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ABSTRACT
We obtain new calculations of the top weight rational cohomology of the moduli spacesM2,n, equivalently
the rational homology of the tropical moduli spaces �2,n, as a representation of Sn. These calculations are
achieved fully for all n ≤ 11, and partially—for specific irreducible representations of Sn—for n ≤ 22. We also
present conjectures, verified up to n = 22, for the multiplicities of the irreducible representations stdn and
stdn ⊗ sgnn. We achieve our calculations via a comparison with the homology of compactified configuration
spaces of graphs. These homology groups are equipped with commuting actions of a symmetric group and
the outer automorphismgroup of a free group. In this paper, we construct an efficient free resolution for these
homology representations, from which we extract calculations on irreducible representations one at a time,
simplifying the calculation of these homology representations.
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1. Introduction

1.1. Main results

The moduli spaces �g,n of tropical curves are combinatorial moduli spaces which are canonically identified with the boundary
complex of the Deligne-Mumford-Knudsen compactification Mg,n of the moduli spaces of algebraic curves. See [1] and [6].
Consequently, by work of Deligne [10, 11], there is a canonical Sn-equivariant isomorphism between H̃∗(�g,n;Q) and the top-weight
rational cohomology ofMg,n:

H̃k−1(�g,n;Q) ∼= GrW6g−6+2nH
6g−6+2n−k(Mg,n;Q). (1)

In this work we compute, for genus g = 2, the homology groups H̃∗(�2,n;Q) as representations of Sn in a range beyond what was
previously accessible, using an approach centered on a compactified graph configuration space.

Theorem 1.1. The rational homology H̃∗(�2,n;Q) is supported in degrees ∗ = n + 1 and n + 2, with the character of H̃n+1(�2,n;Q)

as an Sn-representation for n ≤ 11 given in Table 1. Partial irreducible decompositions of H̃n+1(�2,n;Q) for 12 ≤ n ≤ 17 are given in
Table 2.

Given that the equivariant Euler characteristic of �2,n is known (see [5]), Table 1 is sufficient to determine the entire homology
representation. See Section 1.2 for a discussion of previous related work relating graph complexes and compactified configuration
spaces.

The first 8 rows of Table 1 were recently computed by the fourth author, see [27]. Our current approach gives data well beyond
what was feasible with those techniques. For example, even the dimension of H̃12(�2,11;Q) was not known: it is 850732.
Table 2 in Section 3.2 shows the partial calculations for multiplicities of certain small Sn-irreducibles in the range 12 ≤ n ≤ 17. For
18 ≤ n ≤ 22, we obtained multiplicities for χ(n), χ(1n), χ(n−1,1) and χ(2,1(n−2)), and for 23 ≤ n ≤ 25, we obtained multiplicities for
χ(n), χ(1n) only. The data is extensive enough to suggest patterns in the multiplicities of the standard representation χ(n−1,1) and its
sign twist χ(2,1n−2). See Conjecture 3.5 and surrounding discussion.

We now outline the key steps to our calculations. Together, they establish Theorem 1.1, the main theorem of this paper.

1.1.1. Reduction to compactified configurations on a theta graph
We immediately leave the tropical world and work instead with Confn(G)+, the one-point compactification of the configuration
space of n distinct marked points on a graph G. In genus g = 2, the tropical moduli space �2,n is directly related to a single such
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Table 1. Character of H̃n+1(�2,n ;Q) for n ≤ 11.

n Character of H̃n+1(�2,n ;Q)

0 0
1 0
2 0
3 0
4 χ(4)
5 χ(3,2)
6 χ(4,12) + χ(3,2,1)
7 χ(5,12) + χ(4,3) + χ(4,2,1) + χ(4,13) + χ(32,1) + χ(3,2,12) + χ(23,1) + χ(17)
8 χ(8) + χ(6,2) + χ(5,3) + 2χ(5,2,1) + χ(5,13) + 2χ(4,3,1) + 2χ(4,22) + 2χ(4,2,12) + χ(4,14) + χ(32,1) + χ(32,12) + 2χ(3,22,1) + 2χ(3,2,13) + χ(3,15)
9 2χ(7,2) + χ(6,3) + 3χ(6,2,1) + χ(6,13) + 2χ(5,4) + 3χ(5,3,1) + 5χ(5,22) + 4χ(5,2,12) + 3χ(5,14) + 3χ(42,1) + 4χ(4,3,2) + 5χ(4,3,12) + 5χ(4,22,1) + 4χ(4,2,13) +

χ(4,15) + 4χ(32,2,1) + 4χ(32,13) + 3χ(3,23) + 2χ(3,22,12) + 3χ(3,2,14) + χ(24,1) + χ(23,13) + χ(22,15) + χ(19)
10 2χ(8,12) + 2χ(7,3) + 4χ(7,2,1) + 3χ(7,13) + 2χ(6,4) + 9χ(6,3,1) + 4χ(6,22) + 8χ(6,2,12) + 2χ(6,14) + 7χ(5,4,1) + 10χ(5,3,2) + 15χ(5,3,12) + 12χ(5,22,1) +

9χ(5,2,13) + 2χ(5,15) + 6χ(42,2) + 6χ(42,12) + 6χ(4,32) + 16χ(4,3,2,1) + 11χ(4,3,13) + 7χ(4,23) + 13χ(4,22,12) + 8χ(4,2,14) + 3χ(4,16) + 6χ(33,1) + 4χ(32,22) +
10χ(32,2,12) + 3χ(32,14) + 6χ(3,23,1) + 7χ(3,22,13) + 3χ(3,2,15) + 2χ(3,17) + χ(24,12) + 2χ(23,14)

11 3χ(9,12)+3χ(8,3)+5χ(8,2,1)+3χ(8,13)+2χ(7,4)+16χ(7,3,1)+5χ(7,22)+16χ(7,2,12)+2χ(7,14)+4χ(6,5)+15χ(6,4,1)+23χ(6,3,2)+28χ(6,3,12)+24χ(6,22,1)+
21χ(6,2,13) + 5χ(6,15) + 10χ(52,1) + 19χ(5,4,2) + 28χ(5,4,12) + 21χ(5,32) + 50χ(5,3,2,1) + 28χ(5,3,13) + 13χ(5,23) + 38χ(5,22,12) + 17χ(5,2,14) + 7χ(5,16) +
8χ(42,3) +29χ(42,2,1) +20χ(4,4,13) +25χ(4,32,1) +28χ(4,3,22) +48χ(4,3,2,12) +22χ(4,3,14) +22χ(4,23,1) +25χ(4,22,13) +11χ(4,2,15) +2χ(4,17) +13χ(33,2) +
8χ(33,12) +22χ(32,22,1) +20χ(32,2,13) +11χ(32,15) +4χ(3,24) +15χ(3,23,12) +8χ(3,22,14) +6χ(3,2,16) +3χ(25,1) +4χ(24,13) +2χ(23,15) +2χ(22,17) +χ(111)

compactified configuration space. Specifically, Theorem 3.2 establishes a homotopy equivalence inducing the following isomorphism
of Sn-representations:

H̃i(�2,n;Q) ∼= (sgn3 ⊗ H̃i−2(Confn(�)+;Q))Iso(�), (2)

where � is the graph with two vertices and three parallel edges between them, sgn3 is the sign representation of S3 in the
automorphism group Iso(�) ∼= S2 × S3, and the subscript Iso(�) denotes the coinvariant quotient.

