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A GENERATING FUNCTION APPROACH TO NEW

REPRESENTATION STABILITY PHENOMENA IN ORBIT

CONFIGURATION SPACES

CHRISTIN BIBBY AND NIR GADISH1

Abstract. As countless examples show, it can be fruitful to study a sequence of compli-
cated objects all at once via the formalism of generating functions. We apply this point
of view to the homology and combinatorics of orbit configuration spaces: using the no-
tion of twisted commutative algebras, which essentially categorify exponential generating
functions. This idea allows for a factorization of the orbit configuration space “generat-
ing function” into an infinite product, whose terms are surprisingly easy to understand.
Beyond the intrinsic aesthetic of this decomposition and its quantitative consequences,
it reveals a sequence of primary, secondary, and higher representation stability phenom-
ena. Based on this, we give a simple geometric technique for identifying new stabilization
actions with finiteness properties, which we use to unify and generalize known stability
results. As a first new application of our methods, we establish secondary and higher sta-
bility for configuration spaces on i-acyclic spaces. For another application, we describe
a natural filtration by which one observes a filtered representation stability phenomenon
in configuration spaces on graphs.

1. Introduction

Let X be a Hausdorff topological space or a separated scheme over an algebraically
closed field – abbreviate and say that X is a separated space. A fundamental topological
object attached to X is its ordered configuration space Confn(X) of n distinct points in X .
Analogously, given a group G acting freely on X one defines an ordered configuration space
of n points with distinct orbits in X :

ConfnG(X) := {(x1, . . . , xn) ∈ Xn | Gxi ∩Gxj = ∅ for i 6= j}.
These spaces simultaneously generalize complements of many subspace arrangements such
as the ordinary ordered configuration spaces as well as those associated with root systems of
type C, see Example 3.1.3 below. The symmetric group Sn acts on ConfnG(X) by permuting
the labels, and the group G acts on every coordinate separately. Together these operations
give an action of the wreath product group Sn[G] := Gn ⋊Sn.

In this paper, we study the linear representations that arise in homology Sn[G] y

H∗(Conf
n
G(X)) for various n. Explicit calculations quickly become combinatorially chal-

lenging, and we address these difficulties by importing generating function methods into
topology. A concrete consequence of our approach is that the homology exhibits represen-
tation stability – roughly, this stability theory gives a notion for when representations of
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2 CHRISTIN BIBBY AND NIR GADISH

different groups could be considered to be the same, and under which all homology represen-
tations eventually stabilize, see e.g. [SS12] and [CEF15]. Together with our detailed analysis
of the combinatorics governing these spaces in [BG18], representation stability allows us to
constrain the types of representations that might occur in homology, vastly generalizing
results previously known only for certain manifolds and revealing many new ways in which
stability manifests, see §1.3 below. For example, our results pertain to singular spaces
including graphs, whose configuration spaces fail to exhibit most common forms of stability.

Generating functions have proved invaluable for understanding and organizing the com-
binatorics at play. For example, considering the compactly supported Euler characteristics
of ConfnG(X), one can show that when a finite group G acts on X freely

(1)
∞∑

n=0

χc (Conf
n
G(X))

tn

n!
= (1 + |G|t)

χc(X)
|G|

and see [VW15, §1.34] for Vakil-Wood’s similar motivic zeta function for unordered config-
uration spaces. The fractional power above is more naturally expressed using exponentials,

(2) = exp

(
χc(X)

|G| log(1 + |G|t)
)

=

∞∏

i=1

exp

(
χc(X)(−|G|)i−1 t

i

i

)
.

We show below in Theorem A that the latter product decomposition already holds at the
level of chains approximating the homology, and this forms the basis to our stability analysis.

Lifting the above generating function to spaces, think of the entire sequence of ordered
configuration spaces along with their group actions at once, and collect them into a single
object: a topological species Conf•G(X) – this is essentially an N-graded space on which
the symmetric group Sn acts in the n-th component – a standard categorification of the
exponential generating function (see §2 for details). A major benefit to this approach, as
observed by Petersen [Pet17], is that the species Conf•G(X) admits a coproduct structure,
coming from the obvious equivariant inclusions

Confn+m
G (X) →֒ ConfnG(X)× ConfmG (X)

and this operation could be understood as standing behind their many homological sta-
bility phenomena. A species with (co)multiplication is known as a twisted commutative
(co)algebra, or (co)TCA for short, and Petersen [Pet17, Lemma 4.2] shows that in many
cases they give rise to representation stability in the sense of Church-Farb (see [CEF15]).

In §2, we adjust the terminology and promote symmetric group actions into ones of
wreath products – replacing the notion of TCA by the G-version which we call a GTCA.
With this, one can make sense of lifting the infinite product decomposition in (2) to the
level of homology: exponentials here stand for free GTCAs. And indeed, such a homological
decomposition holds in important special cases, including the linear and toric arrangements
associated to root systems of type A, B, C and D, see Example 3.5.4. In general, however,
the product decomposition holds only at a finite page of a spectral sequence converging to
the Borel-Moore homology. The following theorem is stated in a simplified form for the
purpose of introduction; see Theorem 3.7.2 for a general version. We assume that homology
is taken with coefficients in a Noetherian ring for which the Künneth formula holds; see our
conventions in §1.5 below.

Theorem A (Homological Product Decomposition). Let X be a separated topological
space with an action of a finite group G and consider the twisted commutative coalgebra of
orbit configuration spaces Conf•G(X). There is a spectral sequence of GTCAs converging to
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HBM
∗ (Conf•G(X)), such that when G acts freely

(3) E1 ∼=
∞⊗

n=1

IndFBGG×Sn

(
HBM

∗ (X)⊠ H̃n−3(Πn)[n− 1]
)
.

Here the operation IndFBGG×Sn
takes a representation of G×Sn and freely generates from it a

GTCA. Also Πn is the classical partition lattice, with the top and bottom elements removed,
and its homology is the homology of its nerve.

Lastly, when X ∼= Rd possibly with some points removed, the sequence collapses and the
product formula already holds in homology. More generally, this happens for all i-acyclic
spaces (see Corollary 4.3.7 below).

Computing the Euler characteristic of the above expression recovers (2) exactly. Note
also that the special case of a punctured R2 already includes the complements of hyperplane
arrangements coming from root systems of types A and C in both their linear and toric
variants. In the case of type B/C hyperplane arrangements this coincides with the Whitney
homology of a Dowling lattice, for which Henderson [Hen06] observed this structure and
used it to compute the Frobenius characteristic of the Sn[G]-action. Our more general
treatment of orbit configuration spaces, as explained next, also includes the linear and toric
arrangements associated to root systems of types B and D.

1.2. Punctured almost free G-spaces. We introduced these orbit configuration spaces
under the assumption that the group G acts freely on X , but in fact we can loosen this
condition to allow the configuration space to inhabit some points at which the action fails
to be free, while excluding other positions.

From this point on, we will no longer assume that the action G y X is free, but allow only
finitely many exceptions to freeness – such actions are said to be almost free. Given a finite
G-invariant subset T ⊆ X of excluded positions, define the T -excluded orbit configuration
space

(4) ConfnG(X,T ) := {(x1, . . . , xn) ∈ Xn | ∀(i 6= j)Gxi ∩Gxj = ∅, xi /∈ T } ⊆ Xn.

The product decomposition in Theorem A still holds in this more general setting, but with
an extra factor for each G-orbit of T as well as one for each non-free G-orbit of X ; see
Theorem 3.7.2 for the full expression.

We view ConfnG(X,T ) as a subspace of Xn rather than of the punctured (X \T )n to allow

the factors in the product decomposition to depend on HBM
∗ (X) rather than on HBM

∗ (X\T ).
This choice is substantially more interesting combinatorially (see [BG18] for a thorough
treatment), but it also brings real benefits. First, this allows us to exploit properties of X
that get corrupted by puncturing, such as it being affine or projective, thus often simplifying
spectral sequence calculations, see Remark 3.7.5.

Second, configuration spaces in punctured linear spaces Rd \ {r1, . . . , rk} get treated
as complements of linear subspace arrangements, thus bringing to bare a vast body of
knowledge and explicit formulas, see Corollary 3.5.3.

Lastly, allowing the case in which G does not act freely on X and varying T lets our setup
include all sequences of toric root system arrangements: in Example 3.1.3 we consider the
action of Z2 on C× by group inversion. This action is not free precisely at the two-torsion
points {±1} ⊂ C×, and choosing T to be ∅, {+1}, or {±1} yields the arrangement associated
to a root system of type D, B, and C, respectively.
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1.3. Representation stability. Unpacking the product decomposition and extracting use-
ful information from it presents a new combinatorial challenge. We face it with the frame-
work of representation stability, which for our purposes could be understood as the rep-
resentation theory of GTCAs – mainly handling finite generation and Noetherianity of
modules and their representation theoretic properties (see Theorem 4.2.4 for the connec-
tion with other standard interpretations of the theory). The multiplication structure on

HBM
∗ (Conf•G(X)) gives rise to stabilization operations of introducing points to configura-

tions, e.g.

HBM
d (X)⊗HBM

i (ConfnG(X)) → HBM
d+i (Conf

n+1
G (X))

which Petersen observed to be conjugate to the ordinary forgetful map

Confn+1
G (X) → ConfnG(X)

under Poincaré duality when X is a connected d-manifold. Stabilization operations thus
generate a GTCA, over which HBM

∗ (Conf•G(X)) forms a module, and representation stabil-
ity is synonymous with having this module be finitely-generated (the reason why this can
reasonably be called ‘stability’ will be explained below). Indeed, we show the following in
Theorem 4.2.1.

Theorem B (Finite generation in homology). Let X be a separated space, endowed
with an almost free action of a finite group G, and let T ⊂ X be a finite G-invariant subset.
Assume dimHBM

∗ (X) < ∞ and let HBM
d (X) 6= 0 be the top nonvanishing Borel-Moore

homology group.
For every i ≥ 0, the cross product

HBM
d (X)⊗HBM

i (ConfkG(X,T )) → HBM
d+i (Conf

k+1
G (X,T ))

presents the sequence of codimension i homologies HBM
d•−i(Conf

•
G(X,T )) as a filtered module

over the free GTCA generated by HBM
d (X).

If d ≥ 2, then every one of these modules is finitely generated. Explicitly, for every i ≥ 0
there exist finitely many classes

α1, . . . , αk ∈
∐

n∈N

HBM
dn−i(Conf

n
G(X,T ))

whose images under repeated multiplication by HBM
d (X) generate HBM

dm−i(Conf
m
G (X,T )) as

a Sm[G]-representation for all m ∈ N.
Otherwise, when d = 1, the homology is endowed with a natural muiltiplicative ‘collision

filtration’ under which every submodule of bounded filtration degree

Fp H
BM
d•−i(Conf

•
G(X,T ))

is finitely generated.

This finite generation result vastly extends the known scope of applicability of repre-
sentation stability: in the early days of this theory Church found a notion of stability for
the Sn-representations H

∗(Confn(M)) of connected orientable manifolds of dimension ≥ 2
[Chu12], which was later recasted as finite generation of a representation of some category
[CEF15]. With this approach, Wilson [Wil14], Kupers–Miller [KM18], and Casto [Cas16]
studied orbit configuration spaces of free actions and showed that they give rise to simi-
lar finitely generated representations of categories, with analogous representation theoretic
implications. More recently, Petersen [Pet17] brought the TCA point of view to the study
of non-equivariant configurations and extended the finiteness result to general spaces with
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HBM
top (X) of rank 1 along with further technical assumptions. We see Theorem B above as

a conceptual improvement over this body of work in the following ways:

• We discuss orbit configuration spaces associated with a G-action, perhaps with some
points removed and not necessarily with a free action.

• While most previous results applied to connected orientable manifolds, our theorem
encompasses general spaces that may be singular, disconnected and non-orientable.
Only the Borel-Moore homology of the space enters our calculation, and therefore
only the proper stable homotopy type. Under Poincaré duality one recovers most
known finite-generation results for manifolds (see Remark 4.2.2).

• Our analysis elucidates the stability aspects of configuration spaces of graphs (that
is, 1-dimensional CW-complexes), which were previously understood to be unsta-
ble. While naively the homology does not exhibit stability, it is equipped with a
natural filtration by finitely-generated modules. Moreover, unlike all previous work
on the subject, only the compactly supported Betti numbers of the graph enter our
calculation.

Finite generation translates to stability of representations since it demonstrates that all
homology groups are subquotients of representations naturally induced from

V ⊠ (H ⊠ . . .⊠H)︸ ︷︷ ︸
k≫1 times

where H = HBM
d (X) is a fixed G-representation and V is drawn from a fixed finite list

of Sn[G]-representations. One then has precise branching rules describing the irreducible
decomposition of representations of this form. The representations stablize in the sense that
there is a natural naming scheme on the irreducible representations of the groups Sn[G],

under which HBM
dn−i(Conf

n
G(X,T )) all eventually have the same name (see Theorem 4.2.4).

For the reader familiar with FIG-modules, let us remark that working with GTCAs instead
of FIG-modules (as in [SS16, KM18, Cas16]) allows us to consider cases in which H above
is not the trivial representation. A more detailed discussion is found in §4.2.

1.4. Secondary and higher stability. The finite generation and stability result above is
associated only with stabilization by a single term in the infinite product decomposition of
Theorem A. Introducing the actions of the other terms gives rise to higher-order stabilization.
More concretely, after understanding the multiplication by HBM

d (X), one may factor it out
and inquire as to the remaining classes – the generators of the modules described in Theorem
B. These collections of generators themselves form modules over the GTCAs generated by
the remaining stabilization operations, and in some cases these too exhibit stability, namely
secondary stability.

In §4.1 we introduce a new geometric technique for recognizing finitely-generated module
structures on a bigraded GTCA, indexed by corners of convex rational polygons. Applying
this technique to the product decomposition in Theorem A lets us identify a multitude of
secondary stabilization operations:

• multiplying by increasingly higher codimensional homology HBM
d−k(X) – call this high

dimensional secondary stability, discussed next in Theorem C;
• multiplying by terms of the product decomposition (3) associated with n > 1 – in
§4.4 we identify these as a natural analogue of the Miller-Wilson secondary stability
operation of introducing an orbiting pair of points to a configuration [MW16]; and
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• multiplying by low dimensional homology, e.g. HBM
0 (X) – a new sequence of sta-

bilization operations that comes out of our geometric approach and endows the
homology with finitely generated module structures, see §4.5 for details.

The caveat is that the product decomposition of Theorem B applies only to the E1-page
in a spectral sequence, and it is difficult in general to control how factoring-out stabilization
operations interacts with differentials. While we expect secondary stability in homology to
hold more generally, the most explicit statements we make here are about i-acyclic spaces,
when all differentials vanish. These include, for example, any space of the form X × R and
any orientable manifold with trivial cup product on H∗

c . In particular the results apply to
root system arrangements in their affine and toric variants. See Definition 4.3.1 on how to
extract the generating module, and Remark 3.7.5 for a discussion regarding i-acyclic spaces.

In high dimensional stabilization for i-acyclic spaces, multiplying by HBM
d−k(X) for k =

1, 2, . . ., each operation in turn gives rise to a finitely generated module structure on the
module of generators of the previous one. A concrete consequence of this pattern is an
increased range of homology generated by stabilization operations, stated in the Theorem
C below. One can extend this sequence of stabilization operations by using the factors
of the product decomposition indexed by n > 1. Since the first draft of this paper was
released, Ho [Ho20] has given a similar sequence of stability operations. He uses a completely
different approach which requires rational coefficients, but his results apply to a different
generalization of configuration spaces.

Theorem C (High dimensional secondary stability). Let X be a separated almost free

G-space with dimHBM
∗ (X) < ∞, and let HBM

d (X) 6= 0 be the top nonvanishing homology
group. Assume further that X is i-acyclic, i.e. the map H∗

c(X) → H∗(X) is zero, such as an
orientable manifold with trivial cup product on H∗

c or any space of the form X ′ ×R. Lastly,
pick a finite G-invariant subset T ⊂ X.

