) € S x A.
Under the same condition as in Theorem 4.3, if 3(s, a) are set as

%, ifc(s,a) < ™" and pP (s,a) > 0,
* 5E i ~
B*(s,a) = —Z,;&'Z’Z% ifc(s,a) > ™ + 2 and pP (s, a) > 0, 9)
0, otherwise,
then it follows that
m17rz1maXL(7T r) = maxaH (p") — ZgDy(p™, p*). (10)
reR well ™

Corollary 4.1 provides the value of 3(s, a) for each (s, a) € D such that the learned reward function
can guide the policy to minimize the return gap in Eq. (7). It indicates that the right exploitation-
exploration trade-off can be provably balanced via setting the weight parameters properly. In par-
ticular, 5* assigns positive weight to the offline state-action with accurate model estimation and
negative weight to that with large model error. It enables CLARE to learn a conservative reward
function that pessimistically evaluates the our-of-distribution states and actions, capable of amelio-
rating the extrapolation error in unseen environments. However, the optimal weights require the
model error, c(s, a), which is typically hard to obtain (especially in high-dimensional and contin-
uous spaces). Section 5 will solve this problem by extending this result with the aid of the model
ensembles and uncertainty quantification techniques.

5 PRACTICAL IMPLEMENTATION

Learning dynamics models. Following the state-of-the-art model-based methods (,
), we model the transition dynamics by an ensemble of neural networks, each of which outputs

a Gaussian distribution over next states, i.e., {T}(s'|s,a) = N (i (s, a), S; (s, a) v,

Weights in continuous environments. The ideas of achieving CLARE in continuous environ-
ments are 1) to approximately see the offline data as sampled from a large discrete space, and 2)

Published as a conference paper at ICLR 2023

to use an uncertainty quantification technique for quantifying the model error. Specifically, because
state-action pairs are basically different from each other in this setting, we let 5 (s,a) = 1/D
and ¥ (s, a) = 1/Dg, and employ the uncertainty estimator, c(s, a) = max;e[n) || Z:(s, a)| ., pro-
posed in () for model error evaluation. Guided by the analytical results in Corollary 4.1,
we compute the weights for each (s,a) € D via slight relaxation as follows:

s if c(s,a) < u,
B(s,a) = —I%i[(s,a) € Dgl, ifc(s,a) > u, (11)
0, otherwise,

where N' = %7 \cplle(s,a) < uland N" =37\ p 1[c(s,a) > u]. Here, coefficient u
is a user-chosen hyper-parameter for controlling the conservatism level of CLARE. If one wants
the learned policy to be trained more conservatively on offline data support, u should be small;
otherwise, u can be chose to be large for better exploration.

Reward and policy regularizers. In the experiments, we use () = r? as the reward regularizer.
Additionally, when updating the policy, we use a KL divergence as a regularizer with empirical
behavior policy 7 induced by a subset of the offline dataset, D’ C D, as follows:

Dy (1) = By (Bt 1) 108 7 (al5)] ~ By o m(als)] |,

Z(s’,a’)eD/ 1[s’'=s,a’=a]
(s',a’)eD’ 1[s’=s]
plemented by adding —E; ~p[log 7(a|s)] to the actor loss. The intuition is to encourage the actor
to perform in support of the real data for accelerating safe policy improvement. While this regular-
ization lacks theoretical guarantees, we empirically find that it can indeed speed up the training.

where 7°(als) = if (s,a) € D', and 7°(a|s) = 0 otherwise. It can be im-

Practical algorithm design. The pseudocode of CLARE is depicted in Algorithm 1. The policy im-
provement phase can be implemented by the standard implementation of SAC ()
with a change of the additional policy regularizer. We elaborate more details in the Appendlx A.

6 EXPERIMENTS

Next, we use experimental studies to evaluate CLARE and answer the following key questions: (1)
How does CLARE perform on the standard offline RL benchmarks in comparison to existing state-
of-the-art algorithms? (2) How does CLARE perform given different dataset sizes? (3) How does
the “conservatism level”, u, affect the performance? (4) How fast does CLARE converge? (5) Can
the learned reward function effectively explain the expert intention?

To answer these questions, we compare CLARE with the following existing offline IRL methods on

the D4RL benchmark (R): 1) IQ-LEARN (s), a state-of-the-art model-
free offline IRL algorithm; 2) AVRIL (s), another recent model-free
offline IRL method; 3) EDM (s), a state-of-the-art offline IL approach; and 4)

Behavior Cloning (BC). To demonstrate the poor performance of the naive approach using a sim-
ple combination of IRL with model-based offline forward RL. (MORL) method, we also consider
a baseline algorithm, namely MOMAX, by directly using COMBO (,) in the inner
loop of MaxEnt IRL. We present the results on continuous control tasks (including Half-Cheetah,
Walker2d, Hopper, and Ant) consisting of three data qualities (random, medium, and expert). Ex-
perimental set-up and hyperparameters are described in detailed in Appendix A.

Walker2d Hopper Ant Halfcheetah
= c c
= — < 3000 o D— £ 10000
% 4000 - cue % = e é 4000 /: E 7500 —— CLARE
—e— CLy [} BC
o« —— 1g-tearm | & 2000 —— IQLearn | & BC < e IQ-Learn
%2000 —=— AVRIL g g —— AVRIL %2000 —*— IQ-Learn g’ 5000 —— AVRIL
I —— MOMAX © 1000 —— MOMAX I —— AVRIL © /_; MOMAX
u>) —+— EDM g o zﬁ/é_:,:—o— EDM g —— MOMAX 5 2500 —— EDM
e — T ---- Expert e -----Expert > ---- Expert
< 0 medum | < meaum | T 0] —— - Mediom | < 0 " Medum
2k 10k 50k 100k 150k 2k 10k 50k 100k 150k 2k 10k 50k 100k 150k 2k 10k 50k 100k 150k
Number of Tuples Number of Tuples Number of Tuples Number of Tuples

Figure 2: CLARE against other algorithms on all tasks over different dataset sizes consisting of
expert and medium data equally.

Published as a conference paper at ICLR 2023

Table 1: Results on D4RL datasets. For each task, the experiments are carried out with three different
data combinations: 1) 10k expert tuples, 2) Sk expert and 5k medium tuples, and 3) 5k expert and Sk
random tuples. The data scores below for 1), 2), and 3) correspond to expert, medium, and random
data, respectively. We tune IQ-LEARN, EDM, and AVRIL based on their publicly available source
code. Results are averaged over 7 random seeds. The highest score across all algorithms is bold.

