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A B S T R A C T   

Research initiatives that engage the public (i.e., community science or citizen science) increasingly provide 
insights into tick exposures in the United States. However, these data have important caveats, particularly with 
respect to reported travel history and tick identification. Here, we assessed whether a smartphone application, 
The Tick App, provides reliable and novel insights into tick exposures across three domains — travel history, 
broad spatial and temporal patterns of species-specific encounters, and tick identification. During 2019–2021, we 
received 11,424 tick encounter submissions from across the United States, with nearly all generated in the 
Midwest and Northeast regions. Encounters were predominantly with human hosts (71%); although one-fourth 
of ticks were found on animals. Half of the encounters (51%) consisted of self-reported peri‑domestic exposures, 
while 37% consisted of self-reported recreational exposures. Using phone-based location services, we detected 
differences in travel history outside of the users’ county of residence along an urbanicity gradient. Approximately 
75% of users from large metropolitan and rural counties had travel out-of-county in the four days prior to tick 
detection, whereas an estimated 50–60% of users from smaller metropolitan areas did. Furthermore, we 
generated tick encounter maps for Dermacentor variabilis and Ixodes scapularis that partially accounted for travel 
history and overall mirrored previously published species distributions. Finally, we evaluated whether a 
streamlined three-question sequence (on tick size, feeding status, and color) would inform a simple algorithm to 
optimize image-based tick identification. Visual aides of tick coloration and size engaged and guided users to
wards species and life stage classification moderately well, with 56% of one-time submitters correctly selecting 
photos of D. variabilis adults and 76% of frequent-submitters correctly selecting photos of D. variabilis adults. 
Together, these results indicate the importance of bolstering the use of smartphone applications to engage 
community scientists and complement other active and passive tick surveillance systems.   

1. Introduction 

In recent decades, there has been an increase in the geographic 
distribution and number of tick-borne infections caused by Ixodes spp., 

Amblyomma spp., and Dermacentor spp. ticks in the United States(Alkishe 
and Peterson, 2022; Flenniken et al., 2022; Hahn et al., 2016; Kugeler 
et al., 2021; Telford and Goethert, 2004). The Northeast and Midwest 
regions of the country, in particular, face significant burdens of Lyme 
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disease and other Ixodes scapularis-borne diseases; while less frequent, 
albeit consequential, diseases including ehrlichiosis and Rocky Moun
tain spotted fever are caused by agents transmitted by Amblyomma 
americanum and Dermacentor variabilis (Nelson et al., 2015; Raghavan 
et al., 2019; Rosenberg et al., 2018). Given this shifting 
eco-epidemiological context, public health professionals must monitor 
risk levels for tick-borne diseases locally, rather than rely on broad, 
regional assessments. Understanding tick-borne disease risk for a local 
jurisdiction (e.g., county) involves evaluating tick-borne infection haz
ard, including which tick species are established locally (and which are 
emerging in neighboring counties); which areas within the county are of 
highest risk, and which pathogens are present among tick populations. 
Additionally, it requires assessing where, when, and how people are 
exposed to infected ticks, and their capacity to respond after a tick 
encounter (i.e., level of vulnerability) (Diuk-Wasser et al., 2021). 
Acquiring data on each contributing factor carries distinct challenges. 
First, active tick surveillance and pathogen screening programs are 
resource intensive, with limited funding constraining the scope and 
geographic scale of field-based sampling (Centers for Disease Control 
and Prevention, 2022; Foster et al., 2022; Hai et al., 2014; Lyons et al., 
2022; Mader et al., 2021; Nieto et al., 2018). Second, retrospective tick 
exposure surveys are subject to recall bias, requiring respondents to 
generalize about tick encounters over long stretches of time (Fernandez 
et al., 2019; Runyan et al., 2013). And third, surveys evaluating how 
people respond to tick exposures are time consuming and typically only 
feasible at small scales. Additionally, aggregating data to understand 
tick exposure patterns across broad regions carries its own limitations. 
Currently, in the United States, syndromic surveillance for tick bites is 
conducted through emergency department visitations (i.e., ICD diag
nostic codes) (Centers for Disease Control and Prevention, 2021). While 
this provides a representative picture of the rate at which regional 
populations seek acute care for tick bites, critical information about the 
exposure (e.g., encounter location, tick species, and life stage) are 
missing, and necessary to inform tick-borne disease prevention. 

In the midst of these challenges, tick surveillance rooted in com
munity science (also called citizen science) offers a way to generate large 
volumes of data at broad (e.g., regional and national) scales in collab
oration with the public. In recent years, community science initiatives 
have emerged as a means to gather information on tick abundance and 
exposure—although the programs’ objectives and collection methods 
vary. Some programs, including one operated by Northern Arizona 
University, provided the public with free tick identification and path
ogen testing services (Nieto et al., 2018). During 20 months, Nieto et al. 
received over 16,000 physical tick submissions. Alongside ticks, their 
team requested information on the presumed tick exposure location, and 
with this information generated distribution maps that expanded upon 
previous records of species ranges. However, travel history was not 
collected and tick exposure locations provided by participants is subject 
to inaccuracies (Nieto et al., 2018). Recently, similar programs have 
emerged, although focused on specific geographic areas of interest 
(Hart et al., 2022). Other initiatives, including eTick in Canada and 
TickSpotters in the United States, use online photo submission systems, 
wherein participants send photos of ticks, information about the 
encounter, and a best-guess on the species identification to teams of 
trained entomologists who then review these data (Koffi et al., 2017; 
Kopsco et al., 2021a). Over four years, TickSpotters received ~31,500 
submissions from across the United States. With these data they asked a 
number of research questions including what factors were associated 
with participants’ correct (or incorrect) tick species identification 
(Kopsco et al., 2021a). Finally, apps including TickTracker guide users 
through identification keys and collect exposure information, but may 
not include expert validation (TickTracker, 2022). 

Although there are benefits to using crowd-sourced data, there are 
also limitations to the representativeness and quality of the data (Eisen 
and Eisen, 2021). Community science study populations are often biased 
based on socioeconomic status, recruitment effort, and interest in 

tick-borne diseases, creating challenges in comparing findings to the 
population at-large or to other data collection efforts (Fernandez et al., 
2019). With respect to data quality, accuracy of species identification 
and the spatial precision of the encounter location are difficult to 
confirm (Bron et al., 2021; Eisen and Eisen, 2021). While physical tick 
submissions result in the highest quality assurance for species identifi
cation, establishing a pipeline for receiving ticks is time-intensive. As a 
first step, programs must direct sufficient resources towards participant 
recruitment. Often, for vector-borne diseases, target populations are 
incentivized by pathogen testing of submitted specimens (Hamer et al., 
2018). This carries potential to overwhelm the resources of small 
research teams. Species identification via digital images eliminates the 
demand on physical resources and offers avenues of enhanced engage
ment with the public (Kopsco et al., 2021b). Although this method is 
sensitive to image quality and the experience level of the individual 
responsible for identifying the tick, identification can be verified by 
trained entomologists (Fernandez et al., 2019). Separately, with respect 
to exposure location, ticks may be detected on people or companion 
animals in locations far from where the encounter originally occurred 
(Centers for Disease Control and Prevention, 2022). Without detailed 
information on travel history or the duration of tick attachment, expo
sure location data are subject a high degree of uncertainty—and 
geographic distribution maps based self-reported data may lead to 
misrepresentations of risk 

