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Abstract—In-home health monitoring has attracted great attention for the ageing population worldwide. With the abundant user health
data accessed by Internet of Things (loT) devices and recent development in machine learning, smart healthcare has seen many
successful stories. However, existing approaches for in-home health monitoring do not pay sufficient attention to user data privacy and
thus are far from being ready for large-scale practical deployment. In this paper, we propose FedHome, a novel cloud-edge based
federated learning framework for in-home health monitoring, which learns a shared global model in the cloud from multiple homes at
the network edges and achieves data privacy protection by keeping user data locally. To cope with the imbalanced and non-11D
distribution inherent in user’s monitoring data, we design a generative convolutional autoencoder (GCAE), which aims to achieve
accurate and personalized health monitoring by refining the model with a generated class-balanced dataset from user's personal data.
Besides, GCAE is lightweight to transfer between the cloud and edges, which is useful to reduce the communication cost of federated
learning in FedHome. Extensive experiments based on realistic human activity recognition data traces corroborate that FedHome

significantly outperforms existing widely-adopted methods.

Index Terms—Federated learning, in-home health monitoring, personalization

1 INTRODUCTION

1TH lower fertility and longer life expectancy, popula-

tion ageing is becoming a global issue. According to the
World Health Organization (WHO), the world’s population
aged 60 years and above will increase to 1.2 billion in 2025
and subsequently to 2 billion by 2050 [1]. The ageing popula-
tion tends to have a higher prevalence of chronic diseases,
physical disabilities, mental illnesses and other co-morbid-
ities, deriving problems such as shortage of medical resources
and reduction of quality in healthcare services. Moreover,
some older adults (e.g., solitary elderly, elderly couples) pre-
fer to live independently in their own homes, bringing an
increased risk of falls and strokes which could be life-threaten-
ing. Therefore, there is a growing demand for developing
technologies that can aid in the care of the elderly from hospi-
tal-centric to home-centric. With the proliferation of smart
devices, mobile networks and computing infrastructures,
Internet of Things (IoT) is poised to make substantial advan-
ces in healthcare systems due to the integrated sensing, com-
putation and communication capabilities of IoT devices.
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Thus, IoT-based in-home health monitoring is envisioned as a
promising paradigm and has attracted great attention [2], [3].
IoT devices, particularly wearable devices as exemplified
by smartphones and smartwatches, can track a user’s activ-
ity, heart rate and so forth persistently, and then feedback
these data to a healthcare center for further processing and
diagnosis. Due to the easiness and low cost of people’s health
information acquisition, smart in-home healthcare is able to
facilitate pervasive and nonintrusive health monitoring, and
is emerging as mainstream for smart healthcare [4]. Current
healthcare applications often utilize machine learning (ML)
models trained on massive user data to yield insights, per-
form in-home health monitoring and ultimately provide bet-
ter public health services and products. As illustrated in
Fig. 1, one possible way is to collect a large quantity of train-
ing data required for a powerful in-home health monitoring
system from many families. As users’ health data involves
individual privacy, collecting and storing abundant health
monitoring data at a remote cloud center to support data
analytics based smart healthcare services would impose
great privacy leakage risk, making people reluctant to adopt
such services. At the same time, with the increasing concerns
ondata security and user privacy, several regulatory policies
and protection mechanisms have been set to restrict data
access and protect data privacy. For example, General Data
Protection Regulation (GDPR), issued by the European
Union, has enforced strict rules on data security and privacy
protection [5]. Additionally, China and the United States
have also strengthened their attention to data privacy [6].
Under the increasingly stringent data privacy protection leg-
islation, it is almost impossible to integrate sufficient user
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Fig. 1. In-home health monitoring. A large quantity of user data from
smart healthcare loT devices in multiple homes is collected to train
machine learning (ML) models for in-home health monitoring and sup-
portive healthcare services. As the user’s health data is privacy-sensi-
tive, ML models can not be traditionally managed in a centralized
manner.

health data scattered around multiple families for ML model
training and in-home health monitoring.

