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ABSTRACT KEYWORDS
We obtain new calculations of the top weight rational cohomology of the moduli spaces M3 p,, equivalently Tropical curves; moduli

the rational homology of the tropical moduli spaces Aj p, as a representation of Sy. These calculations are spaces of curves;
achieved fully for all n < 11, and partially—for specific irreducible representations of S,—for n < 22. We also compactified configuration
present conjectures, verified up to n = 22, for the multiplicities of the irreducible representations std, and spaces on graphs; outer
stdn ® sgn,,. We achieve our calculations via a comparison with the homology of compactified configuration automorphisms of free
spaces of graphs. These homology groups are equipped with commuting actions of a symmetric group and groups

the outer automorphism group of a free group. In this paper, we construct an efficient free resolution for these MATHEMATICS SUBJECT

homology representations, from which we extract calculations on irreducible representations one at a time, CLASSIFICATION (2010):

simplifying the calculation of these homology representations. Primary: 05C10; Secondary:
14H10; 14Q05; 14T20; 55R80;
55P65

1. Introduction
1.1. Main results

The moduli spaces A, of tropical curves are combinatorial moduli spaces which are canonically identified with the boundary
complex of the Deligne-Mumford-Knudsen compactification Mg,,, of the moduli spaces of algeBraic curves. See [1] and [6].
Consequently, by work of Deligne [10, 11], there is a canonical S,;-equivariant isomorphism between Hy (A ;3 Q) and the top-weight
rational cohomology of Mg ;:

Hi 1 (Mg @) = Grgy_g42,HE " K (Mg Q). (1)

In this work we compute, for genus ¢ = 2, the homology groups H,(A3,; Q) as representations of S, in a range beyond what was
previously accessible, using an approach centered on a compactified graph configuration space.

Theorem 1.1. The rational homology Iq*(Az,n; Q) is supported in degrees x = n + 1 andNn + 2, with the character ofﬁnH(Az,n; Q)
as an Sy-representation for n < 11 given in Table 1. Partial irreducible decompositions of Hy41(A2,,; Q) for 12 < n < 17 are given in
Table 2.

Given that the equivariant Euler characteristic of A, is known (see [5]), Table 1 is sufficient to determine the entire homology
representation. See Section 1.2 for a discussion of previous related work relating graph complexes and compactified configuration
spaces.

The first 8 rows of Table 1 were recently computed by the fourth author, see [27]. Our current approach gives data well beyond
what was feasible with those techniques. For example, even the dimension of Hj3(A211; Q) was not known: it is 850732.
Table 2 in Section 3.2 shows the partial calculations for multiplicities of certain small S, -irreducibles in the range 12 < n < 17. For
18 < n < 22, we obtained multiplicities for x(u), x(17)> X(n—1,1) and X(2,10-2))> and for 23 < n < 25, we obtained multiplicities for
X(n)> X(1ny only. The data is extensive enough to suggest patterns in the multiplicities of the standard representation x(,—1,1) and its
sign twist x(,,1n-2). See Conjecture 3.5 and surrounding discussion.

We now outline the key steps to our calculations. Together, they establish Theorem 1.1, the main theorem of this paper.

1.1.1. Reduction to compactified configurations on a theta graph
We immediately leave the tropical world and work instead with Conf,(G)¥, the one-point compactification of the configuration
space of n distinct marked points on a graph G. In genus ¢ = 2, the tropical moduli space A, , is directly related to a single such
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Table 1. Character ofﬁnH(Azln;Q) forn < 11.

n Character of Hy 4 1(Ayn; Q)
0 0
1 0
2 0
3 0
4 X4
5 X3.2)
6 X(4,12) + X321
7 X(512) T X43) T X@21) T X@a13) T X320y T X3212) T X231 + X(17)
8 Xx® T X62) T A6 T2XG21) T K53 T 2XG43) T 2X422) T 2X@212) T Xaph T X2 FX@202) T 2Xe20 T 26213 XG5
9 2X@72) + X63) +3x621) + X@613) T 2x(5.4) +3%531) + 5X(5,22) + 4)((5’2/12) + 3)((5,14) + 3x(4z,1) +4x@32 + 5X<4,3,12) + 5X(4,22,1) + 4X(4,2,13) +
X(a15) T 432,20y T4X32,13) T3X3,23) T 2X322,12) T3X3214) T X241) T X2313) T X22,15) T X (19
10

2X(812) T 2X(73) T 4X(721) + 3X(713) T 2X(64) T 9X(631) T 4X(622) T 8X(62,12) T 2X(6,14) T 7X(541) +10X(532) + 15X(5312) + 12X(52,1) +
9X(512113) + 2X(5,15) + 6)((42'2) + 6X(42,12) +6X(4I32) + 16X(4,3,2,1) + 11)((4'3’13) + 7X(4123) + 13X(4122112) + 8)((4,2'14) + 3X(4I16) +6X(33I1) +4X(32122) +
10)((32'2’]2) + 3X(32114) + 6X(3123I]) + 7)((3’22’13) + 3X(3,2,15) + ZX(3,17) + X(24,12) + 2X(23,14)

n 3%9,12) T3X(83) +5x82,1) +3X(813) T2X(7.4) +16X(7,3,1) T5X(7,22) 116X (7,2,12) T 2X(7,14) +4X (65 T 15X (6:41) + 23X (63,2 T28X(6312) T 24X (622,1) T
21X(6,2,13) + 5X(6,'|5) + 10)((52’1) + 19X(5,4,2) + 28)((5'4’12) + 21 X(5132) + 50X(5,3,2,1) + 28)((5'3'13) + 13)((5,23) + 38X(5:22,12) + 17)((5’2'14) + 7X(5'16) +
8X42,3) T29X42,2,1) T 20X (4,413) T 25X (a,32,1) +28X(4,322) T 48X (4,32,12) T 22X (a,31%) 22X (4,231 T 25X (4.22,13) T 1V X(4,215) T 2X4,17) T 13X 33 2) +
8X(33l]2) +22X(32’22'1) +20X(3212’13) +1 1X(32115) +4X(3124) + 15X(3,23,12) +8X(3122I14) +6X(312116) + 3X(25,1) +4X(24,13) + 2X(23,15) + 2X(22117) + X('I”)

compactified configuration space. Specifically, Theorem 3.2 establishes a homotopy equivalence inducing the following isomorphism
of S,;-representations:

Hi(A2,mQ) = (sgny ® Hi_2(Conf,(©)+;Q))0(e)» )

where © is the graph with two vertices and three parallel edges between them, sgn, is the sign representation of S3 in the
automorphism group Iso(®) = S, x S3, and the subscript Iso(®) denotes the coinvariant quotient.

