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ABSTRACT

We describe the first grid-based simulations of the polar alignment of a circumbinary disc. We simulate the evolution of an
inclined disc around an eccentric binary using the grid-based code ATHENA++- . The use of a grid-based numerical code allows
us to explore lower disc viscosities than have been examined in previous studies. We find that the disc aligns to a polar orientation
when the « viscosity is high, while discs with lower viscosity nodally precess with little alignment over 1000 binary orbital
periods. The time-scales for polar alignment and disc precession are compared as a function of disc viscosity, and are found to
be in agreement with previous studies. At very low disc viscosities (e.g. « = 1073), anticyclonic vortices are observed along the
inner edge of the disc. These vortices can persist for thousands of binary orbits, creating azimuthally localized overdensities and
multiple pairs of spiral arms. The vortex is formed at ~3—4 times the binary semimajor axis, close to the inner edge of the disc,
and orbits at roughly the local Keplerian speed. The presence of a vortex in the disc may play an important role in the evolution

of circumbinary systems, such as driving episodic accretion and accelerating the formation of polar circumbinary planets.

Key words: accretion, accretion
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1 INTRODUCTION

Protoplanetary discs are produced during the star formation process.
Stars are frequently formed in pairs or clusters during the collapse of
a molecular cloud (Kouwenhoven et al. 2007; Duquennoy & Mayor
2009), and so discs around multiple stars are expected to be common
(Monin et al. 2007). Analogous to how circumstellar protoplanetary
discs can give rise to planets, the circumstellar and circumbinary discs
in a binary star system may act as the birthsites of the satellite(S)- and
planetary(P)-type circumbinary planets, respectively (Dvorak 1986).
Observations of binary star systems at different evolutionary stages
have revealed different types of protoplanetary discs and planetary
systems, including circumbinary discs (Simon & Guilloteau 1992;
Czekala et al. 2017; Kennedy et al. 2019; Bi et al. 2020; Kraus et al.
2020), individual circumstellar discs (Cruz-Saenz de Miera et al.
2019; Keppler et al. 2020), and exoplanet systems in both S- and
P-type orbits (e.g. Doyle et al. 2011; Martin 2018).

Binary and higher order star systems exhibit rich dynamics that
are not seen in single-star systems. The gravitational torque from the
inner binary creates a region of dynamical instability, limiting the
range of stable orbits for S- and P-type planets (Holman & Wiegert
1999; Quarles et al. 2018; Chen, Lubow & Martin 2020). Companion
stars on faraway orbits can perturb the system over long time-scales,
causing orbiting particles to undergo von Zeipel-Lidov—Kozai oscil-
lations (von Zeipel 1910; Kozai 1962; Lidov 1962). For simplicity,
we restrict most of the discussion in this paper to the binary case.
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For circumbinary or P-type orbits around a circular orbit binary,
misalignment of the orbit to the binary orbital plane causes the orbit
to nodally precess about the binary angular momentum vector. If
the inner binary is eccentric, a second stable configuration exists
in which the orbiting body precesses about the binary eccentricity
vector in a polar orientation (Verrier & Evans 2009; Farago & Laskar
2010; Doolin & Blundell 2011). For circumbinary discs around the
eccentric binary, inclination damping due to viscous forces causes the
disc to settle at either 0° or 90°, depending on the initial misalignment.
This can lead to the creation of polar discs, where the disc is aligned
perpendicular to the orbits of the binary stars. The stability of these
two orientations has previously been confirmed using analytic theory
and smoothed particle hydrodynamics (SPH) numerical simulations
(Martin & Lubow 2017, 2018; Lubow & Martin 2018; Zanazzi &
Lai 2018; Smallwood et al. 2019).

A handful of such ‘polar discs’ have been observed. The HD 98800
system is a hierarchical double binary system with a circumbinary
disc observed around the B binary component (Kennedy et al. 2019).
The A and B binary systems orbit each other on a 67 au orbit with
moderate eccentricity (e ~ 0.5), while the disc-hosting BaBb binary
components orbit on a 1 au orbit with high eccentricity (e ~ 0.8;
Zuiga-Ferndndez et al. 2021). The HD 98800 B disc is truncated
on both edges by the inner and outer binary, with the dust disc
extending between 2.5 and 4.6 au (Kennedy et al. 2019). More
recently, a polar circumbinary disc was observed around V773 Tau B
(Kenworthy et al. 2022). Observations of the IRS 43 system (Brinch
et al. 2016) have found an edge-on circumbinary disc with the binary
star components orbiting outside of the circumbinary disc plane.
Both components of the binary are also surrounded by circumstellar
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Figure 1. Visualization of the & = 102 simulation set-up at 7 = 1000
binary orbits. The disc starts inclined at # = 0 by rotating the disc along the
x-axis, keeping Lgis in the yz-plane, and undergoes nodal precession about
the z-axis due to the binary torque. Colours show a slice of density along the
xz-plane, with red contour showing a 3D isosurface. The orbits of the binary
stars are visible in the centre. The simulation grid is shown at half-resolution
on the right half of the simulation domain. Regions close to the binary and
the z-axis are not in the computational domain. An animation of the disc
evolution is available in the online material associated with this paper and
can be downloaded at https://youtu.be/Ny-ggFHALMA.

discs, each at a different angle to the circumbinary disc, suggesting
complex accretion from the circumbinary disc onto the central stars.