In 2018, our team launched The Tick App as a survey tool to gather 
information on human behaviors and movements associated with tick 
exposure while also engaging users in tick reporting (Fernandez et al., 
2019). The app uniquely captures information on daily activities, which 
is then crossed with geolocation information on movement patterns and 
land cover data associated with where users may be encountering 
different tick species. Given the potential caveats of community 
science-generated data, in this paper we assessed how tick encounter 
submissions reported through the app informs patterns of tick exposures 
across a range of spatial and temporal scales (Bron et al., 2021; Eisen and 
Eisen, 2021). Using descriptive analyses, we evaluated the degree to 
which The Tick App enhances understanding of three facets of tick 
exposure information. We first evaluated whether a streamlined 
three-question sequence (on tick size, feeding status, and color) would 
inform a simple identification algorithm to optimize image-based 
identification for our program. Next, we uncovered how app-based 
GPS data provides an understanding of tick encounter location. 
Finally, we examined whether encounter-level data could be aggregated 
to detect broad spatial and temporal patterns of tick exposure, including 
seasonal variation. We focused our analyses on three medically-relevant 
tick species, I. scapularis, A. americanum, and D. variabilis. Lessons 
learned here can provide a blueprint with which to design and evaluate 
future tick surveillance platforms, maximizing data quality and partic
ipant engagement. 

2. Materials and methods 

2.1. Data sources 

In this investigation, we used data from The Tick App during 
2019–2021. During this study period, the app was available to partici
pants 18 years and older living in the United States (Fernandez et al., 
2019). We created a tick encounter database using two app features. The 
first was the “Daily Log”—a daily retrospective survey where users 
document their outdoor activities, any ticks encountered, and personal 
protection measures used to prevent tick bites. Users may also report 
tick encounters directly through the “Tick Report” feature. A tick 
encounter is defined as one or more ticks that a user reported finding on 
a single day. For each tick encounter submission users provided infor
mation on whom the tick(s) was found on (e.g., self, household member, 
or companion animal), when and where they think they picked up the 
tick(s) (e.g., the county and zip code; in a peri‑domestic versus 
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recreational setting), and whether the tick(s) was attached. Self-reported 
peri‑domestic exposures included tick encounters that happened in “my 
yard” or “my neighbor’s property”, noting that for some users, “yards” 
encompassed larger swaths of private land (e.g., forested acreage and 
private pastures). 

We also asked users to visually assess the tick’s appearance and 
submit a photo of the tick. To assess appearance, users were asked to 
select the visual aide that most closely resembled their tick(s), charac
terizing size (big, medium, small), bloodfed status (flat, round [assumed 
to reflect ≥ 3 days of feeding to fully fed]), and color pattern (Fig. 1). 
Prompts of color patterns were: “all brown” (next to an image of an 
A. americanum male, which could also be perceived as Haemaphysalis 
longicornis, the Asian longhorned tick), “white dot” (image showing 
A. americanum female), “brown and white pattern” (image showing 
D. variabilis female, which we assumed would also be selected for 
D. variabilis males, other Dermacentor spp., and A. maculatum), or “black 
shield” (image showing I. scapularis female, which we assumed would 
also be selected for I. scapularis males and other Ixodes spp.). To maxi
mize simplicity in the user-experience, we presented a limited number of 
images for assessing coloration. We showed photos of unfed ticks only; 
one set of photos had the tick filling the frame and another set had the 
tick next to a pencil, for scale (Fig. 1c). Additionally, we did not specify 
anatomical cues for the tick species. 

Given that the tick may not have been available at the time of report 
submission, each question also included the option “I don’t know” to 
distinguish missing knowledge from skipped answers. Researchers 

trained in entomological classification gave each submitted photo a 
certainty score. The certainty score incorporated the researcher’s con
fidence in their ability to correctly identify the tick species. This was a 
qualitative score, considering the quality of the image, size of the tick in 
the image, and position of the tick. We used scores from 0–100. Scores of 
1–50 indicated “I cannot tell” (in this case, we asked users to submit a 
new photo); 51–70 indicated “I suspect it is ‘X’ species” (in certain cases 
we asked users for a new photo or a photo focusing on specific 
anatomical areas such as the mouth parts or scutum); 71–90 indicated “I 
am quite certain”; and 91–100, “I am certain.” Images with certainty 
scores above 70 were reviewed and classified according to species, life 
stage, sex, bloodfed status (yes, no, unknown), and the estimated 
feeding duration. Bloodfed status and duration was determined using 
visual assessments of relative scutal versus body length, comparing 
photos to reference tick growth comparison charts (TickEncounter, 
2021). Results were then emailed to the participant. 

To evaluate tick encounter locations we used both self-reported in
formation and GPS data. GPS data were collected for The Tick App users 
who enabled location services in the app (Fernandez et al., 2019). Users 
could opt to keep location services on continuously, allowing for GPS 
data to be collected at 15 min intervals, or only while The Tick App was 
in use. Recorded data consisted of the timestamp and coordinates 
(latitude and longitude) of the device, with an expected horizontal po
sition accuracy of 7–13 m based on smartphone GPS accuracy assess
ments from the literature (Merry and Bettinger, 2019; Tomaštík et al., 
2017). Data were not recorded when users were outside of mobile 

Fig. 1. The Tick App interface with the tick identification screening sequence. Upon navigating to the Tick Report feature of The Tick App, users are asked the above 
three-questions sequence and prompted to submit a photo for identification (with visual aides on how to obtain a high-quality image). 

P.A. Kache et al.                                                                                                                                                                                                                                



Ticks and Tick-borne Diseases 14 (2023) 102163

4

service range. 
Here, we used two subsets of The Tick App tick encounter database 

during 2019–2021. For the three-question sequence for tick photo sub
missions and geographic and seasonal patterns across species, we used 
data for participants residing in the Midwest and Northeast regions 
(Fig. 2a, Table S1). For GPS data, we included users located throughout 
the contiguous United States (Fig. 2b). This work was conducted in 
accordance with Institutional Review Board approved protocols 
(2018−84, University of Wisconsin – Madison, WI, USA; and AAA3750- 
M00Y01, Columbia University, New York, NY, USA).(Fig. 3) 

2.2. Analyses 

2.2.1. Three-question sequence for photo screening 
We assessed the degree to which visual aides were associated with 

tick species identification by trained entomologists, which would help to 
develop a simple identification algorithm. We used a multiple corre
spondence analysis (MCA) on our three-question screening variables 
(tick size, bloodfed status, and color pattern) and entomologist- 
identified tick species to examine whether user responses were associ
ated with a particular species. Analyses were conducted using the 
“FactoMine” package in R. 