Fix k < d
2 − 1. Then in the range j ≤ (k + 1)n the cross products give a surjection

Ind
Sn[G]
G×Sn−1[G]

(
k⊕

i=0

HBM
d−i (X)⊗HBM

d(n−1)+i−j(Conf
n−1
G (X,T ))

)
։ HBM

dn−j(Conf
n
G(X,T ))

Further statements are possible for larger k, but we omit them from this discussion.

These operations turn out to behave increasingly poorly when approaching the middle
homological dimension of X , setting the case d = 1 of graphs as now part of a broad
phenomenon – see Example 4.3.8 for details. Corollary 4.3.7 expands on the statement of
Theorem C and includes effective bounds on the generation degrees in special cases. We
prove Theorem C as a corollary in Remark 4.3.9.

As a particular case of Theorem C, observe that if the homology is known to vanish in a
range: HBM

d−1(X), . . . ,HBM
d−k(X) = 0 for k < d

2 − 1, then the primary stability operation will

in fact generate HBM
dn−j(Conf

n
G(X,T )) in the improved range j ≤ (k + 1)n.

Example 1.4.1. Fix numbers k < d
2 − 1 and let M ′ be a (d − 1)-manifold with finitely

generated homology such that H1(M
′) = . . . = Hk(M

′) = 0 and an almost free G-action.

Then for the d-manifold M = M ′ ×R, the homology HBM
dn−j(Conf

n
G(M)) is generated under

the Sn[G]-action by classes of the form [M ] × α for α ∈ HBM
d(n−1)−j(Conf

n−1
G (M)) in the

range j ≤ (k + 1)n.
Via Poincaré duality, this translates to the standard context of cohomological represen-

tation stability: Hj(ConfnG(M)) → Hj(Confn+1
G (M)) associated with the maps forgetting a

point from a configuration. Here one gets a much improved stable range of j ≤ (k + 1)n
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n

HBM
∗ (ConfnG(X,T ))
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−

1
)n

−
j

Figure 1. Visualizing Theorem C for HBM
∗ (ConfnG(X,T )) with k = 0 (left)

and k = 1 (right). Blue indicates the primary stability range, red indicates
the next stability range, and black indicates generators for stabilization by
HBM

d (X) (left) or by HBM
d (X) and HBM

d−1(X) (right).

(compare with Church’s [Chu12, Proposition 4.1] and Tosteson’s [Tos16, Examples 1.4 and
1.6]).

1.5. Conventions. We carry several conventions throughout this paper, which we state
here. The term separated space will refer to either

• a locally compact Hausdorff topological space or
• a separated scheme of finite type over some algebraically closed field.

A group action on a set G y X is almost free if there is some finite subset S ⊆ X for
which G acts freely on X \ S. An almost free G-space is a separated space equipped with
an almost-free action of a finite group G.

Throughout, we discuss Borel-Moore homology with various coefficients, but we shall
typically suppress the coefficients from the notation. One key restriction on coefficient
systems is that they satisfy the Künneth isomorphism for powers:

(5) HBM
n (X ×Xk) ∼=

n⊕

i=0

HBM
i (X)⊗HBM

n−i (X
k),

for a separated space X and k ≥ 1. Therefore we consider homology with coefficients in k

that is either

• a field,
• a Noetherian ring over which HBM

∗ (X) is a projective module, or

• a sheaf of R-algebras on X for which HBM
∗ (X ; k) is projective over a Noetherian

ring R.

Lastly, when X is a scheme and k is a sheaf of commutative algebras, the Borel-Moore
homology HBM

∗ (X ; k) denotes the étale hypercohomology in negative degrees

HBM
∗ (X ; k) := H−∗

ét (X ;Dk)

where Dk denotes the Verdier dual complex.
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1.6. Outline of this paper. Since this work is directed towards different research commu-
nities – topology, representation stability and algebraic combinatorics – each comfortable
with different common notions, we attempt to make it accessible to all by including proper
introduction to the central combinatorial objects and operations as well as explicit examples.
The reader is encouraged to skip any and all of those whenever deemed unnecessary.

§2 is a review of basic definitions, examples, constructions, and operations on G-twisted
commutative algebras (GTCAs). §3 contains the main combinatorial and topological inputs,
that culminate in the proof of the product decomposition of Theorem A.

Lastly, §4 discusses representation stability: §4.1 introduces simple geometric tests for
finite generation of a bigraded module over a GTCA – our primary technique behind our
stability results. In §4.2 we establish Theorem B on finite generation and multiplicity
stability with respect to the primary stabilization operation. The section also contains our
treatment of higher representation stability and ends by identifying new forms of stability
that have previously gone unnoticed to the best of our knowledge.

1.7. Acknowledgements. The authors would like to thank Jeremy Miller and Jenny Wil-
son for many useful comments.

2. G-Twisted commutative algebras

This section recounts definitions and operations on twisted commutative algebras (TCAs),
also extending the theory to the equivariant context. We do this at some length since the
notion of a TCA is, as of this time, still not standard, but refer the reader to [SS12] as a
general reference. One of the main points is that the collection of all orbit configuration
spaces ConfnG(X,T ) can be treated as a single mathematical object with an algebraic struc-
ture. This perspective offers a framework in which orbit configuration spaces and related
structures can be described succinctly, which we will later exploit.

Throughout this section, let G be a finite group.

2.1. Definitions. Let FBG be the category of all f inite sets I and G-bijections; that is,
functions f : I

∼→ J along with a “coloring” g : I → G. The composition rule for I → J → K
is given by first pulling back the G-coloring from J to I and then multiplying the two
pointwise:

I
(f,g)−→ J

(f ′,g′)−→ K 7→ (f ′ ◦ f, (g′ ◦ f) · g).
Note that every morphism in FBG is invertible, and the automorphism group of a set I with
|I| = n is isomorphic to the wreath product of G with the symmetric group, Gn ⋊ Sn.
Denote the automorphism group of I by SI [G] and let [n] = {1, . . . , n} for every n ∈ N.

Remark 2.1.1. An equivalent description of FBG, or rather an equivalent category, is the
category of finite free G-sets and G-equivariant bijections between them. Sending a finite set
I to the free G-set G× I gives an equivalence with the definition above. In particular, one
can consider the free G-sets G× [n] and stick to thinking in these natural terms. But below
we prefer the definition as stated above since it helps us identify induced representations of
this category.

FBG is symmetric monoidal, with monoidal product given by disjoint union I⊗J := I⊔J
under the obvious action on morphisms and monoidal unit being ∅. This product gives the
usual “block diagonal” embeddings Sn[G]×Sm[G] →֒ Sn+m[G].

In everything that follows, we will be interested in functors [FBG, C] into various categories
C. Now, it is often the case that functor categories between symmetric monoidal categories
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are themselves symmetric monoidal. Therefore in that context one can discuss algebra
objects A⊗A → A and modules A⊗M → M . With FBG these take the following explicit
form.

Definition 2.1.2 (G-twisted commutative algebra, GTCA). A G-twisted commutative
algebra (GTCA for short) in a symmetric monoidal category (C,⊗,1) is a lax monoidal
functor A• : FBG → C (also denoted A[•]). That is, an assignment AI for every finite set I,
and for every pair I and J a map

AI ⊗AJ → AI⊔J

which is SI [G] × SJ [G]-equivariant and satisfies appropriate associativity, symmetry and
unit axioms. We shall insist that our GTCAs be unital in the sense that A∅ = 1, the
monoidal unit, and the multiplication map A∅ ⊗AI → AI is the unit map.

Analogously, a G-twisted commutative coalgebra (co-GTCA for short) is a GTCA in the
opposite category C

op. This is a contravariant functor A• along with compatible structure
maps

AI⊔J → AI ⊗AJ .

Definition 2.1.3 (Modules over GTCAs). A module over a GTCA A• is a functor
M• : FBG → C equipped with maps

AI ⊗MJ → MI⊔J

satisfying the predictable axioms.

Remark 2.1.4. The objects of the form [n], where n ∈ N, along with ∅, form a skeletal
subcategory of FBG. We will often discuss a GTCA A• (or similarly a module over A•) as
a functor on this subcategory, abbreviating

An := A[n].

In this notation, one can view a GTCA as a graded algebra A• ∼ ∐
n An equipped with an

action of Sn[G] on An for all n ∈ N, so that the multiplication is suitably equivariant.

Remark 2.1.5 (Combinatorial species). Forgetting the algebra structure, one obtains
a well-known object called a combinatorial species. Species were originally studied as a cat-
egorification of exponential generating functions, as there are operations on species which
correspond to adding, multiplying, and composing generating functions. Species were ex-
tended to the equivariant setting by Henderson [Hen06], using an equivalent category to
FBG whose objects are finite sets equipped with free G-actions and whose morphisms are
G-equivariant bijections. Henderson even studied some of the combinatorial species we en-
counter in this paper, but we study them with their natural algebra structure which we
exploit in Section §4.

One of the goals of this section is to give reasonable descriptions of particular GTCAs and
their modules, and describe how to “generate” them from simpler or finitely many objects.

Definition 2.1.6 (Finite generation). We say that a GTCA A• is finitely generated if
there exists a finite set S ⊆ ∐

I AI such that no proper sub-GTCA contains S. Similarly, a
module M• over a GTCA A• is finitely generated if there exists a finite subset of

∐
J MJ

which is not contained in any proper submodule.
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2.2. Examples. This subsection will be devoted to important and relevant examples and
constructions of (co-)GTCAs.

Example 2.2.1 (The exponential GTCA). Let (C,⊗,1) be a monoidal category, such as
topological spaces, posets or sets, all with their Cartesian product. The exponential GTCA,
denoted by 1•, is the one sending every set I to 1 and every morphism to the identity map.
The monoid action is given by the canonical unit morphism 1⊗ 1 → 1.

In the case of a trivial group G = 1, it is known that modules over 1• are the same
thing as FI-modules: representations of the category FI of finite sets and all injective maps
between them. It is in the context of these objects that Church-Ellenberg-Farb began their
work on representation stability. For example, they show in [CEF15] that the cohomology
of configuration spaces of a connected, orientable manifold of dimension n ≥ 2 is a finitely
generated FI-module, and derive explicit representation theoretic conclusions from this fact.

In the case of a general group G, a module over 1• is what’s known in the literature
as an FIG-module: representations of the category of finite, free G-sets and equivariant
injections. In special cases the representation theory of such categories has been studied
by Wilson [Wil14], and the general case was worked out by Sam-Snowden [SS16]. When
G is a finite group, FIG-modules enjoy a similar theory of representation stability, with
numerous applications to both algebra and topology (see the two references mentioned in
this paragraph).

Example 2.2.2. In the monoidal category (Set,×, ∗) we have the exponential GTCA (∗)•
as in Example 2.2.1. A related GTCA of sets, denoted by (∗̌)•, is obtained in the same way
with the exception of having the value ∅ in degree 1. This GTCA will be a key ingredient
for the GTCA we will analyze in §3.

The following set of examples make up our motivation to consider GTCAs in the first
place.

Example 2.2.3 (The power co-GTCA). Given a space X with an action of G, the power
co-GTCA of X is

X• : I 7→ XI ∼= X × . . .×X
|I| many times

, X∅ = {∗}.

Explicitly, a point x ∈ XI is a function x : I → X , and a morphism (f, g) : I → J acts on
y ∈ XJ by sending it to

(f, g).y := g−1.f∗(y) : a 7→ g(a)−1.y(f(a)).

Two sets I and J give a canonical isomorphism

XI⊔J ∼→ XI ×XJ

satisfying all compatibility axioms. Clearly, the same definition works with X in any sym-
metric monoidal category. Furthermore, note that since all maps in this example are iso-
morphisms, they can be inverted to get a GTCA instead.

Next we observe that orbit configuration spaces form a co-GTCA as well.

Example 2.2.4 (Orbit configuration spaces). Recall the spaces ConfnG(X,T ) defined in
(4) in §1.2. As we let n vary and range over all finite sets, the collection of these spaces (for
a fixed X and T ) has the structure of a co-GTCA: it can be described as the maximal sub-

co-GTCA Conf•G ⊂ X• in which Conf
[1]
G ⊂ X is the complement of T and Conf

[2]
G ⊂ X2 is

disjoint from the diagonal ∆ ⊂ X2. To see that the collection indeed forms a sub-co-GTCA
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one only needs to observe Conf
[n+m]
G is identified with an open subspace of Conf

[n]
G ×Conf

[m]
G

inside Xn+m, given by imposing more inequalities of the form xi 6= g.xj .

Example 2.2.5 (Borel-Moore homology). Consider a co-GTCAA• of topological spaces
for which the maps AI⊔J → AI × AJ are open inclusions. One such example is the co-
GTCA of orbit configuration spaces in Example 2.2.4. Since Borel-Moore homology (with

coefficients as in Conventions 1.5) is a contravariant functor on open inclusions, HBM
∗ (A•)

is a GTCA of graded k-modules. The GTCA HBM
∗ (Conf•G(X,T )) will be the primary focus

of our study in later sections.

Before we proceed to our main examples, we describe a number of constructions and
operations on GTCAs that make the treatment of them more formal and streamlines the
pursuing discussions. These are all special cases of the left Kan extension, and they all work
as expected. We include a detailed account for completeness.

2.3. Induced GTCAs. The power GTCA from Example 2.2.3 above is a special case of
induced GTCAs, which are central to our study of the combinatorics of orbit configuration
spaces.

Fix some n ∈ N. Then the restriction

A• 7→ An

associates to every GTCA A• an object with an action of the wreath product groupSn[G] =
Gn⋊Sn. This restriction functor often has a left adjoint – the induction, denoted by IndFBG(n) .

We construct this induction explicitly in the case of k-modules. The same construction works
for sets, posets, topological spaces and so on.

Let V be a representation of Sn[G]. Then the tensor powers V ⊗• naturally form a
Sn[G]-TCA (with base group Sn[G] instead of G). The category FBSn[G] is a monoidal
subcategory of FBG under the functor

(6) ι×n : [k] 7→ [k × n].

The left Kan extension along ι×n acquires a GTCA structure and is the sought after induced
module IndFBG(n) (V )•. More explicitly, the wreath product Sk[Sn[G]] = Sk[Sn[G]] is a

subgroup of Skn[G] = Skn[G] and we have

(7) IndFBG(n) (V )kn = Ind
Skn[G]
Sk[Sn[G]] V

⊗k

while IndFBG(n) (V )r = 0 unless n|r. When working in other categories, the object 0 must be

replaced with the initial object ∅.

Remark 2.3.1.

(1) In the case where G is trivial and V is a representation of Sn, Sam and Snowden
[SS12] denote the TCA IndFB(n)(V )• by Sym(V ). The idea is to generate a free GTCA,

similar to how one generates a polynomial ring, with V in degree n.
(2) Recall that a symmetric monoidal category is equipped with isomorphisms A⊗B →

B ⊗ A, for any two objects A and B. When describing the induction above, the
symmetric group Sk permutes the tensor factors of V ⊗k using this isomorphism.
In particular, when working with graded modules, the switching operation involves
(−) signs that makes the GTCA a graded-commutative algebra.
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Example 2.3.2 (Set partitions). Consider the case where G = 1 and construct the GTCA
(really a TCA) induced by the trivial Sn-set ∗. Its value on [k × n] is the induced set

Ind
Sk×n

Sk[Sn]
(∗) ∼= Skn/Sk[Sn].

To identify this set consider the collection of set partitions of [k × n] into blocks of size n.
The group Skn permutes these permutations transitively, and the stabilizer of the partition

{[1, . . . , n], [n+ 1, . . . , 2n], . . . , [(k − 1)n+ 1, . . . , kn]}
is the wreath product Sk[Sn]. Therefore the induced TCA assigns to a set all the possible
ways to partition it into blocks of size n.

When n = 1, this is simply the exponential TCA from Example 2.2.1: IndFB(n) ∗ = (∗)•.

A well-known characterization of induced G-representations is by a direct sum decomposi-
tion ⊕x∈XVx on which G acts by permuting the summands transitively. An analogous useful
characterization for induced GTCAs is given by the following, whose proof is a straightfor-
ward generalization of the case of induced group representations.