To date, all simulations of polar discs have been performed using
SPH (e.g. Martin & Lubow 2017; Cuello & Giuppone 2019; Kennedy
et al. 2019; Smallwood et al. 2019; Martin et al. 2022). These
simulations typically make use of over 10° particles and are able
to capture the global dynamical evolution of the disc. However,
the range of viscosities that can be included in SPH simulations is
limited by the number of particles in a given region. The minimum
disc effective viscosity (Shakura & Sunyaev 2009) is roughly o =
0.01 for most simulations (Price et al. 2018). Protoplanetary discs
around single stars have been found with viscosities of @ < 107
(Pinte et al. 2016; Villenave et al. 2022), and so the study of how
polar discs behave at lower viscosities is important but has been
unexplored.

In this paper, we work to expand on previous results using a grid-
based hydrodynamic code to simulate the circumbinary disc. This
allows us to extend the results of previous works to lower viscosities
than have previously been examined using SPH simulations. This
paper is organized as follows. In Section 2, we outline our compu-
tational set-up. Our results are presented in Section 3. We discuss
the implications to circumbinary disc evolution in Section 4, and
conclude in Section 5.

2 METHODS

We simulate a circumbinary disc using the grid-based hydrody-
namical code ATHENA++ (Stone et al. 2020), using spherical polar
coordinates (7, 0, ¢) for the simulations. Fig. 1 shows a visualization
of our simulation set-up. A disc that begins with an inclination in
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the range for polar alignment evolution nodally precesses about the
binary eccentricity vector. Therefore, we place the binary in the xz-
plane of the simulation, so that the binary angular momentum vector
Lypoints along the positive y-axis and the eccentricity vector ey,
points along the positive z-axis. With this placement of the binary,
a disc aligning towards a ‘polar’ orientation settles towards the xy-
plane of the simulation domain (0 = 71/2). This binary orientation
keeps the disc from precessing outside of the specified domain during
the simulation. This orientation has the additional benefit of orienting
the major axes of the binary towards the poles of the spherical polar
simulation domain, which prevents strong gravitational interactions
from occurring close to the inner radial boundary.

The primary simulation domain spans a range of r = [1.07a,
10.7a,], 0 = [5°, 175°], and ¢ = [0, 27t]. We use a grid of 144
logarithmically spaced cells in r, 176 uniformly spaced cells in 6,
and 384 uniformly spaced cells in ¢. Our disc set-up is based on the
set-up used in Martin & Lubow (2017). We initialize the mid-plane
density profile of the disc according to the density power-law profile,

R\ 7
p(R,z=0)=po<F0) ; (D

and set the vertical profile by numerically integrating the density at
each grid cell to establish hydrostatic equilibrium according to the
disc scale height H = ¢,/Qk. Here, R is the cylindrical radius to the
disc axis of rotation, Ry = ay, po = 1 at Ry, ¢; is the local isothermal
sound speed /P /p at R, and Q2 is the Keplerian orbital frequency
at R. The disc temperature is initialized using the power-law profile,

r —-q
T =T (%) , (@)

where ry = a, and Ty = 1 at Ry. We use power-law exponents of p
= 2.25 and g = 1.5, corresponding to an initial disc surface density
profile £ o¢ 773 and a constant kinematic viscosity v = ac?/ Q.
The density profile is truncated outside of the range [2ay,, Sap] using
an exponential cut-off of the form exp (— |r — w,|/o,), where u,
are the disc edges of 2a, and 5a, and the relative scale length o,
is oyin = 0.35a,, for the inner edge and o, o, = 1.8ay, for the outer
edge.

We initialize the disc with a spherically isothermal temperature
profile, as well as an initial scale height of H/r = 0.1 at R = 3.5a,,.
We use the orbital cooling scheme outlined in equation (5) of Zhu
etal. (2015), with a dimensionless cooling time of 7,0 = 0.01Q2k. At
the simulation boundaries, we instate a one-way outflow boundary
condition in the radial direction and a reflecting boundary condition
in the polar direction. We use a spherically symmetric density floor
with a value of ppor = 10™%pg at r = 1 and a power-law slope of
d = 2.25, identical to that of the density profile. The disc velocity
is initialized with a Keplerian profile using the total mass of the
binary M, = m; + my. Since the axis of rotation is now within the
simulation domain, regions near the poles of rotation are initialized
with a velocity

[GMo R
v = t0t77 3)
r r

which prevents excessively high velocities occurring near the poles
of rotation.

