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DELETION AND CONTRACTION IN CONFIGURATION
SPACES OF GRAPHS

SANJANA AGARWAL, MAYA BANKS, NIR GADISH!, DANE MIYATA

ABsTrRACT. The aim of this article is to provide space level maps between
configuration spaces of graphs that are predicted by algebraic manipulations
of cellular chains. More explicitly, we consider edge contraction and half-edge
deletion, and identify the homotopy cofibers in terms of configuration spaces of
simpler graphs. The construction’s main benefit lies in making the operations
functorial - in particular, graph minors give rise to compatible maps at the
level of fundamental groups as well as generalized (co)homology theories.

As applications we provide a long exact sequence for half-edge deletion in
any generalized cohomology theory, compatible with cohomology operations
such as the Steenrod and Adams operations, allowing for inductive calcula-
tions in this general context. We also show that the generalized homology of
unordered configuration spaces is finitely generated as a representation of the
opposite graph minor category.

1. INTRODUCTION

For every graph I (a finite 1-dimensional CW complex) denote the configuration
space of n distinct points on I' by

Confpn(T) :={(x1,...,2n) €T | Vi < ja; #x;}

The symmetric group S, acts on this space by permuting the labels, and the quo-
tient by this action is the unordered configuration space UCon f,(T").

This paper provides space level maps between such configuration spaces corre-
sponding to deletion and contraction of edges in the graph. Such constructions
have been predicted by algebraic manipulations of cellular chains and applied in
finite generation proofs. The immediate implication of our constructions is that
various deletion and contraction operations on graphs induce well-defined maps on
the fundamental groups of the configuration spaces as well as on any generalized
(co)homology theory with its cohomology operations such as Steenrod and Adams
operations.

Specifically, we discuss the following two constructions:

e It has been observed ([ADCI17, Lemma C.7]) that edge contraction on the
graph induces well defined maps on a chain model of the graph’s configura-
tion spaces. This chain contraction was implicitly known to lift to a unique
homotopy class of space level maps, as explained in [MPR20, Remark 1.10].
We construct a (zigzag of) space level maps exhibiting this homotopy class.
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In particular, this allows us to describe the homotopy cofiber of the
contraction map as a certain configuration space with constraints.

e We identify the homotopy cofiber of the inclusion of a subgraph with some
half-edges deleted with (suspensions of) the configuration space of a simpler
graph. This gives an inductive tool for computing topological invariants via
the long exact sequence of a pair, with all three terms being configuration
spaces of graphs.

Remark 1.0.1 (Functoriality). All of our constructions will be obviously functorial
in the data of a graph I' along with some additional input such as a choice of vertex,
a set of half-edges, or a topological sub-tree. We will not belabor the point of this
functoriality throughout the constructions.

Let us discuss a number of applications of our constructions.

1.1. Application 1: LES in K-theory and generalized cohomology. Using
the characterization of homotopy cofiber for half-edge deletion in §4 one gets the
following inductive machinery for computing generalized homology and cohomology
of configuration spaces. This sequence is already new for ordinary homology when
deleting only one half-edge.

Theorem 1.1.1. Let T be a graph and fix a vertex v € V(T') along with a set of half
edges H = {h1,...,h,} incident on v. For every generalized cohomology theory E
one has a long exact sequence, compatible with cohomology operations and natural
with respect to graph embeddings and automorphisms

o= B{UCon oD\ UH)) “ S iU Con (I {o}) 21T

— B (UConf, (I)) < B4 (UConf,(I'\ UH)) > ...

This LES is a reflection of the Puppe cofiber sequence of the deletion given in §5.
In particular a similar LES exists for E-homology, as well as the S, -equivariant
versions for ordered configuration space.

Remark 1.1.2. The above LES in the special case in which F is ordinary homology
and with H the set of all half edges incident on v has been a central tool in the work
of An-Drummond-Cole-Knudsen | |, where it was discovered and used as
a chain-level algebraic manipulation.

One of the advantages of our version above is that one can elect to remove one
half-edge at a time, thereby always considering a single configuration space in every
term.