Fact 2.3.3 (Induction characterization). A GTCA A• is induced from An if and only if
there exists a GTCA of sets X•, induced from a transitive Sn[G]-set Xn, and the following
holds: for all k ∈ N one has

Ak =
∐

x∈Xk

Ax

for some objects Ax, and the category FBG acts on A• in a way compatible with this
decomposition. That is:

• Every morphism f : [k] → [k] of FBG permutes the summands according to its action
on X•, i.e. f(Ax) = Af(x).

• The products of A• define isomorphisms Ax ⊗Ay
∼−→ Ax·y.

2.4. Change of group. Another operation that plays an important role in our combina-
torial analysis arises when changing the underlying group G. Given a subgroup H ≤ G,
there is a natural inclusion of wreath products Sn[H ] ≤ Sn[G] giving rise to a monoidal
inclusion functor

(8) ιGH : FBH →֒ FBG.

Restricting a GTCA along this inclusion yields an HTCA. As with the previous operation,
this restriction often has a left adjoint given by the left Kan extension and denoted here by
IndFBGFBH

. An explicit description of this extension is given for every n by

(9)
(
IndFBGFBH

A
)
n
= Ind

Sn[G]
Sn[H](An) ∼= HomFBG(ι

G
H [n], [n])×Sn[H] An.

The product operation for the GTCA (IndFBGFBH
A)• is the obvious one given by

∐
on the left

factor along with the product of the HTCA A• on the right factor.

Example 2.4.1 (Colorings). Let H ≤ G be a fixed subgroup. The set of (G/H)-colorings
on [n], i.e. the set of functions [n] → G/H , admits a transitive action of the wreath product
group Sn[G], and the stabilizer of the constant function k 7→ 1H is the wreath product

group Sn[H ]. Therefore the set of all such colorings on [n] is the induced set Ind
Sn[G]
Sn[H](∗).

Now consider the exponential HTCA of sets (∗)• from Example 2.2.1. The induced GTCA
IndFBGFBH

(∗)• sends a finite set I to the set of its (G/H)-colorings.
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This group-change operation interacts well with the induction operation from the previous
section as well as with disjoint unions. For example, if V is anH-representation and IndG

H(V )
is its (ordinary) induced G-representation, there is an obvious isomorphism

IndFBGFBH
IndFBH(1) (V ) ∼= IndFBG(1) IndGH(V ).

We shall abbreviate this composition of inductions to IndFBGH .

Remark 2.4.2. For a subgroup H ≤ Sn[G], the group change operation (8) can be com-
posed with the spacing operation (6):

FBH

ι
Sn[G]
H→֒ FBSn[G]

ι×n→֒ FBG.

The resulting induction produces GTCAs taking non-trivial values only in degrees k × n
with k ≥ 1. We will denote this induction operation by IndFBG

FBH (n). The collection of such

operations satisfies the relations

IndFBG
FBH(n) Ind

FBH
FBK(m) = IndFBG

FBK(nm) for K ≤ Sm[H ] and H ≤ Sn[G].

As above, we abbreviate the induction of H-representations to GTCAs

(10) IndFBGH := IndFBG
FBH(n) Ind

FBH
(1) .

Example 2.4.3. A key example is IndFBGG×Sn
(∗), where H = G×Sn sits diagonally inside

Sn[G] = Gn ⋊ Sn and acts trivially on the singleton set ∗. When G is trivial, we simply
obtain partitions with blocks of size n as in Example 2.3.2. For general G, this combines
Examples 2.3.2 and 2.4.1, and we obtain partitions whose blocks are of size n and equipped
with G-colorings (up to equivalence). We will more formally define these G-partitions in §3.

Let us consider the case G = Z2, which we view as Z2 = {+,−}. Here, we obtain signed
partitions with blocks of size n. That is, the elements in a block are colored with either +
or −, considered up to multiplication by − throughout the block.

2.5. Products of GTCAs. Let A• and B• be two GTCAs in (C,⊗,1). Define their
product (A⊗B)• by the Day convolution:

(A⊗ B)[n] ∼=
⊕

i+j=n

Ind
Sn[G]
Si[G]×Sj[G]

(
A[i] ⊗B[j]

)
(11)

∼=
⊕

i+j=n

HomFBG

(
[i]

∐
[j], [n]

)
×

Si[G]×Sj[G]

(
A[i] ⊗B[j]

)

Note that this is precisely the left Kan extension along the disjoint union functor
∐

: FB2G →
FBG, and therefore it commutes with other induction operations in the obvious way:

IndFBGFBH
(A⊗FBH B) ∼= IndFBGFBH

(A)⊗FBG IndFBGFBH
(B).

Example 2.5.1 (Set partitions). Take G = 1 and let Pn
• and Pm

• be the TCAs in
(Set,×, ∗) from Example 2.3.2, assigning to a set its collection of partitions into blocks of
equal size n or m respectively. Then if n 6= m, the product TCA

P {n,m} := Pn × Pm

assigns to a set the collection of partitions into blocks of size either n or m.
Multiplying further gives TCAs PS

• for any set S of natural numbers, parameterizing
partitions with block sizes in S. Then whenever S ∩ T = ∅, the product of those gives

PS × PT ∼= PS∪T .



14 CHRISTIN BIBBY AND NIR GADISH

Remark 2.5.2 (Exponential property of induction). Observe that the induction op-
eration behaves like an exponential with respect to the tensor product of GTCAs, in the
sense that

IndFBG(1) (V ⊕W ) = IndFBG(1) (V )⊗ IndFBG(1) (W ).

This is simply a reflection of the expansion

(V ⊕W )⊗n =
⊕

i+j=n

IndSn

Si×Sj
V ⊗i ⊗W⊗j =

⊕

i+j=n

Ind
Sn[G]
Si[G]×Sj [G] V

⊗i ⊗W⊗j .

Analogous formulas apply when working in other categories, like spaces or posets. This
should not be surprising to the reader familiar with species: this induction essentially per-
forms a plethystic product (also known as substitution or composition) with the exponential
TCA.

3. Dowling posets and orbit configuration spaces

The combinatorial object that arises in the calculation of the homology of an orbit con-
figuration space from the inclusion ConfnG(X,T ) ⊆ Xn is the intersection data of the com-
ponents of Xn \ConfnG(X,T ). This intersection data corresponds to a stratification of Xn.
Thus, the Borel–Moore homology of ConfnG(X,T ) can be computed using the spectral se-
quence for stratified spaces from [Pet17], whose purpose is to separate the topology of X
from the combinatorics of the arrangement Xn \ ConfnG(X,T ).

In [BG18], we introduced and utilized the poset of labeled partial G-partitions DT
n (G,S)

as a combinatorial model for the strata (see [BG18, Section 3.4] for definitions and a general
discussion). We also noted in [BG18, Proposition 2.1] that these posets are in fact functorial
in n and monoidal with respect to the disjoint union. Using the present terminology, this
monoidality is rephrased to say that the collection D

T
• (G,S) forms a GTCA. Its structure

as such is the subject of this section.

3.1. Dowling posets. First, we remind the reader of some relevant notation, used to model
the intersection pattern of strata in Xn, but warn that without the context of [BG18] the
following definition will likely be opaque. Throughout this section, we let G be a finite
group.

Definition 3.1.1 (Partial G-partitions). Let I be any finite set. A partial G-partition

of I is a collection β̃ = {B̃1, . . . , B̃ℓ} consisting of a partition β = {B1, . . . , Bℓ} of a subset
∪Bi ⊆ I along with a relative G-coloring on each block: functions bi : Bi → G, defined up

to the equivalence relation bi ∼ big for g ∈ G. The zero block of a partial G-partition β̃ of
I is the set Z := I \ ∪B∈βB.

In the current context we shall be interested in the following refinement of the above
notion of partial G-partition, as it arises from the combinatorics of orbit configuration
spaces.

Definition 3.1.2 (Dowling posets). Fix two finite G-sets S and T . For a finite set I, let

D
T
I (G,S) be the set of pairs (β̃, z), where β̃ is a partial G-partition of I and z : Z → S is a

coloring of its zero block, with the restriction that |z−1(G.s)| = 1 only if s ∈ T .
The set DT

I (G,S) is partially ordered via the following covering relations:

(merge): (β̃ ∪ {Ã, B̃}, z) ≺ (β̃ ∪ {C̃}, z) where C = A ∪B with c ∼ a ∪ bg for some g ∈ G,
and
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(color): (β̃ ∪ {B̃}, z) ≺ (β̃, z′) where z′ is the extension of z to Z ′ = B ∪ Z given on B by
a composition

B
b→ G

f→ S

for some G–equivariant function f .

Note that D
T
I (G,S) = D

T∩S
I (G,S), so we may and will assume that T ⊆ S. When

I = [n], denote D
T
[n](G,S) = D

T
n (G,S).

Two notable special cases of these posets are:

• the partition lattice ΠI , which is the case G = {1} and S = ∅; and
• the Dowling lattice DI(G), which is the case S = T = {∗} is a single point.

Note that for any T , DT
I (G,S) is a subposet of DS

I (G,S); of particular interest is D∨
I (G) :=

D
∅
I(G, {∗}) which is a sublattice of the Dowling lattice DI(G) = D

{∗}
I (G, {∗}) consisting of

partial G-partitions with nonsingleton zero block. The following is an example which is not
a lattice.

Example 3.1.3 (Toric type C poset). Let G = Z2 and S = {+,−} with G acting on S
trivially. D±

n (G,±) is not a lattice for any n ≥ 2, e.g. because there is not a unique maximum
element: the maximal elements are all the different S-colorings of the set {1, 2, . . . , n}.

The poset D
±
n (Z2,±) is discussed in [BG18, Ex. 2.2.2.], and it arises from the toric

arrangement associated to the type C root system. The toric arrangements associated
to the type B and D root systems give rise to the subposets D

+
n (Z2,±) and D

∅
n(Z2,±),

respectively.

3.2. The GTCA of Dowling posets. Properties of the Dowling posets DT
I (G,S) can be

neatly expressed in the language of GTCAs, which we will explain next.
Each Dowling poset DT

I (G,S) admits a natural action of a wreath product group SI [G].
Furthermore, the disjoint union operation on sets clearly extends to a product operation on
the collection of partial G-partitions:

D
T
I (G,S)×D

T
J (G,S) → D

T
I⊔J(G,S),

compatible with the actions on the two sides. Therefore the collection D
T
• (G,S) has the

structure of a GTCA, taking values in the category of posets.
Since a partition is trivially a disjoint union of its blocks, this GTCA decomposes as a

product once one forgets the ordering. This is not surprising in light of Examples 2.3.2,
2.4.1 and 2.5.1 from the previous section, and is readily observed in the language of species
(as Henderson observes in the case S = {0} [Hen06]). We state this formally in the following
lemma.

Lemma 3.2.1 (Dowling GTCA factorization). Let G be a finite group, and let S and
T be two finite G-sets. Pick orbit representatives s ∈ [s] for all [s] ∈ S/G and let Gs be the
corresponding stabilizer in G. Then as a GTCA of sets D

T
• (G,S) factors as

D
T (G,S) ∼=

Set

∞∏

n=1

IndFBGG×Sn
(∗)×

∏

[s]∈S/G

IndFBGFBGs
(∗)T• (s)

where (∗)T• (s) denotes (∗)• when s ∈ T and (∗̌)• when s /∈ T .
The factors were described in Examples 2.2.1, 2.2.2, and 2.4.3.

Proof. Write D• for DT
• (G,S). The image in D• of ∗ from each induction in the product is

as follows:
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(1) Sending ∗ to the block [1, . . . , n] ∈ D[n] with each element colored by the same

element of G defines a map IndFBGG×Sn
(∗) →֒ D• whose image is exactly the G-

partitions with blocks of size n.
(2) When s ∈ T , sending ∗ in degree n ≥ 1 to the zero block [1, . . . , n] with constant

coloring by s defines a map IndFBGFBGs
(∗)• →֒ D• whose image is exactly the zero

blocks with coloring in the orbit [s].
(3) Similarly to the previous case, when s ∈ S \T , sending ∗ in degree n > 1 to the zero

block [1, . . . , n] with constant coloring by s defines a map IndFBGFBGs
(∗̌)• →֒ D• whose

image is exactly the zero blocks of size > 1 and coloring in the orbit [s].

The product of these sub-GTCAs consists precisely of all possible ways to construct a partial
G-partition of a set with an S-colored zero block uniquely. �

The above product decomposition seems to require forgetting the order relation, and thus
we pose the following question.

Question 3.2.2. Is it possible to define a product operation on GTCAs of posets so that
the decomposition of Lemma 3.2.1 holds in this category?

3.3. Homology of Dowling lattices. The GTCA D•(G) = D
{∗}
• (G, {∗}) of Dowling lat-

tices gives rise to a fascinating algebraic GTCA given by their top homology.
The order complex attaches a topological space to every poset in a functorial way. In the

case of Dowling lattices Dn(G) it is well-known that, after removing the top and bottom
elements, the order complex has the homotopy type of a wedge of (n − 2)-dimensional
spheres (see [Fol66]). Thus the main topological invariant is the Sn[G]-representation on

Hn−2(Dn(G)), where we assume coefficients are as in Conventions 1.5.
Letting n vary, one can promote this sequence of representations to a GTCA as follows.

For every lattice P let P denote the result of removing the top and bottom elements from P .
Then a morphism of lattices P → Q induces one of posets P → Q. Next, [Wac07, Theorem
5.1.5] describes equivariant isomorphisms

H̃r(P ×Q) ∼=
r⊕

i=0

H̃i(P )⊗ H̃r−i−2(Q)

which are easily seen to be functorial in P and Q. This implies that after shifting, the poset

homology P 7→ H̃•−2(P ) is a monoidal functor from bounded posets to graded k-modules.
In particular, the homology of a GTCA of lattices itself forms a GTCA.

On Dowling lattices, this construction specializes to give a GTCA structure on the top
homology

H̃n−2(Dn(G))⊗ H̃m−2(Dm(G)) → H̃n+m−2(Dn+m(G))

and all other reduced homology groups vanish. The resulting GTCA will be denoted by

H̃|•|−2(D•(G)) and it will play a role in our topological analysis of orbit configuration spaces.
Note that for G = 1 the isomorphism Dn(1) ∼= Πn+1 defines a product structure on

the top homology of ordinary partition lattices (shifted by 1). Here, one considers the Sn

action on Πn+1 and can show that H̃|•|−2(Π•+1) is the TCA of regular representations. As

for a general group G, while the sequence of Sn[G]-representations H̃n−2(Dn(G)) has been
studied in the context of species and generating functions, the algebra structure on this
sequence remains virtually unexplored.

Question 3.3.1. Describe the product structure of the GTCA H̃|•|−2(D•(G)) and give a
combinatorial description of its generators and relations.
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3.4. The GTCA of order relations. A central tool in the study of poset homology, as
well as the cohomology of subspace arrangements, is the Whitney homology: we shall think

of this as the collection of poset homology groups H̃•−2(P≤p) as p ranges over the elements

of P . For example, for a finite bounded poset P = [0̂, 1̂] ranked by rk : P → N, there is a
formal equality

H̃•−2(P ) = ±
∑

0̂≤p<1̂

(−1)rk(p)H̃•−2(P≤p)

in some appropriate Grothendieck group of modules, therefore allowing an inductive descrip-
tion of the homology of P (see [Sun94, Wac07] for examples). One is thus led to studying
the collection of subposets P≤p for all p ∈ P – systematized in this subsection.

Let (P,≤) be a poset, and view the order relation ≤ as a set of pairs {(p1, p2) | p1 ≤
p2} ⊆ P × P. The second projection

π2 : ≤ → P

has the property that π−1
2 (p) ∼= P≤p, i.e. one realizes the lower intervals in P as the fibers

of π2. Furthermore, the set ≤ is itself naturally ordered by restricting the product order on
P × P (note that this does not coincide with the standard order relation on the poset of
intervals, with its order induced from P op × P ). Under our chosen ordering, the projection
π2 is order preserving, and the isomorphism π−1

2 (p) ∼= P≤p is one of posets.
Lastly, the passage from a poset P to its order relation ≤ is functorial and monoidal with

respect to the Cartesian product. Therefore, given a GTCA of posets P•, one gets another
by considering ≤•. The projection

π2 : ≤• → P•

is clearly a morphism of poset GTCAs.
Using this language, the order relation of Dowling posets has a product decomposition

as a GTCA compatible with that in Lemma 3.2.1 above. Just as before, this requires
forgetting the ordering on D•, but now we must also forget the order coming from the
second coordinate of ≤• .