The binary components are simulated as gravitational bodies, with
equal masses m; = m, = 0.5, which we place in an eccentric
orbit with semimajor axis a, and eccentricity e,. We choose an
eccentricity of e, = 0.5. This sets the initial tilt required for disc
polar alignment of a low-mass disc to be iy < i < 180° — i,
where i = arcsin 4/3/8 2~ 38°, based on the behaviour of test

MNRAS 520, 2138-2147 (2023)

£20Z Jaquialdag |0 uo Jesn epeaaN 1o Ausiaaiun Aq £8000./8€ 1 2/2/0ZS/81oNie/Seluw/woo dno-olwspese//:sdny wolj papeojumod


art/stad242_f1.eps
https://youtu.be/Ny-ggFHALMA

2140 I Rabago et al.

Y

Figure 2. Schematic of the central binary and circumbinary disc, as well
as the angles used to measure the disc orientation. The binary orbits in the
xz-plane, with the angular momentum vector Ly pointing along the positive
y-axis and the eccentricity vector e}, pointing along the z-axis. The disc is
oriented in 3D space by its angular momentum vector Lgisc, where it forms
an angle i with the binary angular momentum vector Ly. The grey dashed
line denotes the disc’s ‘line of nodes’, where the disc crosses the xz-plane at
an angle £ with the eccentricity vector ey,.

particles (Farago & Laskar 2010). For massive discs, the critical angle
changes due to angular momentum exchange between the disc and
the binary (Martin & Lubow 2019). Since the binary does not feel the
gravitational force from the disc and disc self-gravity is not included
from our simulations, the disc can be considered to be in the low-
mass regime. We use a second-order leapfrog integrator to solve the
equations of motion for the binary. We use the Courant—Friedrichs—
Lewy (CFL) fluid time-step of ATHENA++- as the time-step for the
integrator.

Fig. 2 shows the geometric set-up of the binary—disc system, with
inclination angle i and ascending node €2 labelled. The angles i and
2 are measured relative to the binary plane using the equations

. Ly 4
i = arccos (T) “4)

and

Q = arctan (L—), 5)
LX

where L., L,, and L, are the components of the disc angular

momentum g in the simulation x, y, and z axes.

We initialize the disc at an inclination of i = 120° and ascending
node £ = 90° with respect to the plane of the binary by converting to
tilted disc coordinates (Zhu 2019, equation 44, also see Appendix A).
The high initial inclination ensures the disc starts within the librating
region that will evolve towards a polar alignment. For test particles
around an equal-mass binary, there is no difference between the
choice of prograde (60°) versus retrograde (120°) orbits, as the
evolution of the test particle only depends on whether the angle
between the binary and disc planes is beyond the critical inclination
angle i.;. When full three-body systems are considered, angular
momentum can be exchanged between the binary system and the
circumbinary particle (Farago & Laskar 2010; Martin & Lubow
2019). This creates a difference between the prograde and retrograde
cases, and large angular momentum ratios j = Lgisc/Lp can lead to the
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formation of ‘crescent’ librating orbits (Chen et al. 2019; Abod et al.
2022). Since we do not model the exchange of angular momentum
between the disc and the binary, we expect the initially prograde and
retrograde cases to be similar.

We simulate the disc evolution for 1000 binary orbits, using the vI2
second-order van Leer predictor-corrector time integrator (Stone &
Gardiner 2009) and third-order piecewise parabolic method (PPM)
reconstruction. We perform a set of five simulations, varying the o-
viscosity parameter in the range o = 107!, 5 x 1072, 1072, 1073,
and 1073, The disc viscosity is constant throughout most of the
simulation domain. Close to the inner radial boundary, where R <
Ruin = 1.07ay, we reduce the value of the kinematic viscosity v using
an exponential cut-off:

C? R — Rmin (6)
V=o—¢€X _— .
o P\ 70268

This prevents the diffusive time-step from becoming too small and
restricting the simulation speed. For simulations with & > 0.01, the
viscous time-scale ;. ~ R>/v is short enough that material spreading
of the disc requires that we expand our simulation region. For these
simulations, we expand the outer radial edge of our simulation
domain to Ry = 35.7a, using 216 logarithmically spaced radial
cells in order to match the increased viscous spreading of the disc.

3 RESULTS

3.1 Polar alignment

We observe polar libration of the disc in all of our simulations. The
top two panels of Fig. 3 show the disc inclination and ascending
node oscillating about i = £ = 90°, with a precession time #,.. that
increases with disc viscosity. The third and fourth panels of Fig. 3
show the polar libration of the disc in reference to the simulation
xy-plane, using the angles 61, and 21, the angle between L
and ey, and longitude of ascending node in the xy-plane, respectively.
These angles are calculated as

. L,
ipotar = arceos (= @)
and
Ly
Qo = arctan ) 3

Precession of the disc causes 2po,, to circulate. As the disc
oscillates, inclination damping causes the oscillation amplitude
to shrink over time, allowing the disc to settle towards a polar
orientation and 6., to settle towards 0. For fixed disc density and
temperature distributions, the time-scale for polar alignment fg,mp
is inversely proportional to o (King et al. 2013; Lubow & Martin
2018), and so discs with a higher «-viscosity settle towards a polar
alignment quicker, performing less oscillations before reaching a
polar configuration.