Emerging wisdom to address the above privacy chal-
lenge in the traditional, centralized machine learning
approaches is federated learning (FL) proposed by Google
in 2016. FL enables jointly training a shared global machine
learning model under the coordination of a central server
by aggregating locally-computed updates while keeping all
the sensitive data in local clients (e.g., smartphones), thus
allowing users to collectively reap the benefits of the shared
model without compromising their data privacy. This form
of learning is ideal for community healthcare because it
ensures privacy by default, respects data ownership, and
maintains locality of data for application deployment at
scale. Furthermore, federated learning makes all the partici-
pating clients (e.g., medical institutions, smart healthcare
IoT devices) share their experiences with privacy guarantee,
resulting in a significantly improved performance of the
ML model [7].

Nevertheless, existing studies of FL focus on training a sin-
gle global model, which would suffer from the weaknesses in
both statistical and communication perspectives and lacks
personalization, resulting in a degraded performance in the
healthcare scenarios. First, since different users have different
physical characteristics, the personally-generated data natu-
rally exhibits the kind of non-IID (a.k.a. non-independent and
identically distributed) distribution. Even for a single user, the
health monitoring data can be highly skewed. For example, an
adult’s activity data may include a lot of standing and walking
samples, but very few falls. Both the imbalanced and non-IID
distribution of user health data may greatly degrade the leamn-
ing performance. Second, the communication challenge refers
to communication constraints, such as slow or expensive con-
nections and limited bandwidth costs. Existing federated
leaming approaches mainly focus on the communication
rounds reduction considering the fact that mobile devices are
frequently offline [8]. However, the communication overload
reduction in each round is also critical to improve the effi-
ciency of the algorithm considering the bandwidth cost.
Finally, as for personalization, the shared model trained by
federated learning only captures the common features of all
users, but it may perform poorly on a particular user. Thus, it
is necessary to learn the fine-grained information on a particu-
lar user for personalized healthcare. However, current feder-
ated learning researches in healthcare only focus on one of
these challenges, without considering them as an interrelated

integration. For example, Zhao ef al. propose a data-sharin
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strategy to improve the FedAvg algorithm with non-IID by
creating a small globally-shared dataset [9]. Heong et al. advo-
cate federated distillation to reduce the communication size to
transfer in FL [10]. Chen ef al. propose a federated transfer
learning framework for personalized healthcare [11].

To cope with above issues, we propose FedHome, a cloud-
edge federated learning framework for personalized in-home
health monitoring, which is a novel scheme that can simulta-
neously address the three challenges in a holistic manner.
FedHome utilizes a synergistic cloud-edge computing archi-
tecture and federated learning to avoid uploading users’ sensi-
tive data to a centralized cloud server, thus reducing the
network latency, and more importantly, addressing privacy
concerns. We devise a novel generative convolutional autoen-
coder (GCAE) network as the model trained on both the cloud
and the edges. By integrating the parameter sharing mecha-
nism in convolutional neural network (CNN) and representa-
tion ability of autoencoder (AE), GCAE is able to capture the
representative and low-dimensional features of user data.
Moreover, the representation ability of GCAE is improved
together with the prediction ability through the model training
process in federated settings. After global model training,
GCAE generates new data samples of minority classes in low-
dimension space with synthetic minority over-sampling tech-
nique (SMOTE) in order to deal with the imbalanced and non-
IID distribution exhibited in users’ health data. With the gener-
ated class-balanced dataset, the trained GCAE model can be
personalized by fine-tuning its parameters for precise health-
care performance during classification or inference. Itis worth-
noting that GCAE plays a significant role in both training and
personalization stages, thus resulting in an increased classifi-
cation accuracy. Furthermore, GCAE s able to reduce commu-
nication overhead without compromising performance due to
parameter sharing and autoencoder mechanism.