1.1.2. Reduction to compactified configurations on a rose graph
Note that the graph� is homotopy equivalent to a wedge of two circles. More generally, any finite graphGwith first Betti number g is
homotopy equivalent to a rose graph Rg = ∨gS1. In fact, a homotopy equivalence of compact Hausdorff spaces induces a homotopy
equivalence of their compactified configuration spaces; the analogous statement is not true for uncompactified configuration spaces.
See Proposition 2.1. So it suffices to work with Confn(R2)+, or more generally Confn(Rg)+ for any g. Proposition 2.1 endows
the homology H∗(Confn(Rg)+;Q) with a canonical action of the group Out(Fg) of outer automorphisms of the free group on g
letters. Moreover, a consequence of Proposition 2.2 will be that a homotopy equivalence G ∼−→ Rg induces a group homomorphism
Iso(G) → Out(Fg) so that the induced isomorphism

H∗(Confn(G)+;Q) ∼= H∗(Confn(Rg)+;Q)

is Iso(G)-equivariant. This, along with (2), reduces the computation of H̃∗(�2,n;Q) to computing the actions of Sn and Out(F2) on
the homology of Confn(R2)+.

1.1.3. Cellular decomposition of compactified configurations on a rose graph
The remaining goal in Section 2 is then to understand H̃∗(Confn(Rg)+) as a representation of both Sn andOut(Fg). The fundamental
tool is an Sn-equivariant cell structure on the configuration space Confn(Rg)+, in which cells are permuted freely. This structure
implies that the homology of Confn(Rg)+ is computed by a 2-step complex of free Z[Sn]-modules, where the boundary map and the
action of Out(Fg) are represented by explicit matrices with entries in Z[Sn]. See Lemmas 2.4, 2.6, and 2.8.

1.1.4. Improved computational efficiency through representation theory
The presentation of homology by free Sn-modules allows for particularly efficient computations. Indeed, specializing to rational
coefficients, Schur’s lemma lets us work one irreducible at a time, performing any homology calculation at the level of multiplicity
spaces of individual irreducible representations of Sn. See Lemma 2.11. This reduces the size of the matrices involved by a factor of at
least

√
n!.

Finally, after the above reductions, we implemented the resulting calculation in SageMath, from which we obtained the data in
Tables 1 and 2 that prove Theorem 1.1. See Section 3.2 for more details on the SageMath computations.

1.2. Relatedwork

Our initial motivation in this paper comes from tropical geometry, particularly the connection to cohomology of moduli spaces of
curves. Our calculations, however, are also connected to several other topics in geometry and topology, adding potential interest to
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our work. We touch on several of them here: spaces of long embeddings and string links; modular operads; and representations of
mapping class groups. We remark that our techniques do not apply to the uncompactified configuration spaces of graphs.

1.2.1. Sn-equivariant homology of�g,n
Here is a brief survey of previous calculations. The case g = 2 is the first case in which the topology of�g,n is not fully understood.

• When g = 0 and n ≥ 4, [21] prove that �0,n has homotopy type of a wedge of spheres of dimension n − 3 and give a formula for
the character of the Sn-representation occurring in the top degree integral homology Hn−3(�0,n;Z).

• When g = 1 and n > 0, [12] computes the Sn-equivariant Serre characteristic ofM1,n, fromwhich the character ofHn−1(�1,n;Q)

can also be derived. Moreover, [7] prove that �1,n has homotopy type of a wedge of spheres of dimension n − 1.
• When g = 2, [8] proves that the homology of �2,n is concentrated in its top two degrees, and computes numerically the Betti

numbers for n ≤ 8. [27] computes these homology groups Sn-equivariantly.
• For all g, n ≥ 0 with 2g−2+n > 0, [5] proves a general formula for the Sn-equivariant Euler characteristic for�g,n, as conjectured

by D. Zagier.

1.2.2. Spaces of long embeddings and string links
The rational homotopy type of spaces of “long embeddings” Embc(Rm,Rn) is given by the homology of certain “hairy graph
complexes” introduced by Arone-Turchin [3]. These complexes have a geometric interpretation as homology with local coefficients of
the tropical moduli spaces, as we will explain more in forthcoming work. These complexes in fact depend only on the parity ofm and
n, up to degree shift.When n is even andm is odd, the decoration attached to each graph is the Hochschild-Pirashvili homology of the
graph, which is equivalent to the collection of Out(Fg)-representations on the Sk-invariant parts of H̃∗(Confk(Rg)+) for all k, which
we study below in Section 2 (see [13, Theorem 1]). Similarly, our sign multiplicity spaces coincide with the hairy graph homology
when n andm are both even. See [24, Remark 5.2] for applications of the other isotypic components to rational homotopy groups of
the space of string links, and see [25, Section 2.5] for an interpretation of the isotypic components as the bead representations.

The reason the above two complexes (n even, m even or odd) only relate to our trivial and sign computations is that the “hairs”
in hairy graph complexes are unlabeled. In [23], the authors study spaces of string links via complexes of graphs with labeled hairs
(possibly with labels repeated or missing). These are equivalent to ours in the sense that ours are a special case, while theirs can be
obtained from ours by taking invariants under Young subgroups of symmetric groups.

In genus 2 specifically, we refer to the work of Conant–Costello–Turchin–Weed [4], who show that only the graph � contributes
to the hairy graph homology, which furthermore takes the form (sgn3 ⊗ V)S2×S3 for some V computed by a 3-step complex. This
echos our Theorem 3.2, and in fact proves the specialization to the trivial and sign isotypic components. Our further reduction in
this paper from � to R2 (and indeed from any graph to Rg), as well as the richer structure coming from the Sn-action on the n labels,
is not studied in that paper. See also Remark 3.4 for further connections.