From Fig. 3, the polar alignment time-scale can be estimated to
be roughly 300 binary orbits for the « = 0.1 simulation, and roughly
500 binary orbits for the « = 0.05 simulation. This is roughly
consistent with the analytical predictions given by equations (29)
and (30) of Lubow & Martin (2018), which give fgamp = 220 T;
and 455 Ty, respectively. The difference in density evolution of these
two cases likely accounts in part for how f4,mp departs from a pure
1/oc dependence as o changes. For simulations with viscosities a <
0.05, the oscillation amplitude is not reduced significantly during the
course of our simulation time, suggesting that the time-scale for polar
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Figure 3. Time evolution of the disc for different values of «, showing
large changes in orientation. Top: disc inclination i. Top-middle: longitude of
ascending node 2. Middle: angle between the disc and the binary eccentricity
vector @ polar. Bottom-middle: longitude of ascending node in the xy-plane
Qpolar- Bottom: disc mass as a fraction of the initial mass. All angular
quantities are measured in reference to the binary orbital plane at a distance
of R = 3ap.

alignment is at least on the order of several thousand binary orbits.
The polar alignment time-scales for the « = 0.01 simulation are also
similar to the SPH simulations with high resolution (10° particles).
SPH simulations at lower resolution show a quicker dampening of
the tilt oscillations and thus a lower alignment time-scale.

We measure the precession periods in our « = 0.1 and o = 0.01
simulations to be roughly 300—400 binary orbits. The precession
period increases over time as the disc material is redistributed
outwards. These values are in rough agreement with the SPH
simulations of the same Shakura—Sunyaev viscosity! in Martin &
Lubow (2017, 2018, see their equation 2), which measure precession
periods of roughly 300 binary orbits for discs that start with a tilt of
80°.

The settling behaviour towards polar alignment is shown clearly
in Fig. 4, which plots the trajectory of the disc in the i cos 2—i sinf2
phase space, along with trajectories of test particles in grey. After an
initial damping phase, present in all simulations, the disc trajectories
spiral inwards towards the point (0.0, 0.5), corresponding to a disc
oriented at exactly 90° inclination. High-viscosity discs (¢ 2 0.05)
spiral inwards and align towards polar orientation quickly. Discs
with lower viscosities (¢ < 0.05) follow nearly closed oscillating
trajectories close to the 70° test particle trajectory, with lower values

IThe equivalent SPH artificial viscosity for these simulations is aspy = 4
and 0.4, respectively (Lodato & Price 2010).
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Figure 4. Trajectories of the simulations in icos 2—isin€2 phase space. Each
trajectory starts at the black ‘x’ and spirals inwards counterclockwise towards
the point (0.0, 0.5), with the final state of each simulation at 1000 binary orbits
marked by the coloured dots. Angular quantities are measured in reference
to the binary orbital plane at a distance of R = 3ay, as in Fig. 3. Grey paths
show the trajectories of test particle orbits, spaced by 10°. An animation of
the test particle precession, as well as the projection onto the phase space,
is available with the online version of this paper and can be downloaded at
https://youtu.be/ZBkhG6pkOAQ.

of « settling towards trajectories slightly closer to a polar orientation.
As noted above, the SPH simulations that start at an inclination of
80° with & = 0.01 show a significant decay of tilt over 1000 binary
orbital periods.

Fig. 5 shows the disc surface density profiles at + = 1000 binary
orbits. The inner edge of the disc drops off quickly in all simulations
at roughly 2a, with higher viscosity discs exhibiting a smaller inner
cavity. This behaviour is in agreement with previous numerical
simulations (Franchini, Lubow & Martin 2019), as well as analytical
predictions (Miranda & Lai 2015; Lubow & Martin 2018), suggesting
that discs in a polar orientation should be truncated somewhat closer
to the binary than in the coplanar case. The model of Miranda
& Lai (2015) suggests that the discs in these simulations should
be truncated at the 1:3 commensurability for an outer Lindblad
resonance. Streams of gas that flow into the central gap may carry
much or all of the gas required for a steady-state accretion disc, as
is known in the coplanar case (e.g. Artymowicz & Lubow 1996;
Shi et al. 2012; Mufioz & Lai 2016). The profiles generally follow
a wider, thinner distribution with increasing «-viscosity. Since the
diffusion coefficient v is proportional to «, the discs with a larger
« are able to spread out further due to their shorter viscous time-
scale tyie ~ R*/v. As the disc material spreads radially, the change in
mass distribution increases the disc’s moment of inertia, increasing
the precession time-scale as seen in Fig. 3. Notably, the case of «
= 1073 does not follow this trend, having a slightly wider surface
density profile than the & = 1073 simulation. This may be due to
the formation of vortices at low values of «, which generates spiral
wakes in the disc. These spirals can increase the outward transport of
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Figure 5. Top: spherically integrated radial surface density profiles at t =
1000 binary orbits, plotted on a logarithmic scale. Bottom: radially averaged
disc eccentricity at # = 1000 binary orbits, calculated with equation (16) of
Shi et al. (2012).

material and widen the surface density profile. We discuss the details
of vortex formation and their impacts on the disc in Section 3.2.