In summary, this paper makes the following contributions:

e We propose FedHome, a novel cloud-edge based per-
sonalized federated learning framework for in-home
health monitoring. FedHome trains a globally shared
model from dispersed homes under the coordination
of a central server in a cloud-edge paradigm, which
can prevent data leakage by keeping user data locally
and then achieve personalized model learning with
user’s local data.

e FedHome features on a novel design of the generative
convolutional autoencoder. By synthesizing samples of
minority classes and retraining user’s local model with
the generated class-balanced dataset, GCAE mitigates
the prediction performance degradation caused by
imbalanced and non-IID distribution of user data, and
achieves superior personalized predictions. Besides,
GCAE is a lightweight model by parameter sharing
and dimension reduction, which makes the model
transfer between the cloud and the edges much more
cost-efficient.

e Extensive experiments are conducted using a realis-
tic human activity dataset to demonstrate the effec-
tiveness of FedHome, which shows that FedHome
well outperforms traditional centralized methods in
both the balanced and the imbalanced data cases.
For example, FedHome achieves a high accuracy of
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Fig. 2. FedHome framework overview.

95.41 percent with more than 7.49 percent accuracy
improvement over the widely-used convolutional
neural network algorithm. Comparing with other
federated learning approaches, FedHome achieves a
gain of more than 10 percent accuracy.

The rest of this paper is organized as follows: Section 2
outlines the framework overview of FedHome. In Section 3,
weintroduce the algorithm details of FedHome. In Section 4,
we conduct extensive experiments using a realistic human
activity dataset. In Section 5, we review the related work in
in-home health monitoring and federated learning. Finally,
we conclude our paper in Section 6.

2 OVERVIEW OF FEDHOME

We consider an in-home health monitoring system consist-
ing of a cloud server and N dispersed edge computing
nodes (e.g., smarthome gateway) deployed at users” homes.
Given a specific task, for example, elderly fall-down detec-
tion via human activity recognition, we wish to train an
accurate machine learning model by taking advantage of
the abundant data {D;,Ds,..., Dy} collected from all the
home users in N edge nodes. Conventional approaches usu-
ally put all the data together (e.g., uploading to a cloud
server) to train a model M ;; in a centralized fashion.
However, such approaches would cause significant privacy
issues as the health data usually contains a user’s sensitive
private and personal information. Thus, we resort to the
federated learning paradigm, in which users collaboratively
train a model Mggp without uploading their personal data
to a central cloud server or exposing to each other.

There have been some attempts that study healthcare in fed-
erated learning settings. For example, Silva ef al. present a fed-
erated leaming framework by investigating brain structural
re]ationships across diseases and clinical cohorts without shar-
ing individual information [12]. Kim et al. convert massive
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electronic health records into meaningful phenotypes for data
analysis by iteratively transferring secure summarized infor-
mation of hospitals to a central server in federated settings [13].
Liu et al. develop a two-stage federated natural language proc-
essing method that enables utilization of clinical notes from dif-
ferent hospitals or clinics without moving the data and
demonstrate its superior performance [14]. Besides, healthcare
giants around the world—including the American College of
Radiology (ACR), MGH and BWH Center for Clinical Data Sci-
ence, and UCLA Health—are piloting FL. in healthcare by
bringing Al with privacy to hospitals [15]. For example, ACR
uses FL to allow its medical imaging members to securely
build, share and adapt ML models. Partners HealthCare, an
integrated health system founded by Brigham and Women's
Hospital and Massachusetts General Hospital, has also
announced a new initiative using the NVIDIA Clara FL frame-
work that will combine technical and clinical expertise with
privacy preservation to deliver more robust Al algorithms for
healthcare from hospital to home [16]. Nevertheless, these
studies of FL for healthcare applications pose new challenges
from both statistical and communication perspectives and
lacks personalization.