1.2.3. Representations of mapping class groups
In a different direction, Moriyama [18] studies representations of the mapping class group of a surface of genus g with one boundary
component. These representations are the cohomology of the compactified configuration space on the surface with an additional
point removed from the boundary. Since a punctured surface is not compact, the compactified configuration space is not homotopy
equivalent to Confn(R2g)+ (in contrast with Proposition 2.1), and has homology concentrated in degree n only. Nevertheless,
Moriyama [18, Section 4] accesses his cohomology using a cell structure whose only nontrivial cells are n-cells, which are exactly the
top-dimensional cells that we consider below. In particular, his setup does not include (n−1)-cells, the existence of which constitutes
the central computational challenge in our work.

1.2.4. Modular operads
We remark briefly on the relationship to modular operads [14], postponing details to a sequel. The cellular chain complex of the
moduli space�g,n is isomorphic to the Feynman transform FModCom((g, n)), whereModCom is the modular-commutative operad
ModCom((g, n)) = Q in degree 0 for each (g, n)with 2g−2+n > 0. In fact FModCom((g, n)) is quasi-isomorphic to FCom((g, n))
whenever g > 0 and (g, n) 
= (1, 1); see [7, Remark 3.3]. Here, Com is the commutative operad Com((g, n)) = Q in degree 0 for each
g = 0 and n ≥ 3, and 0 otherwise. In light of our Theorem 3.2, our results give computations of the homology of FModCom((2, n))
and of FCom((2, n)) in the range n ≤ 22. These have renewed interest in light of the recent results of [6, 7].

1.2.5. Future work
A sequel to this paper shall present computations on genus g > 2 graph complexes in relation to �g,n, via a Serre-like spectral
sequence whose E1 page involves the compactified configuration spaces of more than one graph of genus g. In that paper we will
also treat more precisely the connections between modular operads, cellular chains of �g,n, and hairy graph complexes that are
sketched above. It would be interesting to extend the computations in this paper to explore the other parities (of n and m) of graph
complexes.
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2. Homology of compactified configuration spaces of graphs

For a topological space X and for n ≥ 0, recall the configuration space

Confn(X) = {(x1, . . . , xn) ∈ Xn | xi 
= xj for all i 
= j}.

We refer to the one-point compactification, denoted Confn(X)+, as the compactified configuration space. In this paper, we only
consider compactified configuration spaces on compact Hausdorff spaces X. In this case, there is an Sn-equivariant homeomorphism
of pointed spaces

Confn(X)+ ∼= Xn/{(x1, . . . , xn) ∈ Xn | xi = xj for some i 
= j}. (3)

Proposition 2.1. For each n ≥ 0, Confn(−)+ is a functor from the category of compact Hausdorff topological spaces and all continuous
maps to the category of pointed topological spaces with Sn-action. Moreover, if f , g : X → Y are homotopic, then the induced maps

Confn(X)+ → Confn(Y)+

are again homotopic.

Thus, in contrast to the situation for uncompactified configuration spaces, for a compact X (such as a finite graph), the homotopy
type of Confn(X)+ depends only on the homotopy type of X, and a self homotopy equivalence of X induces an Sn-equivariant
self homotopy equivalence of Confn(X)+. In fact, a more general version of Proposition 2.1 is true: for (not necessarily compact)
Hausdorff spaces, the functor Confn(−)+ takes a proper homotopy equivalence to a proper homotopy equivalence.

Proof of Proposition 2.1. Let X and Y be compact Hausdorff, and let f : X → Y be a continuous map. Write f n : Xn → Yn for
the induced map of Cartesian powers. The source and target spaces contain copies of Confn(X) and Confn(Y), respectively, and
the preimage of Confn(Y) is contained in Confn(X). Therefore, collapsing the complements of Confn(X) and Confn(Y) yields the
desired pointed Sn-equivariant map

Confn(X)+ → Confn(Y)+.

Moreover, if F : X × [0, 1] → Y is a homotopy between f and g, then in the same manner we obtain an Sn-equivariant map
Xn × [0, 1] → Yn, and an Sn-equivariant homotopy

Confn(X)+ × [0, 1] → Confn(Y)+

between the maps induced by f and g.

Homotopy invariance of Confn(−)+ in particular gives well-defined and natural actions of the groups of homotopy automor-
phisms, as the following proposition explains.

Proposition 2.2. Let X and Y be compact Hausdorff, and let hAut(X) and hAut(Y) be their respective groups of homotopy classes of self-
homotopy equivalences. Let X ∼−→ Y be a homotopy equivalence, and letφ : hAut(X) → hAut(Y) be the induced group homomorphism.
Then the induced isomorphism of graded Sn-representations

H∗(Confn(X)+)
∼−→ H∗(Confn(Y)+)

is hAut(X)-equivariant, where hAut(X) acts on the right-hand side through φ.

Proof. Let m : X ∼−→ Y and m′ : Y ∼−→ X be inverse homotopy equivalences. Then any f ∈ hAut(X) determines an auto-
equivalencemfm′ : Y ∼−→ Y , and therefore an element of hAut(Y), and this association descends to a well-defined map hAut(X) →
hAut(Y). Given another g ∈ hAut(X), the composition (mfm′)(mgm′) = mf (m′m)gm′ is homotopic to mfgm′, yielding that φ is a
homomorphism. Functoriality and homotopy invariance of Confn(−)+ gives the compatibility of the two actions.

Specializing to finite graphs, the above facts show that a calculation ofH∗(Confn(G)+) for just one graphG along with the induced
action of hAut(G) determines the analogous representations for all other homotopy equivalent graphs. One may then work with the
simplest graph of a given genus, as we do next.
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(2|1)

(1|2)

(12|)

(21|)

(|12)

(|21)

(2|)

(1|)

(|2)

(|1)

Figure 1. Cellular decomposition of Conf2(R2)+ , omitting∞. The symmetric group S2 acts on this picture via reflection across the diagonal.

2.1. An Sn-equivariant cell structure on Confn(Rg)+

Let Rg = ∨g
i=1S1 be the “rose graph:” a wedge of g circles, with the unique vertex denoted v. For any finite, connected graph G of

genus (first Betti number) g = |E(G)| − |V(G)| + 1, we may use Proposition 2.1 to compute H̃∗(Confn(G)+) with its natural action
of Iso(G), via computing H̃∗(Confn(Rg)+) with its natural hAut(Rg)-action.

We now fix a cellular structure on Confn(Rg)+, from which we obtain a 2-step free resolution for H̃∗(Confn(Rg)+;Z) as an
(integral) Sn-representation used in this paper.1

Let�g = ⋃g
i=1(i−1, i) ⊂ R be a union of g open intervals, and fix a homeomorphism to Rg \{v}. We sometimes call the intervals

arcs since they correspond to the arcs of the petals in Rg after removing the central vertex. Denote [n] = {1, 2, . . . , n}, and for S ⊆ [n]
let ConfS(�g) be the space of configurations of points in �g with labels in S. Then ConfS(�g) decomposes as a disjoint union of
open polyhedra as follows. Let |S| = k; then for every pair (σ ,χ), where σ : [k] ∼=−→ S is a total ordering on S and χ : [k] → [g] a
nondecreasing function, we associate the collection of configurations (xs)s∈S ∈ ConfS(�g), where

xσa < xσb ∈ R ⇐⇒ a < b ∈ [k] and xσa ∈ (i − 1, i) ⇐⇒ χ(a) = i.