The bottom panel of Fig. 5 shows the shell-averaged eccentricity
of the disc at # = 1000 binary orbits. We calculate the eccentricity of
the disc using equation (16) of Shi et al. (2012). The disc eccentricity
increases and eventually saturates as time increases, so these values
can be taken as a maximum value for each simulation. We find that
simulations with @ = 0.01 are able to maintain low eccentricities,
while discs with lower viscosities are excited to moderate (¢ ~ 0.1)
eccentricity.

3.2 Vortex formation

A gallery of disc mid-plane density profiles is shown in Fig. 6. Each
panel shows a face-on view of the disc at # = 675 binary orbits. Similar
to Fig. 5, material in discs with higher viscosity is more spread out
with a lower surface density. Some light spiral features are present

a=20.1

o = 0.05

a=0.01

towards the inner edge of the disc in all simulations, which vary
in strength as the disc precesses and changes its orientation relative
to the binary, but most of the discs are azimuthally symmetric and
largely featureless.

The notable exception to this behaviour is the nearly inviscid o =
1075 simulation, which shows a prominent density enhancement
along the inner edge of the disc, as well as an associated one-
armed spiral. Horseshoe-shaped overdensity features have previously
been observed in the Atacama Large Millimeter/submillimeter Array
(ALMA) dust-continuum images (Casassus et al. 2013; van der Marel
etal. 2013; Casassus 2016), and have been explained by disc material
moving on eccentric orbits (Ragusa et al. 2017), or vortices generated
by sharp surface density gradients via the Rossby wave instability
(RWI, Lovelace et al. 1999; Li et al. 2000). Our simulations are the
first instances where vortices have been observed within polar discs.
The steep surface density profile along the inner edge of the disc
creates a minimum in the local vortensity, an important characteristic
in generating RWI vortices (Bae, Hartmann & Zhu 2015). Vortex
formation can be suppressed by small amounts of viscosity (o <
1073; de Val-Borro et al. 2007; Fu et al. 2014; Zhu & Stone 2014;
Owen & Kollmeier 2017), so they were not observed in previous
SPH simulations of polar discs.

A close-up of the overdensity feature is shown in Fig. 7. We
calculate the mid-plane density and vorticity by transforming the
disc data as outlined in Appendix A. The left-hand panel shows
the disc density, where the overdense region is clearly shown. The
right-hand panel shows the local disc vorticity (o — wg)/wy, where
w = —(V x v) and wy = %QK is the initial Keplerian vorticity.
At the disc mid-plane after the coordinate transformation, the unit
vector in 6 points downwards, opposite in direction to the unit vector
in z, so we add a negative sign to our calculation of vorticity to
match the sign convention of vorticity in other coordinate systems,
i.e. w =V x v,. Large areas of anticyclonic motion are coincident
with the overdensity region, and confirm that the overdense region
is associated with the creation of a vortex. The density cuts across
the vortex show that the peak gas density pn.x is enhanced by a
factor of 8 times the background, which is consistent with previous
simulations of RWI vortices (e.g. Lyra et al. 2008; Bae et al. 2015).

Two spiral arms are visible on the leading side of the overden-
sity, extending along slanted density contours and trailing inwards
towards the star. A similar pair of outward pointing spirals is present
along the trailing edge of the vortex, but are less defined, causing
the two spirals to partially combine and form a single, wide spiral
arm behind the vortex. In the vorticity plot, the spirals are visible

a = 0.001 =107

1072 1071 10V

p/po

Figure 6. Face-on density profiles of the disc at # = 675 binary orbits.
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Figure 7. Close-up of the vortex in the @ = 107> simulation at f = 692 binary
orbits. Top-left: gas mid-plane density. The local overdensity and spiral arm
pairs are clearly visible. Top-right: local vorticity. Strong anticyclonic regions
are indicated in blue. Spiral arms are visible as red diagonal lines in the vicinity
of the vortex. In both plots, black curves show contours of density. Middle:
azimuthal density across the vortex centre. Bottom: radial density across the
vortex centre.

in red as diagonal lines of high positive vorticity. Together, these
create two distinct pairs of spiral arms originating from the vortex:
a ‘central’ pair of spirals, which begin along the centre line of the
vortex (roughly 3 a,, in the figure) and extend directly away from the
vortex, and a ‘tangential’ pair of arms, which are created along the
inner and outer radial edges of the vortex and run tangent to the edge
of the vortex.