Next, we evaluated whether user-selected tick size (the first question 
in the three-question sequence) served as a predictive feature for tick life 
stage and species. For this, we calculated the proportion of tick photos 
with a given entomologist-verified life stage and species assignment (e. 
g., adult I. scapularis) out of the number of photos with a given user- 
selected tick size (Table 3). For the second question, we assessed 
whether users’ indication of the tick being flat or round corresponded to 
entomologist-determined bloodfed status. And for the third question, we 
assessed how users classified images of their tick based on visual aides 
and written prompts of the tick’s color patterning (Figs. 1 and 4). 

2.2.2. Location of tick encounters 
For tick encounter submissions across life stages, we conducted GPS 

analyses among participants who: 1) provided the date that the tick was 

found on themselves or a household member/companion animal; 2) 
enabled location services; and 3) had at least three days of data and > 20 
daytime and evening (04:00 AM–11:59 PM) GPS points collected in a 
four-day period prior to when the tick was found. We restricted analyses 
to a four-day period, given evidence that a majority of people who 
experience a tick-bite remove adult ticks within 72 h (Yeh et al., 1995). 
To assess travel history, we compared the zip code, county, and state of a 
given GPS point to the participant’s jurisdiction of residence As a proxy 
for the duration of time spent in a given location, we analyzed the 
proportion of daytime and evening GPS points detected in a given 
location out of the total number of points collected within their four-day 
collection period. Additionally, we compared travel history 
out-of-county according to the county’s urbanicity classification 
(Table S2): large metropolitan, medium metropolitan, small metropol
itan, and rural counties. 

To estimate the land covers that users visited prior to tick detection, 
we extracted land cover classifications from the NLCD 2019 raster layer 
at a 30 m resolution (Dewitz, 2016). We reclassified land cover types 
into five categories (Table S3): developed (low-, medium-, and 
high-intensity development); grassy (consisting of open areas and 
grasslands, scrub); forested; planted/cultivated; and other (lichen, 
barren lands, wetlands, and open water). We examined the proportion of 
users’ GPS points that fell within each land cover class, according to 
users’ travel history (out-of-county travel: yes versus no; out-of-county 
travel on weekdays versus weekends) and exposure type (peri‑domes
tic versus recreational). We examined travel history and exposure var
iables separately as a way to validate this self-reported information. 
Finally, for users with GPS data and a photo submission, for each of the 
species we analyzed the proportion of time spent in the above land cover 
classes. NLCD extractions were conducted using the “raster” package in 
R (with no spatial buffer). For descriptive bivariate analyses of cate
gorical variables, we used nonparametric Mann-Whitney and 
Kruskal-Wallis tests. 

2.2.3. Geographic and temporal variation across species 
To examine geographic patterns of The Tick App encounter 

Fig. 2. Diagram of tick encounter and GPS data submissions. 2a. To analyze tick encounters, we aggregated data from Daily Log and Tick Report (i.e., without Daily 
Log) entries. Approximately 79% of tick encounters were made up of Tick Reports. We restricted tick encounters to the Midwest and Northeast regions, where we 
actively recruited participants, and which made up 96% of submissions nationwide. Of these submissions, 50% included photos of the tick, allowing for species- 
specific analyses. 2b. To analyze mobility data associated with tick encounters, we matched the two datasets and restricted records to users with ≥20 GPS points 
available in the four days preceding tick detection, with 7.4% of the original tick encounter database meeting this criterium. Out of these entries, 80% submitted a 
photo of the tick, allowing for GPS and species-specific analyses. 
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submissions, we compared data submitted through the app with pub
lished county-level reports of I. scapularis and D. variabilis, using par
ticipants’ county of residence. With A. americanum making up only 7.5% 
of tick photo submissions, we did not generate maps for this species. 

Given that most tick encounter maps do not account for travel his
tory, we partially accounted for this with the data on hand. We mapped 

the counties where reports of I. scapularis and D. variabilis were gener
ated, excluding individuals with more than 20% of their GPS points 
outside the users’ home county in the four days prior to tick detection (in 
the case where both photo submissions and GPS data were available). 
With this data subset, we compared I. scapularis submissions to CDC 
surveillance datasets available through December 2021, as well as 

Fig. 3. Tick encounters with photo and GPS data submissions (2019–2021). 3a. Tick encounters with photo submissions were available for 352 counties in 24 states 
of the Midwest and Northeast regions of the Unites States. Most counties had between 1 and 12 tick encounters with photo submissions available for species-level 
analyses. Photo submissions were most widely available for counties in the states of Wisconsin and Michigan in the Midwest region. 3b. Tick encounters submissions 
with ≥20 daytime GPS points available in the four days preceding a tick encounter were available for 138 counties across 18 states in the continental United States. 

Fig. 4. Entomologist-verified classifications versus photo-based user-selected species for adult ticks. 4a. The left panel shows the entomologist-verified species 
identification based on submitted photos of adult ticks, and the right shows the user-selected photo based on visual guides (Fig. 1). For users with a Dermacentor 
variabilis tick, 60% selected the photo of a “brown and white pattern” tick corresponding to D. variabilis. 4b. For users with an Ixodes scapularis tick, 50% selected the 
photo of a tick with a “black shield” pattern, corresponding to I. scapularis ticks. 4c. For users with Amblyomma americanum females, 85% selected the photo of a tick 
with a “white dot” pattern corresponding to A. americanum females. 
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reports made publicly available by Centers for Disease Control and 
Prevention (2022), Kopsco et al. (2021b) and Nieto et al. (2018). We 
compared D. variabilis submissions to those published by the passive 
surveillance initiative by Nieto et al., and a review of the literature and 
records from the U.S. National Tick Collection and National Ecological 
Observatory Network conducted by Lehane et al. (2020) and Nieto et al. 
(2018). To demonstrate seasonal abundance patterns of The Tick App 
tick encounters, we used the submission date aggregated to the epide
miological week. 

3. Results 

Between 2019 and 2021, we received 11,424 reports of tick en
counters through The Tick App. These reports were completed by 5335 
unique participants in the United States, with each tick encounter report 
representing one or more ticks that a user found on a single day. For the 
first set of analyses, we restricted reports to those from the Midwest and 
Northeast, leaving 10,915 records completed by 4411 participants 
(Table 1). Across all years, the majority of participants (62%) had one 
encounter, with a maximum of 182 encounters (Fig. S1). Half of the 
encounters (51%) resulted from self-reported peri‑domestic exposures, 
where users said that the tick was picked up in “my yard” or “my 
neighbor’s property”, while approximately 37% of encounters were 
from recreational exposure. For 12% of reports, participants were un
sure of their encounter type. According to self-reports, encounters were 
predominantly with human hosts (71%). Overall, less than half of the 
human-tick encounters (39%) involved an attached tick, although this 
proportion varied according to the species and life stage encountered 
(Tables 2 and S4). Approximately one-fourth of ticks were found on 
dogs; with, again, less than half involving an attached tick (45%). Hosts 
included other companion animals (e.g., cats, rabbits, turtle), wildlife (e. 
g., racoon), and livestock (e.g., horses, goats). Cat encounters included a 
higher proportion of attached ticks compared to other hosts (61%). 
Approximately 3.4% of ticks were found to be loose in the environment, 
either in the user’s home, vehicle or outdoors; with the remaining 
(1.8%) collected for research or unknown purposes. 