Dataset type ~ Environment Data score CLARE BC IQ-LEARN EDM AVRIL MOMAX
Walker2d 1.9 2873.8 17.8 256.9 165.5 100.9 -525.4
Exp. & Rand Hopper 18.4 1891.5 110.2 523.6 178.8 178.3 0.7
AP & fand. Ant 644 1960.0 -427.6 2472 -3000.9 1000.1 113.8
Half-Cheetah -505.1 1113.7 -86.7 123.9 -346.7 -1093.5 -11.0
Walker2d 3496.3 36134 16742 1676.8 175.7 184.0 19.6
Exp. & Med Hopper 1422.7 2135.0 947.0 2049.8 194.4 183.7 27.6
AP & Med. Ant 3969.0 38794 2146.0 2222 -3001.5 1001.0 332
Half-Cheetah 4667.8 4888.6 2375.0 2957.7 -298.3 -1195.6 -0.2
Walker2d 5010.4 4990.5 1665.7 2445 .4 189.7 194.1 23.2
E Hopper 3603.2 2604.5 1436.1 2854.4 192.5 183.9 34.5
AP Ant 5172.8 3940.3 1797.9 375.4 -3000.6 1000.2 48.1
Half-Cheetah 10748.7 4975.1 242.4 3750.5 -299.5 -619.0 -0.4
Halfcheetah Walker2d Ant
Iterations Iterations Iterations
gi® 1 2 3 4 Q9 1 2 3 4 Q8 1 2 3 4 e Hopper
£ £ = £
26 2 2 Eh
[J] (] Q (]
o 4 o o o2
[[o 2 [}
(o)} (o)} o (o)) 1
) i © © ©
g I g g g SAC w‘ilh the learned reward function
< 0 M <0 ——yTT <0 AR <3 0 - ::gevrvlnh underlying rewards
0 1 2 3 a 0 1 2 3 a 0 1 2 3 2 0.0 05 10
Steps led Steps led Steps ted Million Steps
(a) Impact of u. (b) Convergence speed. (c) Convergence speed. (d) Recovered reward.

Figure 3: Performance of CLARE. 1) Impact of u: Figure 3(a) shows the impact of user-chosen
parameter v on the performance using 10k expert tuples. 2) Convergence speed: Figures 3(c) and
3(b) show the convergence of CLARE using 10k expert and 10k medium tuples. In each iteration,
CLARE carries out policy improvement by total 10k gradient updates (total 500 epochs with 20
gradient steps per epoch) for the actor and critic networks using SAC. 3) Recovered reward: Fig-
ure 3(d) shows the result of training SAC via replacing the underlying reward by the one learned
from CLARE.

Results on MuJoCo control. To answer the first question and validate the effectiveness of the
learned reward, we evaluate CLARE on different tasks using limited state-action tuples sampled
from D4RL datasets. The ranges of standard deviations of the results in Exp. & Rand., Exp. & Med.
and Exp. are 156.4-280.5, 15.7-127.8 and 42.4-89.5, respectively. As shown in Table 6, CLARE
yields the best performance by a significant margin on almost all datasets, especially with low-
quality data thereof. It demonstrates that the reward function learned by CLARE can effectively
guide offline policy search while exploiting the useful knowledge in the diverse data.

Results under different dataset sizes. To answer the second question, we vary the total numbers
of state-action tuples from 2k to 100k and present the results on different tasks in Figure 2. CLARE
reaches expert performance on each task with sufficient data. Albeit with very limited data, CLARE
also achieves strong performance over existing algorithms, revealing its great sample efficiency.

Results under different u. To answer the third question, we normalize the uncertainty measure to
[0,1] and vary u from 0.1 to 1.0. Due to Eq. (11), a smaller u corresponds to a more conservative
CLARE. As illustrated in Figure 3(a), the performance becomes better with the decrease of u value.
It validates the importance of the embedded conservatism in alleviating the extrapolation error. We
empirically find that the performance with respect to u varies in different tasks. Thus, we treat it as
a hyper-parameter to tune In practice.

Convergence speed. To answer the fourth question, we present the results on the convergence
speed of CLARE in Figure 3(b), revealing its great learning efficiency. It showcases that CLARE
converges in 5 iterations with totally less than 50k gradient steps.

Published as a conference paper at ICLR 2023

Recovered reward function. To answer the last question, we evaluate the learned reward function
by transferring it to the real environment. As demonstrated in Figure 3(c), the reward function is
highly instructive for online learning. It implies that it can effectively reduce the reward extrap-
olation error and represent the task preferences well. Surprisingly, compared to the true reward
function, the policy trained via the learned one performs more stably. The reason is that the learned
one incorporates conservatism and thus is capable of penalizing risks and guide safe policy search.

7 RELATED WORK

Offline IRL. To side-step the expensive online environmental interactions in classic IRL, offline
IRL aims to infer a reward function and recover the expert policy only from a static dataset with no
access to the environment. () extend the classic apprenticeship learning (i.e.,

()) to batch and off-policy cases by introducing a temporal difference method, namely
LSTD-u, to compute the feature expectations therein. () further introduce a linearly
parameterized score function-based multi-class classification algorithm to output reward function
based on an estimate of expert feature expectation. () present a gradient-based
solution that simultaneously estimates the feature weights and parameters of the transition model
by taking into account the bias of the demonstrations. () propose Deep Successor
Feature Networks (DSFN) that estimates feature expectations in an off-policy setting. However, the
assumption of full knowledge of the reward feature functions in ();

(2016); (2019); (2019); (2016); (2020) is often
unrealistic, because the choice of features is problem dependent and can become a very hard task
for complex problems (, ,). To address this problem,

() propose a non-parametric algorithm, called RCAL, using boosting method to minimize di-
rectly the criterion without the step of choosing features. () propose two
semi-supervised learning algorithms that learn a reward function from limited human reward anno-
tations. () further propose ORIL that can learn from both expert demonstrations
and a large unlabeled set of experiences without human annotations. ()
use a variational method to jointly learn an approximate posterior distribution over the reward and
policy. () propose an off-policy IRL approach, namely IQ-Learn, implicitly repre-
senting both reward and policy via a learned soft Q-function. Nevertheless, these methods primarily
concentrate on offline policy learning with learning reward function being an intermediate step. Due
to the intrinsic covariate shift, these methods may suffer from severe reward extrapolation error,
leading to misguidance in unseen environments and low learning efficiency.