1.1.2. Reduction to compactified configurations on a rose graph

Note that the graph © is homotopy equivalent to a wedge of two circles. More generally, any finite graph G with first Betti number g is
homotopy equivalent to a rose graph R, = V,¢S. In fact, a homotopy equivalence of compact Hausdorff spaces induces a homotopy
equivalence of their compactified configuration spaces; the analogous statement is not true for uncompactified configuration spaces.
See Proposition 2.1. So it suffices to work with Conf,(R;)™, or more generally Conf, (Rg)Jr for any g. Proposition 2.1 endows
the homology H..(Conf, (Rg)+; Q) with a canonical action of the group Out(F,) of outer automorphisms of the free group on g

letters. Moreover, a consequence of Proposition 2.2 will be that a homotopy equivalence G —> R, induces a group homomorphism
Iso(G) — Out(Fy) so that the induced isomorphism

H,(Conf,(G)*;Q) = H.(Conf,(Ry)";Q)

is Iso(G)-equivariant. This, along with (2), reduces the computation of ﬁ*(Az,n; Q) to computing the actions of S, and Out(F,) on
the homology of Conf,(Ry)*.

1.1.3. Cellular decomposition of compactified configurations on a rose graph

The remaining goal in Section 2 is then to understand H, (Conf, (Rg)+) as a representation of both S, and Out(Fy). The fundamental
tool is an S,-equivariant cell structure on the configuration space Conf,(R)™, in which cells are permuted freely. This structure
implies that the homology of Conf,,(R,)* is computed by a 2-step complex of free Z[S,]-modules, where the boundary map and the
action of Out(Fy) are represented by explicit matrices with entries in Z[S,]. See Lemmas 2.4, 2.6, and 2.8.

1.1.4. Improved computational efficiency through representation theory

The presentation of homology by free S,-modules allows for particularly efficient computations. Indeed, specializing to rational
coeflicients, Schur’s lemma lets us work one irreducible at a time, performing any homology calculation at the level of multiplicity
spaces of individual irreducible representations of S,,. See Lemma 2.11. This reduces the size of the matrices involved by a factor of at

least v/n!.

Finally, after the above reductions, we implemented the resulting calculation in SageMath, from which we obtained the data in
Tables 1 and 2 that prove Theorem 1.1. See Section 3.2 for more details on the SageMath computations.

1.2. Related work

Our initial motivation in this paper comes from tropical geometry, particularly the connection to cohomology of moduli spaces of
curves. Our calculations, however, are also connected to several other topics in geometry and topology, adding potential interest to
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our work. We touch on several of them here: spaces of long embeddings and string links; modular operads; and representations of
mapping class groups. We remark that our techniques do not apply to the uncompactified configuration spaces of graphs.

1.2.1. Sp-equivariant homology of Ay,
Here is a brief survey of previous calculations. The case g = 2 is the first case in which the topology of A, , is not fully understood.

o When g = 0and n > 4, [21] prove that A, has homotopy type of a wedge of spheres of dimension # — 3 and give a formula for
the character of the S,,-representation occurring in the top degree integral homology Hy,—3(Ag ;3 Z).

e Wheng = landn > 0, [12] computes the S,,-equivariant Serre characteristic of M ,,, from which the character of H,_; (A1, Q)
can also be derived. Moreover, [7] prove that A, has homotopy type of a wedge of spheres of dimension n — 1.

o When g = 2, [8] proves that the homology of A, , is concentrated in its top two degrees, and computes numerically the Betti
numbers for n < 8. [27] computes these homology groups S,-equivariantly.

+ Forallg,n > 0 with2g—2+n > 0, [5] proves a general formula for the S,,-equivariant Euler characteristic for A, as conjectured
by D. Zagier.

1.2.2. Spaces of long embeddings and string links

The rational homotopy type of spaces of “long embeddings” Emb.(R™,R") is given by the homology of certain “hairy graph
complexes” introduced by Arone-Turchin [3]. These complexes have a geometric interpretation as homology with local coefficients of
the tropical moduli spaces, as we will explain more in forthcoming work. These complexes in fact depend only on the parity of m and
n, up to degree shift. When n is even and m is odd, the decoration attached to each graph is the Hochschild-Pirashvili homology of the
graph, which is equivalent to the collection of Out(F)-representations on the Sg-invariant parts of H,(Confy (Rg)+) for all k, which
we study below in Section 2 (see [13, Theorem 1]). Similarly, our sign multiplicity spaces coincide with the hairy graph homology
when n and m are both even. See [24, Remark 5.2] for applications of the other isotypic components to rational homotopy groups of
the space of string links, and see [25, Section 2.5] for an interpretation of the isotypic components as the bead representations.

The reason the above two complexes (n even, m even or odd) only relate to our trivial and sign computations is that the “hairs”
in hairy graph complexes are unlabeled. In [23], the authors study spaces of string links via complexes of graphs with labeled hairs
(possibly with labels repeated or missing). These are equivalent to ours in the sense that ours are a special case, while theirs can be
obtained from ours by taking invariants under Young subgroups of symmetric groups.

In genus 2 specifically, we refer to the work of Conant-Costello-Turchin-Weed [4], who show that only the graph ® contributes
to the hairy graph homology, which furthermore takes the form (sgn, ® V)s,«s, for some V computed by a 3-step complex. This
echos our Theorem 3.2, and in fact proves the specialization to the trivial and sign isotypic components. Our further reduction in
this paper from © to R; (and indeed from any graph to Ry), as well as the richer structure coming from the S,-action on the n labels,
is not studied in that paper. See also Remark 3.4 for further connections.