Another interesting special case is the LES in K-theory, respecting Adams op-
erations, with all three terms being configuration spaces of graphs — a result that
could be of interest in quantum physics in light of | |.

1.2. Application 2: contraction maps on graph braid groups. As mentioned
in | , Remark 1.10], the edge contraction maps between configuration spaces
are associated with well-defined homomorphisms between the respective fundamen-
tal groups — the so called graph braid groups. Our explicit space level construction
of these maps provides a way to study the induced maps on 71 directly.

Problem 1.2.1. Describe the edge contraction homomorphism between graph braid
groups, e.g. with respect to the Farley-Sabalka presentation of tree braid groups

[F'S05].
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For our next couple of items we observe that the space level lift of edge contrac-
tion turns the assignments

I' — UConf,(T') and Conf,(T)

into functors from the Miyata-Ramos-Proudfoot opposite graph-minor category
[ | to the homotopy category of spaces. In particular, the application of any
homotopy invariant functor, such as m; and generalized homology theories gives
representations of this category.

We consider fundamental groups first. The action of graph minors on I'
m1(UConf,(T')) allows us to make the following conjecture: Let ;w(—) by the
terms in the lower central series of w1 (UCon f,(—)), considered as representations
of the opposite graph-minor category.

Conjecture 1.2.2 (Finite generation of LCS quotients). Every successive
quotient of the LCS, v;w(=)/vip1m(—), forms a finitely generated representation of
the opposite graph-minor category.

Remark 1.2.3. The above conjecture is known to hold in the case ¢+ = 1, equiv-
alently for Hy(UConf,(—)) (see | ). Then a possible path to proving the
conjecture would be to show that the Lie ring ®5°,v;7/v;417 is generated by its
degree 1 elements.

1.3. Application 3: finite generation for generalized homology theories.
As above, consider UConf,(—) as a functor from the Miyata-Ramos-Proudfoot
opposite graph-minor category | | to the homotopy category of spaces. Then
the application of a generalized homology theory gives a linear representation of
this category. For these representations we prove,

Theorem 1.3.1. Let E be any connective multiplicative generalized homology the-
ory such that its coefficient ring E,. is Noetherian. Then for every i € Z, the
functor

I'— E,(UConf,(I))

is a finitely generated representation of the opposite graph-minor category.
Explicitly, this implies that for every fired n and i there exist finitely many

graphs T'y,..., T and E-homology classes o; € E;(UConf,(I';)) whose images

under deletion and contraction of graphs span E;(UConf,(T')) for every graph T.

Remark 1.3.2 (Generalized cohomology theories). The theory of graph-
anyons in [ | expresses the interest of quantum physicists in vector bundles
over UConf,(G), and thus in the K-group K°(UConf,(G)). Following this, we
ask whether the above theorem can be extended in some way to multiplicative coho-
mology theories with Noetherian coefficient ring E*. That is, whether the functors

I'— EY(UConf,(I)

are in some sense finitely generated representations of the graph-minor category.

An approach to finite generation of cohomology is to consider its linear duals.
Explicitly, one could try and apply the Noetherian property of the opposite graph-
minor category to prove finite generation for the functors Hompg, (E*(UCon f.(—)), Eo)
or related constructions. This idea appears e.g. in | |, where Kupers and Miller
prove that duals of homotopy groups of configuration spaces are finitely generated
FI-modules. Thus we propose,
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Conjecture 1.3.3. For every fized n, the dual of the Grothendieck group of vector
bundles over configuration spaces of graphs

I' = Homgz(K°(UConf,(T)),Z)

is generated by finitely many functions on vector bundles under deletion and con-
traction.

1.4. Acknowledgements. We are deeply grateful to AIM for facilitating the work-
shop on Configuration Spaces of Graphs, Feb 2020, at which this project emerged.
We also thank John Wiltshire-Gordon for suggesting this problem, and Safia Chet-
tih, John Wiltshire-Gordon, and Ben Knudsen for helping us develop the ideas
presented here. Special thanks to Gabriel Drummond-Cole for being a key part of
this project throughout the workshop and for providing various important sugges-
tions and advice.