Offline IL. Akin to offline IRL, offline imitation learning (offline IL) deals with training an agent to
directly mimic the actions of a demonstrator in an entirely offline fashion. Behavioral cloning (BC
(,)) is indeed an intrinsically offline solution, but it fails to exploit precious
dynamics information. To tackle this issue, several recent works propose dynamlcs aware offline
IL approaches, e.g., (); (); (

(). In contrast to directly mimicking the expert as done in offline IL, offline IRL expllcltly learns
the expert’s reward function from offline datasets, which can take into account the temporal structure
and inform what the expert wishes to achieve, rather than simply what they are reacting to. It enables
agents to understand and generalize these “intentions” when encountering similar environments and
therefore makes offline IRL more robust (s). In addition, the learned reward function
can succinctly explain the expert’s objective, which is also useful in a number of broader applications
(e.g., task description () and transfer learning ().

8 CONCLUSION

This paper introduces a new offline IRL algorithm (namely CLARE) to approaching the reward ex-
trapolation error (caused by covariate shift) via incorporating conservatism into a learned reward
function and utilizing an estimated dynamics model. Our theoretical analysis characterizes the im-
pact of covariate shift by quantifying a subtle two-tier exploitation-exploration tradeoffs, and we
show that CLARE can provably alleviate the reward extrapolation error by striking the right trade-
offs therein. Extensive experiments corroborate that CLARE outperforms existing methods in con-
tinuous, high-dimensional environments by a significant margin, and the learned reward function
represents the task preferences well.

Published as a conference paper at ICLR 2023

ACKNOWLEDGMENTS

This research was supported in part by the National Natural Science Foundation of China under
Grant No. 62122095, 62072472, and U19A2067, by NSF Grants CNS-2203239, CNS-2203412,
and RINGS-2148253, and by a grant from the Guoqiang Institute, Tsinghua University.

REFERENCES

Pieter Abbeel and Andrew Y Ng. Apprenticeship learning via inverse reinforcement learning. In
Proc. ICML, pp. 1, 2004.

Saurabh Arora and Prashant Doshi. A survey of inverse reinforcement learning: Challenges, meth-
ods and progress. Artif. Intell., 297:103500, 2021.

Abdeslam Boularias, Jens Kober, and Jan Peters. Relative entropy inverse reinforcement learning.
In Proc. AISTATS, pp. 182-189, 2011.

Alex J Chan and M van der Schaar. Scalable bayesian inverse reinforcement learning. In Interna-
tional Conference on Learning Representations, 2021.

Jonathan Chang, Masatoshi Uehara, Dhruv Sreenivas, Rahul Kidambi, and Wen Sun. Mitigating
covariate shift in imitation learning via offline data with partial coverage. Proc. NeurlIPS, 34:
965-979, 2021.

Ding-Zhu Du and Panos M Pardalos. Minimax and applications, volume 4. Springer Sci. Bus.
Media, 2013.

Justin Fu, Katie Luo, and Sergey Levine. Learning robust rewards with adverserial inverse rein-
forcement learning. In Proc. ICLR, 2018.

Justin Fu, Aviral Kumar, Ofir Nachum, George Tucker, and Sergey Levine. D4rl: Datasets for deep
data-driven reinforcement learning. arXiv preprint arXiv:2004.07219, 2020.

Divyansh Garg, Shuvam Chakraborty, Chris Cundy, Jiaming Song, and Stefano Ermon. Ig-learn:
Inverse soft-q learning for imitation. Proc. NeurIPS, 2021.

Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-policy
maximum entropy deep reinforcement learning with a stochastic actor. In Proc. ICML, volume 80,
pp. 1861-1870. PMLR, 2018.

Michael Herman, Tobias Gindele, Jorg Wagner, Felix Schmitt, and Wolfram Burgard. Inverse re-
inforcement learning with simultaneous estimation of rewards and dynamics. In Proc. AISTATS,
pp. 102-110. PMLR, 2016.

Jonathan Ho and Stefano Ermon. Generative adversarial imitation learning. In Proc. NeurlPS,
volume 29, pp. 4565-4573. Curran Associates, Inc., 2016.

Vinamra Jain, Prashant Doshi, and Bikramjit Banerjee. Model-free irl using maximum likelihood
estimation. In Proc. AAAI pp. 3951-3958, 2019.

Daniel Jarrett, loana Bica, and Mihaela van der Schaar. Strictly batch imitation learning by energy-
based distribution matching. Proc. NeurIPS, 2020.

Edouard Klein, Matthieu Geist, and Olivier Pietquin. Batch, off-policy and model-free apprentice-
ship learning. In Proc. EWRL, pp. 285-296. Springer, 2011.

Edouard Klein, Matthieu Geist, Bilal Piot, and Olivier Pietquin. Inverse reinforcement learning
through structured classification. Proc. NeurIPS, 25, 2012.

Ksenia Konyushkova, Konrad Zolna, Yusuf Aytar, Alexander Novikov, Scott Reed, Serkan Cabi,

and Nando de Freitas. Semi-supervised reward learning for offline reinforcement learning. In
Proc. NeurlPS Workshop, 2020.

10

Published as a conference paper at ICLR 2023

Ilya Kostrikov, Ofir Nachum, and Jonathan Tompson. Imitation learning via off-policy distribution
matching. In Proc. ICLR, 2019.

Aviral Kumar, Aurick Zhou, George Tucker, and Sergey Levine. Conservative g-learning for offline
reinforcement learning. Proc. NeurIPS, pp. 1179-1191, 2020.

Donghun Lee, Srivatsan Srinivasan, and Finale Doshi-Velez. Truly batch apprenticeship learning
with deep successor features. In Proc. IJCAI, 2019.

Sen Lin, Jialin Wan, Tengyu Xu, Yingbin Liang, and Junshan Zhang. Model-based offline meta-
reinforcement learning with regularization. In Proc. ICLR, 2021.

Andrew Y Ng, Stuart J Russell, et al. Algorithms for inverse reinforcement learning. In Proc. ICML,
volume 1, pp. 2, 2000.

Takayuki Osa, Joni Pajarinen, Gerhard Neumann, J Andrew Bagnell, Pieter Abbeel, and Jan Peters.
An algorithmic perspective on imitation learning. Found. Trends Rob., 2018.

Bilal Piot, Matthieu Geist, and Olivier Pietquin. Boosted and reward-regularized classification for
apprenticeship learning. In Proc. AAMAS, pp. 1249-1256, 2014.

Matteo Pirotta and Marcello Restelli. Inverse reinforcement learning through policy gradient mini-
mization. In Thirtieth AAAI Conference on Artificial Intelligence, 2016.

Ahmed H Qureshi, Byron Boots, and Michael C Yip. Adversarial imitation via variational inverse
reinforcement learning. In Proc. ICLR, 2018.