Specifically, in this paper we propose FedHome, a novel
framework that aims to achieve accurate in-home health
monitoring without compromising user data privacy by
leveraging the merits of federated learning and edge com-
puting. As shown in Fig. 2, FedHome adopts a cloud-edge
architecture for distributed data processing at users” homes,
achieves collaborative model training through federated
learning and performs personalized model application with
user's local data. We elaborate these key elements in detail
as follows.

Cloud-Edge Architecture. As elaborated above, purely
cloud-based health monitoring would risk at the privacy
leakage since it requires users to upload their sensitive health

related monitoring data. On the other hand, in some
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emergency situations (e.g., fall detection for elderly people),
the cloud-based approach could fail to respond in real time
due to the significant network latency or interruption over
the Internet. To address these issues, we promote a synergis-
tic cloud-edge architecture to bring necessary on-demand
edge computing power in the proximity of IoT devices.
Therefore, each user can choose to process its local data on
device, or offload its intensive model training tasks to the
trustworthy edge nodes (e.g., edge gateway at home) for fast
training. By leveraging federated learning, all users can
merge their local models into a global model in the cloud for
knowledge sharing without exposing their sensitive data.
The trained model deployed locally at the edge can conduct
inference much faster than in the cloud, and hence is useful
for providing real-time healthcare services. Note that the
cloud server here can be provided by some healthcare ser-
vice company or can be a public server deployed collectively
by the entire community of the home users.

Furthermore, as family members in the same home trust
each other, they can share data and train a family-shared
model at the trustworthy edge nodes, thus family members
with insufficient private data can develop accurate local
models by reaping the benefits from the data of their
mutual-trusting family members.

Federated Learning. The federated learning procedure of
FedHome mainly consists of the following three stages.
Indicated by recent work that local models trained from dif-
ferent initial conditions would perform poorly in federated
learning [17], we initialize the cloud model and then send
the initial state to all clients (homes participated in FL) so
that client models can be trained from the same random ini-
tialization. After receiving the global cloud model, each cli-
ent model at the edge then performs local computation
based on the global model and its local data, and sends the
updated local model parameters to the cloud. Finally, the
cloud server aggregates model updates submitted by partic-
ipant clients and averages these updates into its global
model. The process repeats until it converges after many
rounds of iterations. Note that all these steps do no share
any user data or information but the model parameters.

Personalization. The trained cloud model is based on
generic datasets from dispersed homes, which may not well
capture the specific characteristics of an individual target
user. To perform personalized in-home health monitoring,
each user can train a personalized model by integrating the
trained global model and her personal health data. Never-
theless, as user’s personalized data is usually insufficient
and high-skewed, there may be a significant distribution
difference between user’s local data and the data population
of all the participating clients, leading to large model weight
divergence between user’s personalized model and the
global model [9]. Thus, directly retraining the cloud model
based on user’s local data may result in an even worse
model (e.g., degraded accuracy, overfitting with a few data
samples) [18]. To tackle this problem, the model trained in
the cloud and the edges should be carefully designed. Spe-
cifically, we devise a generative convolutional autoencoder
network to deal with the imbalanced class distribution of
user’s health monitoring data. Besides, GCAE is suitable to
be trained under federated learning as it is lightweighted
and can reduce the communication cost between the cloud
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TABLE 1
List of Key Notations
Symbol Description
N Total number of clients in a healthcare system
K Number of activated clients participating in a
communication round
Dy Available dataset on client k&
Dy, The set of indexes of dataset on client k
n Total number of data samples participating in a

communication round

Number of data samples available from client &
Number of training passes over its local dataset for a
client in a communication round

Local minibatch size used for client updates
learning rate of federated learning

weighting factor for the decoder network

tod

>3 m3

and the edges. The details of GCAE are elaborated in
Section 3.2.

3 LEARNING ALGORITHM FOR FEDHOME

In this section, we describe the learning algorithm for Fed-
Home, which consists of personalized federated learning
and generative convolutional autoencoder. The key nota-
tions used in this paper are summarized in Table 1.