1.2.3. Representations of mapping class groups

In a different direction, Moriyama [18] studies representations of the mapping class group of a surface of genus g with one boundary
component. These representations are the cohomology of the compactified configuration space on the surface with an additional
point removed from the boundary. Since a punctured surface is not compact, the compactified configuration space is not homotopy
equivalent to Conf, (Rzg)+ (in contrast with Proposition 2.1), and has homology concentrated in degree #n only. Nevertheless,
Moriyama [18, Section 4] accesses his cohomology using a cell structure whose only nontrivial cells are n-cells, which are exactly the
top-dimensional cells that we consider below. In particular, his setup does not include (1 — 1)-cells, the existence of which constitutes
the central computational challenge in our work.

1.2.4. Modular operads

We remark briefly on the relationship to modular operads [14], postponing details to a sequel. The cellular chain complex of the
moduli space Ag , is isomorphic to the Feynman transform FModCom((g, 1)), where ModCom is the modular-commutative operad
ModCom((g, n)) = Q in degree 0 for each (g, n) with 2¢ —2+n > 0. In fact FModCom((g, n)) is quasi-isomorphic to FCom((g, n))
whenever ¢ > 0and (g, n) # (1, 1); see [7, Remark 3.3]. Here, Com is the commutative operad Com((g, n)) = Q in degree 0 for each
g =0and n > 3, and 0 otherwise. In light of our Theorem 3.2, our results give computations of the homology of FModCom((2, 1))
and of FCom((2, n)) in the range n < 22. These have renewed interest in light of the recent results of [6, 7].

1.2.5. Future work

A sequel to this paper shall present computations on genus g > 2 graph complexes in relation to Ag,, via a Serre-like spectral
sequence whose E; page involves the compactified configuration spaces of more than one graph of genus g. In that paper we will
also treat more precisely the connections between modular operads, cellular chains of Ay, and hairy graph complexes that are
sketched above. It would be interesting to extend the computations in this paper to explore the other parities (of n and m) of graph
complexes.
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2. Homology of compactified configuration spaces of graphs

For a topological space X and for n > 0, recall the configuration space
Conf,(X) = {(x1,...,x1) € X" | x; # x;j for all i # j}.

We refer to the one-point compactification, denoted Conf,(X)™, as the compactified configuration space. In this paper, we only
consider compactified configuration spaces on compact Hausdorft spaces X. In this case, there is an S,-equivariant homeomorphism
of pointed spaces

Conf,(X)" = X" /{(x1,...,%,) € X" | x; = x;j for some i # j}. (3)

Proposition 2.1. For eachn > 0, Conf,(—)" is a functor from the category of compact Hausdor{f topological spaces and all continuous
maps to the category of pointed topological spaces with S,-action. Moreover, if f,g: X — Y are homotopic, then the induced maps

Conf,(X)™ — Conf,(Y)*

are again homotopic.

Thus, in contrast to the situation for uncompactified configuration spaces, for a compact X (such as a finite graph), the homotopy
type of Conf,(X)™ depends only on the homotopy type of X, and a self homotopy equivalence of X induces an S,-equivariant
self homotopy equivalence of Conf,(X)". In fact, a more general version of Proposition 2.1 is true: for (not necessarily compact)
Hausdorff spaces, the functor Conf,(—)* takes a proper homotopy equivalence to a proper homotopy equivalence.

Proof of Proposition 2.1. Let X and Y be compact Hausdorff, and let f: X — Y be a continuous map. Write f": X" — Y” for
the induced map of Cartesian powers. The source and target spaces contain copies of Conf,(X) and Conf,(Y), respectively, and
the preimage of Conf,(Y) is contained in Conf,(X). Therefore, collapsing the complements of Conf,(X) and Conf,(Y) yields the
desired pointed S,,-equivariant map

Conf,(X)T — Conf,(Y)*.

Moreover, if F: X x [0,1] — Y is a homotopy between f and g, then in the same manner we obtain an S,-equivariant map
X" x [0,1] — Y", and an S,-equivariant homotopy

Conf,(X)™ x [0,1] — Conf,(Y)"
between the maps induced by f and g. O

Homotopy invariance of Conf,(—)* in particular gives well-defined and natural actions of the groups of homotopy automor-
phisms, as the following proposition explains.

Proposition 2.2. Let X and Y be compact Hausdorff, and let hAut(X) and hAut(Y) be their respective groups of homotopy classes of self-

homotopy equivalences. Let X —s> Y be a homotopy equivalence, and let ¢: hAut(X) — hAut(Y) be the induced group homomorphism.
Then the induced isomorphism of graded S, -representations

H.(Conf,(X)") — H.(Conf,(Y)")
is hAut(X)-equivariant, where hAut(X) acts on the right-hand side through ¢.

Proof. Let m: X —> Y and m': Y —> X be inverse homotopy equivalences. Then any f € hAut(X) determines an auto-

equivalence mfm’ : Y —5> Y, and therefore an element of hAut(Y), and this association descends to a well-defined map hAut(X) —
hAut(Y). Given another ¢ € hAut(X), the composition (mfim')(mgm’) = mf (m'm)gm’ is homotopic to mfgm’, yielding that ¢ is a
homomorphism. Functoriality and homotopy invariance of Conf,(—)* gives the compatibility of the two actions. O

Specializing to finite graphs, the above facts show that a calculation of H,(Conf,(G)™) for just one graph G along with the induced
action of hAut(G) determines the analogous representations for all other homotopy equivalent graphs. One may then work with the
simplest graph of a given genus, as we do next.



EXPERIMENTAL MATHEMATICS ’ 5
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Figure 1. Cellular decomposition of Conf, (Ry)F, omitting co. The symmetric group S acts on this picture via reflection across the diagonal.

2.1. An Sp,-equivariant cell structure on Conf, (Rg)"‘

Let Ry = V‘?ZIS1 be the “rose graph:” a wedge of g circles, with the unique vertex denoted v. For any finite, connected graph G of
genus (first Betti number) ¢ = |E(G)| — |[V(G)| + 1, we may use Proposition 2.1 to compute FI* (Conf,(G)T) with its natural action
of Iso(G), via computing H, (Conf, (Rg)+) with its natural hAut(R,)-action.