Half of the tick encounter submissions from the Midwest and 
Northeast included photos (N = 5440). We excluded 81 photos due to 
low image quality and retained 5359 for tick identification (Fig. 2a). A 
majority of the 2539 unique participants submitted a single photo 
(68%); however, 162 participants submitted five or more photos during 
the study period. Out of all submitted photos, 97% were verified as ticks 
and 91% were composed of three species of ticks: D. variabilis (56%), 
I. scapularis (29%), and A. americanum (7.0%). The remaining tick 
photos were either other (1.2%) or unknown tick species based on the 
photo submitted (4.3%). Across tick and host species, the majority of 
submissions consisted of adult ticks and very few (<1%) consisted of 
larvae (Table S5). For D. variabilis, over 99% were adults and for 
I. scapularis, 83% were adults. Among D. variabilis ticks associated with 
human hosts, 55% were adult females and 40% were adult males; while 
for I. scapularis ticks 58% were adult females and 12% were adult males. 
Adults made up a smaller proportion of A. americanum ticks associated 
with human hosts, with 26% adult female and 20% adult male (Table 2). 
For humans, while the majority of submissions were D. variabilis ticks, 
for dogs, there was roughly the same number of D. variabilis and 
I. scapularis; and for cats, the majority were I. scapularis (Table S6). 

Among participants with a confirmed tick encounter, 2848 users 
(44%) specified the date that the tick was found and enabled GPS 
location services within the app (Fig. 2b). A subset of 842 tick encounter 
reports, completed by 255 users, had sufficient GPS data recorded for 
further movement pattern analysis (i.e., >20 daytime and evening GPS 
points in the four days prior to tick detection), with a median of 170 
points per report (IQR: 63–870). A majority of reports came from users 
in the Midwest (82%), living in rural counties (54%) (Table S7). Finally, 
671 reports, completed by 177 users, included accompanying identifi
able photos of tick species, allowing for both movement and species- 

Table 1 
Profile of tick encounter reporters in the Midwest and Northeast regions 
(2019–2021)a.  

Year 2019 2020 2021 2019–2021* 

Total Number of Tick 
Encounters Reports 

N = 1960 N = 3449 N = 5506 N = 10,915 

Unique Tick 
Encounter 
Reporters 

N = 899 N = 1367 N = 2559 N = 4411 

Gender: User data 
available 

N = 1958 N = 3449 N = 5506 N = 10,913  

Female 1160 
(59.2%) 

2238 
(64.9%) 

3353 
(60.9%) 

6751 
(61.9%) 

Male 784 
(40.0%) 

1169 
(33.9%) 

2041 
(37.1%) 

3994 
(36.6%) 

Other gender 
identity 

4 (0.2%) 5 (0.1%) 18 (0.3%) 27 (0.2%) 

Prefer not to say 10 (0.5%) 37 (1.1%) 94 (1.7%) 141 (1.3%) 
Age Category: User 

data available 
N = 1953 N = 3404 N = 5462 N = 10,819  

18–22 37 (1.9%) 66 (1.9%) 108 (2.0%) 211 (2.0%)  
23–41 770 

(39.4%) 
1224 
(36.0%) 

2271 
(41.6%) 

4265 
(39.4%)  

42–53 357 
(18.3%) 

772 
(22.7%) 

1151 
(21.1%) 

2280 
(21.1%)  

54–72 738 
(37.8%) 

1246 
(36.6%) 

1815 
(33.2%) 

3799 
(35.1%)  

73–99 51 (2.6%) 96 (2.8%) 117 (2.1%) 264 (2.4%) 
Region: User data 

available 
N = 1960 N = 3449 N = 5506 N = 10,915  

Midwest 1349 
(68.8%) 

2668 
(77.4%) 

4417 
(80.2%) 

8434 
(77.3%)  

Northeast 611 
(31.2%) 

781 
(22.6%) 

1089 
(19.8%) 

2481 
(22.7%) 

Lyme Disease 
Incidence Countyb: 
User data available 

N = 1957 N = 3390 N = 5348 N = 10,695  

High: Increasing 238 
(12.2%) 

328 (9.7%) 489 (9.1%) 1055 (9.9%)  

High: No 
Change 

1249 
(63.8%) 

1399 
(41.3%) 

2057 
(38.4%) 

4705 
(44.0%)  

Low: Increasing 222 
(11.3%) 

787 
(23.2%) 

1218 
(22.8%) 

2227 
(20.8%)  

Low: No Change 227 
(11.6%) 

704 
(20.8%) 

1387 
(25.9%) 

2318 
(21.7%)  

No Cases 21 (1.1%) 172 (5.1%) 197 (3.7%) 390 (3.6%) 
Returning Users: User 

data available 
N = 1960 N = 3449 N = 5506 N = 10,915  

One-season user 1723 
(87.9%) 

2564 
(74.3%) 

4037 
(73.3%) 

8324 
(76.3%)  

Return user 237 
(12.1%) 

885 
(25.7%) 

1469 
(26.7%) 

2591 
(23.7%) 

Number of 
Encounters per 
User [Median (Min, 
Max)] 

1 (1, 34) 1 (1, 85) 1 (1, 136) 1 (1, 182) 

Number of 
Submission with 
Images 

N = 591 N = 1792 N = 2885 N = 5268  

a Tick encounter reporters include unique users who submitted Daily Log or 
Tick Report (i.e., without Daily Log) entries. A tick encounter represents one or 
more ticks that a user reported finding on a single day. 

b We used Lyme disease case data publicly available from the Centers for 
Disease Control and Prevention (CDC) to estimate county-level Lyme disease 
incidence for The Tick App users in the Midwest and Northeast regions of the 
United States (2013–2017). We used the number of cases reported (confirmed 
and probable cases) per county and the population size obtained from the Na
tional Census in 2010 to estimate a 5-year period Lyme disease annual incidence 
per county and percentage change in cases within that period. This calculation is 
described in Fernandez et al., 2019 (Fernandez et al., 2019). 
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Table 2 
Summary of tick encounter photo submissions for human hosts by species (2019–2021) a..  