3.1 Personalized Federated Learning

Federated learning, which enables many participating cli-
ents to train a shared global model without sharing their
private data, is the core building block for the FedHome
framework. In FedHome, both the cloud model and the cli-
ent models at the edges are learned by deep neural net-
works (DNNs) as DNNs have been identified as a universal
function approximator with excellent generalization and
approximation capabilities [19]. Let Fi. and D; denote the
local empirical objectives and the set of indexes of local data
on client k (edge server k), respectively. n;, is the number of
samples available from client kand n = "X | n; is the total
sample size in a communication round, where K is the
number of active clients participating in federated learning.
Thus, federated learning problem boils down to solving an
empirical risk minimization problem of the form [17]

K
. df(w) = Z%Fk(ﬂ’) where Fj(w) = 1 Z fi(w).

=1 T Dy
(1)

The objective f(w) in federated learning can be rephrased as
a linear combination of the local empirical objectives Fj. ().
The learning objective is task-specified, for instance, the
objective can be cross-entropy loss for classification tasks. @
denotes the parameters to be learned, i.e., the weights and
bias in our deep neural networks.

FederatedAverage (FedAvg) algorithm, which com-
bines local stochastic gradient descent (SGD) on each client
with a server that performs iterative model averaging,
serves as the fundamental framework in federated learning
settings [17]. In each communication round ¢, each edge cli-
ent k computes g = VFj(w,;), the average gradient on its

local data at the current model parameters «;, and then the
lore. Restrictions apply.
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cloud server aggregates all these gradients submitted from
clients and updates the global model by

p
ny
W1 — W — 1) E — 9k, 2
k=1

since Y5, % g, = Vf(w;). As communication cost is expen-
sive in federated leaming, FedAvg proposes to use additional
computation in order to decrease the number of communica-
tion rounds. Two primary ways to achieve this are outlined as
follows: 1) increasing parallel clients participating in each
communication round; and 2) increasing computation on
each client by iterating the local update o* — o — PVFL(o").
In each communication round, the amount of computation
for each client is controlled by E and B, which represent for
the number of training passes over its local dataset and the
local minibatch size, respectively.

FedAvg has been demonstrated to be accurate and
robust in image classification tasks and language modeling
tasks [17]. In this paper, we adopt Fed Avg algorithm for
cloud-edge collaborative training in FedHome. Note that,
to further enhance the data privacy for the in-home health
monitoring scenario, the above parameter exchange and
gradient aggregation steps are done with homomorphic
encryption [20], [21], which is a powerful tool to secure the
learning process by computing on encrypted data and has
been studied and adopted in FL settings. For example,
Federated AI Technology Enabler (FATE) initiated by
WeBank’s Al division is an open-source technical frame-
work to support federated AI ecosystem that enables
secure computing protocols based on homomorphic
encryption (HE) and multi-party computation [22]. The
learning process of FedHealth framework can leverage
homomorphic encryption to avoid information leakage of
model parameters during the learning process [11]. To
reduce the computational cost, more efficient variants of
HE, such as additive HE, can be adopted in practical FL
systems rather than fully homomorphic encryption which
is computationally expensive [23].

After the global cloud model is learned, it can be directly
applied to the homes at the edges for in-home health moni-
toring. However, it is obvious that the distribution of train-
ing samples for the cloud model is highly different from
that generated by a single user, thus the cloud model fails in
personalization. To make the model more tailored to a spe-
cific user, each edge client at home can train a personalized
model by integrating the cloud model and the health moni-
toring data generated by its own users. Nevertheless, as
user’s personalized data is usually insufficient and high-
skewed, there may be a significant distribution difference
between user’s local data and the data population of all the
participating clients, leading to large model weight diver-
gence between user’s personalized model and the global
model [9]. Thus, directly retraining the cloud model with
user’s local data may result in an even worse model (e.g.,
slow convergence rate, degraded accuracy and overfitting
with a few data samples) [18]. To cope with this issue, we
devise a generative model called GCAE under federated
learning paradigm for better personalization, which is elab-
orated in the followi

ng.
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3.2 Generative Convolutional Autoencoder