We now fix a cellular structure on Conf, (Rg)+, from which we obtain a 2-step free resolution for H, (Conf, (Rg)+; 7Z) as an
(integral) S,-representation used in this paper.!

Let By = U‘?Zl (i—1,i) C Rbeaunion of g open intervals, and fix a homeomorphism to R, \ {v}. We sometimes call the intervals
arcs since they correspond to the arcs of the petals in Ry after removing the central vertex. Denote [n] = {1,2,...,n},and for § C [#]
let Confg(Eg) be the space of configurations of points in Eg with labels in S. Then Confg(E,;) decomposes as a disjoint union of

open polyhedra as follows. Let |S| = k; then for every pair (o, x), where o : [k] = S is a total ordering on Sand x: [k] — [g] a
nondecreasing function, we associate the collection of configurations (xs)ses € Confg(Eg), where

Xo,

<X €R & a<belk] and x5, €(i—1,i) < x(a) =i.
Writing o; := o (i) for short, we denote this collection of configurations by
(0102 ... 0j,10j,41 - Oy | o o] 03 1Oy 1 - - OK). (4)

where x 71(1) = {1,..., 1}, x ') = {j1 + 1,...,j2}, and so on. Set jo = 1 and j, = k.

Example 2.3. For n = 6and g = 3, (4135/62) denotes the collection of configurations of points (x1, X2, .. .,xs) € R® with 0 < x4 <
X1 <x3 <1<x5 <2< x6 < x3 < 3.0ne such configuration can be pictured as:

4 1 3 5 6 2
o0—r———00—0—OO—-06——0—0

Intervals may be vacant, as in the case of (321||654), which contains configurations without points on the second interval, such as:

3 2 1 6 5 4
o0 0—0—0—0—=0

The configurations corresponding to each (o, x) are parametrized by the interior of a product of open simplices. As the following
lemma states, this determines a cellular decomposition of Conf,,(Rg) . Figure 1 illustrates this decomposition in the case n = g = 2,
omitting the point co.

Lemma 2.4. The space Conf, (Rg)+ admits a cellular decomposition with a single 0-cell, n!- (”;f; 1) cells in dimensions n, and n!- (”:ﬁ;z)

cells in dimension n — 1. For k € {n — 1, n}, the k-dimensional cells are labeled by total orderings of {1, . .., k}, separated by g — 1 bars,
as denoted in (4). The natural S,-action freely permutes the (n — 1)- and n-cells.
Consequently, we have a chain complex of free Z[S,]-modules

n+g—2

2 g5, e, )

+g—1
g1

718"

"We've learned though private communication that O. Tommasi, D. Petersen and P. Tosteson have independently found the same construction for this calculation.
Petersen and Tommasi have also obtained results on the weight-0 compactly supported cohomology of M5 , also using graph calculations. At this moment,
we do not know how to directly relate their methods with the ones presented in this paper.
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where the modules are placed in degrees n and n—1, respectively, whose homology is isomorphic, Sy-equivariantly, to the reduced homology
H,(Conf,(Rg)™).

Proof. Let X* C Conf,(Ry) denote the closed subset of all configurations in which the vertex v is inhabited, and let X° C Conf,(Ry)
be its complement, parametrizing all configurations in which v is uninhabited. A choice of homeomorphism E; = Rg \ {v} yields an
S,-equivariant homeomorphism

X = Conf,(Ey).

Similarly, we obtain an S,- equivariant homeomorphism

X* =~ ]_[ Confs(E,),
IS|=n—1

where a configuration (x1, ..., x,) € X*® in which x; = v determines a configuration in Confy,;\ (;; (&), and vice versa.

Following the discussion preceding the lemma statement, X° and X* are disjoint unions of interiors of convex polyhedra in RS for
|S] = n — 1 and |S| = n, each indexed by a pair (o, x). In this way we obtain the claimed cell structure on Conf, (Rg)+. Now notice
that S, acts freely on the n-cells and the (1 — 1)-cells, respectively. Therefore, the reduced cellular chain complex is quasi-isomorphic
to the claimed 2-step complex of free S,-modules, and computes H, (Conf,(R,)*; Z) equivariantly with respect to S,,. O

Asan immediate corollary, we have the following formula for the S,-equivariant Euler characteristic of Conf,(G)* for any graph G.

Corollary 2.5. Fix g > 1 and n > 1. For any connected graph G with first Betti number g, the S,-equivariant Euler characteristic of
Conf,(G)™ in the representation ring of Sy, is

2
<—1>"<” T8 )[Z[snn. ©)
g—2

2.2. Explicit description of the 2-step complex

In order to implement the 2-step complex that arises in (5) in computer calculations, we first explicitly orient the cells in the cellular
decomposition of Conf, (Rg)+. The open cells of Conf,(Eg) C R" are open subsets of R”, and inherit their orientation from the
standard orientation of R". For a set S = [n] \ {j}, first orient RS so that the ordered basis (ey, . .. ,'e}, ...»>ep) has sign (—1)y~1L.
Then orient the open cells of Confs(E,) C RS by restriction. This choice ensures that transpositions in S, always act by reversing
orientation.

Then a permutation T € S, sends the configuration (x;)ses to the configuration (x;-1(4))rer(s)- Label cells by pairs (o, x) as before;
7 permutes cells according to

(o,x) — sgn(t)(t_1 00, X),

where the sign indicates orientation reversal.
The set {(id, x) | x : [k] — [g] nondecreasing,k = n — 1,n} forms a set of representatives of S,-orbits of cells. They give an

k+g—1y
equivariant isomorphism of the cellular chain complex Z[Sn]( 1) Clgw. Explicitly, the action of o € S, on a representative is
given by
. . -1_-1 -1 -1 -1
o-(2...j1l...ljg-=1+1...n) =sgn(o)(o] o0, Oy |-”|Ujg,1+1“-‘7n ),
hence gives rise to the identification between cells and permutations

(o1...0jl0j 41 0p| .o | NOj 41 On) «—> sgn(a)a_1 € Z[Sy,] (7)

in the appropriate summand.
Next, to describe the boundary operator explicitly, consider an open cell of Conf,(E;) < Conf,(R,). As mentioned above, this
is the interior of a polytope, and its boundary is a sum of open cells in | [ 5_,,_; Confs(Eg).