Giorgia Ramponi, Amarildo Likmeta, Alberto Maria Metelli, Andrea Tirinzoni, and Marcello
Restelli. Truly batch model-free inverse reinforcement learning about multiple intentions. In
International Conference on Artificial Intelligence and Statistics, pp. 2359-2369. PMLR, 2020.

Nathan D Ratliff,] Andrew Bagnell, and Martin A Zinkevich. Maximum margin planning. In Proc.
ICML, pp. 729-736, 2006.

Stéphane Ross and Drew Bagnell. Efficient reductions for imitation learning. In Proc. AISTATS, pp.
661-668. IMLR Workshop and Conference Proceedings, 2010.

Stuart Russell. Learning agents for uncertain environments. In Proc. COLT, pp. 101-103, 1998.

Gokul Swamy, Sanjiban Choudhury, J] Andrew Bagnell, and Steven Wu. Of moments and matching:
A game-theoretic framework for closing the imitation gap. In Proc. ICML, pp. 10022-10032.
PMLR, 2021.

Umar Syed and Robert E Schapire. A game-theoretic approach to apprenticeship learning. Proc.
NeurlIPS, 2007.

Umar Syed, Michael Bowling, and Robert E Schapire. Apprenticeship learning using linear pro-
gramming. In Proc. ICML, pp. 1032-1039. ACM, 2008.

Ajay Kumar Tanwani and Aude Billard. Inverse reinforcement learning for compliant manipulation
in letter handwriting. National Center of Competence in Robotics (NCCR), 2013.

Tianhe Yu, Garrett Thomas, Lantao Yu, Stefano Ermon, James Y Zou, Sergey Levine, Chelsea Finn,
and Tengyu Ma. Mopo: Model-based offline policy optimization. In Proc. NeurIPS, volume 33,
pp. 14129-14142. Curran Associates, Inc., 2020.

Tianhe Yu, Aviral Kumar, Rafael Rafailov, Aravind Rajeswaran, Sergey Levine, and Chelsea Finn.
Combo: Conservative offline model-based policy optimization. Proc. NeurlPS, 2021.

Brian D Ziebart, Andrew L Maas, J] Andrew Bagnell, Anind K Dey, et al. Maximum entropy inverse
reinforcement learning. In Proc. AAAI, volume 8. AAAI Press, 2008.

Konrad Zolna, Alexander Novikov, Ksenia Konyushkova, Caglar Gulcehre, Ziyu Wang, Yusuf Ay-
tar, Misha Denil, Nando de Freitas, and Scott Reed. Offline learning from demonstrations and
unlabeled experience. In Proc. NeurlPS Workshop, 2020.

11

Published as a conference paper at ICLR 2023

A EXPERIMENTAL DETAILS
In this section, we present necessary experimental details for reproducibility.

A.1 PRACTICAL IMPLEMENTATION DETAILS

In the experiment, our implementation is built upon the open source framework of offline RL al-
gorithms, provided at: https://github.com/polixir/0OfflineRL, including data sam-
pling, policy testing, dynamics model structure, etc. The implementation of SAC in the pol-
icy improvement uses the open source code available at: https://github.com/pranz24/
pytorch-soft-actor-critic (under the MIT License). Additionally, the expert and di-
verse state-action pairs are sampled at random from the D4RL dataset provided at: https:
//github.com/rail-berkeley/d4rl (under the Apache License 2.0).

Model learning. Following the same line as in (;), we model the transi-
tion dynamics by an ensemble of probabilistic neural networks, each of which takes the current

state and action as input and outputs a Gaussian distribution over next states, i.e., {T}(s'|s,a) =
N(pi(s,a),2i(s,a))} ;. Using offline state-action pairs, 7 models are trained independently via
maximum likelihood, each of which is represented as by a 4-layer feedforward neural network with
256 hidden units. The best 5 models are picked based on the validation prediction error on a held-out
set. During model rollouts, one model will be selected randomly from the ensemble.

Policy improvement. We represent both critic and actor as a 2-layer feedforward neural network
with 256 hidden units and Swish activation functions. In each iteration, we update the critic and
actor networks using SAC (,) for 500 epochs (each has 20 gradient updates).
As described in Section 5, we use a KL divergence with the behavior policy to accelerate inner-loop
policy search. It is implemented by adding —E; .’ [log w(a|s)] (D’ € D) to the actor loss. An
instantiation of the policy improvement can be found in Algorithm 2.

Algorithm 2: Safe policy improvement

Input: offline dataset D, policy regularizer weight A, rollout horizon H, rollout batchsize B,
the number of epochs F, dynamics ensemble {ﬁ} N |, reward function 74, policy my
Initialize model buffer D,y 0401 +— 9
for epoch = 1 to E do
for b = 1 to B in parallel do
Sample state s; from D as the initial state of the rollout;
for h =1to H do
Sample action aj, ~ 7 (+|sp);
Randomly pick dynamics 7' from {ﬁ}fvzl and sample sp11 ~ T(-|sn, an);
Compute 7y, <— 74 (sp, an);
Add sample (1, an,7h, She1) 10 Dimodel;
end

end
Sample batches from Dyyoqer and use SAC to update policy 7y with —E, . [log mg(als)]
(D’ € D) added on the policy loss;

end

Reward updating. We represent the reward function as a 4-layer feedforward neural network with
256 hidden units and Swish activate functions. In each iteration, the reward function is updated by
5 gradient steps with stepsize 5 x 10~°, based on the following practical reward loss:

L(ry) = ZgEp,,.., [re(5:a)] + Z5Es anDUD,epiay [76 (5,)]

- Es,aN'DE [T¢(Sv a)] - Es,aND [5(87 CL)’I"¢(S, a)] . (12)
We use replay buffer D,.cplay across iterations to save the simulated data for training stability. An
instantiation of reward updating is shown in Algorithm 3.

Practical algorithm. Based on Algorithms 2 and 3, a detailed CLARE algorithm is outlined in
Algorithm 4.

12

https://github.com/polixir/OfflineRL
https://github.com/pranz24/pytorch-soft-actor-critic
https://github.com/pranz24/pytorch-soft-actor-critic
https://github.com/rail-berkeley/d4rl
https://github.com/rail-berkeley/d4rl

Published as a conference paper at ICLR 2023

Algorithm 3: Conservative reward updating

Input: expert data D, diverse data Dp, replay buffer D,p1ay, model buffer Dy, g g1, Teward
function r4, learning rate 7, the number of steps T'
Update replay buffer Dieplay < Dreplay U Dmodel;
fort =1to 1 do
| Update the parameters of reward function r¢ by ¢ < ¢ — nVL(ry);
end

Algorithm 4: Conservative model-based reward learning (CLARE)

Input: expert data Dg, diverse data Dp, bar u, learning rate 7, policy regularizer weight A
Learn dynamics model 7" represented by an ensemble of neural networks using all offline data;
Set weight (s, a) for each offline state-action tuple (s,a) € Dg U Dp by Eq. (11);
Initialize the policy 7y and reward function r4 parameterized by 6 and ¢ respectively;
Initialize replay buffer Dieplay + 5
while rnot done do

(Safe policy improvement) Run Algorithm 2 to update policy 7y and get model buffer

Dmodcl;

(Conservative reward updating) Run Algorithm 3 to update reward function 74;

end

A.2 HYPERPARAMETERS

We summarize the hyperparameters used in the evaluation as follows.