The health monitoring dataset stored in the edge server of
home k can be defined as Dy = {(x;,y:)}:%,. The feature
x; contains the health information and is always high-
dimensional due to a multitude of monitoring signals for
healthcare, and the distribution of class label y; is usually
skewed and imbalanced since abnormal states or events such
as elderly falling-down are usually sparse during the entire
monitoring process. To deal with the imbalanced data distri-
bution issue, we propose to learn a generative prediction
model in both the cloud and the edges. More specifically, we
devise a generative convolutional autoencoder that utilizes
autoencoder as the backbone. AE aims to learn compact and
effective feature representations of input values via an unsu-
pervised learning schema by mapping the input to a latent
space through encoder network and then mapping back to
the original space using decoder network [24]. The learned
feature representations are usually low-dimensional and con-
tain all the information needed to recover the original inputs,
and thus can be used as feature vector inputs to a supervised
learning model (e.g., Multi-Layer Perceptron-MLP) for user
health monitoring. It's worthnoting that the feature represen-
tations, which are learned by compressing useful information
of the local input data into low dimension by the encoder net-
work of GCAE, are always learned and maintained by the
local user without submitting to the cloud. And the cloud
server only aggregates the model parameter updates obtained
by performing local computations based on the global model
and the local data of home users, without access to user’s sen-
sitive data (e.g., data samples, low-dimensional feature repre-
sentations), hence user’s privacy can be well protected in our
FedHome framework. Besides, due to the fact that health
monitoring data is mostly medical images and sensor records,
we use convolutional neural network as the main architecture
for both encoder and the decoder. CNN is competent to
extract features from signals and it has achieved promising
results in image classification and speech recognition [25].

Fig. 3 depicts the details of GCAE, which consists of a
convolutional pyramid encoder e, that focuses on learning
low-dimensional, common and representative features of
high-dimensional inputs x, a convolutional decoder dy that
calculates the reconstruction loss between x; and dyg(e4(x;))

L6000 = Y. s ~ do(eax) I ®

and a Multi-Layer Perceptron (MLP) p, that predicts the
likelihood of the class label y;. The objective of MLP is to
minimize the difference score between the actual label and
predicted probability distributions for all classes

£5((69).D1) = 3. loss(os, pyles(x), @

where the loss function loss(-,-) denotes the cross-entropy
loss for specific prediction tasks, e.g., human activity recog-
nition task. As we wish our health monitoring model is
equipped with the generation ability, we propose to learn
the representative low-dimensional representations and
conduct prediction jointly. Thus, we train an end-to-end
model b;r minimizin N
3 at 19:58:29 UTC from IEEE Xplore. Restrictions apply.
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Fig. 4. Before inference or classification, the health data is mapped to a low-dimensional space to generate samples in minority classes with SMOTE.
With the synthetic class-balanced dataset, we can fine-tune the prediction network for more accurate health monitoring.

L(w,Dy) = L, + A\La, (5)

where @ = (¢,6,v) stands for the parameters of the three
models and A € R” is the weighting factor that controls the
impact of the decoder network on the whole model.

In the training process of FedHome, the cloud server
managed by smart healthcare service provider first initial-
izes the GCAE model and then sends the initialized model
to all the participating clients (e.g., smartphones). Then,
each IoT device user can offload its GCAE training task to
the trustworthy edge (e.g., smart gateway or edge server) at
home for fast computation. Finally, a global GCAE model
can be well trained by leveraging model updates from mul-
tiple home edges under the coordination of the central
cloud server in a cloud-edge architecture.