Lemma 2.6. The boundary operator on cells is given by

g
dor...1...]...on) =Z(...|@...aji|...) — (- lojy41-..05] .. ). (8)
i=1
Proof. The boundary operator on a top-dimensional cell indexed by (o7 ...|...]|...0y) gives a signed sum of codimension 1 cells

that arise when one of the marked points on an edge of R, falls onto the vertex v. All other collisions of points are identified with the
0-cell co. Thus, (8) follows, up to a verification of signs that we omit. O
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Example 2.7. For n = 6 and g = 3, the cell (123|4|56) has boundary given by
9(123|4/56) = (23]4]56) — (12]4|56) + (123456) — (123456) + (123]4]6) — (123]4/5).

In particular, one observes that intervals that contain exactly one point do not contribute to the boundary. This is consistent with the
observation that a point looping around a vacant edge in R, contributes no boundary.

2.3. Action of homotopy equivalences Out(Fg)

Let Out(Fy) denote the group of outer automorphisms of the free group on g generators. Recall that Out(F,) = hAut(Ry). Therefore,
by Proposition 2.1, there is an Out(F,)-action on the homology of Conf,,(Rg) ™, which we describe here.

Fix generators ay, .. .,ag for Fg. The group Out(Fy) is generated by the following automorphisms (see e.g. [2]): flips f; for i =
1,...,gswapss;fori=1,...,¢ — 1; and a transvection t;,, defined as follows:

i i aiy1 j=1i
filaj) = al- oy si(a) =Jai  j=i+1 hi2(aj) = :
j > a AL+,

amay j=1

a; ];él

Note that Out(F,) does not act on the space Rg, nor does it act on its cellular chains. Instead, the Out(Fy)-action on homology
is induced by a collection of continuous maps R; — R, that only satisfy the relations in Out(Fg) up to homotopy. Having picked
generators ({f;}, {si}, t12), the Out(Fy)-action is completely described by continuous realizations of these elements. In what follows,
we denote such realizations and their operation on cellular chains by the corresponding uppercase letters ({Fi}, {Si}, T12)-

Lemma 2.8. The actions of flips, swaps and transvections on homology can be realized by maps Ry — R, that fix the vertex, and thus
induces cellular maps on Conf,(Ry)*. Their effect on cellular chains in the two nontrivial dimensions are given as follows.
The maps inducing flip and the swap permute the cells of Conf,(Rg) ™ as

Fi: (G + DG +2) il ) = (G i G +2) G+ DI ) ©)
Sit o Gimi+D oLl G il ) = oG D i [ Gimr D i ). (10)

The transvection ty, is induced by the cellular operator

T12:(12...j1|...j2|j2+1...|...)|—>Z Z(12...k|ok+1...0j2|j2~|—1...|...) (11)
k=0 o eV

where Wy is the set of shuffles of the ordered tuples (k+ 1,...,j1) and (j1 + 1,...,j2).

Proof. The flip and swap are realized by simple linear maps on the intervals (i — 1,7) C R, hence reorder the points in the claimed
manner. Note that the flip F; reverses the direction of the i-th arc, inducing an orientation shift of (—1)/i /-1,

The transvection t1, is realized by a map Ty : Ry — R, that stretches the first arc to twice its original length, then lays the latter
half along the second arc. Any points that inhabit this latter half get distributed along the second arc. The locus of configurations in
which a point lands exactly on 1 € (0,2), or on an existing point in the configuration, belongs to a lower dimensional skeleton of
Conf,(Ry) ", and therefore do not contribute to calculations on cellular chains. Note also that the stretch is an orientation-preserving
linear map. Hence all cells map to other cells with degree 0 or 1, and the ones in the image have points 1,.. .,k on the first arc, for
some k < j, and some shuffle of the points k 4 1,...,j; and j; + 1,...,j, on the second arc. O

Example 2.9. Recall the case n = 2 and ¢ = 2 depicted in Figure 1. Figure 2 depicts the transvection operation T, on the cells
(1]2) and (12]), respectively, where stretching the first arc by a factor of 2 consequently stretches the cells so that they cover the cells
appearing in the formula (11).

s o e W -"" T W T T e Ww-"""7 -
g2y 0! oy 27! g2y 27! o2y 27!
Cap 2 Cap M a1 cap M
i i e | i s | I e | i 7 I
‘ e, a2 ‘ N, 770 (21 | e, a2 | e, 7 (21
R LSS ] R |75 R (A | R 7SS |
D T D | Y T S |
| 71 7| 71
vz s ! Lz - ! Lz - ! Lz - !
R CTIN I (NI R CI Ve
| s | / | ’ | ;
AU | e, ! I 1 Lo e ) |
Ve ____ 1 [ Ve ___ [ [ Ve ____ 1 [ Ve ____ [ [

Figure 2. The transvection operations Tq on the cell (1]2), on the left, and (12|) on the right, of Conf, (R,) T, as in Example 2.9.
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Remark 2.10. As mentioned before Lemma 2.8, the chain operators given above do not satisfy the relations between f;, s; and 1, in
Out(Fy). For example, we have (f2t12)2 = 1, whereas the transvection operation (F,T12)? on Ry is not the identity map on the chain
level.

Another class of finite order elements playing a role in what follows are elements in Out(F;) coming from isometries of genus g
graphs. Since these have finite order, the action they induce on homology is indeed diagonalizable over Q. Had these elements acted
on the cellular chains with finite order, their action would also be diagonalizable. But we have encountered examples in which such
operators have non-trivial Jordan blocks, e.g., the order 4 rotation of the complete graph Kj.

2.4. Separating into irreducibles

The free resolution of H, (Conf,, (Rg)™;Q) as an S,-representation opens the door to splitting up the calculation into the distinct
irreducibles of S, when working rationally. This approach drastically reduces the size of the vector spaces involved, and allows
for efficient extraction of specific irreducible multiplicities. Efficiency is particularly important, seeing that the vector spaces in the
resolution of Lemma 2.4 have dimension ~ nf~! . n!.