Writing σi := σ(i) for short, we denote this collection of configurations by

(σ1σ2 . . . σj1 |σj1+1 . . . σj2 | . . . | . . . | . . . σjg−1 |σjg−1+1 . . . σk). (4)

where χ−1(1) = {1, . . . , j1}, χ−1(2) = {j1 + 1, . . . , j2}, and so on. Set j0 = 1 and jg = k.

Example 2.3. For n = 6 and g = 3, (413|5|62) denotes the collection of configurations of points (x1, x2, . . . , x6) ∈ R6 with 0 < x4 <

x1 < x3 < 1 < x5 < 2 < x6 < x2 < 3. One such configuration can be pictured as:

4 1 3 5 6 2

Intervals may be vacant, as in the case of (321||654), which contains configurations without points on the second interval, such as:
3 2 1 6 5 4

The configurations corresponding to each (σ ,χ) are parametrized by the interior of a product of open simplices. As the following
lemma states, this determines a cellular decomposition of Confn(Rg)+. Figure 1 illustrates this decomposition in the case n = g = 2,
omitting the point ∞.

Lemma2.4. The spaceConfn(Rg)+ admits a cellular decompositionwith a single 0-cell, n!·(n+g−1
g−1

)
cells in dimensions n, and n!·(n+g−2

n−1
)

cells in dimension n − 1. For k ∈ {n − 1, n}, the k-dimensional cells are labeled by total orderings of {1, . . . , k}, separated by g − 1 bars,
as denoted in (4). The natural Sn-action freely permutes the (n − 1)- and n-cells.

Consequently, we have a chain complex of free Z[Sn]-modules

Z[Sn](
n+g−1
g−1 ) ∂→ Z[Sn](

n+g−2
g−1 ), (5)

1We’ve learned thoughprivate communication thatO. Tommasi, D. PetersenandP. Tostesonhave independently found the sameconstruction for this calculation.
Petersen and Tommasi have also obtained results on the weight-0 compactly supported cohomology ofM2,n , also using graph calculations. At this moment,
we do not know how to directly relate their methods with the ones presented in this paper.
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where themodules are placed in degrees n andn−1, respectively, whose homology is isomorphic, Sn-equivariantly, to the reduced homology
H̃∗(Confn(Rg)+).

Proof. LetX• ⊂ Confn(Rg) denote the closed subset of all configurations in which the vertex v is inhabited, and letX◦ ⊂ Confn(Rg)
be its complement, parametrizing all configurations in which v is uninhabited. A choice of homeomorphism �g ∼= Rg \ {v} yields an
Sn-equivariant homeomorphism

X◦ ∼= Confn(�g).

Similarly, we obtain an Sn- equivariant homeomorphism

X• ∼=
∐

|S|=n−1
ConfS(�g),

where a configuration (x1, . . . , xn) ∈ X• in which xi = v determines a configuration in Conf [n]\{i}(�g), and vice versa.
Following the discussion preceding the lemma statement, X◦ and X• are disjoint unions of interiors of convex polyhedra inRS for

|S| = n − 1 and |S| = n, each indexed by a pair (σ ,χ). In this way we obtain the claimed cell structure on Confn(Rg)+. Now notice
that Sn acts freely on the n-cells and the (n− 1)-cells, respectively. Therefore, the reduced cellular chain complex is quasi-isomorphic
to the claimed 2-step complex of free Sn-modules, and computes H̃∗(Confn(Rg)+;Z) equivariantly with respect to Sn.

As an immediate corollary, we have the following formula for the Sn-equivariant Euler characteristic of Confn(G)+ for any graphG.

Corollary 2.5. Fix g ≥ 1 and n ≥ 1. For any connected graph G with first Betti number g, the Sn-equivariant Euler characteristic of
Confn(G)+ in the representation ring of Sn is

(−1)n
(
n + g − 2
g − 2

)
[Z[Sn]]. (6)

2.2. Explicit description of the 2-step complex

In order to implement the 2-step complex that arises in (5) in computer calculations, we first explicitly orient the cells in the cellular
decomposition of Confn(Rg)+. The open cells of Confn(�g) ⊂ Rn are open subsets of Rn, and inherit their orientation from the
standard orientation of Rn. For a set S = [n] \ {j}, first orient RS so that the ordered basis (e1, . . . , êj, . . . , en) has sign (−1)j−1.
Then orient the open cells of ConfS(�g) ⊂ RS by restriction. This choice ensures that transpositions in Sn always act by reversing
orientation.

Then a permutation τ ∈ Sn sends the configuration (xs)s∈S to the configuration (xτ−1(t))t∈τ(S). Label cells by pairs (σ ,χ) as before;
τ permutes cells according to

(σ ,χ) �→ sgn(τ )(τ−1 ◦ σ ,χ),

where the sign indicates orientation reversal.
The set {(id,χ) | χ : [k] → [g] nondecreasing , k = n − 1, n} forms a set of representatives of Sn-orbits of cells. They give an

equivariant isomorphism of the cellular chain complex Z[Sn](
k+g−1
g−1 ) ∼−→ CCW

k . Explicitly, the action of σ ∈ Sn on a representative is
given by

σ · (12 . . . j1| . . . |jg−1 + 1 . . . n) = sgn(σ )(σ−1
1 σ−1

2 . . . σ−1
j1 | . . . |σ−1

jg−1+1 . . . σ−1
n ),

hence gives rise to the identification between cells and permutations

(σ1 . . . σj1 |σj1+1 . . . σj2 | . . . | . . . |σjg−1+1 . . . σn) ←→ sgn(σ )σ−1 ∈ Z[Sn] (7)

in the appropriate summand.
Next, to describe the boundary operator explicitly, consider an open cell of Confn(�g) ↪→ Confn(Rg). As mentioned above, this

is the interior of a polytope, and its boundary is a sum of open cells in
∐

|S|=n−1 ConfS(�g).