Conservatism level u. For all tasks, we normalize the uncertainty measure to [0, 1] and test u from
set {0.4,0.6,0.8}. The result is shown in Table 3. In each experiment, we select the u value that

achieves the maximum corresponding score.

Learning rates. For all experiments, the reward learning rate is 7 = 5 x 10~°. Our empirical studies
indicate that a relatively small reward learning rate leads to more stable training. Additionally, the

learning rates for actor and critic are both 3 x 10~4, and that for dynamics model is 1073,
Policy regularization. For all experiments, the policy regularization weight is A = 0.25.

The additional hyperparameters are listed in Table A.2.

Table 2: Hyperparameters for CLARE. Instead of u, the hyperparameters used in the evaluation are

identical across different tasks (Half-Cheetah, Walker2d, Hopper, and Ant).

Hyperparameter Value
Reward learning rate (1) 5x 1075
Rollout batchsize (B) 5000
Rollout horizon (H) 5

Policy regularization weight (\) 0.25
Discount factor () 0.99

steps per reward updating (7)) 5

epochs (E) 500

steps per epoch 20

Actor learning rate 3x 1074
Critic learning rate 3x 1074

A.3 MORE EXPERIMENTAL RESULTS

We further evaluate CLARE by answering the following two questions: 1) Can CLARE exploit the
useful information from diverse datasets? 2) How does CLARE perform compared to the simple

13

Published as a conference paper at ICLR 2023

Table 3: Performance under different u values. We tune u from set {0.4, 0.6, 0.8}. For each MuJoCo
task, the experiments are carried out with three data combinations: 1) 10k expert state-action tuples,
2) 5k expert and 5k medium state-action tuples, and 3) 5k expert and Sk random state-action tuples.
The highest score across different w is bold.

Dataset type Environment u©w =04 w«=0.6 u=0.8

Walker2d 2896.93 2989.79 1083.17
Hopper 1187.22 1841.15 1508.09

Exp. & Rand. Ant 2047.98 1496.09 1337.01
Half-Cheetah 453.03 1118.58 849.42

Walker2d 3334.55 3680.78 327521

Hopper 1722.44 2107.90 1963.59

Exp. & Med. Ant 356849 3805.64 263530
Half-Cheetah 495523 4349.88 4000.17

Walker2d 4674.52 4958.04 4742.20

Exp Hopper 1954.04 2605.82 232822

Ant 2747.10 392590 3330.48
Half-Cheetah 5050.05 494220 4542.45

combination of MORL and (online) IRL methods? 3) What is the impact of reward weighting? 4)
What is the impact of expert sample sizes?

Exploitation on diverse data. Table 4 shows the results under different data combinations. By
using additional medium data, the performance can be improved over that only using 5k expert
tuples. The underlying rationale is: 1) The diverse datasets contain some good state-actions; 2) the
diverse data support enables CLARE to safely generalize to the states beyond expert data manifold.

Table 4: Impact of diverse data. For each MuJoCo task, the experiments are carried out with three
data combinations: 1) 10k expert state-action tuples, 2) Sk expert state-action tuples, 3) Sk expert
and 5k medium state-action tuples, and 4) Sk expert and 5k random state-action tuples.

Task Exp. (5k) & Rand. (5k) Exp. (5k) & Med. (5k) Exp. (5k) Exp. (10k)
Walker2d 2973.88 3613.49 2858.29 4990.57
Hopper 1891.55 2135.07 1885.76 2604.59
Ant 1960.05 3879.48 1978.08 3940.30
Half-Cheetah 1113.75 4888.64 1714.30 4975.17

Expert sample sizes. Table 5 shows the average returns (over 5 random seeds) under different expert
sample sizes with the fixed number of medium data (50k). It can corroborate our analytical results
that with a relatively sufficient data coverage of the empirical expert behaviors, the performance is
dominated by the expert sample size (combining Theorem 4.2, Theorem 4.3 and Corollary 4.1).

Table 5: Results under different expert sample sizes.

Dataset 2k Sk 10k 20k 50k 100k
Half-Cheetah 47539 4978.2 5206.5 7865.5 10930.1 11121.9
Hopper 1989.9 22734 2507.8 2991.8 3571.1 3566.4
Walker 34399 36322 47533 49824 4977.8 4991.3
Ant 3375.4 3866.5 39689 43857 47975 4910.6

Comparison to MOMAX. To demonstrate the poor performance of the naive approach using a
simple combination of IRL with model-based offline forward RL (MORL) method, we design a
baseline directly using a state-of-the-art MORL method, COMBO (,), in the inner loop
of MaxEnt IRL (Eq. (1)), called MOMAX. As shown in Figure 4, MOMAX does not work well in

14

Published as a conference paper at ICLR 2023

Walker2d Hopper Ant Halfcheetah
Iterations Iterations Iterations Iterations
9 1 2 3 4 % 1 2 3 4 0 2 3 o % 1 2 3 4
g, £3 Ea £
=i 3 3 =}
o o fur o4
9] Q2 [} 9]
o 4 o o
[o o2 [}
o o1 o [o P
o o A o
o o @ | o (o
Zo0 Ao — clRE 2 Y — CLRE Z o — CLRE 2 — CLARE
MOMAX MOMAX MOMAX 0 MO-MaxEnt
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
Steps led Steps led Steps led Steps led

Figure 4: Comparison to MOMAX. Each experiment uses 10k expert and 10k medium state-actions.

Walker2d Hopper Ant Halfcheetah
Iterations Iterations Iterations Iterations
m 1 2 3 4 R 1 2 3 4 R 1 2 3 4 | 1 2 3 4
4
£ £ g’ £
=1 > 2 > 5 4
=1 =1 o =1
[} 2 [} \ Q [}
o o 1 Ll = 2 o
)) 1aa MaladliAvpIy o v 2
o) o Ty o v o
© c 0 © ©
o o 9] o 0
<>(—— With weighting <>(-1 —— With weighting <>(—— With weighting <>(—— With weighting
Without weighting Without weighting Without weighting Without weighting
-2 -2 -2 -2
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
Steps et Steps et Steps et Steps et

Figure 5: Ablation study of reward weighting. Each experiment uses Sk expert and 50k medium
state-action samples from the D4RL benchmark.

these continuous control tasks. It reveals the challenges of repurposing the online IRL methods in
the offline IRL setting.