Definition 3.4.1. The right-discretized order relation of a poset P is the poset ≤rδ whose
underlying set is

≤rδ= {(p1, p2) ∈ P × P | p1 ≤ p2}

and whose partial order is given by

(p1, p2) ≤ (q1, q2) ⇐⇒ p1 ≤ q1 and p2 = q2.

Note that there is an isomorphism ≤rδ∼=
∐

p∈P P≤p which is natural in the poset P .

Lemma 3.4.2 (GTCA factorization of intervals). Let G be a finite group, and let S
and T be two finite G-sets. Pick orbit representatives s ∈ [s] for [s] ∈ S/G and let Gs be
the corresponding stabilizer. Note that the posets D

T
• (Gs, s) form a GsTCA.
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Then the associated poset GTCA ≤rδ
• decomposes as a product of poset GTCAs in a way

compatible with the factorization of the set GTCA D• from Lemma 3.2.1:

(12)

≤rδ

D
T (G,S)

∼=
∞∏

n=1

IndFBGG×Sn
Πn

×
∏

[s]∈S/G

IndFBGFBGs
D

T
• (Gs, s)

∼=
∞∏

n=1

IndFBGG×Sn
(∗) ×

∏

[s]∈S/G

IndFBGFBGs
(∗)T• (s)

π2

where (∗)T• (s) denotes (∗)• when s ∈ T and (∗̌)• when s /∈ T . In the top row, we let G×Sn

act on the partition lattice Πn via its ordinary Sn action with G acting trivially.

Proof. Fibers of the projection π2 are just lower intervals in a Dowling poset, and so we

use the interval factorization from [BG18, Theorem A], which states that for any (β̃, z) ∈
D

T
n (G,S),

(13) D
T
A(G,S)≤(β̃,z) ∼=

∏

B∈β

ΠB ×
∏

[s]∈S/G

D
T
z−1([s])(Gs, s).

In particular, when [1, . . . , n] ∈ D[n](G,S) is a single block with trivial G-coloring, we

have an isomorphism Πn
∼= D[n](G,S)≤[1,...,n], which then induces a map from the GTCA

generated by Πn to ≤rδ. When (∅, s) ∈ D[n](G,S) is an element whose zero block is [n] and

colored by s, we have an isomorphism D
T
[n](Gs, s) ∼= D

T
[n](G,S)≤(∅,s), which then induces a

map from the GTCA generated by D
T
• (Gs, s) to ≤rδ. Lemma 3.2.1 describes how to write

an element (β̃, z) ∈ D
T
A(G,S) as a product of its blocks, and (13) describes how to lift this

so that DT
A(G,S)≤(β̃,z) can be written as an element in the product.

Because (13) is an isomorphism of posets, the product decomposition of the right-
discretized order relation ≤rδ

• holds as a GTCA of posets, rather than just as sets. �

Example 3.4.3. Consider a finite groupG acting trivially on T = S = {+,−}. The interval
underneath a single-block partition {1, 2} in D

±
[2](G,±) with any G-coloring is isomorphic

to Π[2], a poset with two elements, independently of the chosen G-coloring. Similarly, in

D
±
{5}(G,±), the interval underneath a maximal element, say the zero block {5} colored by

+, is isomorphic to D
±
{5}(G,+), which is again a poset with two elements.

Now let us consider the product 12 · 34 · 5+ in D
±
[5](G,±): the interval underneath should

be a product of the previously mentioned intervals. We depict this isomorphism in Figure
2. Note that this diagram sits inside of the much larger poset D±

[5](G,±).

3.5. Whitney homology. The interval factorization of Lemma 3.4.2 immediately trans-
lates to a factorization of Whitney homology, defined as follows.

Definition 3.5.1. The Whitney homology of a finite poset P containing a bottom element
is

WH∗(P ) :=
⊕

p∈P

H̃∗−2(P≤p).
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Just as with poset homology, P 7→ WH∗(P ) is a monoidal functor from finite bounded-
below posets to graded k-modules (where k is as in Conventions 1.5). In particular, when
P• is a GTCA of finite bounded-below posets, WH∗(P•) is a GTCA of graded k-modules.

Theorem 3.5.2 (Whitney homology factorization). Let G be a finite group, and let S
and T be two finite G-sets. Pick orbit representatives s ∈ [s] for orbits [s] ∈ S/G and let Gs

denote the respective stabilizers. The GTCA of Whitney homology WH∗(DT
• (G,S)) factors

as a GTCA of graded k-modules into the product

(14)
∞⊗

n=1

IndFBGG×Sn

(
H̃n−3(Πn)

)
⊗

⊗

[s]∈S/G

IndFBGFBGs

(
H̃|•|−2(DT

• (Gs, s))
)

where the graded k-module H̃n−3(Πn) is homogeneous of degree n − 1, and the degree of

H̃|•|−2(DT• (Gs)) is | • |.

Proof. As stated above, the right-discretized order relation of a poset P satisfies ≤rδ∼=∐
p∈P P≤p. This isomorphism is in fact monoidal in P : for posets P1 and P2 it is clear that

there are natural poset isomorphisms

≤rδ
1 × ≤rδ

2
∼=

∐

(p1,p2)

P≤p1

1 × P≤p2

2
∼=

∐

(p1,p2)

(P1 × P2)
≤(p1,p2) ∼= (≤1 × ≤2)

rδ.

We thus notice that the Whitney homology functor is just the composition of the functors

WH∗(P ) : P 7→≤rδ 7→ H̃∗−2(≤rδ)

where we extend the operation Q 7→ Q to disjoint unions of lattices by removing the top
and bottom element of each connected component.

We claim that each of these operations commute with products and induction. Indeed,
both the product of GTCAs and induction are built from finite disjoint unions and products.
Therefore, every functor that is both additive and multiplicative, i.e. monoidal with respect
to

∐
and ⊗ will automatically preserve products and inductions of GTCAs. In the case

at hand, the functor P 7→≤rδ is clearly additive and multiplicative. The shifted homology
functor was discussed in §3.3, where its multiplicative property was observed and additivity
is obvious.

(
D

±
{1,2}

(G,±)
)≤12

×
(
D

±
{3,4}

(G,±)
)≤34

×
(
D

±
{5}

(G,±)
)≤5+ ∼=

(

D
±
[5](G,±)

)≤12·34·5+

× × ∼=

12 · 34 34 · 5+

12 · 34 · 5+

12 34 5+

Figure 2. Factorization of an interval inside D
±
[5](G,±). See Example 3.4.3.
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It follows immediately from Lemma 3.4.2 that the Whitney homology factors into a

product of GTCAs, induced from H̃∗−2(Πn) and H̃∗−2(DT
• (Gs, s)). These posets are geo-

metric lattices and thus have homology only in dimension rk−2, where rk(Πn) = n− 1 and
rk(DT

n (Gs, s)) = n. �

We shall see in the following section how the Dowling posets, and in particular their
Whitney homology, are a key ingredient in understanding the (co)homology of orbit config-
uration spaces. Before we proceed to discuss general orbit configuration spaces, there are
special cases in which the Whitney homology already coincides with the cohomology.

Corollary 3.5.3. Let X = Ad be an affine space over either R or an algebraically closed
field. Let a finite group G act almost freely on X by affine transformations. Then for any
finite G-invariant set T ⊂ X, the cohomology of Conf•G(X,T ) decomposes into the product
of induced GTCAs given in (14) of Theorem 3.5.2.

Proof. The claim follows from Goresky-MacPherson’s formula [GM88, Part III]: it shows
that the complement for any arrangement of affine subspaces has cohomology given by the
Whitney homology of the corresponding intersection poset, possibly up to simple dimension
shifts. But in [BG18, Theorem C] we show that these intersection posets are exactly the
corresponding Dowling posets. �

Example 3.5.4. Special cases to which Corollary 3.5.3 applies include:

• The classical configuration space Conf•(Rd), when G = 1 and T = ∅.
• The configuration space of a punctured space Conf•(Rd \ {r1, . . . , rk}), when G = 1

and T = {r1, . . . , rk}.
• The complement of the type B/C and D root systems and their complexifications,

when G = Z2 and either T = {0} or T = ∅, respectively.
• The complement of a Dowling arrangement Conf•µk

(C \ {0}), when the k-th roots
of unity act by scalar multiplication µk y A, and T = {0}.

3.6. Combinatorics of orbit configuration spaces. Let X be a separated G-space (as
in Conventions 1.5) with an almost free action, i.e. where the set of singular points for the
G-action

SingG(X) :=
⋃

16=g∈G

Xg

is finite, denoting by Xg the set of points fixed by g. Fix a finite G-invariant subset T ⊆ X ,
and let

S := SingG(X) ∪ T.

Every element β = ({B̃1, . . . , B̃ℓ}, z) ∈ D
T
n (G,S) defines a subspace Xβ ⊆ Xn as follows.

The partial G-partition of [n] specifies which coordinates are related by an application of
g ∈ G and the zero block specifies which coordinates land on an element s ∈ SingG(X)∪ T .
More explicitly,

(15) Xβ := XB̃1 × · · · ×XB̃ℓ ×Xz ⊆ XB1 × · · · ×XBℓ ×XZ ∼= Xn,

where for a block B with G-coloring b : B → G, the subspace XB̃ ⊆ XB consists of functions
xB : B → X satisfying

b(i)−1.xB(i) = b(j)−1.xB(j) ∀i, j ∈ B,

and Xz is the single element of XZ defined by z : Z → S ⊆ X .
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The collection of Xβ as β runs over Dn = D
T
n (G,S) describes the closed strata in a

stratification of Xn. The locally-closed strata Uβ whose disjoint union is Xn are given by
Uβ = Xβ \ ∪

α∈D
≥β
n

Xα, and the open stratum corresponding to the trivial partition with

empty zero block (the minimum of Dn) is ConfnG(X,T ). We refer the reader to [BG18,
Theorem C] for more details on this stratification; although that theorem assumed that X
is connected, the stratification does not require this assumption.

Consider the ‘incidence variety’ over the Dowling poset:

Ln = {(x, β) ∈ Xn ×Dn | x ∈ Xβ}

D
T
n (G,S)

∋

∋

(x, β)

β

π2

The fiber over an element β ∈ D
T
n (G,S) is simply the topological space Xβ. In this sense

the incidence variety is the tautological bundle over DT
n (G,S).

Letting the parameter n vary, one sees that the collection of incidence varieties is in fact
a GTCA of topological spaces, and the projection π2 is a map of GTCAs. A geometric
version of Lemma 3.4.2 is the following,

Lemma 3.6.1 (GTCA factorization of incidence varieties). Let X be an almost free
G-space (as in Conventions 1.5), let T ⊂ X be a finite G-invariant subset, and let S =
SingG(X)∪T . The GTCA of incidence varieties factors as a product of topological GTCAs,
compatibly with the factorization of DT

• (G,S):

L

D
T (G,S)

∼=
∞∏

n=1

IndFBGG×Sn
X ×

∏

[s]∈S/G

IndFBGFBGs
(∗)T• (s)

∼=
∞∏

n=1

IndFBGG×Sn
(∗) ×

∏

[s]∈S/G

IndFBGFBGs
(∗)T• (s)

π2

where G ×Sn acts on X via the provided action of G and, as in Lemma 3.2.1, (∗)T• (s) is
either a point or the empty space.

Proof. Lemma 3.2.1 gives a factorization of D
T
• . The generator ∗ of the factor indexed

by n corresponds to the diagonal ∆ ⊆ Xn, which is (G × Sn)-equivariantly isomorphic
to X . As for the factor labeled by an orbit [s], the point in (∗)Tn (s) corresponds to the
point {(s, . . . , s)} ⊆ Xn, which can be equivariantly identified with (∗)Tn (s) itself. The
multiplication of these subspaces is given by the Cartesian product of topological spaces,
and so the fiber over any β ∈ Dn is the product of the diagonals and points as prescribed
by β and described in (15). �

3.7. The collision spectral sequence. Now we have two compatible product decompo-
sitions: an order theoretic one in Lemma 3.4.2 and a topological one in Lemma 3.6.1. After
applying homology, we combine them to get a handle on the Borel–Moore homology of
Conf•G(X,T ) (with coefficients as in Convention 1.5).
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The proposed factorization does not exist universally for all spaces (although it applies to
a large class of them, see Remark 3.7.5 and Corollary 4.3.7 below). Rather, the factorization
appears at a finite stage of a spectral sequence, associated with a natural filtration we now
discuss.

We define a filtration on the homology HBM
∗ (ConfnG(X,T )), natural with respect to

proper maps. The idea here is that Fk H
BM
∗ are all the Borel-Moore homology classes

that are restricted from partial configuration spaces in which only k simultaneous collisions
are excluded.

Recall from §3.6 that the Dowling poset Dn(X,T ) indexes a stratification of Xn, whose
closed strata are denoted by Xβ for β ∈ Dn(X,T ) as defined in (15). This Dowling strati-
fication of Xn gives rise to a diagram of open sets in Xn, where β ∈ Dn(X,T ) corresponds
to a partial configuration space: the open set

Confβ(X) = Xn \
⋃

0̂<α≤β

Xα

where one only removes the subspaces xi = g.xj and xi = t that contain Xβ. Then β < β′

implies Confβ(X) ⊃ Confβ
′

(X).
Since Borel-Moore homology is contravariant with respect to open inclusions, the con-

tainments ConfnG(X,T ) ⊆ Confβ(X) induce a diagram of subspaces

HBM
∗ (ConfnG(X,T ))β := Im

(
HBM

∗ (Confβ(X)) → HBM
∗ (ConfnG(X,T ))

)

for which β < β′ now implies HBM
∗ (ConfnG(X,T ))β ⊆ HBM

∗ (ConfnG(X,T ))β
′

. Then the rank
function on Dn(X,T ) gives rise to a filtration as follows.

Definition 3.7.1 (Collision filtration). With the notation of the previous paragraph, set

Fk(H
BM
∗ (ConfnG(X,T ))) :=

∑

rk(β)≤k

HBM
∗ (ConfnG(X,T ))β.

which is already defined at the level of Borel-Moore chains Fk(C
BM
∗ (ConfnG(X,T ))), and

more generally with coefficients in any sheaf on X .

Clearly the filtration is natural in all inputs (G,X, T ) in the obvious way. More im-
portantly, the filtration is compatible with the GTCA structure: the Sn[G]-action on Xn

permutes the sets Confβ(X) while preserving rk(β), thus the induced action on homology
respects the filtration. Furthermore, since for every β ∈ Dn and β′ ∈ Dm there is a natural

open inclusion Confβ×β′ ⊂ Confβ ×Confβ ⊂ Xn+m, it follows that there is a multiplication
map

HBM
∗ (ConfnG(X,T ))β ⊗HBM

∗ (ConfmG (X,T ))β
′ → HBM

∗ (Confn+m
G (X,T ))β×β′

and in particular Fk ⊗ Fℓ → Fk+ℓ. We shall therefore use the GTCA notation

Fk(H
BM
∗ (Conf•G(X,T )))

to refer to the respective filtrations on all powers of X simultaneously. This is the collision
filtration.

The spectral sequence associated with this filtration admits a natural product decompo-
sition of GTCAs, as the following shows.

Theorem 3.7.2 (Spectral sequence factorization). Let X be an almost free G-space as
in Conventions 1.5, let T ⊆ X be a finite G-invariant subset, and let S = SingG(X) ∪ T .
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Pick orbit representatives s ∈ [s] for every [s] ∈ S/G and let Gs ≤ G denote its stabilizer.
The collision filtration gives rise to a spectral sequence of GTCAs converging to the GTCA
HBM

∗ (Conf•G(X,T )), with E1 ∼=

(16)

∞⊗

n=1

IndFBGG×Sn

(
HBM

∗ (X)⊠ H̃n−3(Πn)
)
⊗

⊗

[s]∈S/G

IndFBGFBGs
H̃|•|−2

(
DT

• (Gs, s)
)
,

where HBM
∗ (X) ⊠ H̃n−3(Πn) is placed in bidegree (n − 1, ∗) and H̃|•|−2(DT

• (Gs, s)) is in
bidegree (•, 0). These GTCAs are in the category of bigraded modules with standard tensor
product and (graded-commutative) symmetry.