Lemma 2.6. The boundary operator on cells is given by

∂(σ1 . . . | . . . | . . . σn) =
g∑

i=1
(. . . |σ̂ji−1+1 . . . σji | . . .) − (. . . |σji−1+1 . . . σ̂ji | . . .). (8)

Proof. The boundary operator on a top-dimensional cell indexed by (σ1 . . . | . . . | . . . σn) gives a signed sum of codimension 1 cells
that arise when one of the marked points on an edge of Rg falls onto the vertex v. All other collisions of points are identified with the
0-cell ∞. Thus, (8) follows, up to a verification of signs that we omit.
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Example 2.7. For n = 6 and g = 3, the cell (123|4|56) has boundary given by

∂(123|4|56) = (23|4|56) − (12|4|56) +����
(123||56) −����

(123||56) + (123|4|6) − (123|4|5).
In particular, one observes that intervals that contain exactly one point do not contribute to the boundary. This is consistent with the
observation that a point looping around a vacant edge in Rg contributes no boundary.

2.3. Action of homotopy equivalencesOut(Fg)

Let Out(Fg) denote the group of outer automorphisms of the free group on g generators. Recall that Out(Fg) ∼= hAut(Rg). Therefore,
by Proposition 2.1, there is an Out(Fg)-action on the homology of Confn(Rg)+, which we describe here.

Fix generators a1, . . . , ag for Fg . The group Out(Fg) is generated by the following automorphisms (see e.g. [2]): flips fi for i =
1, . . . , g; swaps si for i = 1, . . . , g − 1; and a transvection t12, defined as follows:

fi(aj) =
{
a−1
i i = j
aj i 
= j,

si(aj) =

⎧⎪⎨⎪⎩
ai+1 j = i
ai j = i + 1
aj j 
= i, i + 1,

t12(aj) =
{
a1a2 j = 1
aj j 
= 1.

Note that Out(Fg) does not act on the space Rg , nor does it act on its cellular chains. Instead, the Out(Fg)-action on homology
is induced by a collection of continuous maps Rg → Rg that only satisfy the relations in Out(Fg) up to homotopy. Having picked
generators ({fi}, {si}, t12), the Out(Fg)-action is completely described by continuous realizations of these elements. In what follows,
we denote such realizations and their operation on cellular chains by the corresponding uppercase letters ({Fi}, {Si},T12).

Lemma 2.8. The actions of flips, swaps and transvections on homology can be realized by maps Rg → Rg that fix the vertex, and thus
induces cellular maps on Confn(Rg)+. Their effect on cellular chains in the two nontrivial dimensions are given as follows.

The maps inducing flip and the swap permute the cells of Confn(Rg)+ as

Fi : (. . . |(ji−1+1)(ji−1+2) . . . ji| . . .) �→ (−1)ji−ji−1(. . . |ji . . . (ji−1+2)(ji−1+1)| . . .) (9)
Si : (. . . |(ji−1+1) . . . , ji|(ji+1) . . . ji+1| . . .) �→ (. . . |(ji+1) . . . ji+1|(ji−1+1) . . . ji| . . .). (10)

The transvection t12 is induced by the cellular operator

T12 : (12 . . . j1| . . . j2|j2 + 1 . . . | . . .) �−→
j1∑

k=0

∑
σ∈�k

(12 . . . k|σk+1 . . . σj2 |j2 + 1 . . . | . . .) (11)

where �k is the set of shuffles of the ordered tuples (k + 1, . . . , j1) and (j1 + 1, . . . , j2).

Proof. The flip and swap are realized by simple linear maps on the intervals (i − 1, i) ⊂ R, hence reorder the points in the claimed
manner. Note that the flip Fi reverses the direction of the i-th arc, inducing an orientation shift of (−1)ji−ji−1 .

The transvection t12 is realized by a map T12 : Rg → Rg that stretches the first arc to twice its original length, then lays the latter
half along the second arc. Any points that inhabit this latter half get distributed along the second arc. The locus of configurations in
which a point lands exactly on 1 ∈ (0, 2), or on an existing point in the configuration, belongs to a lower dimensional skeleton of
Confn(Rg)+, and therefore do not contribute to calculations on cellular chains. Note also that the stretch is an orientation-preserving
linear map. Hence all cells map to other cells with degree 0 or 1, and the ones in the image have points 1, . . . , k on the first arc, for
some k ≤ j1, and some shuffle of the points k + 1, . . . , j1 and j1 + 1, . . . , j2 on the second arc.

Example 2.9. Recall the case n = 2 and g = 2 depicted in Figure 1. Figure 2 depicts the transvection operation T12 on the cells
(1|2) and (12|), respectively, where stretching the first arc by a factor of 2 consequently stretches the cells so that they cover the cells
appearing in the formula (11).

(2|1)

(1|2)

(12|)

(21|)

(|12)

(|21)
�−→

(2|1)

(1|2)

(12|)

(21|)

(|12)

(|21)

(2|1)

(1|2)

(12|)

(21|)

(|12)

(|21)
�−→

(2|1)

(1|2)

(12|)

(21|)

(|12)

(|21)

Figure 2. The transvection operations T12 on the cell (1|2), on the left, and (12|) on the right, of Conf2(R2)+ , as in Example 2.9.
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Remark 2.10. As mentioned before Lemma 2.8, the chain operators given above do not satisfy the relations between fi, si and t12 in
Out(Fg). For example, we have (f2t12)2 = 1, whereas the transvection operation (F2T12)

2 on Rg is not the identity map on the chain
level.

Another class of finite order elements playing a role in what follows are elements in Out(Fg) coming from isometries of genus g
graphs. Since these have finite order, the action they induce on homology is indeed diagonalizable overQ. Had these elements acted
on the cellular chains with finite order, their action would also be diagonalizable. But we have encountered examples in which such
operators have non-trivial Jordan blocks, e.g., the order 4 rotation of the complete graph K4.

2.4. Separating into irreducibles

The free resolution of H̃∗(Confn(Rg)+;Q) as an Sn-representation opens the door to splitting up the calculation into the distinct
irreducibles of Sn when working rationally. This approach drastically reduces the size of the vector spaces involved, and allows
for efficient extraction of specific irreducible multiplicities. Efficiency is particularly important, seeing that the vector spaces in the
resolution of Lemma 2.4 have dimension ∼ ng−1 · n!.

Consider any associative ring R and a morphism of free (left) R-modules ψ : RN → RM . Representing elements of RN by row
vectors, ψ is uniquely represented by a matrix A ∈ MN×M(R), which acts on RN by right multiplication.

Specializing this to the group ring R = Z[Sn], the differential ∂ : Z[Sn]N → Z[Sn]M from Lemma 2.6 is represented by amatrix we
shall denote A∂ . We emphasize that the entries of A∂ are elements in Z[Sn], characterized in (8). The underlying Z-linear map would
in principle be represented by amatrix that is n! times bigger, but we will never use this larger matrix directly. The action of generators
of Out(Fg) on this complex is similarly described as Z[Sn]-valued matrices as determined by Lemma 2.8, and the identification of
cellular chains and elements in Z[Sn] is given in (7).