Ixodes scapularis Dermacentor variabilis Amblyomma americanum  

Life stage  Life stage  Life stage 

Sex Adult Nymph Larvae Unk. Total Sex Adult Nymph Larvae Unk. Total Sex Adult Nymph Larvae Unk. Total 
F 425 0 0 0 425 

(57.6%) 
F 1196 0 0 0 1196 

(55.2%) 
F 74 0 0 0 74 (25.9%) 

M 86 0 0 0 86 (11.6%) M 865 0 0 0 865 
(39.9%) 

M 58 0 0 0 58 (20.3%) 

Unk./ 
NA 

2 203 6 16 227 
(30.8%) 

Unk./NA 101 1 0 5 107 (4.9%) Unk./NA 5 136 8 5 154 
(53.8%) 

Total 513 
(69.5%) 

203 
(27.5%) 

6 
(0.8%) 

16 
(2.2%) 

738 
(100.0%) 

Total 2162 
(99.7%) 

1 
(0.0%) 

0 (0.0%) 5 
(0.3%) 

2168 
(100.0%) 

Total 137 
(47.9) 

136 
(47.6%) 

8 
(2.8%) 

5 
(1.7%) 

286 
(100.0%) 

Attached Adult Nymph Larvae Unk. Total Attached Adult Nymph Larvae Unk. Total Attached Adult Nymph Larvae Unk.  
Yes 321 165 5 15 506 

(68.6%) 
Yes 874 1 0 2 877 

(40.5%) 
Yes 82 93 7 4 186 

(65.0%) 
No 183 25 1 1 210 

(28.5%) 
No 1242 0 0 3 1245 

(57.4%) 
No 52 39 1 1 93 (32.5%) 

Unk./NA 9 13 0 0 22 (2.9%) Unk./NA 46 0 0 0 46 (2.1%) Unk./ 
NA 

3 4 0 0 7 (2.4%) 

Total 513 
(69.5%) 

203 
(27.5%) 

6 
(0.8%) 

16 
(2.2%) 

738 
(100.0%) 

Total 2162 
(99.7%) 

1 
(0.0%) 

0 (0.0%) 5 
(0.3%) 

2168 
(100.0%) 

Total 137 
(47.9%) 

136 
(47.6%) 

8 
(2.8%) 

5 
(1.7%) 

286 
(100.0%) 

Bloodfed Adult Nymph Larvae Unk. Total Bloodfed Adult Nymph Larvae Unk. Total Bloodfed Adult Nymph Larvae Unk. Total 
Yes 233 115 3 9 360 

(48.8%) 
Yes 465 1 0 1 467 

(21.5%) 
Yes 38 83 5 0 126 

(44.0%) 
No 211 40 1 1 253 

(34.3%) 
No 1404 0 0 0 1404 

(64.8%) 
No 73 33 0 2 108 

(37.8%) 
Unk./NA 69 48 2 6 125 

(16.9%) 
Unk./ 
NA 

293 0 0 4 297 
(13.7%) 

Unk./ 
NA 

26 20 3 3 52 (18.2%) 

Total 513 
(69.5%) 

203 
(27.5%) 

6 
(0.8%) 

16 
(2.2%) 

738 
(100.0%) 

Total 2162 
(99.7%) 

1 
(0.0%) 

0 (0.0%) 5 
(0.3%) 

2168 
(100.0%) 

Total 137 
(47.9%) 

136 
(47.6%) 

8 
(2.8%) 

5 
(1.7%) 

286 
(100.0%)  

a Data for across all host species are provided in Table S5. 
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level analyses. 

3.1. Three-question sequence for photo screening 

In the first question of our sequence, we asked users to assess the size 
of the tick as big, medium, or small. Among users who reported finding a 
big or medium tick (N = 4228), 97% had an adult (Table 3). However, 
among users who reported finding a small tick (N = 581), only 46% had 
a juvenile (i.e., larvae or nymph). At the species level, among users that 
reported finding a big tick (N = 2463), 80% had encountered an adult 
D. variabilis tick. And among users that reported finding a small tick, 
39% had an I. scapularis adult and 32% had an I. scapularis juvenile tick. 

In the second question, we asked users whether the tick was flat or 
round (to coarsely determine the bloodfed status of the tick and ability 
to see color patterns on the tick) and compared this to entomologist- 
verified bloodfed status. Using a conservative threshold (≥3 days 
feeding duration and ≥71 certainty score), approximately 7.8% of ticks 
(N = 408) were bloodfed. Eighty percent of these bloodfed ticks were 
reported as attached, 7.5% were reported as not attached, and 12.5% did 
not know the attachment status or did not respond. For these bloodfed 
ticks, users classified 68% as round. Users labeled 62% of bloodfed 
D. variabilis adults as round, and 74% of bloodfed I. scapularis adults as 
round. In an alternative framing, 95% of submissions classified as round 
by users were bloodfed for ≥3 days, based on the engorgement index. 

Finally, for the third question of our sequence assessing users’ clas
sification of tick color pattern, among users with confirmed adult 
D. variabilis, I. scapularis, and female A. americanum ticks, 58% selected 
the color pattern matching their respective species descriptions, as 
described in the Methods section (Fig. 4). This increased to 65% when 
we excluded bloodfed ticks from the analysis (Table S8). When users 
indicated color patterns that did not match entomologist-identified 
adult D. variabilis, I. scapularis, and female A. americanum, they most 
commonly selected the “all brown” photo showing male A. americanum 
(Fig. 4, Table S8). Notably, the proportion of entomologist-identified 
D. variabilis reports with users that selected the intended description of 
D. variabilis having a “brown and white pattern” was 56% among one- 
time submitters, 65% amongst users who submitted between five and 
nine reports, and 76% among users who submitted 10 or more reports 
(excluding bloodfeds from analysis). 

The MCA corroborated expected associations between expert- 
identified tick species and user-selected color patterns, as shown in 
the biplot of the first two dimensions (Fig. S4). Immature stages 
(comprised primarily of nymphs), however, did not show clear 

associations with any color pattern nor other visual cues included in the 
three-question sequence. Ixodes scapularis ticks were most closely asso
ciated with “small size” as indicated by the users, while D. variabilis ticks 
were most closely associated with “big size.” The user-selected shape 
(round versus flat) did not show a close association with tick bloodfed 
status. Nonetheless, the first two dimensions only explained 34% of the 
variance contained in the six screening variables, indicating that there is 
substantial variability in the user-selected features that limits the use of 
the size, bloodfed status, and color patterns as complete predictors of 
tick species. 

3.2. Location of tick encounters 

With the GPS data we initially assessed travel away from the users’ 
residence (in the four days prior to finding the tick). A small percentage 
of reports (11%) included travel outside the participants’ state of resi
dence; whereas 61% of reports included travel outside the county and 
84% outside the zip code of residence (Fig. S5a). When assessing 
available self-reported travel history, 347 reports included the county 
where the user thought they picked up the tick, and 345 included the zip 
code (Table S9). Of the reports with this information available, we did 
not detect GPS points in the county or zip code where the user stated 
they picked up the tick (in the four days prior to tick detection) for 43 
(12%) and 50 (19%) reports, respectively. However, when we extended 
our search window to the 30 days prior to tick detection, an additional 
19 reports included GPS points within these locations. 

Out-of-county visitation in the four days prior to tick detection var
ied according to the urbanicity level of the users’ county of residence. 
Approximately three-quarters of users from large metropolitan and rural 
areas traveled out-of-county; whereas a smaller percentage, 50–63%, of 
users from small and medium metropolitan areas did (Fig. S5b). For 
travelers from large metropolitan and rural counties, more out-of-county 
visitation took place on weekends compared to weekdays; whereas 
travelers from medium and small metropolitan counties had higher out- 
of-county visitation during the week (Fig. S5c). 