2. KEY LEMMA

In this section we present and prove a lemma that will be central to the geometric
constructions of this paper. Let U C I' be an open set and denote Conf,, x(I',U)
for the subspace of configurations of n points in I' (either ordered or unordered) no
more than k of which lie in U.

Lemma 2.0.1. Fiz a vertex v € I and let U be the ball of radius 1/2 around v.
Then the inclusion
Confn1(L,U) < Conf,(T)

is a homotopy equivalence.

Proof. For r > 0 let f, : [0,1] — [0, 1] be the monotonic homeomorphism = — z".
This defines a homeomorphism h,. of the graph I treated as a CW-complex, so that
every edge comes equipped with an identification with [0, 1] as follows: map every
edge to itself via the identity map, except for edges incident on v — orient these
edges so that v is identified with 0 € [0, 1] and map them to themselves via f;.

As the parameter r varies, the functions h, assemble to a continuous isotopy
h:(0,1] x ' = T, and therefore we have an induced isotopy

H: (0,1] x Confp(T') = Conf,(T)

on the configuration spaces (either ordered or unordered), where at map at time r
is denoted by H...

Now let dy : Conf,,(I') — [0, 00] be distance of the 2nd closest point to v. To be
clear, if there are two equidistant points closest to v then ds will take on this minimal
distance, and if there is no more than one point in the connected component of v
then do will take the value co. Clearly this is a continuous function, similarly to
how min(z, y) is continuous on R?.

With these at hand, consider the continuous map

Hy,p1: Confp(I') = Confn(T'), Z— Hgyzai(T).

First, observe that this map is well defined: do > 0, as there can not be two distinct
points at distance 0 to v. The effect of this map on configurations is to push points
away from v: if a point x; € " of the configuration is at distance 0 < s < 1 from v,
then it is mapped to the point on the same edge but at distance s > s from v.

After application of the above map, the second closest point to v will be at
distance dy(z)% @1, But this function always takes value greater than 1/2 (recall



DELETION AND CONTRACTION IN CONFIGURATION SPACES OF GRAPHS 5

that the minimum of % is e=*/¢ > 0.6). Thus there is at most one point at distance
<1/2tow.

Lastly, the isotopy H(1_4)4+¢(d,1) connects the identity on Conf, (") at H; with
the above map that pushes all but the closest point away from v. (Il

3. CONTRACTION

We wish to realize geometrically the An—Drummond-Cole-Knudsen homological
edge contraction map from | , Appendix C]. For this purpose we use the
following,

Lemma 3.0.1. If U; CT; are open sets such that I'y \U; =T2\ Uz and Uy ~ U,
are homotopy equivalent relative to OUy = OUs, then

CO?’LfnJ (Fl, Ul) ~ Confn,l(l"g, Ug)

Proof. For any continuous function f : U; — U; that fixes the boundary, one gets
a map on configuration spaces M(f) : Conf,1(T;,U;) — Conf,1(T';,U;) by the
rule that every point not in U; is mapped to itself, and the (at most one) point in
U; is mapped to U; via f. Note that this definition patches to a continuous map.
Now for {i, j} = {1,2} let fi; : U; — U; be maps such that f;; o f;; is homotopic

rel 0 to Idy,, say via the homotopy hii). Then the induced maps on configurations

M (f;;) are homotopy equivalences, where the homotopies are given by M (h,gi)). (I

Corollary 3.0.2. The “contraction of a subtree” map on homology is realized geo-
metrically as follows.

Let T CT be a tree and let U DO T be an e-neighborhood with € < 1/2. Then the
contraction is realized by the span

Confn(T'/)T) < Confn1 (T/T,U/T) = Confn1(T,U) = Conf,(T)

Now, the cone of the contraction can be described explicitly: it is the space of
configurations that have at least two points in U, where all other configurations are
collapsed to a point.

4. DELETION

Let ' = (V, E) be a graph. A half-edge h in T is formally an incident pair (v, e) €
V x E. Denote e(h) := e and v(h) := v. Geometrically, consider the half-edge h
to be the subspace of the edge e(h) identified with the interval (0,1/2) C [0,1],
parametrized so that 0 corresponds to the vertex v(h). We will abuse the notation
and freely treat h as an open set in the topological space T'.