Now extend scalars toQ. Lemma 2.11 records the general statement that allows one to split the homology calculations into isotypic
components, where all matrices involved are substantially smaller than the original A∂ . The only computational input needed is a
realization of the irreducible representations of Sn as explicit matrices, which has already been implemented in Sage [22].

We recall the notion of multiplicity space. Let G be a finite group and ρ : G → EndC(Vρ) a complex irreducible representation.
For any complex G-representationW, themultiplicity space of ρ inW isW(ρ) := W ⊗G V∗

ρ , where V∗
ρ is the dual representation to

Vρ . More generally, for a Z[G]-module W, define W(ρ) to be the ρ-multiplicity space for the extension of scalars WC := W ⊗ C.
Given a set Ĝ of representatives of the isomorphism classes of irreducible complex G-representations, Schur’s lemma gives a natural
isomorphism

WC
∼=

⊕
τ∈Ĝ

W(τ ) ⊗C Vτ .

In particular, dimW(τ ) is the number of times Vτ occurs in WC, and any map of Q[G]-representations W → U is uniquely
determined by respective mapsW(τ ) → U(τ ) for τ ∈ Ĝ.

Lemma 2.11. Let G be a finite group, ρ : G → EndC(Vρ) a complex irreducible representation. Given a complex of regular G-
representations

C• = (. . . → Z[G]ni ∂i−→ Z[G]ni−1 → . . .),

there is an isomorphism, natural in all G-equivariant maps of complexes,

Hi(C•)(ρ
∗) ∼= Hi

(
. . . → Vni

ρ

ρ[∂i]−−−→ Vni−1
ρ → . . .

)
(12)

where ρ∗ is the dual representation to ρ and ρ[∂i] ∈ Mni×ni−1(EndC(Vρ)) is the operator Vni
ρ → Vni−1

ρ obtained by applying ρ entry-
wise to A∂i ∈ Mni×ni−1(Z[G]).

In particular, the dimensions of the homology on the right hand side of (12) are the multiplicity with which ρ∗ occurs in H∗(C•).

Proof. Working with complex representations of a finite group, every representation splits as a sum of irreducibles. In particular, the
tensor (−)⊗GVρ is an exact functor and commuteswith taking homology. But since the actionρ gives an isomorphismZ[G]⊗GVρ

∼=
Vρ , we have a natural isomorphism of chain complexes,(

· · · → Z[G]ni A∂−−→ Z[G]ni−1 → · · ·
)

⊗G Vρ
∼=

(
· · · → Vni

ρ

ρ[A∂ ]−−−−→ Vni−1
ρ → · · ·

)
.

Passing to the homology of these complexes proves the claim.

Working with G = Sn, the formula (12) simplifies due to the fact that every Sn-representation is self-dual, i.e., ρ∗ ∼= ρ. Moreover,
since all Sn-characters are defined overQ, the same discussion applies already for rational rather than complex representations.
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Corollary 2.12. There are isomorphisms, natural in all continuous self-maps of Rg,

H̃n−1(Confn(Rg)+;Q)(ρ) ∼= ker(ρ[A∂ ]) and H̃n(Confn(Rg)+;Q)(ρ) ∼= coker(ρ[A∂ ]) (13)

where A∂ is the Z[Sn]-valued matrix representing Z[Sn](
n+g−1
g−1 ) ∂→ Z[Sn](

n+g−2
g−1 ) from Lemma 2.6.

Remark 2.13. SinceMN×M(EndC(Vρ)) ∼= MNd×Md(C) for d = dim(Vρ), the resulting calculation of the (co)kernel is reduced from
involving Nn! ×Mn! matrices to Nd ×Md ones. For Sn, this reduces the matrix sizes by a factor of at least

√
n! (see [17]), e.g. for S10

the largest irreducible has dimension d = 768 compared to 10! ∼ 3.6 × 106.

Corollary 2.14 (Sign representations). The Qsgn-isotypic component of H̃k(Confn(Rg)+;Q) has multiplicity
(k+g−1

g−1
)
for k = n − 1

and n, and has multiplicity 0 otherwise. Explicitly, every cell (σ ,χ) gives a cycle
∑

τ∈Sn sgn(τ )τ · (σ ,χ), and different Sn-orbits of those
are non-homologous.

Geometrically, these sgn-isotypic cycles are represented by the loci of all configurations with specified numbers of points on each
arc.

Proof. Lemma 2.6 gives a formula for the cellular boundary ∂ of Confn(Rg)+, and by Lemma 2.11 the ρ-multiplicity space of
H̃k(Confn(Rg)+;Q) for k = n − 1 (and n) is computed by the cokernel (and kernel) of the linear operator ρ[∂].

As in (7), a cell (σ1 . . . | . . . | . . . σn−1) corresponds to sgn(σ )σ−1 ∈ Z[Sn], hence applying ρ to such a cell results in the
endomorphism sgn(σ )ρ(σ )−1 ∈ EndQ(Vρ). In particular, when (ρ = sgn) every cell is sent by ρ to +1 ∈ EndQ(Qsgn), and
(8) immediately degenerates to ρ[∂] = 0. We conclude that the sgn-multiplicity space of the homology is isomorphic to that of the
cellular chains, which is simplyQ(k+g−1

g−1 ). It further follows that ∂ restricts to 0 on the sgn-isotypic component of CCW
k (Confn(Rg)+).

Recalling that the projection onto the sgn-isotypic component is given by anti-symmetrization, the claim follows.

3. From graph configuration space to tropical moduli space

We now briefly recall the definition of the tropical moduli space�g,n and establish a connection between�2,n and a particular graph
configuration space. We will then use the techniques of Section 2 to compute the homology of �2,n.

A tropical curve is a vertex-decorated metric graph. More precisely, it is a tuple of data (G,w,m, l) where G is a connected graph,
possibly with loops and parallel edges, w : V → Z≥0 a weight function on the set V of vertices, m : {1, . . . , n} → V a marking
function, and l : E → R>0 an edge-length function. These data must satisfy the following stability condition: for each v ∈ V , we
require 2w(v)+ val(v)+ |m−1(v)| > 2, where val is the graph theoretical valence. The genus of a tropical curve is |E(G)| − |V(G)| +
1+∑

v∈V(G) w(v). Let�g,n denote themoduli space of genus g, n-marked tropical curves. This is a topological space that parametrizes
isomorphism classes of tropical curves of genus g and nmarkings having total edge length 1. It is glued from quotients of the standard
simplices inside RE(G)

≥0 for graphs G, thus inheriting the quotient topology. For a formal definition, see [6].
A bridge in a connected graph is an edge whose deletion disconnects the graph. The bridge locus, denoted �br

g,n ⊂ �g,n, is the
closure in �g,n of the locus of tropical curves with bridges.