Moreover, the spectral sequence and the product factorization are natural with respect to
proper G-equivariant maps.

Proof. In [Pet17, Lemma 4.12] Petersen constructs a spectral sequence of TCAs converging

to HBM
∗ (Conf•G(X,T )), which by [BG18, Theorem D] has E1 given by

E1
p,q[•] =

⊕

β∈D•

rk(β)=p

HBM
q

(
Xβ

)
⊗ H̃p−2

(
D

≤β
•

)
,

where Dn = D
T
n (G,S). Note that while Petersen explicitly considered only the symmetric

group action on each term, his arguments apply to the G-equivariant context and in fact
give a spectral sequence of GTCAs.

We use Theorem 3.5.2 and Lemma 3.6.1 (applying Borel–Moore homology to the sec-
ond), in which we have factorizations of two GTCAs of graded k-modules. By taking their
pointwise tensor product over the GTCA D

T
• (G,S), one obtains the factorization stated

here. The details are completely straightforward and thus omitted.
It remains to show that Petersen’s construction in fact coincides with the spectral se-

quence associated with our collision filtration. As a quick reminder, let j : ConfnG(X,T ) →֒
Xn denote the inclusion. Starting with a sheaf F on Xn, Petersen resolves the sheaf j!j

−1F
which computes H∗

c(Conf
n
G(X,T );F) by the complex

F →
⊕

0<β∈Dn

F|Xβ →
⊕

0<β1<β2

F|Xβ1 → . . . →
⊕

0<β1<...<βn

F|Xβn → . . .

and filters it by rk(βn). This filtration produces the aforementioned spectral sequence.
Applying the functor computing global sections of the Verdier dual RΓ ◦D to this complex
gives a filtered chain complex computing HBM

∗ (ConfnG(X,T );F).

Similarly, for a partial configuration space jβ : Confβ(X) →֒ Xn, the sheaf (jβ)!(j
β)−1F

is resolved in the same way, but with the poset Dn replaced by the subposet D≤β
n . Thus the

complex computing HBM
∗ (Confβ(X)) naturally sits as a subcomplex of the one computing

HBM
∗ (ConfnG(X,T )), and this inclusion realizes the restriction from the former to the latter.
Since the subcomplex of Petersen’s filtration degree p is precisely the sum over all terms

in D
≤β
n for rk(β) ≤ p, it is precisely the chains restricted from those Confβ. This is our

definition of the collision filtration. �

Remark 3.7.3. Dan Peterson and Phil Tosteson communicated to us that they had each
observed this factorization in the special case thatG is trivial and S is empty: in the language
of species, one views this as a composition with an exponential. For more general G and
S, we have more elaborate group inductions as well as additional factors corresponding to
non-free orbits.



24 CHRISTIN BIBBY AND NIR GADISH

Remark 3.7.4 (Factorization at the space level). One could build a more systematic
framework to show a factorization at the space level, making sense of the object

⊔

β∈Dn

Xβ ×D
≤β
n

in a category that allows us to pair together topological spaces and posets. While the
factorization is clear in the category of sets, one needs the additional structure on the
objects in order to apply homology functors.

Remark 3.7.5 (Differentials). This result would still be of limited use if nothing could be
said about the differentials of the spectral sequence. Fortunately, several general statements
could be made.

• When X is a smooth projective variety, there can be at most one nonzero differ-
ential (by a standard weight argument). This nontrivial differential is completely
determined by what it does to the generators of the GTCA.

• When X is i-acyclic (the map H∗(X) → HBM
∗ (X) is zero), all differentials must

vanish [Ara16, Pet18]. For example, a product of any space by affine spaces and
copies of the multiplicative group Gm is i-acyclic. In this case, it is not known
whether the Borel-Moore homology GTCA factors as a product of inductions, even
though the GTCAs are isomorphic as species (forgetting the algebra structure).

Other general statements involve the representation stability, which is the subject of the
next section. In short, the kernel and cokernel of every differential are finitely generated
modules for certain algebras actions, and this constrains the Sn[G]-representation that may
occur.

4. Representation stability and secondary stability

The product formula of Theorem 3.7.2 gives a good handle on how to generate the E1-page
computing the homology of configuration spaces as a GTCA. Unfortunately, the differentials
are difficult to describe in terms of these generators. The main goal of this section is to
address this difficulty and shed light on the structure of the homology HBM

∗ (ConfnG(X,T ))
using the tools of representation stability.

Stated vaguely, this section will show that under mild hypotheses on X , the Borel-Moore
homology groups HBM

∗ (ConfnG(X,T )) stabilize as sequences of representations of the various
wreath products. One of the central contributions of the representation-stability point of
view is that this notion of stability is best understood as the finite-generation of modules
over GTCAs. Then the Noetherian property of certain GTCAs ensures that stability is
a robust property, preserved under subquotients and extensions. It is therefore enough to
establish finite-generation at the E1-page of a spectral sequence converging to the modules
in question.

4.1. Geometric criteria for finite-generation. Here we present a simple geometric tech-
nique for identifying many structures of finitely-generated modules on a bigraded GTCA
E∗,∗[•] as occurs in the E1-page of the spectral sequence computing HBM

∗ (Conf•G(X,T )).
Very briefly, it says that there exists a polygon whose corners govern the finitely-generated
module structures on E.

Comparing GTCA generators appearing at different • = n gets rather confusing. An
effective trick to simplify this problem is to work as though all generators appear already
in • = 1, which is formally similar to adjoining an n-th root to generators ∈ E[n]. Making
this approach systematic, we make the following definition.
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Definition 4.1.1 (The generation locus). Let E∗,∗[•] be a bigraded GTCA, generated
by the finite-dimensional subspaces Vi ≤ Epi,qi [ni] with i ∈ N.

For every e ∈ Ep,q[n] write v(e) :=
(
p
n ,

q
n

)
∈ Q2 and define the generation locus to be

Gen := {v(Vi) | i ∈ N} ⊂ Q2.

These are the (fractional) bidegrees in which generators would have appeared had they all
existed already when • = 1.

Consider a point v ∈ Q2. Let Av ≤ E be the subalgebra generated by all subspaces Vi

with v(Vi) = v, and note that multiplication by Av preserves the subspaces

(17) E(p,q)+•v[n+ •]
where we declare that Ea,b[c] = 0 unless a, b, c ∈ Z≥0. Thus E breaks up into a collection
of Av-submodules.

Lemma 4.1.2 (Corner criterion for finite generation). Let E∗,∗ be a bigraded GTCA,
generated by subspaces Vi ≤ Epi,qi [ni]. Suppose that for every point v ∈ Gen and fixed n ∈ N

the corresponding generating subspace
⊕

v(Vi)=v
ni=n

Vi

is finite dimensional. Then for every isolated corner v0 of the closed convex hull Conv(Gen),
the Av0-submodules E(p,q)+•v0 [n+ •] that make up E∗,∗ are finitely-generated.

Quantitatively, if L ⊂ R2 is a line meeting Conv(Gen) only at a corner v0 ∈ Gen,
and there are no other points in Gen within distance ǫ > 0 from L, then E(p,q)+•v0 [n + •]
is generated as an Av0 -module by the finitely many products Vi1 · . . . · Vik with

∑
nij ≤

dist(nL,(p,q))
ǫ , and each for these is finite-dimensional.

Proof. Let L(x, y) = ax+ by+ c = 0 be a defining equation for a line L meeting Conv(Gen)
at the corner v0 ∈ Gen and is at least distance ǫ > 0 to any other point in Gen. Normalize
the equation L so that |L(v)| = dist(v, L) for every v ∈ R2 and takes non-negative values
on Gen. In particular, one has L(v) ≥ ǫ for all v(6= v0) ∈ Gen.

Next, with the notation of Definition 4.1.1 above, define a ‘height’ function |e| := n ·
L(v(e)) = ap + bq + nc when e ∈ Ep,q[n]. Linearity in (p, q, n) implies |e · e′| = |e| + |e′|
for every two homogeneous elements of E. Furthermore, the hypotheses of the previous
paragraph imply

• |Vi| = 0 if and only if v(Vi) = v0,
• and otherwise |Vi| ≥ niǫ.

Consider the Av0 -module E(p,q)+•v0 [n + •]: its height is given by the constant λ :=
nL( pn ,

q
n ) since L(v0) = 0 (note that λ is well defined even if n = 0). By the assumption

on E∗,∗, this subspace is generated by various products Vi1 . . . Vik . But since the height is
additive and non-negative, products of generators that produce elements of height λ must
have |Vi| ≤ λ.

We claim that for every fixed λ ∈ R there are finitely many elements that generate all
spaces Vi with v(Vi) 6= v0 and |Vi| ≤ λ. Indeed, the second property of the height above
implies niǫ ≤ λ, so ni ≤ λ/ǫ. Furthermore, the triangle bounded by the cone angle of

Conv(Gen) at v0 and L(x, y) ≤ λ is compact (see Figure 3), so meets every lattice 1
nZ only

at finitely many points. Since the generating spaces Vi with |Vi| ≤ λ must correspond to



26 CHRISTIN BIBBY AND NIR GADISH

bounded ni ≤ λ/ǫ and have v(Vi) among the corresponding finite sets of lattice points, there
is a finite list of elements in E that generates all of them by hypothesis.

It follows that the Av0 -module E(p,q)+•v0 [n+ •] is generated under multiplication by Av0

by a finite list of elements – those in products Vi1 . . . Vik of total height λ. Again, the
lower bound on non-zero height implies that in all such products ǫ

∑
nij ≤ λ, bounding the

possible degrees as claimed. �

v0 L(x, y) = λ

L(x, y) = 0

Figure 3. Triangle bounded by cone angle of v0 and L(x, y) ≤ λ

In practice, one is most often interested in diagonals
⊕

p+q=i

Ep,q and their finite-generation

as modules over GTCAs. The following slight adjustment to the corner criterion argument
of Lemma 4.1.2 extends the finite-generation result to the entire diagonal.

Lemma 4.1.3 (Slope −1 criterion for finite generation of diagonals). Let
E∗,∗ be as in Lemma 4.1.2 – a bigraded GTCA generated by subspaces Vi ≤ Epi,qi [ni] such
that for every v ∈ Gen and n ∈ N the corresponding generating subspace

⊕

v(Vi)=v
ni=n

Vi

is finite dimensional.
If v0 = (r0, t0) is a corner of the closed convex hull Conv(Gen) and the line L of slope

(−1) through v0 is at least of distance ǫ > 0 to any other point in Gen (see Figure 4 and
compare with Lemma 4.1.2), then for every i ∈ Z the diagonals

(18)
⊕

p+q=i+•(r0+t0)

Ep,q[n+ •]

form a finitely-generated Av0-module. More explicitly, this module is generated by products

Vi1 · . . . · Vik with
∑

nij ≤ dist(nL,(i,0))
ǫ .

Proof. The set-up here is a special case of the corner criterion of Lemma 4.1.2, and the same
proof holds to show finite generation of the diagonals. We shall keep the same notation as
in that proof, except that here the slope (−1) condition on L implies that the line equation
L(x, y) = 0 is of the special form L(x, y) = ax+ ay + c.

Now, if Ep,q[n+•] is a summand in the i-th diagonal as expressed in (18), then its height
is

|Ep,q[n+ •]| = a(p+ q) + (n+ •)c = ai+ nc+ •L(v0) = ai+ nc.
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v0

L

ǫ

Figure 4. Slope −1 criterion at the corner v0 of Conv(Gen)

In particular, the entire diagonal is built from summands with constant height λ := ai+nc =
nL(i/n, 0) = n dist(L, (i/n, 0)). Note that the latter distance is equivalently described as
the distance between the scaled line nL through nv0 and the diagonal p+ q = i.

But in the proof of Lemma 4.1.2 we showed that the only elements of height λ are products
of the GTCA Av0 and the finitely many products of generating subspaces Vi1 · . . . · Vik with∑

nij ≤ λ
ǫ . It follows that the diagonals in question are each finitely-generated as an

Av0 -module, and with generators in the said degrees. �

Example 4.1.4 (Generation locus of orbit configuration spaces). The product for-
mula in Theorem 3.7.2(16) provides a list of (free) generators for the E1-page of the spectral

sequence that computes HBM
∗ (Conf•G(X,T )):

• Vi,n := HBM
i (X)⊗ H̃n−3(Πn) ≤ E1

n−1,i[n] for every i ≥ 0 and n ≥ 1, and,

• V[s],n := H̃n−2(DT
n (Gs, s)) ≤ E1

n,0[n] for orbit [s] ∈ S/G and every n ≥ 1.

Letting d be the degree of the top homology of X , the generation locus is thus

Gen =

{(
n− 1

n
,
i

n

)
: 0 ≤ i ≤ d, n ≥ 1

}
∪ {(1, 0)}.

Figure 5 shows a plot of the generation locus, in the case that the top homology of X is in
degree d = 3. Notice that, as n approaches infinity, the points converge to the corner (1, 0).

Since for every fixed • = n there are only finitely many generating subspaces and each is
finite-dimensional, the hypotheses necessary for the corner criterion hold. The two marked
corners, at (0, 0) and (0, d), in Figure 5 are those isolated corners that give rise to finitely-
generated module structures on E1

∗,∗ according to Lemma 4.1.2.
Also notice that when d = 1, the line of slope (−1) through the corner (0, 1) passes

through infinitely many points in the generation locus. In fact, the corner (0, d) satisfies the
conditions of Lemma 4.1.3 if and only if d 6= 1.

The difference between the corner criterion 4.1.2 and the slope (−1) criterion 4.1.3 be-
comes important when studying the homology of ConfnG(X,T ): it may happen that every
term E∞

(p,q)+•v0 by itself is a finitely-generated module, but there are infinitely many of

them that contribute to the module HBM
i+•v0 . This kind of behavior leads to the following

definition.
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Figure 5. Generation locus for the E1-page of the spectral sequence com-
puting HBM

∗ (ConfnG(X,T )); see Example 4.1.4.

Definition 4.1.5 (Filtered representation stability). Let A[•] be a GTCA and let M [•]
be an A-module equipped with a filtration F∗(M). There are two complementary notions
of finite generation with respect to the filtration.

• M is bounded finitely generated if for every bound p on the filtration degree, Fp(M)
is a finitely generated A-module.

• M is truncated finitely generated if for every p, the quotient M/Fp(M) is a finitely
generated A-module.

Remark 4.1.6 (Shifted filtration). It will often be the case that the module M in
the above definition is a GTCA, and A is a subGTCA. If A[•] is concentrated in filtration
degree ℓ•, one makes the A-module structure on M compatible with the filtration by shifting

F̃pM [•] := Fp+ℓ•M [•]. Then multiplication by A preserves the filtration, and one can discuss
filtered finite generation.

Lemma 4.1.7 (Slope 6= −1 criterion for finite generation of diagonals). Let E∗,∗ be
again as in Lemma 4.1.2 – a bigraded GTCA generated by subspaces Vi ≤ Epi,qi [ni] such
that for every v ∈ Gen and n ∈ N the corresponding generating subspace

⊕

v(Vi)=v
ni=n

Vi

is finite dimensional.
Filter the diagonals by

Fℓ


 ⊕

p+q=i

Ep,q


 =

⊕

p+q=i
p≤ℓ

Ep,q.
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Then for every isolated corner v0 = (r0, t0) of the closed convex hull Conv(Gen), the Av0-
module structures on the diagonals

⊕

p+q=i+•(r0+t0)

Ep,q[n+ •]

are filtered finitely generated with respect to the shifted filtration F̃ℓ = Fℓ+•r0 .
More specifically, let L be a non-vertical line that meets Gen only at v0.

• Suppose Gen lies below L. If L has slope m > −1, then the diagonals are bounded
finitely generated. Otherwise, if m < −1, then the diagonals are truncated finitely
generated.

• If Gen lies above L, then the previous two cases are reversed.

Quantitatively, one could give explicit bounds on the values • at which generators might
appear in terms the bounds in the corner criterion and the filtration degree ℓ.