Ablation study of reward weighting. Fig. 5 shows the impact of reward weighting on performance.
CLARE basically reduces to MaxEnt IRL with no reward weighting and thus can not deal with the
extrapolation error effectively in offline learning. Fig. 5 also demonstrates that the conservative
reward function can stabilize the training.

A.4 COMPUTATIONAL COMPLEXITY
We implement the code in PyTorch 1.11.0 on a server with a 32-Cores AMD Ryzen Threadripper

PRO 3975WX and a Intel GeForch RTX 3090 Ti. For all tasks, CLARE converges in one hour
(around 5-10 iterations with total 50k-100k gradient steps).

B PROOFS

In this section, we provide detailed proofs of main results in Section 4.

B.1 PROOF OF THEOREM 4.1

This proof is built on that for Ho & Ermon (2016, Proposition 3.1).
First, it follows from Eq. (4) that

L(m,r) = aﬁ(ﬂ) + ZgE s [r(s, a)] —E;p [B(s, a)r(s, a)] —Eze [r(s, a)} + Zgy(r)
= aBi(x) + Y (2607 (5.0) — 7°(5,0) (5, @) — 9°(5,0)) rls.) + Zp ()

. P (s,a)B(s,a) + p¥(s,a
:aH<w>+ZBZ<ﬁ”<s,a>—” B e >>r<s,a>+zﬂw<r>

15

Published as a conference paper at ICLR 2023

~

=aH(m)+ Zg (Ef,w [r(s,a)] —Es [r(s,a)] + 1/)(7’)) .
57 (s,0) B(s,a)+5" (s.0)
)

(denoting p’(s,a) = £ s

where the last equality holds due to
Zﬁ =1+ Es,aNﬁD [6(87 a)]
= ZﬁE(sv a’) + ﬁD(sv Q)B(Sv a)

> 0. (from B(s,a) > —p¥(s,a)/p" (s, a) for (s,a) € D)

Thanks to Lemma 4.1, there exists a one-to-one correspondence between II and Cf. Thus, we can
rewrite

L — mi i Z (IE — B [r(s,) . 13
mit max L(m,) = min max ot () + Z5 (B [r(s, a)] = Epr[r(s,a)] +(r) (13)
=L(p,r)
It is easy to see that R is compact and convex. Besides, from the proof of (2016,
Proposition 3.1), C is also a compact and convex set. Accordingly, based on the concavity of H
(Lemma 4.2), the minimax theorem holds (,), and hence we have
L = in L(p
min max (p,r) = max min (p,7)
= max aH(p) + Zs (mlnIE [r(s,a)] =Bz [r(s,a)] + 1/1(r)>
pECH R
= max aH(p) + Zg* (p' — p) (from the definition of convex conjugate)
peECH
= max aH(p) + ZsDy (p, p"). (14)
pEC

Additionally, denote r* and p* as

€ L(p,r), p*e H(p)+ ZsDy (p, p1). 15
r arg min max (p7), P arg max o () + ZDy (p,p") (15)

Due to Eq. (14), (r*, p*) is a saddle point of L, and thus p* € arg maxjec.. L(p,r*). By Lemma4.1,

it is easy to see that pohcy 7* (that corresponds to p*) satisfies 7* € arg max e L(7, 7*), thereby
completing the proof.

B.2 PROOF OF THEOREM 4.2

We present the following two lemmas before our main result.

Lemma B.1. Denoting p1(z,y) = q1(x)q1(y|x) and pa(z,y) = q2(x)q2(y|z) as two joint dis-
tributions over finite spaces, we can bound the total variation distance (TVD) between p, and ps
as

Drv(p1,p2) < Borgy (o) [Drv(aa(-2), g2(-|2))] + Drv (a1, g2)- (16)

Proof. The proof is straight-forward:

Drv(p1,p2) = *Z‘Ih ,y) — pa(z,y)|

,Z‘ql x)q1(ylz) — g2(z)Q2(y|$>‘

5 Z 1 (2)q1 (yl) — q1(2)g2(ylz) + 1 (2)ga(ylx) — ga(x)ga(ylz))|

<5 Y 0@) - e6lo)] + 5 S el o) - o)

z,Y

16

Published as a conference paper at ICLR 2023

:th(x)'%Z|Q1(y|$)*(J2(y\I)|+%Z|Q1() — q2(|ZQ2Z/|13

= Epg(a) [DTV a1 (ylz), a2(ylz))] + Drv (a1, g2), 17)
where the last equality is obtained due to 3 g2(y[z) = 1. O

Lemma B.2. Suppose that we have two Markov chain transition distributions Ty (s'|s) and T (s'|s),
and the initial state distributions are the same. Then, for each h € [1,2,...), the TVD of state
marginals in time step h is bounded as

Dy (v, v4) ZE o | Drv (Ti(1s). Ta(1s) | (18)
where plt(s) = Pr(sp, = s | T}, p) fori = 1,2.

Proof. First, we have

[ph(s) = P (5)
=[S Tl pi) = Y Talslsph ()
<Y |nsls i) — Ta(slsph)

= [TaCels)t () = Taols')™ () + Tisls')ph ™) = Talsls') ™5

<3 (1t ot
= " TuGsls!) b) —)

Thus, we can write

ORIy

() [T sl T2(8|8')|)

B, [|T1(s|s’) - T2(5|s')|} . (19)

~Pa

Dy (pf,ph)

= 5 Johts) =)
<5 3 Byt [IT60) = Tl + 5 3 S T61)

) =)

(using Eq. (19))

L) Z Ty (s]s")

1 1 _ _
=3 2 Fopr |TaC6ls) = Tl + 5 3 i) -t

:ES,Npg,—l l; Z |T1(5|s’) — T2(5|s’)|

S

1 —
52 P =)

(using > Ty (s|s") = 1)

=Byt [Drv (TiCI) To(1) | + Drv = ph) (20)
h—1
< Z E, o [DTV (T (]s), T2(~|s))] + Drv(p?,p9) (iteratively using Eq. (20))
h
h—1
= Z E, _ n [DTV (T (]s), T2(~|s))] , (due to same initial state distributions)
s~py
which completes the proof. O

17

Published as a conference paper at ICLR 2023

Observe that Lemma B.1 bounds the TVD of a joint distribution by the TVDs of its corresponding
conditional and marginal distributions, and that Lemma B.2 bounds the difference of two MDPs’
state visitations in each time step by the cumulative dynamics differences. Next, we provide the
following lemma that bounds the difference between the expert’s and learned policy’s occupancy
measures from above.