Now let g = 2. Recall the graph�, now regarded as a metric graph with two vertices v1, v2 and three edges e1, e2, e3 between them
of equal lengths. We say a tropical curve (G,w,m, l) ∈ �2,n has theta type if G is homeomorphic to � and its marking functionm is
injective.

Lemma 3.1. Let Iso(�) be the group of isometries of �. We have a homeomorphism of topological spaces

((�2)◦ × Confn(�))/Iso(�) ∼= �2,n \ �br
2,n,

where (σ , τ) ∈ S2×S3 ∼= Iso(�) acts on (�2)◦ through the permutation action of τ onR3 and onConfn(�) through the natural action
of Iso(�) on �.

Proof. Let (�2)◦ denote the interior of the standard 2-simplex. There is a continuous map

f : (�2)◦ × Confn(�) → �2,n \ �br
2,n

given as follows. Let X be a configuration of n points on � and (r1, r2, r3) ∈ (�2)◦. Then f ((r1, r2, r3),X) is the isomorphism class
of the following tropical curve (G,w,m, l) of theta type. The graph G is obtained from � by subdividing each edge at every point in
the configuration. The marking functionm is set to havem(i) be the vertex at point i in the configuration X. The length function l is
obtained by scaling the 1-cells e1, e2, and e3 to have lengths r1, r2, and r3, respectively.

By [8, Lemma 3.1], a tropical curve in �2,n has theta type if and only if it lies in �2,n \ �br
2,n. Therefore f is surjective. Moreover,

two elements in (�2)◦ × Confn(�) have the same image if and only if they are in the same orbit under the action of Iso(�). So f
descends to a homeomorphism from the quotient space ((�2)◦ × Confn(�))/ Iso(�) to �2,n \ �br

2,n.
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[7, Theorem 1.1] establishes that �br
2,n is contractible. Therefore Lemma 3.1 enables us to relate the reduced rational cohomology

of �2,n with that of Confn(�).

Theorem 3.2. There is an Sn-equivariant homotopy equivalence

�2,n � (S2 ∧ Confn(�)+)/Iso(�), (14)

where∧ is the smash product and Iso(�) ∼= S2×S3 acts on the sphere S2 by reversing orientation according to the sign of the permutation
in S3.

In particular, there is an isomorphism of Sn-representations

H̃i(�2,n;Q) ∼= (sgn3 ⊗ H̃i−2(Confn(�)+;Q))Iso(�), (15)

where sgn3 is the sign representation of S3 in Iso(�) ∼= S2 × S3, and the superscript denotes the Iso(�)-invariant part. Similarly, there
is an equivariant isomorphism

H̃i(�2,n;Q) ∼= (sgn3 ⊗ H̃i−2(Confn(�)+;Q))Iso(�), (16)

where the subscript Iso(�) denotes the coinvariant quotient.

Proof. By Lemma 3.1, we have

�2,n \ �br
2,n

∼= ((�2)◦ × Confn(�))/Iso(�).

So their one-point compactifications are homeomorphic:

(�2,n \ �br
2,n)

+ ∼= (((�2)◦ × Confn(�))/Iso(�))+. (17)

Since the bridge locus is contractible [7, Theorem 1.1], the left-hand side of (17) is homotopy equivalent to�2,n. The right-hand side
of (17) is homeomorphic to the space ((�2)◦ ×Confn(�))+/Iso(�), where Iso(�) acts trivially on the point∞. Then the first claim
follows from the identification (X × Y)+ = X+ ∧ Y+, along with the fact that ((�2)◦)+ ∼= S2.

Passing to rational cohomology, we deduce

H̃i(�2,n;Q) ∼= H̃i((S2 ∧ Confn(�)+)/Iso(�);Q) ∼= H̃i((S2 ∧ Confn(�)+);Q)Iso(�).

By the Künneth formula,

H̃∗(S2 ∧ Confn(�)+;Q) ∼= H̃∗(S2;Q) ⊗ H̃∗(Confn(�)+;Q).

Since the reduced cohomology of S2 is supported in degree 2, where it is 1-dimensional, and Iso(�) acts through the orientation
reversing action of S3, it follows that H̃2(S2) is Iso(�)-equivariantly isomorphic to triv2 ⊗ sgn3. We obtain the desired isomorphism
of rational vector spaces, and every identification above is equivariant with respect to the Sn-actions induced by permuting marked
points.

3.1. Isometries of the graph�.

The last ingredient needed to compute the homology of �2,n using Theorem 3.2 and the techniques of Section 2 is the action of
the graph automorphism group Iso(�) of the Theta graph � on H̃∗(Confn(�)+;Q). For computations, we choose the particular
homotopy equivalence �

∼−→ R2 that collapes the edge e3 and sends ei to the i-th arc in R2 for i = 1, 2. This map induces a
homotopy equivalence on configuration spaces Confn(�)+ ∼−→ Confn(R2)+, and a group homomorphism Iso(�) → Out(F2) as
in Proposition 2.2. We need only consider a generating set of Iso(�), for example:

• the order 6 isomorphism, exchanging the vertices and permuting the edges e1, e2, and e3 in a 3-cycle; and
• the top swap t, fixing the vertices and exchanging e1 and e2.

Finally, Lemma 2.8 then gives formulas for the Iso(�)-action on cellular chains, and Lemma 2.11 lets one calculate the multiplicity
space of an individual irreducible representation ρ.
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Table 2. Partial irreducible decomposition of Hn+1(�2,n ;Q) for n ≤ 17.

n Partial irreducible decomposition (listed as conjugate pairs of partitions)

12 (χ(12))+ (χ(11,1))+ (2χ(10,2))+ (3χ(3,19))+ (4χ(9,3) +3χ(23,16))+ (8χ(9,2,1) +7χ(3,2,17))+ (3χ(9,13) +4χ(4,18))+ (7χ(8,4) +3χ(24,14))+ (19χ(8,3,1))+
(? for λ∗ ≤ λ ≤ (8, 22))

13 (χ(13) + 2χ(113)) + (4χ(11,2) + 3χ(22,19)) + (5χ(10,3) + 5χ(23,17)) + (? for λ∗ ≤ λ ≤ (10, 2, 1))
14 (χ(12,2)) + (4χ(12,12)) + (5χ(11,3) + 5χ(23,18)) + (5χ(3,111)) + (? for λ∗ ≤ λ ≤ (11, 2, 1))
15 (2χ(115)) + (5χ(22,111)) + (6χ(13,12)) + (? for λ∗ ≤ λ ≤ (12, 3))
16 (2χ(16)) + (χ(15,1)) + (4χ(14,2)) + (χ(14,1,1) + 7χ(3,113)) + (? for λ∗ ≤ λ ≤ (13, 3))
17 (χ(17) + 2χ(117)) + (8χ(15,2) + 7χ(22,113)) + (0 · χ(15,12)) + (? for λ∗ ≤ λ ≤ (14, 3))

3.2. Tabulation of data

The above calculation was implemented in Sage [22], and the resulting irreducible decompositions of the codimension 1 homology
Hn+1(�2,n;Q) are shown in Tables 1 and 2. In these tables, for every partition λ � n, χλ denotes the Specht module corresponding
to λ, and they are written in reverse lexicographic ordering of partitions.