With respect to land cover, overall, users spent more time in devel
oped or planted/cultivated classes compared to forest, grasses, and other 
land covers. However, partitioned by travel history and urbanicity, out- 
of-county travelers from medium and small metropolitan areas spent 
less time in developed areas, and more time in forested and planted/ 
cultivated areas compared to non-travelers (Mann-Whitney test; p <

0.01). Travelers from these urban counties spent more time in non- 
developed areas on weekends compared to on weekdays. Travelers 
from rural areas spent slightly more time in developed, grassy, and other 
land cover types, but less time in planted/cultivated areas compared to 
non-travelers (Fig. 5a); with more time in planted/cultivated areas on 
weekdays compared to on weekends (Mann-Whitney test; p < 0.01) 
(Fig. 5b). 

To validate self-reported exposure location, we examined both the 
urbanicity of the users’ county of residence and their land cover visi
tation patterns. More than half of users with self-reported peri‑domestic 
exposures were from rural counties (56%) while those with recreational 
exposures were from rural (44%) and medium metropolitan areas 
(21%). Across counties, users with peri‑domestic exposures spent a 
greater proportion of their time in planted/cultivated and developed 
land covers compared to other land cover types (Mann-Whitney test; p <
0.01). Whereas users with recreational exposures spent a greater pro
portion of their time in developed land cover compared to planted/ 
cultivated, grassy, forested, or other land cover classes (Mann-Whitney 
test; p < 0.01) (Fig. 5c). 

Among submissions with both GPS data and photos available, 363 
included encounters with D. variabilis, 42 with I. scapularis, and 10 with 
A. americanum. Among D. variabilis reports, 81% visited grassy areas, 
61% visited forest, and 52% visited planted/cultivated areas. However, 
when distinguishing the amount of time spent in different land cover 
types, we found significant differences (Kruskal-Wallis chi-squared; p <

Table 3 
Tick size as a predictive feature of tick species and life stage a.  

User-selected tick 
size 

Entomologist-verified 
species ID 

Entomologist-verified life 
stage 
Adult (%) Juvenile 

(%) 

Big (N = 2463) Across species 2418 
(98.2)b 

33 (1.3) 

Amblyomma americanum 82 (3.3) 25 (1.0) 
Dermacentor variabilis 1978 (80.3) NA 
Ixodes scapularis 358 (14.5) 8 (0.3) 

Medium (N =
1765) 

Across species 1666 (94.4) 90 (5.1) 
Amblyomma americanum 90 (5.1) 53 (3.0) 
Dermacentor variabilis 903 (51.2) NA 
Ixodes scapularis 673 (38.1) 37 (2.1) 

Small (N = 581) Across species 301 (51.8) 268 (46.1) 
Amblyomma americanum 17 (2.9) 84 (14.5) 
Dermacentor variabilis 55 (9.5) 1 (0.2) 
Ixodes scapularis 229 (39.4) 183 (31.5)  

a Proportions represent the number of ticks with a life stage and species 
identification out of the number of ticks classified as being big, medium, or 
small. 

b Example interpretation: 98.2% of ticks classified by users as big were veri
fied by entomologists as adult ticks. 
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Fig. 5. Land cover exposure by county of residence, exposure type, and species. 5a. Boxplot comparing five-category land cover classifications between travelers 
versus non-travelers for medium and small metropolitan counties and rural counties. 5b. Among travelers, boxplot comparing five-category land cover classifications 
for weekdays versus weekends for medium and small metropolitan counties and rural counties. 5c. Boxplot comparing five-category land cover classifications for 
peri‑domestic versus recreational exposures (“Other” land cover class is excluded from plot due to low percentages. The median proportion of GPS points in other 
land cover was 3.2% for peri‑domestic exposures and 2.9% for recreational exposures). 5d. Boxplot comparing five-category land cover classifications for the three 
tick species (“Other” land cover class is excluded from plot due to low percentages —the median proportion of GPS points in other land cover was 0.0% for Der
macentor variabilis; 0.0% for Ixodes scapularis; and 3.1% for Amblyomma americanum). 

Fig. 6. Comparison of Dermacentor variabilis 
and Ixodes scapularis reports with known re
cords. 6a. County map comparing The Tick App 
Dermacentor variabilis reports with known re
cords from Nieto et al. and Lehane et al. With 
The Tick App records, we excluded individuals 
who had more than 20% of their GPS points 
outside of their county of residence. We iden
tified 44 counties that did not have records of 
D. variabilis in these reviewed sources (shown in 
red), and 278 counties that matched known 
records of where the species has been reported 
(shown in teal). 6b. County map comparing The 
Tick App Ixodes scapularis reports with known 
records from CDC (2021) surveillance data, 
(Kopsco et al., 2021b and Nieto et al., 2018). 
We identified three counties with new reports 
of I. scapularis (shown in red), and 241 counties 
that matched known records of where the spe
cies has been reported (shown in teal).   
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0.01), with users spending significantly more time in planted/cultivated 
land covers compared to forested or grassy land cover types (Dunn’s test; 
p < 0.01) (Fig. 5d). For encounters with I. scapularis, 88% visited forest; 
52% visited planted/cultivated areas and 60% visited grassy areas. 
Finally, among A. americanum encounters, nine included time spent in 
grassy areas; only two reports included >1% of GPS points in forested 
areas. Due to low sample size, we did not examine statistical differences 
in the time spent in each land cover for I. scapularis or A. americanum. 

3.3. Geographic and temporal variation across species 

County-level tick encounter submissions reflected known distribu
tions for D. variabilis and I. scapularis. To partially account for travel 
history, we excluded data from 60 individuals who had more than 20% 
of GPS points outside of their county of residence. With this restricted 
data, during 2019–2021, we received D. variabilis reports from 322 out 
of the 1404 counties (23%) in the Northeast and Midwest regions of the 
United States; 44 counties did not have records of D. variabilis published 
in Lehane et al. (2020) and Nieto et al. (2018) (Fig. 6a). A subset of these 
counties (N = 4) had tick encounter submissions from multiple users, 
with more than one life stage identified, and no out-of-county travel 
documented, providing multiple lines of preliminary evidence that the 
tick species may be present locally. We received I. scapularis reports from 
259 out of the 1404 counties (18%) in the region (Fig. 6b). Three 
counties in Michigan did not have previous records of I. scapularis, 
compared to 2021 CDC tick surveillance reports as well as data pub
lished by Centers for Disease Control and Prevention (2022), Kopsco 
et al. (2021b) and Nieto et al. (2018) (Fig. S6). 

We also assessed whether temporal patterns of photo submissions 
corresponded to the species’ known phenologies (Fig. S3). For 
I. scapularis, we received 963 photo submissions across all months. 
However, we noted seasonal differences in when adult versus nymphal 
ticks were reported. For adults, there were two distinct peaks in sub
missions. The first peak occurred between late March–May, reflecting 
questing activity for overwintering populations; the second took place 
between late September–November, corresponding to increases in 
autumnal populations. Notably, the earliest report was January 5–14th 
(2021) and the latest December 10–20th (2019), providing consistent 
winter detections. For nymphs, we received photo submissions between 
April–November, with a peak in June. Across all years, the earliest 
submissions were April 5–12th in the Midwest (2021) and the latest 
November 9–16th (2020) for the Midwest and Northeast regions. For 
A. americanum, we received 345 adult and nymphal photos between 
April–September of our study period. For D. variabilis, we received 2971 
adult photo submissions between April–late August. Across species, 
while the Midwest region had a larger volume of photos than the 
Northeast, we did not observe marked differences in the temporal pat
terns of submissions between regions. 