Proof. Let L(x, y) = mx− y+ c = 0 be an equation of a line that intersects the convex hull
of Gen only at the corner v0 = (r0, t0). If Gen lies below L, then L(v) ≥ 0 for all v ∈ Gen
and L(v0) = 0. Otherwise, if Gen lies above L, then L(v) ≤ 0 for all v ∈ Gen and L(v0) = 0.

Let us assume that Gen lies below L; the other case is completely analogous with all
inequalities swapped. As in the proof of Lemma 4.1.2, define the height of e ∈ Ep,q[n] to be

|e| = n · L(v(e)) = mp− q + nc.

Again, since the height is additive in all inputs (p, q, n), it is additive under multiplication.
And since it is nonnegative on a generating set for E, it follows that |e| ≥ 0 for every
element.

Now, consider the diagonal
⊕

p+q=i+•(r0+t0)

Ep,q[n+ •].

For an element e ∈ Ep,q[n+ •] in this sum,

0 ≤ mp− q + (n+ •)c since |e| ≥ 0

= −(p+ q) + (n+ •)c+ (m+ 1)p

= −(i+ •(r0 + t0)) + (n+ •)c+ (m+ 1)p since e is on this diagonal

= −i+ •(−r0 − t0 + c) + nc+ (m+ 1)p

= −i+ •(−r0 −mr0) + nc+ (m+ 1)p since L(v0) = 0

= −i+ nc+ (m+ 1)(p− •r0)
which gives

(19) (m+ 1)(p− •r0) ≥ i− nc.

The diagonal is a direct sum of Av0 -modules Ep0+•r0,q0+•t0 [n + •]. According to the
inequality (19), such a module contributes to the diagonal nontrivially only when

(m+ 1)p0 ≥ i− nc.

When m > −1, this is equivalent to having a lower bound p0 ≥ i−nc
m+1 . By additionally

bounding the filtration degree by ℓ + •r0, one also imposes a restriction ℓ ≥ p0. These
bounds on p0 leave only finitely many Av0 -modules contributing to the i-th diagonal, each
of which is finitely-generated by the corner criterion in Lemma 4.1.2. Thus, the diagonals

are bounded finitely generated with respect to the shifted filtration F̃ℓ = Fℓ+•r0 .
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On the other hand, if m < −1, inequality (19) gives the restriction p0 ≤ i−nc
m+1 . Then

truncating the filtration would give an additional lower bound on p0, thus again ensuring that
only finitely many of these finitely generated Av0 -modules contribute to the i-th diagonal.
The diagonals are therefore truncated finitely generated. �

4.2. Primary representation stability. The E1-page of the collision spectral sequence
gives access to only limited information regarding HBM

∗ (ConfnG(X,T )). From this point on
we handle nonvanishing differentials by employing the powerful Noetherianity results for
GTCAs. The primary, and most important example of this approach is given in Theorem
B and has already appeared in various special cases [Cas16, Pet17].

Theorem 4.2.1 (Primary finite generation of homology). Assume that X is an almost

free G-space following Conventions 1.5 with dimHBM
∗ (X) < ∞, and let T ⊂ X be a finite

G-invariant subset. Let HBM
d (X) 6= 0 be the top nonvanishing Borel-Moore homology group,

and let

A := IndFBG(1) HBM
d (X)

be the GTCA freely generated by HBM
d (X). The cross product

HBM
d (X)⊗HBM

i (ConfkG(X,T )) → HBM
d+i (Conf

k+1
G (X,T ))

gives an action of A on the FBG-modules of constant codimension HBM
d•−i(Conf

•
G(X,T )) for

every i ≥ 0, preserving the collision filtration.
When d ≥ 2, these A-modules are finitely generated. Explicitly, for every i ≥ 0 there

exist finitely many classes

α1, . . . , αk ∈
∐

n∈N

HBM
dn−i(Conf

n
G(X,T ))

whose images under repeated multiplication by HBM
d (X) generate HBM

dm−i(Conf
m
G (X,T )) as

a Sm[G]-representation for every m ∈ N.
Otherwise, when d = 1 these A-modules are bounded-finitely generated relative to the

collision filtration, i.e. every term

Fp H
BM
•−i (Conf

•
G(X,T ))

is finitely-generated.

Proof. From the compatibility of the collision filtration with GTCA multiplication, it is
clear that the cross product with classes in X respects the filtration. Passing to the asso-
ciated spectral sequence, one identifies the sub-GTCA A = IndFBG(1) HBM

d (X) ≤ E1
∗,∗ in the

product decomposition 3.7.2(16) as the one generated by this product operation. Since all
differentials point to the left, they must all vanish on A ⊆ E1

0,d•. Thus the entire spectral
sequence is in fact one of A-modules, and the A-action on homology is compatible with this
structure.

We show by induction on r that every diagonal
⊕

p+q=d•−i

Er
p,q[•]

is a (bounded-) finitely generatedA-module. For the base case r = 1, note that A contributes
the point (0, d) ∈ Gen(E1) (see Figure 5) which is always an isolated corner separated from
other points by a horizontal line – this gives bounded-finite generation by Lemma 4.1.7.
Furthermore, if d ≥ 2 then the point (0, d) is separated from the other points by a line
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of slope (−1), thus by the slope (−1) criterion in Lemma 4.1.3 absolute finite generation
follows.

For the induction step, since the differentials are A-linear, their kernel and cokernel are
A-submodules. Therefore, for the induction to proceed it would suffice to know that the
category of A-modules is locally Noetherian, i.e. that submodules of a finitely generated
module are also finitely generated: then finite-generation would persist under computing
the subquotients Er+1 = H(Er, ∂r). This Noetherianity property indeed holds as a result
of the work of Sam-Snowden, explained next.

Consider the case G = 1 first. For any ring R and D ∈ N, modules over IndFB(1)(R
D)

are equivalent to representations of the category FID (see [SS17, Prop. 7.2.5.]). Then
[SS17, Cor. 7.1.5] is the claim that representations of FID over a Noetherian ring are again
Noetherian. Lastly, if U is any finitely generated R-module, it receives a surjection RD

։ U
and thus there is an induced map of TCAs IndFB(1)(R

D) ։ IndFB(1)(U). Since the former TCA

has a locally Noetherian category of representations, it follows by restriction that the latter
TCA has the same property.

With a general finite group G, one can bootstrap from the TCA case in the previous
paragraph. This proceeds by observing that the restriction of GTCAs to TCAs along the
inclusion 1 ≤ G reflects finite generation of modules. Indeed, upon restriction one only has
to consider all Gn-translates of generators, of which there would be finitely many.

Returning to our original problem of configuration spaces, Noetherianity of A-modules
allows the induction to proceed. Since every A-module occurring in E1 is (locally) finitely-
generated, every later page Er would also be comprised of finitely-generated A-modules,
and thus so will be E∞. Since the diagonal ⊕p+q=d•−iE

∞
p,q[•] is the associated graded of

HBM
d•−i, they are all (bounded-)finitely generated as claimed. �

Remark 4.2.2 (Poincaré dual statement for manifolds). When X is an orientable d-
manifold, its orbit configuration space ConfnG(X,T ) is an orientable dn-manifold. Poincaré
duality gives an identification

HBM
d•−i(Conf

•
G(X,T )) ∼= Hi(Conf•G(X,T ))

and the cross product with the fundamental class [X ] is conjugate to the ordinary pullback

along the projection Confn+1
G → ConfnG forgetting a point. Thus our Theorem 4.2.1 recovers

and extends classical representation stability for connected oriented manifolds.

Remark 4.2.3 (Degrees of generators and relations). For finite generation to give
explicit applications, one must get a handle on the degrees at which generators and relations
appear. In Theorem 4.3.4 below, we examine the E1 page more throughly and obtain explicit
bounds on degrees at which generators may appear. We show that the A-modules that make
up the E1-page are all free, generated in known degrees and satisfy no relations. Explicitly,
the diagonal ⊕

p+q=d•−i

E1
p,q[•]

is generated by elements in E1[n] with n ≤ i
ǫ for ǫ = min(d−1

2 , k) where k ≥ 1 is least such

that HBM
d−k 6= 0.

From this point, one would need to bound the effect differentials might have. This is
standard practice in representation stability, and proceeds using the notions of injectivity
and surjectivity degree (see e.g. [CEF15, §3.1] or [Wil14, §4.2]). We will not address this
more quantitative aspect of stability in this work.



32 CHRISTIN BIBBY AND NIR GADISH

Let us now relate the finite generation results of Theorem 4.2.1 with representation theory,
and constrain the irreducible decompositions of the sequence of representations Sn[G] y

HBM
dn−i(Conf

n
G(X,T )). When the top homology HBM

d (X) is an irreducible representation of
G (e.g. the trivial representation), and under the mild hypotheses of Theorem 4.2.1, there is
a nice characterization for these irreducible decompositions. Similar descriptions are possible
when HBM

d (X) is reducible, but these get messy and hard to write down explicitly.
We will first recall some representation theory of the wreath product group Sn[G] (see

[Ker71] for an exposition). Given an Sn-representation V and a G-representation U , denote
V [U ] := V ⊗ U⊗n, a representation of Sn[G].

Suppose that U1, . . . , Uℓ is a complete list of irreducible representations of G. The ir-
reducible representations of Sn[G] are characterized by the induction products Sλ1 [U1] ·
Sλ2 [U2] · · ·Sλℓ [Uℓ], where λ1, . . . , λℓ are integer partitions with |λ1|+ · · ·+ |λℓ| = n and Sλi

is the irreducible representation of S|λi| corresponding to the partition λi. Let us denote

V (λ1, . . . , λℓ) := Sλ1 [U1] · Sλ2 [U2] · · ·Sλℓ [Uℓ].

Given an integer partition λ = (a1, . . . , ak) and an integer m ≥ |λ| + a1, define a partition
λ〈m〉 = (m − |λ|, a1, . . . , ak). Considering the Young diagram of λ, this operation adds a
top row to the diagram, obtaining a partition of m.

Theorem 4.2.4 (Multiplicity stability). Assume that X is an almost free G-space follow-

ing Conventions 1.5 with dimHBM
∗ (X) < ∞, and let T ⊂ X be a finite G-invariant subset.

Let HBM
d (X) 6= 0 be the top nonvanishing homology group, and assume that HBM

d (X) is an

irreducible G-representation; without loss of generality we may assume HBM
d (X) = U1.

When d ≥ 2, there exists a finite set Λ of ℓ-tuples of partitions and positive integers c(λ)
for each λ = (λ1, . . . , λℓ) ∈ Λ such that for all n ≫ 1,

HBM
dn−i(Conf

n
G(X,T )) =

⊕

λ=(λ1,...,λℓ)∈Λ

V (λ1〈n〉, λ2, . . . , λℓ)
⊕c(λ).

Furthermore, all λ = (λ1, . . . , λℓ) ∈ Λ satisfy the bound |λ1| + · · · + |λℓ| ≤ i/ǫ with ǫ =

min(d−1
2 , k) where k ≥ 1 is least such that HBM

d−k(X) 6= 0.
When d = 1 the same multiplicity stability result holds after bounding the collision filtra-

tion to degree p, now with partition bound
∑ |λj | ≤

√
2
2 (i+ 2p).

Proof. From Theorem 4.2.1 the module HBM
d•−i(Conf

•
G(X,T )) is finitely generated under re-

peated multiplication by HBM
d (X) ∼= U1. Let {Vj}gj=1 enumerate the collection of generating

irreducible representations, say Vj occurs in configurations of nj-points. Explicitly, for ev-

ery n ≥ 1 the Sn[G]-representation HBM
dn−i(Conf

n
G(X,T )) is a quotient of the sum of the

induction products

(20) Vj ⊠ (U1 ⊠ . . .⊠ U1︸ ︷︷ ︸
k times

) = Vj · S(k)[U1]

where S(k) is the trivial representation of Sk and k = n− nj.
By the classification of irreducibles Vj = Sµ1 [U1] · Sµ2 [U2] · · ·Sµℓ [Uℓ] for some partitions

satisfying |µ1|+ . . .+ |µℓ| = nj . Thus the induction product in (20) is

(Sµ1 [U1] · Sµ2 [U2] · · ·Sµℓ [Uℓ]) · S(k)[U1] ∼= (Sµ1 · S(k))[U1] · Sµ2 [U2] · · ·Sµℓ [Uℓ].

The branching rules for Sµ1 ·S(k) work just as for symmetric groups, and hence the decom-
position of such a product stabilizes as in ordinary representation stability for FI-modules.
More explicitly, [SS16, Proposition 3.1.3] explains that when U1 is the trivial representation,
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a module as we have above is equivalent to a representation of the category FI × FB
ℓ−1,

with every factor acting on a corresponding term in the induction product. In particular,
the multiplicities associated with U1 follow the usual pattern of multiplicities in FI mod-
ules. But a quick inspection of their proof shows that it carries over to having U1 be any
irreducible of G.

Lastly, when d ≥ 2 Lemma 4.1.3 gives a bound on the generator degree of the E1-page of
the collision spectral sequence: nj ≤ i/ǫ, and when d = 1 one gets the filtration dependent
bound from the proof of Lemma 4.1.7. These bound the partition lengths appearing on E1,
and therefore also the ones in homology. �

Our setup gives rise to symmetric group representations in two different ways: either
by restricting the action Sn[G] y ConfGn (X,T ) to Sn ≤ Sn[G], or by forgetting the G
action on X altogether and considering the ordinary configuration space Confn(X,T ) with
its symmetric group action.

In both cases, the algebraic structure that arises in Theorem 4.2.1 is what’s known in
the literature as an FID-module, where D is the dimension of the top nonvanishing Borel-
Moore homology HBM

d (X). These are representations of a certain category FID described
explicitly in [SS17], whose finitely generated representations have been studied extensively
by Ramos [Ram17]. Their work implies stability patterns in the representations Sn y

HBM
dn−i(Conf

G
n (X,T )), mainly injectivity and surjectivity properties of the maps HBM

dn−i →
HBM

d(n+1)−i and constraints on their irreducible decompositions (see [Ram17, Theorem A] for

details). In particular, we obtain the following statement using [Ram17, Theorems B and
2.15].

Corollary 4.2.5 (Restricting to the symmetric group action). Assume that X is

an almost free G-space following Conventions 1.5 with dimHBM
∗ (X) < ∞, and let T ⊂ X

be a finite G-invariant subset. Let HBM
d (X) 6= 0 be the top nonvanishing homology, and

set D = dimHBM
d (X). For d ≥ 2 and any i ≥ 0, consider HBM

dn−i(Conf
G
n (X,T )) as a

representation of the symmetric group Sn.

(1) For any partition λ, there exists a polynomial Pλ(t) with degPλ < D such that the

multiplicity of the irreducible Sn-representation V (λ〈n〉) in HBM
dn−i(Conf

G
n (X,T )) is

equal to Pλ(n) for all n ≫ 1.
(2) There exist polynomials p1(t), . . . , pD(t) such that for all n ≫ 1,

dimHBM
dn−i(Conf

G
n (X,T )) = p1(n) + p2(n)2

n + . . .+ pD(n)Dn.

When d = 1, the same holds after bounding the collision filtration to degree p.

4.3. Secondary and higher representation stability. In [MW16], Miller and Wilson
discovered a phenomenon of secondary representation stability: for a manifold with bound-
ary M , their construction gives rise to a stabilization map

Hi(Conf
n(M)) → Hi+1(Conf

n+2(M))

by introducing a pair of orbiting points near the boundary of M . They then show that after
“factoring out” a primary stabilization given by introducing one point near the boundary
(whose Poincaré dual map is a right inverse to our primary stabilization – more details in
§4.4) their new stabilization map gives isomorphisms with improved stable range. Following
their example, this section explores secondary operations on the sequence of representations
HBM

∗ (Conf•G(X,T )) that become important after factoring out the primary stabilization
action of the previous section, though we prove new theorems only in the special case of
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i-acyclic spaces, for which the collision spectral sequence already collapses at the E1-page.
Examples to which our analysis will apply are the affine and toric root system arrangements,
which in large part motivated this project.