Consider any associative ring R and a morphism of free (left) R-modules ¥ : RN — RM. Representing elements of RV by row
vectors, ¥ is uniquely represented by a matrix A € My (R), which acts on RY by right multiplication.

Specializing this to the group ring R = Z[S, ], the differential 9 : Z[S,IN — Z[S, M from Lemma 2.6 is represented by a matrix we
shall denote Aj. We emphasize that the entries of Aj are elements in Z[S,], characterized in (8). The underlying Z-linear map would
in principle be represented by a matrix that is n! times bigger, but we will never use this larger matrix directly. The action of generators
of Out(Fy) on this complex is similarly described as Z[S,,]-valued matrices as determined by Lemma 2.8, and the identification of
cellular chains and elements in Z[S,] is given in (7).

Now extend scalars to Q. Lemma 2.11 records the general statement that allows one to split the homology calculations into isotypic
components, where all matrices involved are substantially smaller than the original A. The only computational input needed is a
realization of the irreducible representations of S, as explicit matrices, which has already been implemented in Sage [22].

We recall the notion of multiplicity space. Let G be a finite group and p: ¢ — Endc(V,) a complex irreducible representation.
For any complex G-representation W, the multiplicity space of p in W is W) .= W ®g¢ V7, where V7 is the dual representation to

V. More generally, for a Z[G]-module W, define W) to be the p-multiplicity space for the extension of scalars W¢ := W ® C.

Given a set G of representatives of the isomorphism classes of irreducible complex G-representations, Schur’s lemma gives a natural
isomorphism

We =P W ec Ve
e

In particular, dim W is the number of times V; occurs in W¢, and any map of Q[G]-representations W — U is uniquely
determined by respective maps W® — U™ fort € G.

Lemma 2.11. Let G be a finite group, p: G — Endc(V,) a complex irreducible representation. Given a complex of regular G-
representations

Co=(..—> ZIGI" 5 Z[G1 — ),
there is an isomorphism, natural in all G-equivariant maps of complexes,

* : i i—
H;(C.)") = H; ( — Vi LB, e ) (12)

where p* is the dual representation to p and p[d;] € My,xn, , (Endc(V,,)) is the operator V' — V'~ obtained by applying p entry-
wise to Ay, € Mp;xn,_,(ZIG]).
In particular, the dimensions of the homology on the right hand side of (12) are the multiplicity with which p* occurs in Hy(C,).

Proof. Working with complex representations of a finite group, every representation splits as a sum of irreducibles. In particular, the

tensor (—)®¢ V), is an exact functor and commutes with taking homology. But since the action p gives an isomorphism Z[G1®g V,, =
V,, we have a natural isomorphism of chain complexes,

(..._> Z[G]" ﬂ> ZIG]" ! — ) ®¢gV, = <_> Vzi M VZH N )
Passing to the homology of these complexes proves the claim. O

Working with G = §,,, the formula (12) simplifies due to the fact that every S,-representation is self-dual, i.e., p* = p. Moreover,
since all S,-characters are defined over QQ, the same discussion applies already for rational rather than complex representations.
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Corollary 2.12. There are isomorphisms, natural in all continuous self-maps of Rg,

H,1(Confy(R)"; Q) = ker(p[Ay]) and H,(Conf,(R)"; Q)" = coker(p[A]) (13)

n+g—2

ntg—1
where Ay is the Z[S,]-valued matrix representing Z[Sy] s LY Z[Sn]( Jas )from Lemma 2.6.

Remark 2.13. Since My xm(Endc(V),)) = Mngxma(C) for d = dim(V,), the resulting calculation of the (co)kernel is reduced from

involving Nn! x Mn! matrices to Nd x Md ones. For S,,, this reduces the matrix sizes by a factor of at least Vn! (see [17]), e.g. for S0
the largest irreducible has dimension d = 768 compared to 10! ~ 3.6 x 10°.

Corollary 2.14 (Sign representations). The Qsgn-isotypic component of H(Conf, (R)*; Q) has multiplicity (k;“ﬁl) fork=n—1
and n, and has multiplicity 0 otherwise. Explicitly, every cell (o, x) gives acycle > __¢ sgn(t)t - (o, x), and different S,-orbits of those
are non-homologous.

T€S,

Geometrically, these sgn-isotypic cycles are represented by the loci of all configurations with specified numbers of points on each
arc.

Proof. Lemma 2.6 gives a formula for the cellular boundary 9 of Conf,(Ry)", and by Lemma 2.11 the p-multiplicity space of
ﬁk(Confn (Rg)+; Q) for k = n — 1 (and n) is computed by the cokernel (and kernel) of the linear operator p[d].

As in (7), a cell (o7...]...]...04—1) corresponds to sgn(o)o~! € Z[S,], hence applying p to such a cell results in the
endomorphism sgn(c)p (o)~ € Endq(V,). In particular, when (o = sgn) every cell is sent by p to +1 € Endg(Qsgn), and
(8) immediately degenerates to p[d] = 0. We conclude that the sgn-multiplicity space of the homology is isomorphic to that of the

k+g—1
cellular chains, which is simply Q( 1) Tt further follows that d restricts to 0 on the sgn-isotypic component of CEW (Conf,(Rg)™).
Recalling that the projection onto the sgn-isotypic component is given by anti-symmetrization, the claim follows. O

3. From graph configuration space to tropical moduli space

We now briefly recall the definition of the tropical moduli space A, and establish a connection between A; , and a particular graph
configuration space. We will then use the techniques of Section 2 to compute the homology of A ,,.

A tropical curve is a vertex-decorated metric graph. More precisely, it is a tuple of data (G, w, m, [) where G is a connected graph,
possibly with loops and parallel edges, w: V. — Zx( a weight function on the set V of vertices, m: {1,...,n} — V a marking
function, and I: E — R.¢ an edge-length function. These data must satisfy the following stability condition: for each v € V, we
require 2w(v) 4 val(v) + |m~1(v)| > 2, where val is the graph theoretical valence. The genus of a tropical curve is |[E(G)| — |V(G)| +
1+ evig W) Let Ag,, denote the moduli space of genus g, n-marked tropical curves. This is a topological space that parametrizes
isomorphism classes of tropical curves of genus g and n markings having total edge length 1. It is glued from quotients of the standard
simplices inside IR{E(OG) for graphs G, thus inheriting the quotient topology. For a formal definition, see [6].