The initial triggering of the RWI and creation of the vortex follows
the evolution outlined in Bae et al. (2015). We show panels of the
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vortex growth and evolution in Fig. 8. The large vortensity minimum
at the inner edge of the disc generates several RWI vortices during
the linear growth phase of the instability (far left). The number of
initial vortices can vary, but our simulations show a consistent m
= 2 mode initially present within the first tens of binary orbits.
The initial appearance of this mode may be related to the binary
components, as previous single-star numerical calculations find the
m = 3-5 modes to have the fastest growth rates (Li et al. 2000;
Lin 2012). Once the vortices are formed, differences in their orbital
speeds will cause them to migrate towards each other and merge
(left), eventually forming a single anticyclonic vortex. The merging
process is relatively quick, and all vortices are combined into a single
vortex within a few hundred orbits of their creation (middle). The
remaining vortex persists until the end of the simulation (right). A
comparison with the disc density (far right) shows the coincident
overdensity and spiral arm features as in Fig. 7.

The orbital motion of the vortex is shown in Fig. 9. We locate cells
of density p > 0.50,.x Within the vortex and calculate the average
of their locations as the vortex radius and azimuthal position in the
local disc coordinates. We also use the radial and azimuthal extent
of these cells to calculate the aspect ratio of the vortex x = rA¢/Ar.
After the initial vortices merge, the resulting single vortex orbits at
roughly three times the binary separation at Keplerian speed. The
vortex aspect ratio is somewhat more variable even after the vortices
have finished merging, but is generally around a value of y ~ 5.

4 DISCUSSION

4.1 The effect of vortices versus lumps in the disc

The overdensity feature observed in the o = 107> simulation
is noticeably different than similar features created in coplanar
circumbinary discs. Several coplanar discs have been found to exhibit
horseshoe features, but these features have been explained as a
density ‘lump’, created by eccentric gas at the inner edge of the
disc interacting with inflow streams created by the action of the
binary torque (Shi et al. 2012; Miranda, Mufioz & Lai 2017; Ragusa
et al. 2017, 2020). In contrast, the overdensity feature in the polar
disc corresponds to the vorticity minimum in the disc, and is closer
in nature to vortex-induced clumps caused at the edges of gaps
opened by massive planets (de Val-Borro et al. 2007; Zhu et al.
2014; Hammer, Kratter & Lin 2017).

Overdensities in circumbinary discs can drive periodic accretion
onto the central binary. Simulations of coplanar circumbinary discs
and the binary components by Mufioz & Lai (2016) show the lump
at the inner edge causes pulsed accretion at the rate of the lump’s
orbital period. When binary eccentricity is included, the accretion
flows become pulsed at the rate of the binary orbital period, and can
preferentially favour one star for several hundred orbits. In Miranda
etal. (2017), mass accretion is found to vary around circular binaries
on short time-scales of %Tb, as well as on longer time-scales of
roughly 5Ty,

Accretion rates in polar discs have been less studied. Smallwood,
Lubow & Martin (2022) perform simulations of the HD 98800 system
and find that binary accretion rates show no periodicity and are
roughly constant in time for a polar disc with @ = 0.01. The high
viscosity in these simulations means they do not form vortices, even
during the passage of the outer AaAb binary.

The vortex in our « = 10~ simulation exhibits similar variable
behaviour on both short and long time-scales. Fig. 10 shows the
shell-averaged radial mass flux over roughly 10 binary orbits. Long-
term flows are present at distances of 3—4ay, oscillating with a period
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Figure 8. Snapshots of the @ = 10~ simulation, showing the local disc vorticity. In the left-hand four panels, blue regions denote areas of large anticylonic
vorticity. The black contours highlight high-density regions (o = 0.6,0max) within the disc mid-plane. Far left: early on, the RWI triggers with an m = 2 mode,

creating two vortices on opposite sides of the disc. Left: differences in orbital velocities cause the vortices to move together and merge. Middle: the result is a

single vortex that orbits at the inner edge of the disc. Right: the remaining vortex is long-lived, and persists until the end of the simulation. Far right: mid-plane
disc density, showing the vortex and the multiple spiral arms. The density scale is shifted compared to Fig. 7 in order to highlight the spiral arms.
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Figure 9. Orbital motion of the vortex in the @ = 107> simulation. Top:
orbital radius of the vortex. Middle: orbital frequency, in units of the binary
orbital frequency 2. The dotted line shows the Keplerian orbital speed at
the vortex’s orbital radius. Bottom: vortex aspect ratio x = rA¢/Ar.

of roughly 57}. This low-frequency mass flux is due to the orbital
motion of the vortex around the binary, carrying the overdense region
on an eccentric orbit at its local orbital period (Figs 5 and 9). Closer
to the binary, at roughly 2ay, short-term outflows are visible with
a periodicity of roughly 7},. These outflows are caused by small
streams of material pulled from the inner edge of the disc and flung
outwards by the binary torque, similar in nature to those seen by
Shi et al. (2012). Since our inner binary is eccentric, these streams
do not pile-up and form an overdense lump (Miranda et al. 2017).
Overall the vortex in our polar circumbinary discs is different from
the lump in coplanar circumbinary discs in two ways: (1) the vortex
only forms when « is very low, while the lump can form in discs
with a much higher « [even in the magnetohydrodynamic (MHD)
simulations with & ~ 0.1; Shi et al. 2012]; (2) the vortex exists in
polar circumbinary discs with an eccentric binary, while the lump is
only found when the binary is nearly circular (e, < 0.05; Miranda
et al. 2017).
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Figure 10. Shell-averaged radial mass flux of the @ = 10~ simulation. The
dashed line marks the approximate orbital distance of the vortex. Short-period
outflows are visible close to the binary (2ay) as thin red stripes. Long-period
variability, associated with the orbital period of the vortex, is visible from 3ay,
to 4ay, as alternating red and blue bands.