When the collision spectral sequence collapses at E1 one essentially gets a formula for
the homology as a GTCA (up to an extension problem). In this regard invariants such as
Betti numbers and multiplicities of irreducible representations are in principle completely
computable, though some qualitative questions are still hard to answer in practice. The main
purpose of this section is therefore different: we seek to understand the various stabilization
operations and quantify finite generation under them. One potential broader application of
this analysis is to the study of “derived generators”, also called FI-hyperhomology in some
contexts, see Remark 4.3.2 for more details.

Consider the many module structures on the E1-page of our spectral sequence that arise
from the product factorization (16) in Theorem 3.7.2. For efficiency of notation, let us break
somewhat from the notation of §4.1 and write

An
i := IndFBGG×Sn

HBM
i (X)⊠ H̃n−3(Πn)

for the term that appears in the n-th factor of (16). Note that this is precisely the subalgebra
of E1 generated by Vi,n from Example 4.1.4, and A1

d is the algebra of primary stabilization
operations studied in §4.2.

Now, every pair (i, n) gives an action by multiplication

An
i [•]⊗ E1

p,q[m] → E1
p+(n−1) •

n
,q+i •

n
[m+ •]

making the E1-page into a direct sum of An
i -modules labeled by triples (p, q,m). In fact,

the product factorization in (16) shows that every one of these modules is free.

Definition 4.3.1 (Factoring out an action). For any GTCA A and any A-module E,
extracting the generators for E amounts to computing the quotient by the “augmentation
ideal”

(E/A>0E)[•] = E[•]/




∑

i+j=•
i>0

A[i]E[j]


 .

We refer to this operation as factoring out the A-action.

Remark 4.3.2 (Factoring out is zeroth FI-homology). This operation of ‘factoring
out’ and its derived functors are ubiquitous in the representation stability literature (see e.g.
[CE17, LR18]). For example, in the case that G = 1 and A = 1•, an A-module is nothing
but an FI-module. Then factoring out the A-action is precisely what [CEF15, Def. 2.3.7.]
calls FI-homology HFI

0 (−).
Note that when working with rational coefficients, all modules appearing in our E1-

page are projective. It follows that factoring out actions at the level of E1 computes the
associated derived functor – a generalization of FI-hyperhomology. In particular, all results
below about vanishing ranges and generator degrees for E1 imply the same vanishing ranges
for the derived factoring-out functors. For FI-modules such vanishing results have been
translated back to stable range calculations by Gan-Li [GL19], and have been utilized in the
case of configuration spaces of closed manifolds by Miller-Wilson [MW20]).

We should also point out recent work by Ho [Ho20] which obtains essentially the same
bounds presented below using a completely different approach via factorization homology,
though he only considers rational coefficients. See [Ho20] for a more complete discussion of
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the derived factoring-out functors and their vanishing ranges in the context of configuration
spaces.

Example 4.3.3 (Factoring-out for free GTCAs). For a free module E = A ⊗ V , one
clearly gets

A⊗ V/(A>0 ⊗ V ) ∼= V

since A is unital. This could be understood as formally deleting the ‘A⊗’ factor from the
product factorization of E.

In the context of our GTCAs An
i acting on E1, a quotient E1/(An

i )>0E
1 simply removes

the term HBM
i (X)⊗ H̃n−3(Πn) appearing in the product (16). Furthermore, since (16) also

implies that the various An
i -actions on E1 commute (possibly up to signs), one can still define

an Am
j -action on any quotient E1/(An

i )>0E
1 and these remain projective Am

j -modules. This
observation will enter our discussion of secondary and higher stability below.

With the understanding that representation stability is interpreted as finite generation of
modules over GTCAs, further actions of GTCAs on the spaces of generators for E1 exhibit-
ing them as finitely generated modules is thus understood as secondary representation sta-
bility. The next result manifests this procedure to uncover many layers of finitely-generated
module structures on E1.

Theorem 4.3.4 (Finite generation of diagonals in E1). Assume that X is an almost

free G-space following Conventions 1.5 with dimHBM
∗ (X) < ∞, and let T ⊂ X be a finite

G-invariant subset. Let E1
∗,∗ be the GTCA computing HBM

∗ (ConfnG(X,T )), and for each pair

(i, n) let An
i be the subGTCA freely generated by HBM

i (X) ⊗ H̃n−3(Πn). The diagonals in
E1

∗,∗ admit multiple structures of a (bounded) finitely-generated module over the subGTCAs
An

i , obtained by the following iterative procedure.
Set E = E1

∗,∗ and let Gen(E) be the generation locus of E (see Example 4.1.4 and Figure
5).

(1) Find the points v(An
i ) =

(
n−1
n , i

n

)
∈ Gen(E) of maximal taxi-cab norm.

If v := v(An
i ) is the unique point in Gen(E) of maximal norm, then the diagonals

(21)
⊕

p+q=‖v‖•−j

Ep,q[m+ •]

form a finitely-generated free An
i -module for every pair (j,m) ∈ N2. Moreover, all

generators appear in E[k] for k ≤ m‖v‖+j
ǫ where ǫ is the difference between the two

largest taxi-cab norms in Gen(E).
Otherwise, if there are multiple points of maximal norm, pick the one with min-

imal x-coordinate, say v(An
i ) ∈ Gen(E). Then the free An

i -module in (21) is only
bounded finitely generated with respect to the appropriately shifted filtration as in
Remark 4.1.6).

(2) A description of the (free) generators is attained by factoring out the action of An
i .

By replacing E with the quotient E/(An
i )>0E and returning to Step 1, the space of

generators will itself admit further structures of finitely-generated free modules.

Remark 4.3.5 (Geometric view of Theorem 4.3.4). Before the proof, we describe the
procedure geometrically. One starts by sweeping in a line of slope (−1) from far above
Gen(E). The first point in Gen(E) that the line hits will give rise to finitely-generated
module structures on diagonals. If the line first hits multiple points, then the one farthest
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to the left gives bounded finite generation. Then factor out the action of this extremal point
and iterate the procedure.

Proof. First note that the only accumulation point of Gen(E1
∗,∗) is (1, 0). Away from this

point, Gen(E1
∗,∗) is a bounded discrete set. Thus when applying the geometric criteria for

finite generation given in Lemmas 4.1.3 and 4.1.7, one need not worry about separating
a line from Gen(E) as long as the line does not pass through (1, 0). The same reasoning
applies to E at any iterate of the procedure, as the set Gen(E) is a subset of Gen(E1

∗,∗).
Now suppose that E∗,∗ is given at any iterate of the procedure. Then by Example 4.3.3,

E∗,∗ is still freely generated by a subcollection of the GTCAs {An
i }(n,i).

Recall that in the taxi-cab metric, a sphere around (0, 0) intersected with the first quad-
rant is a line of slope (−1). This implies that the line of slope (−1) passing through one of
the points in Gen(E) with maximal taxi-cab norm must pass through all points in Gen(E)
with maximal norm. Denote this line by L.

Let v ∈ Gen(E) be the point on L with least x-coordinate (minimization of x happens on
the discrete part of Gen(E) and thus a minimum exists). Then any line L′ through v with
slope −1 + ǫ passes through v alone if ǫ > 0 is sufficiently small, and avoids (1, 0). Thus by
the corner criterion in Lemma 4.1.7, every diagonal becomes a finitely generated Av-module
after bounding the (shifted) collision filtration degree.

If, in addition, the point v ∈ Gen(E) is the unique point of maximal norm, then the
slope (−1) criterion in Lemma 4.1.3 applies and shows that the Av-action on the diagonals
is already finitely-generated. As for the claimed bound on generator degrees, the slope
criterion also gives the bound n ≤ dist(mL, (j, 0))/ǫ. But the distance between a line of
slope (−1) and a point, both in the first quadrant, is the difference of their taxi-cab norms

divided by
√
2. Since both the numerator and the denominator are given by such distances,

the roots cancel. A quick check shows that the same distance formula holds when j is
negative. �

Remark 4.3.6. The reader is warned that the An
i -module structures on the E1-page are not

in general compatible with the differentials, except for the cases with n = 1 – stabilizations
by adding one point moving along a cycle. The problem is of course that An

i ≤ E1 might
not itself lie in the kernel of all differentials, and thus will not commute with them.

One should therefore not expect to see these actions at the level of homology, or even on
any page Er with r > 1. However, since a spectral sequence gives a sort of an upper bound
on homology, one can still extract representation theoretic information without any further
assumptions (see e.g. Theorem 4.2.4).

Theorem 4.3.4 gives concrete information about homology in many special cases. Mainly,
when the collision spectral sequence collapses already at the E1-page: in this case the GTCA
E1 essentially gives a formula for the Borel-Moore homology of the orbit configuration
space, up to a possible extension problem. However, Theorem 4.3.4 unpacks the product
decomposition and converts it into a quantitative statement about degrees of generators,
which is difficult to see in the product decomposition of Theorem 3.7.2 directly.

A central class of examples in which this collapse occurs is called i-acyclic spaces : spaces
X in which the natural map H∗(X) → HBM

∗ (X) is trivial (see [Ara16, Pet18]). These spaces
include all orientable manifolds on which the cup product restricts to zero on compactly
supported cohomology H∗

c(X) – in particular the cases of affine and toric arrangements
(when X is C or C×).
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Corollary 4.3.7 (Higher finite generation for i-acyclic spaces). Suppose that X is an
i-acyclic space, i.e. H∗

c(X) → H∗(X) vanishes, such as an orientable manifold with trivial

cup product on H∗
c(X) or any space of the form X ′×R. Assume further that dimHBM

∗ (X) <
∞ (see also Conventions 1.5), and let T ⊂ X be a finite G-invariant subset.

Then the various GTCAs An
i , freely generated by HBM

i (X)⊗H̃n−3(Πn), act on the associ-

ated graded homology grF HBM
∗ (Conf•G(X,T )) giving rise to a sequence of (bounded) finitely

generated free module structures, by following the procedure of Theorem 4.3.4.
Most significantly, let HBM

d (X) 6= 0 denote the top nonzero homology. Then for ev-

ery k < d
2 − 1 stabilizing by cross product with HBM

d−k(X) gives free module structures on

HBM
(d−k)•−j(Conf

•
G(X,T )) finitely-generated from classes at which • < j after factoring out

the actions of HBM
d−i (X) for 0 ≤ i < k.

If d is even, the same finite generation results holds for k = d
2−1 but with generators only

bounded by • ≤ 2j. When d is odd, multiplication by HBM
d+1
2

(X) only gives finitely generated

free modules at bounded collision filtration degree.

Proof. Petersen shows in [Pet18] that the collision spectral sequence collapses at E1 for

i-acyclic spaces. Thus every term HBM
i (X) ⊗ H̃n−3(Πn) ⊆ E1

n−1,i[n] is isomorphic to a

subspace of HBM
i+n−1(Conf

n
G(X,T )) under a choice of splitting of the collision filtration. In

this way, the GTCA multiplication on homology equips it with an action of An
i , compatible

with the An
i -module action on E1 up to extensions. Now, since finite generation persists

under extensions, the homology will be finitely-generated whenever the diagonals of E1 are
so. The latter cases are described in Theorem 4.3.4.

In particular, for every k < d
2 − 1, the k-th iterate of the procedure picks the point of

maximal taxi-cab norm (0, d−k) ∈ Gen(E). This corresponds to the action of multiplication

by HBM
d−k(X), now seen to freely generate HBM

(d−k)•−j(Conf
•
G(X,T )) modulo the actions by

HBM
d−i (X) for i < k. The generators for this action are constrained to lie in • ≤ j.

The k = ⌈d
2 − 1⌉-th step in the iterative process of Theorem 4.3.4 again picks out sta-

bilization by HBM
d−k(X), but differs between even and odd d. In the even case, the point

of Gen(E) with second smallest norm is
(
1
2 ,

d
2

)
at distance ǫ = 1/2, thus giving the worse

bound on generators. In the odd case, this point has the same maximal norm d − k, and
therefore stabilization by HBM

d−k(X) only gives bounded finite generation. �

Example 4.3.8. The above kind of secondary and higher stability is better behaved and
is more interesting when the homological dimension d is large, e.g. for manifolds of large
dimension d. For example, when

d = 1: even the primary stabilization only gives finitely generated modules after bounding
the collision filtration degree.

d = 2: primary stabilization means that the modules HBM
d•−j(Conf

•
G(X,T )) are finitely gen-

erated by classes in configurations of ≤ 2j points.
d = 3: primary stabilization gives finite generation of HBM

d•−j(Conf
•
G(X,T )) with improved

bounds on generation degrees, now coming from configurations of ≤ j points. There
is also secondary stabilization by HBM

d−1(X), but it only gives bounded finite gener-
ation.

d = 4: now the secondary stabilization by HBM
d−1(X) gives finite generation with generators

coming from configurations of ≤ 2j points.
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d = 5: the secondary stabilization operation gives finite generation with the improved bound
of ≤ j on generation degrees. Now there is also tertiary stabilization by HBM

d−2(X)
giving bounded finite generation.

and this process continues in the predictable way.

Remark 4.3.9 (Improving the stable range). The intended way to conceptualize The-
orem 4.3.4 and Corollary 4.3.7 is as follows. One thinks of the actions of An

i as various

stabilization operations, comparing Confk to Confk+n. The first of these stabilizations
mentioned in Theorem 4.3.4 is multiplication by HBM

top (X) – this is the primary stabiliza-
tion action of §4.2, and the finite generation of Theorem 4.2.1 is interpreted as primary
representation stability.

Then the statement about finite generation for the later actions should be understood as
secondary stability – showing that there is yet another finite list of generators that strictly
improves the range of generation. This improvement is quantified by saying that the slope
of stability has decreased.

Definition 4.3.10 (Slope). We say that, for a fixed pair (j0, n0), the sequence of homology

groups HBM
j0+k•(Conf

n0+ℓ•
G (X,T )) has slope k

ℓ . Graphically, this is the slope of the line passing
through the groups when drawn on a grid with

(i, j) 7→ HBM
i (ConfjG(X,T )).

A quantitative goal of representation stability is to control the behavior of these sequences
lying on slopes as small as possible. In our picture of the generation locus Gen(E) (see Figure
5), the slope of diagonals under an Av-action is precisely the taxi-cab norm ‖v‖ – hence the
minimization process of Theorem 4.3.4.

For experts more familiar with (co)homological stability of configuration spaces of man-
ifolds, under Poincaré duality our slope d − s corresponds to the classical slope s for a d-
manifold. In particular, our attempt to understand Borel-Moore homology at small slopes
corresponds classically to working with large slopes.

Now one can understand Theorem C as a restatement of Corollary 4.3.7 using the slope
terminology: allowing a larger GTCA to act on homology reduces the generation slope as
follows.

Proof of Theorem C. In Corollary 4.3.7 we show that the module HBM
(d−k)•−j(Conf

•
G(X,T ))

is generated under multiplication by HBM
d−k(X) with generators satisfying • < j, modulo the

image of multiplications by HBM
d−i (X) for 0 ≤ i < k. Equivalently, HBM

(d−k)n−j(Conf
n
G(X,T ))

is generated by the image of multiplication by HBM
d−i (X) for 0 ≤ i ≤ k whenever j < n.

Write j′ = kn + j, then one has a surjection onto HBM
dn−j′(Conf

n
G(X,T )) whenever n >

j = j′ − kn, or j′ < (k + 1)n as claimed. �

Let us remark on the case of a general space X for which differentials might not vanish,
and study higher stability in its configuration space. After passing to a subquotient of E1,
the bounds we give on degrees of generators may no longer apply, and without them it is not
clear whether surjectivity at decreased slopes as in Theorem C holds in any form. We believe
that properly addressing the homological algebra of the derived ‘factoring-out’ functors will
likely reproduce analogous results in general, especially in light of the fact that the E1-page
is built from free modules that are acyclic for factoring out at least for Q-coefficients (see
Remark 4.3.2).
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Conjecture 4.3.11 (Proposed high dimensional secondary stability). Assume that

X is an almost free G-space following Conventions 1.5 with dimHBM
∗ (X) < ∞, let T ⊂ X

be a finite G-invariant subset, and let HBM
d (X) 6= 0 be the top nonvanishing homology

group.
Then for all k < d−1

2 , the homology HBM
(d−k)•−j(Conf

•
G(X,T )) modulo the representations

generated by cross product actions

HBM
d−i (X)⊗HBM

∗ (Conf•G(X,T )) → HBM
∗+d−i(Conf

•+1
G (X,T ))

for all i = 0, . . . , k − 1, satisfies the same finite generation results under multiplication by
HBM

d−k(X) as the primary stabilization in Theorems 4.2.1.