A bridge in a connected graph is an edge whose deletion disconnects the graph. The bridge locus, denoted Agbfn C Agn, is the
closure in Ag, of the locus of tropical curves with bridges.

Now let g = 2. Recall the graph ©, now regarded as a metric graph with two vertices v1, v, and three edges e, 3, e3 between them
of equal lengths. We say a tropical curve (G, w, m,l) € A, , has theta type if G is homeomorphic to ® and its marking function m is
injective.

Lemma 3.1. Let Iso(®) be the group of isometries of ©. We have a homeomorphism of topological spaces
((A%)° x Confy(©))/Is0(©) = Az \ A3,

where (0,7) € Sy x S3 = Iso(®) acts on (A?)° through the permutation action of t on R> and on Conf ,(®) through the natural action
of Iso(®) on ©.

Proof. Let (A?)° denote the interior of the standard 2-simplex. There is a continuous map
f:(A%° x Confy(®) — Ayy \ A,

given as follows. Let X be a configuration of # points on ® and (r1,72,73) € (A?)°. Then f((r1,72,73), X) is the isomorphism class
of the following tropical curve (G, w, m, [) of theta type. The graph G is obtained from ® by subdividing each edge at every point in
the configuration. The marking function m is set to have m(i) be the vertex at point i in the configuration X. The length function [ is
obtained by scaling the 1-cells e;, e;, and e3 to have lengths 1, 5, and r3, respectively.

By [8, Lemma 3.1], a tropical curve in A, , has theta type if and only if it lies in Ay, \ Atz’fn. Therefore f is surjective. Moreover,
two elements in (A%)° x Conf,(®) have the same image if and only if they are in the same orbit under the action of Iso(®). So f
descends to a homeomorphism from the quotient space ((A?)° x Conf,(®))/Iso(®) to A, \ Alz’fn. O
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[7, Theorem 1.1] establishes that A ., is contractible. Therefore Lemma 3.1 enables us to relate the reduced rational cohomology
of A, ,, with that of Conf,(©).

Theorem 3.2. There is an S,,-equivariant homotopy equivalence
~ (§* A Conf,(©)")/Iso(O), (14)

where A is the smash product and Iso(®) = S, x S acts on the sphere S by reversing orientation according to the sign of the permutation
in Ss.
In particular, there is an isomorphism of S,-representations

H'(AgQ) = (sgn; ® H'2(Conf,(0)*;Q))°®), (15)

where sgn, is the sign representation of Sz in Iso(©) = S, x Ss, and the superscript denotes the Iso(®)-invariant part. Similarly, there
is an equivariant isomorphism

Hi(Ay Q) = (sgn; ® ﬁi—Z(Confn(®)+;Q))Iso(@))x (16)
where the subscript Iso(®) denotes the coinvariant quotient.

Proof. By Lemma 3.1, we have
Aoy \ Alz’fn = ((A%)° x Conf,(©))/Iso(®).
So their one-point compactifications are homeomorphic:
(Bon\ AT = (((AY)° x Conf,,(©))/Iso(0))*. (17)

Since the bridge locus is contractible [7, Theorem 1.1], the left-hand side of (17) is homotopy equivalent to A, ,,. The right-hand side
of (17) is homeomorphic to the space ((A2)° x Conf,(0)) /Iso(®), where Iso(®) acts trivially on the point co. Then the first claim
follows from the identification (X x Y)* = X A Y, along with the fact that ((A2)°)™ = §2.

Passing to rational cohomology, we deduce

H'(Ag,3Q) = H'((S* A Conf,(©)7)/Is0(0); Q) = H'(($* A Conf,(©)T); Q)1*®),
By the Kiinneth formula,
FI*(8* A Conf,,(©)*; Q) = F*(5% Q) ® H*(Conf, () Q).

Since the reduced cohomology of S _is supported in degree 2, where it is 1-dimensional, and Iso(®) acts through the orientation
reversing action of S3, it follows that H 2(52) is Iso(®)-equivariantly isomorphic to trivy ® sgn;. We obtain the desired isomorphism
of rational vector spaces, and every identification above is equivariant with respect to the S,-actions induced by permuting marked
points. O

3.1. Isometries of the graph ©.

The last ingredient needed to compute the homology of A, using Theorem 3.2 and the techniques of Section 2 is the action of
the graph automorphism group Iso(®) of the Theta graph ® on H,(Conf,(®)";Q). For computations, we choose the particular

homotopy equivalence ® —> R, that collapes the edge e3 and sends e; to the i-th arc in R, for i = 1,2. This map induces a

homotopy equivalence on configuration spaces Conf,(®)* — Conf,(R;)", and a group homomorphism Iso(®) — Out(F;) as
in Proposition 2.2. We need only consider a generating set of Iso(®), for example:

o the order 6 isomorphism, exchanging the vertices and permuting the edges ey, 2, and e3 in a 3-cycle; and
o the top swap t, fixing the vertices and exchanging e; and e;.

Finally, Lemma 2.8 then gives formulas for the Iso(®)-action on cellular chains, and Lemma 2.11 lets one calculate the multiplicity
space of an individual irreducible representation p.
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Table 2. Partial irreducible decomposition of Hp1.1(A2,5; Q) forn < 17.

n Partial irreducible decomposition (listed as conjugate pairs of partitions)

12 (Oca2) + xann) +@xao2) + Gx(3,19)) + (4x93) +3%23 16)) + BX(9,2,1) T 7X(32,17)) T BX(9,13) T4X(4,18)) + Tx(8.4) +3X (24 14)) + (19x83,1)) +
(forA* < & < (8,22))

13 (x(13) + 2x(113y) + (4x11,0) +3x22,19)) + Gx103) +5x33,17)) + (P ford* <2 < (10,2, 1))

14 (X(‘IZ,Z)) + (4)((12'12)) + (SX(11,3) + SX(23,18)) + (SX(3I111)) + (fora* <2 <(11,2,1)

15 (ZX(115)) + (SX(22I111)) + (6)((13’]2)) + (?for << (12,3))
16 @xa6)) + (x(15,1) + 4x142) + (X(1a1,1) + Tx3113)) + (forA* <4 < (13,3))
17 (X(17) + 2x(117)) + Bx(15,2) + 7X(32,113)) + (0 X(1572)) + (forA* <& < (14,3))

3.2. Tabulation of data

The above calculation was implemented in Sage [22], and the resulting irreducible decompositions of the codimension 1 homology
Hy11(Az,,; Q) are shown in Tables 1 and 2. In these tables, for every partition A - #n, x; denotes the Specht module corresponding
to A, and they are written in reverse lexicographic ordering of partitions.