Lemma B.3. For each p € Cz, denote 7 as its corresponding stationary policy, ie., ™ =

p(s,a)/ >, p(s,a’), and p™ denote the occupancy measure of 7 under true transition dynamics
T. Then, the following holds:

Drv(p™, p")

< ﬁEs,aw[DTv(T('Is,a),f(-\s,a))] + Drv(p, p%) + Drv (", p"), @D

where p¥ is the occupancy measure of expert policy TF under the true transition dynamics.

Proof. For conciseness, let p; = p™ and p, = p. Using the triangle inequality, it is easy to see that

Drv(p1, pP) < Drv(p1, p2) + Drv(pa, pP) + Drv (57, pP), (22)

where 5 is the empirical occupancy measure of expert pohcy 7% . To bound DTV([)l,pg) denoting
pl(s,a) = Pr(sp, = s,ap, = a | T,#,p) and pl(s,a) = Pr(s, = s,an = a | T7r,u)(the
difference between them is marked in red), we can write

Drv(p1,p2) = *Z!m s,a) — p2(s a)|

1 o0 o0
=32 |A= Y "pi(s,0) = (=) Y 7"Ph(s.0)
s,a h=0 h=0
(using the definition of occupancy measure in Section 2)

LS 50" (b) = (o)

s,a |h=0

1—7 —
— 2" ‘p}f(s,a) —pg(s,a)’

h=0 s,a

= (- YA 5 S|) ph(s.a)|
h=0

s,a

= (1 - ’7) i’yh - Drvy (p’f(s,a),pg(s,a))

h=0
< (1=7) 37" Drv (ph(s),P5(5)) (23)
h=0
where p(s) = Pr(s, = s | T,# u) pli(s) = Pr(s, = s | T,#,), and the last inequation
holds due to Lemma B.1 (note that pl() = ph(s)7(a \) and p§(s,a) = ph(s)7(als)).* Denote
Ti(s'ls) = >, T(s',als) and Tp(s'|s) = >, T(s',als), where we slightly overload notations
using T(s, a|s) = #(a|s)T(s'|s,a) and T(s’, |) = #(a|s)T(s'|s, a). We obtain

Dy (Ti(-]s), Ta(:]s))

5 20 [1(19) = Ta(s'o)
:fZZTs als) = T(s',als)

*To avoid ambiguity, we use Dy (p (s, a), ph (s, a)) and Drv (p? (s), ph (s)) to denote the TVDs between
the corresponding state-action distributions and state distributions respectively.

18

Published as a conference paper at ICLR 2023

1
§§Z’T5 als) = (s, als)

= Dry (T(s',ls). T(s',als))
< Buvsaty [Drv (TCs.0). Tl .

(seeing 7 (als) as q1(2), q2(x), T(s'|s, a) as q1 (y|x), and T(s'|s, a) as g2 (y|z), and then using Lemma B.1)
Based on that, the following holds:

Drv(prp2) < (1=7) 34" Dy (ph(s),p4(s)) (from Eq. (23)
h=0

9] h—1
“NYA" Y By [Drv (Ti(ls), Ta(19))]
h=1

h'=0

(using fact Dy (p?(s),p3(s)) = Drv(p, #) = 0 and Lemma B.2)

Z’Y ZESN:D "(s) Eoni(als) [DTV (T(-|5,a),f(-|8,a))”
h=1

(using the above result)

(1—ry Zv ZEMN,,Q o | Prv (215,00 D l5.0)) |

(noting that pi (s, a) = ph(s)7(als))

ZDTV(‘Is,a), T |sa)§’y ZpQ.sa

(expanding the expectation and rearranging terms)

co h—1
DL P (T Tl) 35 4 (o
h=1h'=
A
(oo} oo
SO CUTETIN D S SERE
h=1 =0
=B
(B is derived by rearranging the terms in A)
=) 3 Drv (T (1s.0) L
h=1 1—7y

(noting that pa(s,a) = (1 —7) > p_, Al (s, a))

- ZDTV (|s,a f(.|s,a)) i'Yth(S,a)
:sz(sva)DTV (T(|s a |s a))i,yh

s,a h=1
== szg wps [DTV (T(ﬂs,a),f(s,a))] . (24)
Substituting Eq. (24) in Eq. (22) gives the desired result. O

Denoting p™ as the occupancy measure of 7 under underlying dynamics model 7', We can write

J(rF)y = J(p™) = Z pP(s,a)R(s,a) — Z p"(s,a)R(s,a) (from the definition)

19

Published as a conference paper at ICLR 2023

=3 (P(s,0) ~ 7"(5,0)) R(s,0)

<3 |pP(s,0) = o7 (s,0)| (due to |R(s,a)| < 1)
= 2DTV(,D7T7 pE) (25)

Then, based on Lemma B.3, the desired result in Theorem 4.2 can be obtained by combining Eq. (25)
with Eq. (21).

B.3 PROOF OF THEOREM 4.3
Recall that c(s,a) = C - Dy (T(-|s,a), T(-|s,a)). We define
£(p) = Eq aple(s, a)] + 2Drv (p, p7)

= Zc(s, a)p(s,a) + |p(s,a) — p¥(s,a)|. (26)
s,a
Thanks to Lemma 4.1, minimizing the RHS of Eq. (7) is equivalent to the following problem:
i . 27
e f(p) (27)

Let §(s,a) = p(s,a) — p¥(s,a). Then, Problem (27) can be transformed to the following one:

min Sza:c(s, a)d(s,a) +|6(s,a)| (28)
sty d(s,a) =0 (29)
§(s,a) > —pF(s,a) se€S,ac A (30)

For conciseness, we rewrite Problem (28)-(30) as the following form:

n
II%ID g(d) = ;Ciéi + |44 (31
sty 6;=0 (32)
i=1

8§ > —p; i€ [n] (33)
where ¢ corresponds to a state-action pair, n = [S| - |A|, [n] = {1,2,...,n},and 6 = {J; : 7 € [n]}.