The overdensity created by the vortex changes the local pressure
gradient on the neighbouring gas, producing regions of super-
Keplerian and sub-Keplerian velocity just inside and outside of the
vortex orbital radius, respectively (Kuznetsova et al. 2022). These
deviations from Keplerian rotation may be observable as a kinematic
signature (Boehler et al. 2021), which are inverted but similar in
strength to the signatures formed in the gaps of protoplanetary discs
thought to be formed by young planets (Teague et al. 2018; Teague,
Bae & Bergin 2019; Izquierdo et al. 2022). Future high-resolution
studies with ALMA may be able to distinguish vortex creation in
polar discs.

Observations of HD 98800 B from Kennedy et al. (2019) show a
uniform disc in both gas and dust, with no evidence of large-scale disc
asymmetry. The absence of vortex-like features may be a sign that
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the viscosity in HD 98800 B is high enough to prevent vortices from
forming. Another explanation could be that vortices are relatively
transient features within the disc. The lifetime of vortices in the
disc is on the order of thousands of orbital periods (Zhu & Stone
2014; Hammer et al. 2021). For HD 98800 B, this corresponds to a
lifetime of <1000 yr for a vortex formed at the inner edge of the disc,
which is much shorter than the disc lifetime of ~10 Myr (Barrado
Y Navascués 2006). Therefore, it is possible that any vortices that
initially formed in the disc have long since dispersed, unless vortices
are continuously generated by the inner binary.

The rightmost panel of Fig. 8 shows the vortex and spiral arms as
they appear in the disc. Notably, the appearance of the spiral arms
resembles the scattered light images of HD 142527 (Avenhaus et al.
2014, 2017), which is also known to have an overdensity feature
(Casassus et al. 2013). Spirals along the inner edge of the disc can
be created, without the creation of a vortex, due to the gravitational
interaction of the binary with the disc (Price et al. 2018), so it is
unclear if vortex-generated spirals are the cause of the spiral arms in
HD 142527.

4.2 Prospects for polar circumbinary planets

It is unknown if circumbinary planets are able to form within polar
discs. Currently, no planets have been observed in polar orbits around
binaries, nor planet candidates in polar-aligned discs. The lack of
detections is at least partially due to a strong observational bias;
current methods for detecting exoplanets rely on identifying data
with multiple, periodic transits, which favour single-star, coplanar
systems. Planets on circumbinary orbits exhibit large transit timing
variations, on the order of hours or days (Armstrong et al. 2013).
Inclined orbits are more likely to produce single or irregular transits
due to the orbital precession induced by the binary torque (Martin
& Triaud 2014; Chen et al. 2019; Chen, Lubow & Martin 2022),
rendering most detection methods used for single planets unusable
and requiring the use of special transit folding methods (e.g. Martin
& Fabrycky 2021). If circumbinary planets are equally likely to form
in polar discs as they are in coplanar discs, they may be as common
as planets around single-star systems (Armstrong et al. 2014; Martin
& Triaud 2014).

The formation of vortices within low-viscosity discs can have sig-
nificant effects on planet formation history. An outstanding problem
in planet formation involves the formation of large planetary embryos
in a disc, as gas drag from the disc can cause growing particles to
rapidly spiral inwards onto the star, before they are able to decouple
from the gas (Weidenschilling 1977). Anticyclonic vortices in a disc
act as grain traps, and can intercept over half of the grains that cross
its orbit during their inward radial migration (Fromang & Nelson
2005). Once captured in the vortex, the local vorticity works to focus
particles towards the vortex ‘eye’, which can facilitate accelerated
growth of planetary material all the way up to Jupiter-mass planets
(Klahr & Bodenheimer 2006; Lyra et al. 2008; Zhu et al. 2014; Owen
& Kollmeier 2017). In polar discs, vortices may also lead to direct
planet formation or seed the disc with a large initial planetesimal
population, which can allow further planetary growth and formation
terrestrial planets in polar orbits (Childs & Martin 2021, 2022).