4. Discussion 

The Tick App is designed to better understand tick exposures in the 
United States and provide users with new tools for understanding ticks 
and tick-bite prevention. The app joins the ranks of other community 
science research programs in producing a robust dataset of both human 
and companion animal encounters with medically-relevant ticks across 
expansive geographic regions (Kopsco et al., 2021c; Saleh et al., 2019). 
With reports primarily generated from the Midwest and Northeast, 
United States, and skewed towards the Midwest, D. variabilis ticks made 
up the largest proportion of submissions. This differed from the Tick
Spotters program, for example, which had data skewed towards the 
Northeast region and received similar proportions of D. variabilis and 
I. scapularis ticks (Kopsco et al., 2021b). Therefore, we emphasize the 
importance of socio-ecological context when assessing tick hazard and 
exposure from passive tick report programs (Bron et al., 2020). Our 
study offers new insights by examining tick encounter location and 

travel history by local context. We parsed out the proportion of time 
spent in natural versus developed areas, and within-county versus 
out-of-county based on users’ self-reported information. These distinc
tions enhance our understanding of tick-encounter locations, and indi
cate important areas for integration with field-based research. 

Understanding where tick encounters have occurred, accounting for 
travel history, is key to determining whether local risk is emerging or 
established. Given the volume of cases in endemic regions, state health 
departments often have limited capacity to conduct case investigations 
and collect travel history data. Those that do, gather this data in a va
riety of ways—including open-ended questions about travel in the 30 
days prior to symptom onset, or specific questions about the destination 
county and reason for travel (Michigan Department of Health and 
Human Services, 2022; West Virginia Department of Health and Human 
Resources, 2022). Additionally, at the time of analysis, travel history 
was not publicly available for concurrently operating community 
science-based surveillance programs (Kopsco et al., 2021b; Nieto et al., 
2018). With location services through The Tick App, we have started to 
address gaps in knowledge regarding travel history in tick encounter 
risk. Among our submissions, we noted that while a majority of reports 
included travel outside the users’ county and zip code of residence, only 
11% included travel out-of-state and less than 2% included travel 
inter-regionally, indicating that most travel-associated encounters do 
not involve long-distance travel. We also detected a greater percentage 
of GPS points in the counties and zip codes where users reported picking 
up the tick when using a 30-day window prior to tick detection (as 
opposed to four days). This discrepancy may reveal oversights as to 
users’ dates of travel, a lack of familiarity with the length of time that 
ticks remain attached, or potential survival of ticks in clothing or 
equipment followed by subsequent tick-host encounters. 

Travel history is essential when aiming to incorporate community 
science-derived data into tick distribution maps (Eisen and Eisen, 2021). 
Often, such distribution maps are based on users’ residential informa
tion, under the assumption that encounters occur within-county. We 
observed a high degree of out-of-county travel in the days preceding tick 
detection, and therefore urge caution when interpreting these maps as 
providing precise information on tick encounter risk. However, by 
aggregating information from multiple encounter reports and data 
sources, we strengthen preliminary indications that tick species are 
emerging for a given jurisdiction or surrounding area (Porter et al., 
2021). These data also provide preliminary locations for field-based, 
active surveillance to ultimately confirm tick presence within the area. 

When examining time spent in different land covers, the substantial 
proportion of time spent in both developed and planted/cultivated land 
cover classes likely reflects blurred social and spatial boundaries be
tween urban and rural areas in the Midwest, United States (Lichter and 
Brown, 2011). Nevertheless, with GPS data we gleaned information on 
activity patterns associated with travel history among heterogeneous 
subpopulations. For instance, nearly three-quarters of tick encounter 
submissions for residents living in large metropolitan and rural counties 
had travel history out-of-county in the four days preceding the tick 
encounter; whereas just over half of medium and small metropolitan 
residents did. Additionally, travelers from medium and small metro
politan areas spent less time in developed land cover, and more time in 
forested, planted/cultivated, and other landscapes compared to 
non-travelers; with more time spent in natural areas on weekends. 
Travelers from rural counties, on the other hand, spent slightly more 
time in developed, grassy, and other landscapes, but significantly less 
time in planted/cultivated land cover types compared to non-travelers. 
Transportation studies in the United States have indicated that rural 
residents are more mobile than urban residents, on average covering 
38% more mileage per day, with a higher proportion of households 
having a vehicle available (Pucher and Renne, 2005; Santos et al., 
2011). Socioeconomic transitions have affected the travel patterns of 
rural workers, such that they often commute to surrounding urban or 
other rural counties for commercial activities and work, potentially 
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explaining our observation of more travel to developed areas and less 
travel to planted/cultivated areas on weekends (Lichter and Brown, 
2011). Given that natural areas are riskier for tick encounters, travel 
out-of-county may pose a greater issue for data reliability (with respect 
to encounter location) among urban county residents compared to rural 
ones. An important caveat to the generalizability of these results is that 
two-thirds of the study period took place after the start of the COVID-19 
pandemic, during which travel restrictions shifted outdoor activity 
patterns in the United States. In a previous investigation, we found that 
self-reported peri‑domestic activity was higher for Tick App users in 
medium and small metropolitan areas compared to those in large 
metropolitan areas, potentially explaining the lower proportion of users 
from these smaller urban areas that traveled outside of their home 
jurisdiction (Fernandez et al., 2021). 

With respect to exposure type, users with self-reported peri‑domestic 
exposures spent more time in planted/cultivated land covers. Agricul
tural landscapes, therefore, may be an under-recognized setting for tick 
exposures. Furthermore, exposures seem to occur while users are con
ducting activities around the property, whether related to landscape 
maintenance or farming. Based on users’ self-reported outdoor activ
ities, both in rural and metropolitan counties, primary peri‑domestic 
activities included gardening, mowing the lawn, and removing brush 
from their yard (for approximately 60, 30, and 9% of surveys submit
ted); nonetheless, in rural counties, users also reported conducting 
agricultural activities in approximately 9% of surveys (versus ~3% in 
metropolitan counties) (unpublished results from The Tick App). Users 
with recreational exposures spent a higher proportion of their time in 
developed land covers, and visited planted/cultivated, forested, grassy, 
and other land covers (including open water) to a lesser extent. This 
indicates that users with recreational exposures spend much of their 
time in low-risk, developed land covers, but may travel to natural areas 
to conduct the commonly reported outdoor activities, including hiking, 
bird watching, fishing, and spending time at the beach (Bron et al., 
2020). To better understand self-report data, qualitative and mixed 
methods studies are warranted to disentangle perceived land covers and 
activities of risk, compared to the actual time spent conducting activities 
in these landscapes. 