Theorem 4.0.1. Let H = {hy,...,hi} be a subset of the half-edges incident to
v. Then the cone of the inclusion tg : Conf,(I'\ UH) — Conf,(T') is homotopy
equivalent to the reduced suspensions

\/ =Confp 1 (T\ {v});-
heH

In the ordered case the cone is equivalent to the induction of this wedge with its
Sn—1-action to S,,. That is, Sy As,_, ey 2(Confn_1(T\ {v})4.
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Proof. We start with the unordered case. Let U be the ball of radius 1/2 around
v. Lemma 2.0.1 gives a homotopy equivalence of pairs

(Confou (T, U), Confou i (T'\ UH, U \ UH)) = (Con , (), Conf, (T \ UH))

and the former is a cofibration. Thus, since cones are homotopy invariant, it is
sufficient to construct a homeomorphism

Con fn1(T,U)/Confns(T \UH,U\UH) = \/ SConfn 1(T'\ {v});.
heH

Suppose a configuration i Conf,1(I',U) has a point z on h € H. Then map it
to the suspension labelled by h, where the configuration is obtained by forgetting
2 and setting the suspension parameter equal to 2d(z,v). If no such x exists, map
the configuration to the basepoint *. Note that this function is well-defined, as
there can be at most one point on our set of half-edges. Note also that if z = v
then the suspension parameter is set to 0 which lands on the basepoint. Lastly, as
x leaves the half-edge, the cone parameter goes to 1 and its image under our map
will approach the basepoint.

Since configurations in I' \ UH are all sent to the basepoint, the map above
factors through the quotient by Conf, 1(I' \ UH,U \ UH).

The inverse map is defined by sending a point (Z,t) € XConfn,_1 (T \ {v})4 on
the wedge-summand labeled by h to the configuration that has an additional point
on h at distance ¢/2 to v. Of course, the basepoint has to map to the basepoint.
These maps clearly patch to a continuous map, and are inverses to the above maps
that would forget the newly added point.

To adapt the above argument for the ordered case, index the wedge sum by [n] x
H, accounting for the label of the point z; € h. The rest of the construction works in
just the same way. Clearly this construction is compatible with the S,-action, and
the stabilizer of n acts by the ordinary permutation action on Conf,_1(T'\{v}). O

Lastly, we wish to describe the "boundary map" Cone(vy) — SConf,(T\UH)
obtained by crushing the base of the cone = Conf,(I") to a point.

Proposition 4.0.2. Under the identification
Cone(iy) ~ \/ SConfn1(T\ {v})s

heH

the boundary map to XConf,(I' \ UH), on the wedge summand labeled by h has
the form

Yadd, — Saddy,
where the map add, adds the vertex v to a configuration, while addy adds a new
closest point to v on the edge e(h).

Proof. An explicit homotopy equivalence from the collapse
Confp1(I,U)/Confn1(T'\UH,U \ UH)

to the mapping cone on the inclusion can be constructed by the following recipe. For

a configuration with a point z; on a half-edge h € H, say at distance d = d(z;,v),

e when d < 1/6, i.e. x; is on the third of h nearest to v, move z; to v while
fixing all other points and set the cone parameter to 6d;
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e when 1/2 —d < 1/6, i.e. x; is on the third of h farthest away from v, scale
the edge e(h) down away from v, moving all points on it until z; appears
at distance 1/2 and set the cone parameter to 6(1/2 — d);

e lastly, when z; is in the middle third of h, i.e. 1/6 < d < 2/6, scale this
middle third up to encompass the whole of h. This amounts to moving x;
to be at distance 3(d — 1/4) + 1/4 to v. All other points remain fixed.

These three maps patch together to give the desired homotopy equivalence (e.g. a
homotopy H; can be constructed by replacing the terms 1/6 in the above construc-
tion with ¢/6 and adjusting the formulas accordingly).