Figs 7 and 9 show that the vortex orbits at a few times the binary
separation, close to the inner edge of the disc. Indeed, the sharp
surface density profile created at the inner cavity wall allows the
RWTI to produce vortices in the absence of viscosity. This is close
to the theoretical stability limit for circumbinary planets (Dvorak
1986). Curiously, many of the circumbinary planets discovered
by the Kepler and Transiting Exoplanet Survey Satellite (TESS)
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orbit just outside the inner stability limit (Martin & Triaud 2014;
Welsh et al. 2014). Together, this may suggest a potential in situ
formation scenario for close-in circumbinary planets, where the sharp
inner cavity of the circumbinary disc generates long-lived vortices
that allows for efficient trapping of solid materials. Rapid planet
formation at this distance would produce circumbinary planets close
to the circumbinary inner stability limit.

5 CONCLUSION

In this paper, we describe the first grid-based simulations on the evo-
lution of polar-aligning circumbinary discs. We find the discs align
towards a polar orientation, with time-scales in rough agreement with
previous SPH studies and analytic estimates. In nearly inviscid discs,
RWI vortices can be generated close to the disc inner edge while polar
alignment occurs. These vortices can persist for thousands of binary
orbits in a polar disc, and create overdensities within the disc. Two
pairs of spiral arms are seen originating from the vortex, along the
centre and tangent to the vortex core. The overdensities created by
the vortices are fundamentally different from similar features created
through eccentricity excitation within the disc. The combination of
vortices and spiral arms may create a detectable signature in polar
discs, though none have been observed as of yet. The presence of
vortices and overdensities in polar circumbinary discs may also aid
in the formation of polar circumbinary planets, accelerating planet
growth close to the inner stability limit.
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APPENDIX A: COORDINATE TRANSFORM OF
DISC DATA

Simulations of discs are usually oriented so that their local coordinate
axes are aligned with the simulation axes. This alignment simplifies
the analysis of important disc parameters such as azimuthal slicing
along the mid-plane, or calculation of vorticity along the disc’s
vertical axis.

Discs that are inclined, warped, or precess over time are not always
aligned with the simulation axes, and so these quantities are harder to
acquire without some prior manipulation. We show here our method
of manipulating the simulation data of an inclined disc so that it may
be analysed in a similar way as a flat, zero-inclination disc. As in the
paper, we use spherical polar coordinates for this section, though the
basic process can be used for any coordinate system.

Consider a disc that is inclined to the simulation axes at an angle i.
Any point in 3D space can be described with simulation coordinates
(r, 0, @) or disc coordinates (r, 0, ¢'), which are not necessarily the
same. The transformation between these two coordinate systems is
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given by the equations

sin? 0" = (sin @ cos ¢)* + (sin @ sin ¢ sin i + cos @ sin i )? (A1)

and

tan¢’ = sin @ sin ¢-cosi + cos 6 sini . (A2)
sin 6 cos ¢

Equation (A1) is equivalent to equation (44) of Zhu (2019). Since
this equation only gives sin’@’, a degeneracy exists when trying
to map coordinates on the top and bottom halves of the sphere.
Therefore, we calculate cos ' = +/1 — sin? 6’ and multiply the value
by —1 if the original polar angle 6 lies below the equator of the
mapped coordinates. This corresponds to

0 = g — tan”! (tan i sin ¢). (A3)

To construct an untilted disc, we start by creating an evenly spaced
grid along the disc coordinates #" and ¢'. For each grid cell, we
transform the grid coordinates to simulation coordinates, locate the
nearest data cell in the original simulation coordinates, and copy
that cell data from the simulation into the grid cell. The result is a
data cube oriented along the disc axes, which can be analysed using
traditional methods.

For velocity, additional transformations must be done to account
for the rotation of the velocity components. The azimuthal distance
element in the disc coordinates d¢ can be expressed in terms of the
simulation coordinates as

d¢? = (r d6)* + (r sin 6 d¢)>. (A4)
This allows us to calculate the angle between the disc and simulation
grids ¢ with

do
sinfde’

In practice, we calculate ¥ by comparing adjacent cells in the
disc coordinates and converting back to the simulation coordinates,
allowing the distances to be calculated using simple differences. Once

the local rotation angle is found, the velocity in the disc coordinates
vy and v;, can be calculated with

tany = (AS)

Uy = Vg COS Y — vy SIN Y (A6)
and
Uy = Vg Sin Y + vy cos . (A7)

The radial velocity remains unchanged during the rotation, i.e. v, =
Uy

Fig. Al shows an example of the transformation applied to a 2D
spherical slice of our simulation data at + = 0. The transformed
density and velocity are similar to that of a disc aligned with the
coordinate system. Small artefacts are visible in the areas close to
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Figure Al. Example of the coordinate transform using a 2D slice of the
simulation data at + = 0. Top row: coordinate grid lines for the simulation
and disc coordinates. Middle row: disc density in the simulation and disc
coordinates. Bottom row: azimuthal velocity vy in the simulation and disc
coordinates.

the poles of the simulation coordinates due to the lack of initial data
in these regions. Small vertical striations can also be seen along the
transformed data.

For simulations in this paper, we transform the disc data using
the total angular momentum vector L to calculate i and € using
equations (4) and (5). Warped or broken discs can be analysed in a
similar fashion by using the local angular momentum vector L(R)
to transform each annulus separately.
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