If k = d−1
2 then finite generation after factoring out the previous actions holds only at

bounded collision filtration degrees.

These are stability statements for respective slope d− k (see Remark 4.3.9), which under
Poincaré duality translates to slope k in ordinary cohomology.

For experts we suggest that a central technical result that could prove the above conjec-
ture is the generalization of [GL19, Theorem 5] from FI-modules to FId-modules, i.e. for
modules over TCAs generated by more than one element.

4.4. Stabilization by an orbiting pair. The stabilizations in Corollary 4.3.7 above come
from the first ⌊d−1

2 ⌋ iterations of the procedure in Theorem 4.3.4. Pushing the procedure
past this point and stabilizing by the top homology term associated with n = 2 in Fac-
torization (16) reveals a new phenomenon, akin to Miller–Wilson’s secondary stability by
introducing a pair of orbiting points [MW16]. In this section, we need the following hy-
potheses:

Hypothesis 4.4.1 (Acyclic diagonal). Let X be a G-space with dimHBM
∗ (X) < ∞,

and let HBM
d (X) 6= 0 be the top nonvanishing homology group. Further assume that the

diagonal ∆∗ : HBM
d (X) → HBM

d (X2) is zero on the top homology (e.g. i-acyclic orientable
manifolds, see [Pet18]).

To see the connection between the next stabilization operation and the introduction of
a pair of orbiting points, consider first the case of an oriented d-manifold M with G trivial
and the class of two closely-orbiting points in Hd−1(Conf

2(M)). In Borel-Moore homology,
a Poincaré-dual to this class is represented by any Borel-Moore coboundary of the diagonal,
i.e. any (d + 1)-chain in M2 whose boundary is supported on the diagonal and represents
its fundamental class [∆], as explained next.

For M = Rd one has Conf2(Rd) ≃ Sd−1. Thus H∗(Conf
2(Rd)) is concentrated in degree

d−1 and generated by the class of orbiting points. The long exact sequence of the inclusions
Conf2(Rd) ⊂ R2d ⊃ ∆:

. . . HBM
d+1(R

2d) HBM
d+1(Conf

2(Rd)) HBM
d (∆) HBM

d (R2d) . . .

0 [c] [∆] 0

shows that HBM
d+1(Conf

2(Rd)) is generated by any chain in R2d whose boundary is supported
on the diagonal and ∂(c) = [∆]. Therefore, such a class [c] is the unique dual to the class of
orbiting points.
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For a general d-manifold M , consider again the long exact sequence of the inclusions
Conf2(M) ⊂ M2 ⊃ ∆. Our assumption that ∆∗ is zero on top homology precisely guaran-
tees that there exists a chain c ∈ CBM

d+1 (M
2) whose boundary is supported on the diagonal

and ∂(c) = [∆], by exactness:

. . . HBM
d+1(Conf

2(M)) HBM
d (∆) HBM

d (M2) . . .
∆∗

[c] [∆] [∆] = 0

To see that [c] is dual to the class of orbiting points in M , first consider a small ball
Rd ∼= U ⊂ M . Passing to configurations Conf2(Rd) → Conf2(M), the class of closely
orbiting points in M is the image of a similar class for U . Since ∆M ∩ U2 = ∆U , it follows
that c restricts to the Poincaré dual class of the orbiting pair in U . A push-pull formula for
the restriction from Conf2(M) to Conf2(U) shows that c indeed gives a dual to the orbiting
pair in M as well.

Geometrically, one can think of a chain in M2 whose boundary is the diagonal as pre-
scribing a coherent trajectory of two distinct points from being coincident to leaving M
through the boundary. Such a trajectory pairs with the class in which the two points orbit
each other precisely once.

In our E1 page, a chain representing a dual for the orbiting pair is represented by the
fundamental class

[M ] ∈ HBM
d (M) ∼= E1

1,d[2].

The differential on E1 is precisely the map induced by the diagonal inclusion M
∆→֒ M2,

thus [M ] above has the desired boundary.

To summarize, while the primary stability involves multiplication by [M ] ∈ HBM
d (M) ∼=

E1
0,d[1] – a dual to the class of any point in M , there is a secondary stabilization map given

by multiplication with [M ] ∈ E1
1,d[2] – this one dual to introducing a pair of closely orbiting

points. To understand the exact relation with Miller-Wilson’s stabilization operators, con-
sider multiplication maps by two Poincaré dual classes. These operations, say T on Hi and
TBM on HBM

dim−i, have the property that on the intersection pairing Hi ⊗HBM
dim−i one gets

〈Tα, TBMβ〉 = 〈α, β〉.
Therefore the dual to each map is a right-inverse (a retraction) of the other, e.g. T ∗◦TBM =
Id. In particular, both maps T and TBM are injective, and if either one is surjective so will
be the other. With this in mind, the argument above shows that the action of the GTCA
A2

d = IndFB(2) H
BM
d (M) is related with Miller-Wilson’s secondary stability map in this way,

and this relation makes Miller-Wilson’s stability results equivalent to ours whenever both
maps are defined.

Now, the above description assumed that we had a manifold with trivial group action;
consider next a G-space X under Hypothesis 4.4.1. Let Z be a (G×S2)-stable complement

to the image
(
HBM

d+1(X
2) → HBM

d+1(Conf
2(X))

)
. As is evident from the long exact sequence

of the pair ∆ ⊂ X2 mentioned in the previous few paragraphs, Z is equivariantly isomorphic
to HBM

d (X). The discussion above also shows that when X is a manifold, Z specializes to
a Poincaré dual space to the classes of closely orbiting pairs.

The open inclusion Conf2G(X,T ) →֒ Conf2(X) = Conf2
1
(X, ∅) induces a restriction map

HBM
d+1(Conf

2
1
(X, ∅)) → HBM

d+1(Conf
2
G(X,T )) that is clearly compatible with the collision fil-

trations and the description of the associated spectral sequences. In particular, the induced
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restriction map on E1
1,d[2] becomes

HBM
d (X) = Ind1

2
⋉S2

1×S2
HBM

d (X) → IndG
2
⋉S2

G×S2
HBM

d (X).

This identifies the restriction of Z ≤ HBM
d+1(Conf

2(X)) to Conf2G(X,T ) with the subspace

HBM
d (X) ≤ E1

d,1[2] from which the term is induced.

Theorem 4.4.2 (Stabilization by orbiting pair analogue). Let X be a G-space of
homological dimension d ≥ 2 satisfying the additional Hypothesis 4.4.1, and let Z be the
restriction to HBM

d+1(Conf
2
G(X,T )) of a (G×S2)-stable complement to the image of the map(

HBM
d+1(X

2) → HBM
d+1(Conf

2(X))
)
. The cross product

Z ⊗HBM
j (ConfmG (X,T )) → HBM

(d+1)+j(Conf
m+2
G (X,T ))

makes the homology into modules

(22) HBM
(d+1)•−i(Conf

2•
G (X,T )) and HBM

(d+1)•−j(Conf
2•+j
G (X,T ))

over the GTCA IndFBGG×S2
Z for the various values of j ∈ Z (possibly < 0).

If X is i-acyclic then every homology module under iterated multiplication by Z is free
and finitely generated by classes coming from configurations with • ≤ 2j modulo images of
the cross product actions

HBM
d−i (X)⊗HBM

∗ (Conf•G(X,T )) → HBM
∗+d−i(Conf

•+1
G (X,T ))

for all 0 ≤ i ≤ d−1
2 .

Proof. By the iterative process described in Theorem 4.3.4 one deduces that after factoring
out the cross product action by HBM

d−k(X) for 0 ≤ k ≤ d−1
2 , the multiplication by HBM

d (X) ≤
E1

1,d[2] makes the E1 page into a collection of finitely generated and free modules over the

GTCA IndFBGG×S2
HBM

d (X). Furthermore, the bounds on generators given in Theorem 4.3.4
specialize for the modules in (22) to 2j, as one sees by looking at the generation locus in
Figure 5 and observing that the minimal difference of taxi-cab norms between (12 ,

d
2 ) and

any point below it in Gen(E) is 1
2 .

Now, our choice of Z ≤ HBM
d+1(Conf

2(X)) is naturally identified with the generating

subspace HBM
d (X) ≤ E1

d,1[2] after passing to the associated graded of the collision filtration.
In particular, the cross product with Z coincides with the multiplication of the previous
paragraph, thus making E1 into finitely generated modules over IndFBGG×S2

Z.
When X is an i-acyclic space, Remark 3.7.5 states that all differentials of the collision

spectral sequence vanish. Thus the finite generation and bounds on the E1-page imply the
same bounds on homology, thus completing the proof for such spaces. �

For a space X not satisfying the i-acyclicity assumption the unknown differentials pose a
challenge. However, when dimHBM

d (X) = 1, the Noetherianity of TCAs could allow us to
get around this difficulty. Unfortunately, this theory is only well-developed for the case of a
trivial group G and for TCAs generated by a single element over a field of characteristic 0;
hence we consider only this case below. Suppose therefore that dimHBM

d (X) = 1. The TCA
A2

d acting on homology is the free graded-commutative TCA generated by a one-dimensional
S2-representation. Such TCAs are exactly one of following known in the literature as
Sym(Sym2(C)), Sym(Λ2(C)), Λ(Sym2(C)), and Λ(Λ2(C)). In [NSS16, NSS19], Nagpal, Sam,
and Snowden prove that over a field of characteristic 0, all four TCAs possess the Noetherian
property. Since after factoring out the actions of the TCAs A1

d−i for 0 ≤ i ≤ d−1
2 every

module in the E1 page is finitely generated, the same property extends to their subquotient
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modules. To get the same result applied to homology one would have to understand the
effect that factoring out stabilization actions has at the level of homology, and whether finite
generation persists through such operations.

Conjecture 4.4.3. Theorem 4.4.2 holds without the assumption that X is i-acyclic, though
now with non-free modules over IndFBG×S2

Z and with worse bounds on where generators
appear.

4.4.1. Relation to previous work. There are several differences between our Theorem 4.4.2
and Miller–Wilson secondary stability [MW16]. Perhaps most importantly, Miller-Wilson
give a concrete stable range beyond which stability is known to hold (controlling where
generators and relations may appear) without assuming any differentials vanish. In our
analysis beyond primary stability we only consider i-acyclic spaces, for which one encoun-
ters no differentials. However, the explicit bounds on generators and freeness of the E1

page in Theorem 4.3.4 provides the necessary input to bound stable ranges using common
representation stability techniques.

Putting stable range calculations aside, we obtain finite generation without handling the
non-trivial combinatorics of the complex of injective words, which Miller–Wilson had to
understand to get their finite generation results. Secondly, our theorem is only sensitive to
the proper homotopy type of X , via HBM

∗ (X) and its diagonal maps, while the previous
work asked that X specifically be a manifold with boundary.

Moreover, Miller-Wilson always stabilize by a 1-cycle of orbiting points, regardless of
the dimension of the manifold X . This had the consequence that their stabilization map
was trivially 0 when dim(X) ≥ 3. From this perspective, our stabilization map, which
uses a (d− 1)-cycle of orbiting points, is more natural and meaningful for manifolds of any
dimension.

But with these remarks, also note that Miller–Wilson proved their stability result without
the assumption that ∆∗ = 0. We believe that a more refined version of Theorem 4.4.2 is
possible, replacing Z with ker∆∗, but the homological algebra involved would pose too great
of a distraction at this point of this already lengthy document. It is our hope to address
the general case in a sequel.

Another expected extension of this result for non-i-acyclic spaces is when G is not the
trivial group. With the current available technology of representation stability, such a result
is out of reach. But the product factorization in Theorem 3.7.2 suggests that one could hope
to bootstrap the G = 1 case up to a general G without much trouble. Such an extension is
also a potential subject of a sequel.

4.5. Additional forms of stability. The geometric criteria for finite generation in §4.1
reveal two new types stabilization actions that are associated with finite generation.

4.5.1. Bottom-left corner stabilization. In Corollary 4.3.7, we described a succession of sta-
bilization actions that arise from lines touching the top of the generation locus in Figure 5.
An analogous process proceeds when considering lines touching the bottom of Gen(E).

Theorem 4.5.1 (Bottom-corner stabilization process). Assume that X is an almost

free G-space following Conventions 1.5 with dimHBM
i (X) < ∞ for each i, and let T ⊂ X

be a finite G-invariant subset. Then the cross product

HBM
0 (X)⊗HBM

i (ConfnG(X,T )) → HBM
i (Confn+1

G (X,T ))

endows HBM
i (Conf•G(X,T )) with the structure of a finitely generated module over the GTCA

IndHBM
0 (X).
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If X is a d-dimensional manifold, under Poincaré duality this translates to a finitely-
generated module structure in every fixed codimension Hd•−i(Conf•G(X,T )) under cross

product by the volume forms in Hd(X).
Proceeding to secondary operations, in the case of i-acyclic spaces the consecutive cross

products by HBM
k (X) with k = 1, 2, . . . endows the homology HBM

k•−i(Conf
•
G(X,T )) with a

filtered-finite generation structure relative to the collision filtration after factoring out the
multiplication by HBM

j (X) for j < k.

Proof. For the multiplication by HBM
0 (X) the same proof as for Theorem 4.3.4 applies by

replacing the slope (−1) line touching Gen(E) from above with one touching from below.
Then for secondary and higher stabilization, fix k ≥ 1. Factoring out the multiplication

by HBM
j (X) for j < k removes the corresponding points (0, j) from Gen(E), thus forming

an isolated corner at (0, k). The criterion of slope 6= −1 in Lemma 4.1.7 states that multi-

plication by HBM
k (X) endows the remaining diagonals in the E1 page with the structure of

a bounded-finitely generated module. From that point, the same Noetherianity argument
as in 4.2.1 shows that the homology is also bounded-finitely generated after factoring out
the previous multiplication actions. �

4.5.2. Truncated-finite generation. The complementary notion to bounded finite generation
is finite generation after truncation. Whenever the stabilization process of Theorem 4.3.4
failed to produce finite generation (when there were multiple points on of Gen(E) of maximal
taxi-cab norm) we have chosen to stabilize with the left-most point, thus giving bounded-
finite generation by Lemma 4.1.7. We could have alternatively chosen to continue the process
by picking the right-most point, giving instead truncated-finite generation. This approach
gives a completely analogous version of Theorem 4.3.4, and in fact one could mix the two
versions freely.

Proposition 4.5.2 (Stabilization with locally finite generation). Consider the setup
of Theorem 4.3.4 and the iterative stabilization process described therein. If at any iterate
one encounters multiple points of maximal taxi-cab norm, they may pick the right-most point
instead of the instruction in Step (1.) to pick the one furthest to the left. Under such a
choice every diagonal of E∗,∗ forms a free module that is finitely generated after truncating
the (shifted) collision filtration.

To understand the module of (free) generators, proceed to Step (2.) of Theorem 4.3.4
without any further adjustments.

Proof. An analogous argument as in the proof of Theorem 4.3.4 works, but here one will
consider a line of slope −1 − ǫ separating the right-most point of maximal taxi-cab norm
from the rest. Thus by Lemma 4.1.7 truncated-finite generation follows. �

Even more, after the primary stabilization action has been factored out, one could have
proceeded to stabilize with the “orbiting pair” action mentioned in Theorem 4.4.2 to get
the same theorem but with truncated-finite generation taking the place of factoring out the
cross products by HBM

d−k(X). This is a direct consequence of Lemma 4.1.7, after observing

that without the top corner in Figure 5 a new corner is formed at
(
1
2 ,

d
2

)
.

There is however a substantial reason to prefer the version of Theorem 4.3.4 as presented
above: GTCAs generated in low degrees are much better understood compared to general
ones. For example, any GTCA that is finitely generated in degree 1 is Noetherian, thus
giving hope that the finite-generation results of Corollary 4.3.7 would apply to general
spaces, while for TCAs generated in degree ≥ 3 not much is known. The generation locus
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in Example 4.1.4 has the property that points further to the left come from configurations
of smaller numbers of points, and thus give better control over differentials by the above
comment.
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