Using the formula [5] for the equivariant Euler characteristic of�2,n and the fact that the homology is concentrated only in degrees
n+ 1 and n+ 2, knowingHn+1(�2,n;Q) is equivalent to knowingHn+2(�2,n;Q). Please visit this URL2 for the code we used as well
as a web application that presents the data in other ways, including

• Frobenius characteristic of codimension 1 homology Hn+1(�2,n;Q) for n ≤ 10;
• Frobenius characteristic of codimension 0 homology Hn+2(�2,n;Q) for n ≤ 10;
• expansions of these symmetric functions in various bases for symmetric functions, e.g., the elementary symmetric functions;
• partial expansions of Hn+1(�2,n;Q) and Hn+2(�2,n;Q) in the Schur basis for n ≤ 25.

Remark 3.3. We briefly discuss the performance of our Sage program. The highest n for which we obtain the full homology
representation is n = 10, where the largest irreducible representation has dimension 768. The matrix used to compute its multiplicity
has dimensions 31488 × 7680. Computations of irreducible multiplicity for any n never exceeded 24 hours, but computations for
large irreducibles with n ≥ 11 crashed due to insufficient memory.

Beyondn = 10,wewere only able to calculatemultiplicities of Spechtmodules of small dimension. Table 2 shows partial irreducible
decompositions of Hn+1(�2,n;Q) for 11 ≤ n ≤ 17. The summands are presented as conjugate pairs of partitions, where the set of
pairs is ordered reverse-lexicographically. The unknownmultiplicities are indicated as “(? for λ∗ ≤ λ ≤ λ0)

′′, indexed by all partitions
that are lex-larger than their conjugate partition and lex-smaller than λ0. Any missing partition outside of the unknown range occurs
with multiplicity 0, and similarly for their conjugate partitions.

For 18 ≤ n ≤ 22, we obtained multiplicities for χ(n), χ(1n), χ(n−1,1) and χ(2,1(n−2)), and for 23 ≤ n ≤ 25, we obtained multiplicities
for χ(n), χ(1n) only. All of the multiplicities are consistent with the following Remark 3.4 and Conjecture 3.5.

Remark 3.4. There are explicit formulas for the multiplicities of the trivial and sign representations in H̃∗(�2,n;Q). The multiplicity
of the sign representation χ(1n) in H∗(�2,n) is{

�n
6 � n even

0 n odd
in degree ∗ = n + 2, and

{
0 n even
�n
6 � n odd

for ∗ = n + 1.

For the trivial representation χ(n), its multiplicity in H∗(�2,n) is⎧⎪⎪⎪⎨⎪⎪⎪⎩
0 n ≡ 0 mod 4
0 n ≡ 1 mod 4
�n+10

12 � n ≡ 2 mod 4
�n+1

12 � n ≡ 3 mod 4

for ∗ = n + 2,

⎧⎪⎪⎪⎨⎪⎪⎪⎩
�n+8

12 � n ≡ 0 mod 4
�n−1

12 � n ≡ 1 mod 4
0 n ≡ 2 mod 4
0 n ≡ 3 mod 4

for ∗ = n + 1.

Note that in these cases themultiplicity in H̃∗(�2,n) is nonzero in exactly one degree ∗, whichmeans they are also completely encoded
in the Sn-equivariant Euler characteristic of �2,n as computed by Faber (see [5]).

These formulas were obtained in [4, Theorems 6.2 and 6.4] who used hairy graph complexes. Alternatively, in [13, Section 4.4], it
is explained that the calculations in [20, Corollaries 19.8 and 19.10] translate to a complete description of the Out(Fg)-representation
on the trivial and sign isotypic components of H̃∗(Confn(Rg)+;Q), and then [13, Proposition 1.11] details how the latter translates
to H̃∗(�2,n). We also learned through private communication with O. Tommasi that these multiplicities can be computed explicitly
using dimensions of spaces of modular forms.

2https://github.com/ClaudiaHeYun/BCGY

https://github.com/ClaudiaHeYun/BCGY
https://github.com/ClaudiaHeYun/BCGY
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Another way to derive themultiplicity formula for the sign representation was recently communicated to us by B.Ward; it involves
modular forms, via Lie graph homology. The work [26] relates H∗(�g,n;Q) with the Lie graph homology which may be identified
with HGrp

∗ (�g,n;Q) studied in [9, 16]. (The groups �g,n, which generalize Out(Fg) = �g,0 and Aut(Fg) = �g,1, were introduced in
[15]). In forthcoming work, Ward calculates in genus 2 that∑

i≥0
dimHi(�2,n)sgn = ⌊n−2

4
⌋ − dimHn+1(�2,n)sgn.

Then [9, Theorem 3.10] implies dimHn+1(�2,n)sgn = �n−2
4 � − �n

6 �, so the total dimension
∑

dimHi(�2,n)sgn = �n
6 �. Combining

this with the knowledge of Euler characteristics [5] and the fact that H∗(�2,n) is concentrated in two degrees, the sign multiplicity
formula above follows again.

Multiplicities of other irreducibles remainmysterious. Forχ(n−1,1) andχ(2,1n−2), however, we observe the following pattern, verified
computationally for up to n = 22 marked points.

Conjecture 3.5. For all n ≥ 2, in the Sn-representation H∗(�2,n;Q), the multiplicity of the standard representation χ(n−1,1) is⎧⎪⎨⎪⎩
⌊n
4
⌋

n ≡ 2 mod 4⌊n+2
6

⌋
n ≡ 1 mod 4

0 otherwise.
for ∗ = n + 2,

{⌊ n
12

⌋
n ≡ 0 mod 4

0 otherwise.
for ∗ = n + 1,

and the multiplicity of χ(2,1n−2)
∼= sgn ⊗ χ(n−1,1) is{

0 n is odd⌊n+4
6

⌋
n is even.

for ∗ = n + 2, always 0 for ∗ = n + 1.

Conjecture 3.5 was resolved a few months after a preprint of this paper appeared. The third author observed with Hainaut in
[13, Example 6.9] that these multiplicities follow from the work of Powell–Vespa [20] and the more recent work of Powell [19]. An
interpretation of these multiplicities in terms of modular forms would be pleasing.
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