Using the formula [5] for the equivariant Euler characteristic of A, ,, and the fact that the homology is concentrated only in degrees
n+1and n+ 2, knowing Hy41(A2,,; Q) is equivalent to knowing Hy, 42 (A2 ,; Q). Please visit this URL? for the code we used as well
as a web application that presents the data in other ways, including

o Frobenius characteristic of codimension 1 homology H,11(A2,,; Q) for n < 10;

o Frobenius characteristic of codimension 0 homology H,12(A2,; Q) for n < 10;

« expansions of these symmetric functions in various bases for symmetric functions, e.g., the elementary symmetric functions;
o partial expansions of Hy,11(A2,; Q) and Hy42(A2,,; Q) in the Schur basis for n < 25.

Remark 3.3. We briefly discuss the performance of our Sage program. The highest n for which we obtain the full homology
representation is # = 10, where the largest irreducible representation has dimension 768. The matrix used to compute its multiplicity
has dimensions 31488 x 7680. Computations of irreducible multiplicity for any n never exceeded 24 hours, but computations for
large irreducibles with n > 11 crashed due to insufficient memory.

Beyond n = 10, we were only able to calculate multiplicities of Specht modules of small dimension. Table 2 shows partial irreducible
decompositions of H,+1(A2,; Q) for 11 < n < 17. The summands are presented as conjugate pairs of partitions, where the set of
pairs is ordered reverse-lexicographically. The unknown multiplicities are indicated as “(? for A* < A < 1¢)”, indexed by all partitions
that are lex-larger than their conjugate partition and lex-smaller than A¢. Any missing partition outside of the unknown range occurs
with multiplicity 0, and similarly for their conjugate partitions.

For 18 < n < 22, we obtained multiplicities for (), x(1%)> X(n—1,1) and X2,10-2)> and for 23 < n < 25, we obtained multiplicities
for x(m)» xar only. All of the multiplicities are consistent with the following Remark 3.4 and Conjecture 3.5.

Remark 3.4. There are explicit formulas for the multiplicities of the trivial and sign representations in H.(A2,;Q). The multiplicity
of the sign representation (i in Hy(Ay,,) is

n

= 0

Lg] meven in degree * = n + 2, and REVER  for % = n+1.
0 n odd Lg] nodd

For the trivial representation y (), its multiplicity in Hy(A,,) is

0 n=0 mod4 L%;J n=0 mod 4

0 n=1 mod4 =l p=1 mod4

—n+wJ n=2 mod4 fors =n+2, (|;12J n=2 mod4 fors=n+1.
12 = =

L"I—EIJ n=3 mod4 0 n=3 mod4

Note that in these cases the multiplicity in H,(Ay,) is nonzero in exactly one degree *, which means they are also completely encoded
in the S,,-equivariant Euler characteristic of A, , as computed by Faber (see [5]).

These formulas were obtained in [4, Theorems 6.2 and 6.4] who used hairy graph complexes. Alternatively, in [13, Section 4.4], it
is explained that the calculations in [20, Corollaries 19.8 and 19.10] translate to a complete description of the Out(F,)-representation
on the trivial and sign isotypic components of H, (Conf, (Rg)+; @), and then [13, Proposition 1.11] details how the latter translates
to Hy(Az,,). We also learned through private communication with O. Tommasi that these multiplicities can be computed explicitly
using dimensions of spaces of modular forms.

Zhttps://github.com/ClaudiaHe Yun/BCGY
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Another way to derive the multiplicity formula for the sign representation was recently communicated to us by B. Ward, it involves
modular forms, via Lie graph homology. The work [26] relates Hy (A ,; Q) with the Lie graph homology which may be identified

with Hf P (Cg.n; Q) studied in [9, 16]. (The groups Iy ,, which generalize Out(Fy) = I'go and Aut(Fg) = I'g 1, were introduced in
[15]). In forthcoming work, Ward calculates in genus 2 that

ZdimHi(Az,n)sgn = LHT_ZJ — dim Hn—i—l(FZ,n)sgn-
i>0

Then [9, Theorem 3.10] implies dim Hy41(I"2,1)sgn = L’%ﬂ — L1, so the total dimension )  dim H;(A3,,)sgn = |g]. Combining
this with the knowledge of Euler characteristics [5] and the fact that H. (A, ,) is concentrated in two degrees, the sign multiplicity
formula above follows again.

Multiplicities of other irreducibles remain mysterious. For x(,—1,1) and 112y, however, we observe the following pattern, verified
computationally for up to # = 22 marked points.

Conjecture 3.5. For all n > 2, in the S,-representation H, (A ,; Q), the multiplicity of the standard representation y(n—1,1) is

L%J n=2 mod 4
LHTHJ n=1 mod4 forx=n+2,
0 otherwise.

L%J n=0 mod 4

orx =n-+1,
0 otherwise. f

and the multiplicity of X(5,1n-2) = sgn ® X(n—1,1) i

0 is odd
{ nee forx =n+2, always 0 forx = n+ 1.

L%‘J nis even.

Conjecture 3.5 was resolved a few months after a preprint of this paper appeared. The third author observed with Hainaut in
[13, Example 6.9] that these multiplicities follow from the work of Powell-Vespa [20] and the more recent work of Powell [19]. An
interpretation of these multiplicities in terms of modular forms would be pleasing.
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