Due to Eq. (32) and Eq. (33), [n] can be divided into two disjoint sets, N7 (6) = {i € [n] : §; > 0}
and N2 (6) = {i € [n] : §; < 0} (N1(6) = D iff all §; = 0). Thus, we can write

g0) = > (a+Ddi+ > (¢—1)3;. (34)
1€N1(6) FEN()

For any ¢ meeting Constraints (32) and (33), we denote ¢’ (which should be 5j\/1 if written in full)
satisfying 0% = —1[c; — ™ > 2] - pF for all j € N3(0), 6; = 0 for all i € N(6)\Nin, and
0 = 2 jenns e — cpin > 9] -ﬁjE/|./\/min(6)| for all i € Npin(9), where Nin(6) = {i €
N1(6) i € argming e, () ¢ } and ¢ = min;e v, (5) ¢;- Then, we have

g(@) = > (a+1)5+ > (¢;—1)5

1€N1(S) JEN2(S)

= > (a+1)+ > (cr +)8+ > (¢; —1)5)

€N min (9) i €N1(6)\Nmin (0) JEN2(5)

= Y (a+1)d+ > (cor + 1) — > ey — M > 2]+ (¢ — 1)pF
1€Nmin (0) i €N1(8)\Nmin (9) JEN2(8)

20

Published as a conference paper at ICLR 2023

= (@) 3 A S 2 G S e - e > 2] (¢ — 1)
FEN2(S) FEN2(S)
(due to 0}, = 0)
D e — ™ > 2 (™ = +2) - pr 35)
JEN2(6)

Regarding g(0), the following holds:

9@ = D (a+Doi+ Y (-1
iEN1(8) JEN2(9)
> Y @ nh+ Y 1o - > 2 (- 15,
IEN1(9) FEN2(S)
+ Y e — M < 2] (¢ — 1)5;
JEN2(5)
- Y gY@ s+ Y 1l - > 2 o - 15,
jEN2(6) JENZ((S)
+(m1n+1) Z 57,"‘ Z 1[Cj—Crlnm>2]-(Sj
i€N1(S) JEN2(S)
+) e =M< 2] (¢ - 1)5;
JEN2(9) . .
(adding and subtracting =2 jenn (s Heg — ™ > 2] - ("™ 4+ 1)65)
= > 1 — ™ >2 (¢ — M - 2)5;
JEN2(8)
+ (Crlnin + 1) Z (5 + Z _ mm 2] . 6]
i€EN1(9) JEN2(8)
+) e — < 2] (¢ — 1)5;
JEN2(6)
> > e =M > 2 (= +2)p)
JEN2(9)

+(m1n+1) Z (Sl-l- Z 1[Cj_cr1nm>2]'5j

1€N1(5) JEN2(3)

+ Z 1e; — ™ < 2] (™" +1)4; (noting that §; < 0)
jGNQ(&)
— Z 1[Cj m1n>2] (mln_cj+2)ﬁJE
JEN2(5)

+ (0 4 1) Z 0; + Z (1[c] — Pt > 9] F ey — M < 2]) -0
i€N7(6) FEN2(6)

= Z 1[ej — cPim > 2] - (mln—cj+2)pj+(m1n+1) Z 0; + Z d;

JEN2(5) i€EN7 () JEN2(S)
=0
(due to Constraint (32))
= 9(5’)_ (due to Eq. (35))

21

Published as a conference paper at ICLR 2023

Denoting G = {6 € RISIAl s t. (32) and (33)}, we have the following fact:

Oy, = argmin g(d), (36)
5€G(N1)

where G(NV1) = {§ € G : N1(6) = N7 and N2(8) = [n]\N1}. Due to Eq. (35), we have

ppo®) = pin o) = min, 32 ey = > (7 —ey+2) A 6D

Let ¢™™ = min;ep, ¢; and N = {i € [n] : ¢; = ¢™"}. The following fact is true:

9@n) = 90h:) = D ey — M > 2 (" — ¢y +2)

JE[MI\M

© Yt 2 @y +2)
3’ €MI\NT

> 3 Ay > g (@ g+ 2)

JEM\M

= > ey =M > 2 (M =y +2) (dueto M < opin)
3’ €M\NT

20, (38)

where the last inequality holds because {j € [n]/N; : ¢; — ™ > 2} is a subset of {j’ € [n]/N7 :
cjr — ™ > 2}, Thus, 0* = 5j\/1* = minseg g(d), and we can express J* as
o 7cn1in ~E s'.a .
Esl,a/ 1lc(s ’a‘j)\/ — >2]-57 (s’)7 l:fC(S, CL) S cmin
§*(s,a) = —pE(s,a), ifc(s,a) > ™ + 2 (39)
0, otherwise

where Nyin = N7 Due to §(s,a) + p¥(s,a) = p(s, a), we obtain the optimal solution of Problem
(27) as follows:

Zs’,a’ 1[0(8/,a/)_Crnin>2]'ﬁE(sl7a/)

IS P, ie(s.a) < e
p(s,a) = 0, ifc(s,a) > ™t + 2 (40)
pE(s,a), otherwise

thereby completing the proof.

B.4 PROOF OF COROLLARY 4.1

Because c(s,a) > ¢™" when 5P (s,a) = 0, if P (s,a) = 0, then p*(s,a) = 0 holds. The desired
result can be easily obtained by seeing 3* (s, a)p” (s, a) as 6*(s, a) in the proof of Theorem 4.3.

B.5 MINIMIZING A CHI-SQUARED DIVERGENCE

The f-divergence between two distributions p; and ps is defined as

Dy(prllp2) = Ep,
g

f (2)] = supEx~p, [9(X)] = Exnpy [f7(9(X))] 1)

where f* is the convex conjugate. The x2-divergence is the f-divergence with f(z) = (x —1)? and
2 .
[ry) = +uy.ie,

g(X)?

x> (p1, p2) = sup Exp, [9(X)] — Exnp, [1
g

+ g(X)] (42)

22

Published as a conference paper at ICLR 2023

By interpreting g = —r and X = (s, a), the following holds:
1
XZ(pla p2) = sup E(s7a)~p2 [T(Sa (Z)] - E(s,a)NPI [T(Sa a)] - ZE(S,a)sz |:T(Sa 0)2:| (43)

Thus, using a convex reward regularizer ¢(r) = Z—z enables CLARE to minimize a x2-divergence
between the target policy and learned policy, i.e., maxec, oH () — Zgd - X2(p, p*).

23

	Introduction
	Preliminaries
	CLARE: conservative model-based reward learning
	Theoretical analysis of CLARE
	Convergence analysis
	Striking the right exploration-exploitation balance

	Practical implementation
	Experiments
	Related work
	Conclusion
	Experimental details
	Practical implementation details
	Hyperparameters
	More experimental results
	Computational complexity

	Proofs
	Proof of Theorem 4.1
	Proof of Theorem 4.2
	Proof of Theorem 4.3
	Proof of Corollary 4.1
	Minimizing a Chi-squared divergence