By merging GPS and photo submission data, we explored land cover 
types that may contribute to different tick species exposures—although 
with a limited sample size. We found that users who encountered 
D. variabilis spent significantly more time in planted/cultivated areas 
compared to forested areas. This corresponds to documented habitat 
associations of D. variabilis, where adult ticks are detected primarily in 
open areas—for example at highest densities clustered in agricultural 
areas and more rarely in wooded habitat with dense vegetation 
(Mathisson et al., 2021; Stein et al., 2008; Trout Fryxell et al., 2015). We 
did not have sufficient submissions with I. scapularis or A. americanum 
for statistical comparisons. Even still, I. scapularis encounters were 
associated with individuals who spent more time in forested land cover 
compared to planted/cultivated or grassy areas, and reflects what is 
known about I. scapularis as a primarily forest-dwelling species. And the 
10 submissions with A. americanum corresponded to individuals who 
spent a greater proportion of time in grassy areas compared to plan
ted/cultivated or forested areas. While there is not yet a consensus on 
habitat associations for A. americanum, multiple investigations (con
ducted in different geographic locations in the United States) have 
indicated their negative association with high-density vegetation, and 
adult female preference for open canopy sunlight (Ferrell and Brin
kerhoff, 2018; Koch and Burg, 2006; Mathisson et al., 2021; Trout 
Fryxell et al., 2015). These results indicate that we may be able to detect 
user visitation patterns that correspond with known tick habitat asso
ciations. This also suggests that human mobility data should be inte
grated with field studies of tick densities to further our understanding 
both tick hazard and exposure. 

We also explored whether user-selected photos can inform a simple 
algorithm for species identification. We found that a majority of users 

correctly identified their specimens as ticks, with only 3% of photo 
submissions comprising of non-tick arthropods, comparable to the 
TickSpotters program which reported 5% of photos being non-ticks 
(Kopsco et al., 2021a). Prompts of tick coloration and size guided 
users towards species and life stage classification moderately well, with 
65% of users with D. variabilis adults “correctly” selecting the image of a 
“brown and white pattern” tick and 62% classifying I. scapularis adults as 
having a “black shield” (excluding bloodfed ticks attached three or more 
days). Additionally, users classified bloodfed ticks as round with mod
erate success; bloodfed I. scapularis adults were classified as round to a 
greater extent than D. variabilis adults. Future efforts may involve 
modifying and validating this three-question sequence to increase the 
reliability of user-selected photo classifications. Furthermore, this sim
ple algorithm may be integrated with emerging machine learning 
techniques to expediate tick identification processes and minimize 
human error (Justen et al., 2021; Kopsco et al., 2021a). 

Interestingly, we found that users with 10 or more submissions of 
adult ticks were more successful in differentiating adult species 
compared to the overall user population. This is indicative of a generally 
well-informed user sub-group, or highlights a potential role of The Tick 
App in knowledge-building around tick species recognition (Fernandez 
et al., 2019). Future studies are planned to evaluate The Tick App as an 
educational tool. Eisen and Eisen (2021) comment that user-based tick 
identification without expert validation should be incorporated judi
ciously, and with approximately 60% of all adult species identified 
correctly, we concur and strongly caution against the use of this infor
mation for medical decision-making. However, with tick burdens on the 
rise in the United States, public knowledge-building and empowerment 
around tick exposures are important (and measurable) outcomes. 
Therefore, we find it important to continue engaging with users in 
species identification. Increasingly, ecologists are harnessing commu
nity science data via mobile applications such as eBird and iNaturalist 
for educational and research purposes. eBird investigations incorporate 
observer expertise scores, where the assessment of observer metrics and 
inclusion of these data in species distribution models has been shown to 
improve model performance (Johnston et al., 2018). As initiatives for 
tick species identification gain traction, we see the potential for inte
grating statistical corrections and expert indices as a means of data 
quality assurance. 

Furthermore, we find community science to be of critical impor
tance, both to address current data gaps and to confront the current 
socio-scientific context in the United States. Specifically, there is a 
landscape of unfamiliarity, misconception, and contentiousness sur
rounding ticks and tick-borne disease information (situated within 
sentiments towards public health and scientific institutions more 
broadly) (Beck et al., 2022; Hook et al., 2015; Mattoon et al., 2021). For 
example, Kopsco et al., found that some survey respondents are more 
likely to trust non-traditional sources of tick-borne disease prevention 
information (e.g., online forums) compared to established public health 
sources (e.g., the Centers for Disease Control and Prevention) (Kopsco 
et al., 2022). Yet, in a knowledge, attitudes and behavior survey in the 
Midwest, participants were more likely to use personal prevention 
strategies if they had seen tick-borne disease prevention messages 
compared to participants who had not seen such messages (Beck et al., 
2022). Approximately 40% of the aforementioned study respondents 
found online or printed materials useful, and 22% indicated that they 
would find a smartphone app very helpful. In contrast to printed ma
terials, a smartphone app has the potential to build community and 
engage hard-to-reach information seekers in a bidirectional manner 
(Cardona, 2013). In particular, lack of tick-borne disease awareness and 
language barriers have been identified as contributing factors in the 
under- and delayed diagnosis of Lyme disease among Spanish-speaking 
populations in the United States (Beck et al., 2022; Hu et al., 2019; 
Maxwell et al., 2022). A future direction of The Tick App will be to make 
the platform available in additional languages, starting with Spanish. 

Our study has several limitations, as with any passive surveillance 
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and observational study. Our conclusions are limited to a population 
that uses smartphone technology and frequently engages in outdoor 
activities, and therefore, cannot be generalized to the general popula
tion. Given that The Tick App is marketed as an app to better understand 
human exposure to ticks, we expect that people at greater risk of tick 
encounters and previous tick exposure use it more frequently, intro
ducing self-selection bias. Moreover, our population does not include 
people under 18 years of age, limiting conclusions for younger age 
groups. Additionally, in part due to detection biases, our database was 
highly skewed towards D. variabilis submissions, precluding robust 
analysis for I. scapularis and A. americanum or cross-species comparisons. 
However, the data suggest that The Tick App user base is continuing to 
expand, indicating potential to address such research questions in the 
future. Finally, GPS data were available for only a small percentage of 
overall tick encounter submissions, and even when data were available, 
we were limited by the number of points that were recorded. While the 
inclination is an aspiration towards larger datasets, we caution the need 
to balance the granularity of the information collected with the confi
dentiality and privacy of users. For example, with location services, we 
were legally obligated to ask users whether they chose to have their 
location data taken continuously, or only while using the application. 
Based on our observations that more tick encounter reports are gener
ated via Tick Reports as opposed to Daily Logs, users may be opening the 
app with the specific intent of submitting a tick report rather than log
ging their activities over time. While location data provide novel in
sights into mobility patterns and land cover exposure, such restrictions 
importantly safeguard user protection. 

This paper provides descriptive analyses demonstrating how The 
Tick App contributes to current passive tick encounter surveillance 
across tick identification, travel history and habitat exposure, as well as 
spatial and temporal patterns of species-specific tick encounters. We 
emphasize the importance of complementing this information with 
field-based entomological and social surveys to assess local risk of tick- 
borne diseases incorporating environmental hazard, exposure, and 
vulnerability. 
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