Now, the boundary map is constructed by collapsing the base of the mapping
cone to a point. This is the set of points in Conf,, 1(I,U), which in the above
construction is the range of configurations with a point in the middle third of
some h € H. But under the homeomorphism with \/, . SConfn_1(T\ {v})s,
such configurations correspond to the middle thirds in every suspension. After
collapsing the base of the cone to a point, the boundary map factors through maps
of the form ¥X — YportomX V XiopX where one collapses the middle third to a
point. Now observe that on the bottom third of the suspensions, the boundary
map is precisely Yadd,, while on the top third we find maps that add a new closest
point to v on the edge e(h) but with the suspension parameter going backwards
(this is the —d term appearing in the cone parameter). Thus this map is homotopic
to —Eaddh.

The same arguments apply in the case of ordered configurations. (I

5. APPLICATIONS: GENERALIZED HOMOLOGY THEORIES

By the previous section, the Puppe cofiber sequence for the inclusion of half-edge
deletion takes the form

UConfn(I \UH) < UConfy(T) = \/ SUConfn 1(I'\ {v}); —
heH
— XUConf,(D\UH), < XUConf,(T); — ...

where the connecting map between the rows is given on the wedge-summand with
label h € H by Yadd, — Saddy,. Also, as mentioned in the previous section, a
similar sequence exists in the S,,-equivariant context for the ordered configurations
spaces, but with an appropriate induction on configurations of n — 1 points.

Applying any generalized homology or cohomology theory to this Puppe sequence
now yields the long exact sequence claimed in Theorem 1.1.1.

We next turn to the proof of Theorem 1.3.1, regarding the generalized homology
of unordered configuration spaces as a representation of the Miyata-Proudfoot-
Ramos opposite graph-minor category defined in | |.

Proof of Theorem 1.3.1. The basic inputs to the proof are the Noetherianity of the
coefficient ring E., the fact that the singular chains C;(UCon f,,(—)) are equivalent
to a finitely generated representation of the opposite graph minor category, and the
Atiyah-Hirzebruch spectral sequence — the AHSS for short.

Atiyah-Hirzebruch provide a spectral sequence for every space X with first page

E) ,=Cp(X;Ey) :=Cp(X) ® B, = Epyq(X).

More explicitly, E'-page of the spectral sequence looks as follows-
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2 | Co(X)® FEs C1(X)® Es Cy(X) ® Es C3(X) ® Es
<—17*C()(X)®E1 (701()() ®E1 (702()() ®E1 (*Ci(X) ®E1

B+ Co(X)@Ey+——Ci1(X) @ Eg «—— Co(X) ® Eg +—— C3(X) ® Ey
0 1 2 3

[ | shows that the singular chains C,(UConf,(I")) are quasi-isomorphic
to a smaller chain complex, the reduced Swiatkowski complex §*7n(I‘), for every
graph I'.  We may thus replace replace every occurrence of C,(X) in the AHSS
above with these Swigtkowski complexes.

[ | further shows that §*n(—) is a representation of the opposite graph-
minor category. But our geometric construction of edge contraction in Corollary
3.0.2 shows that the quasi-isomorphism with singular chains is compatible with
a homotopy action of the opposite graph-minor category. Furthermore | ,
Proof of 1.15] shows that S;,(—) is finitely generated as a representation of the
opposite graph-minor category for every ¢ > 0.

Note that all terms S;,,(—) ® E; are Ep-modules, and recall the fact that E,
being Noetherian implies Ey is a Noetherian ring and every Ej is a finitely generated

Eo-module. Thus all terms in the E'-page above, with C, replaced by S, ,,, form
finitely generated representations of the opposite graph minor category over the
ring Fjy.

Now, all terms in the later pages of the spectral sequence are subquotients of
those appearing in the first page. But | , Theorem 1.2] shows that finitely
generated representations of the opposite graph-minor category over a Noetherian
ring are again Noetherian, and thus finite generation passes to subquotients. The
same can be said of the terms at the E°°-page, which gives us the graded factors
of a filtration on the functor E;(UConf,(—)). Thus the latter functor is filtered
with quotients finitely generated as representations of the opposite graph minor
category. Hence, it is itself a finitely generated representation. (I
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