Data Generation. When the learned GCAE model is
deployed to the edge, we first conduct personalization to
make the model more tailored to the edge users. However,
the dataset generated by a single user may suffer from data
imbalanced problem, which may heavily impact the model
performance as a well-trained deep neural network usually
relies on a class-balanced training dataset. One common
way to tackle the issue of imbalanced data is over-sampling
which aims to increase the number of instances from the
underrepresented classes in the dataset.

Authonized licensed use limited to: Univ of Calif Davis. Downloaded on August 17,2023 at 19:58:

Due to the high dimensional and complex characteristics of
health monitoring data, it is hard or even impossible to con-
duct over-sampling. As encoder network e, of GCAE is able
to capture representational, common and low-dimensional
features of original input x;, we propose to conduct over-sam-
pling in the set of ey(x;) instead of x;. In our design, the
encoder network of GCAE encodes the high-dimensional
input data x; with dimension of 200 x (3 + 3) = 1200 to low-
dimension (e.g., 200 in our experiments). Thus, the dimension
reduction ratio is 6 in our studying case. It is flexible to deter-
mine the dimension reduction ratio according to the specific
healthcare applications. Then we adopt synthetic minority
over-sampling technique, one of the most commonly used
oversampling methods, to generate a class-balanced dataset
[26]. As depicted in Fig. 4, SMOTE first randomly selects one
or more of the k-nearest neighbors for each instance in the
minority classes and then adopts linear interpolation to gener-
ate new instances. A salient advantage of over-sampling in
low dimension space is that the accuracy in mimicking the
distribution of data samples can significantly improve when
the dimension reduces [27]. Thus, a class-balanced dataset in
low-dimensional space can be obtained based on a given
user’s original dataset.

Personalization. As the cloud model only learns the coarse
features from all users, we focus on learning the fine-grained

information of a 2garl:icular user based on the reconstructed
UTC from IEEE Xplore. Restrictions apply.
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class-balanced dataset for personalization. Specifically, usu-
ally the features in deep networks are highly transferable in
lower layers of the network since they focus on learning the
common and low-level features, and hence encoder network
can be directly reused in the personalized model [28]. While
the higher layers learn more specific features to the task and
the user, which means that we should refine the prediction
model py, (i.e., Multi-Layer Perceptron-MLP) since it is at the
higher layers of GCAE. We fine-tune the model parameters of
py by retraining with the reconstructed class-balanced dataset
based on user's personal data. In this way, each user can
obtain a more accurate personalized model for in-home health
monitoring.

Algorithm 1. The Learning Procedure of FedHome

Input: Dataset from N distributed clients {D;, Dy, ..., Dy}, par-
ticipating client number K in each communication round,
local minibatch size B, number of local epochs E, and learn-
ing rate 7.

1: /*federated learning process*/

2: Cloud server executes:

3: Construct a GCAE model Mg(w) = {e(¢),d(0), p(¥)}
as the cloud model and initialize its model parameters
Wy = {% ; 0o, %}

4: foreachroundt=0,1,2,...do

5: randomly select active client set U; with size K from N

clients
6: distribute M g(w;) to all clients in U; via homomorphic
encryption
7:  foreach clientk € U, in parallel do
8 o}, « ClientUpdate(k, &)
9:  end for
10: upload all client models to the server using homomor-
phic encryption
11:  /*update cloud model by averaging client models*/
12: Wiyl — ZkeUt n_ntwfﬂ
13:  end for
14:  get the learned global model parameter wg
15: distribute the learned model Mg(wg) to all clients via
homomorphic encryption
16: foreachclientk=1,2,..., N do
17: Mi (") « ClientPersonalization(Dy, ws)
18: end for

Output: cloud model Mg(wg) and personalized user model
M(oF), ke {1,2,...,N}.

Communication Overhead Reduction. GCAE model not only
has the ability to generate new data, but also reduces com-
munication overhead to some extent. To well capture the
health information and insights behind the data, it is often
necessary to train a large neural network which has millions
of parameters. However, in federated setting, a lightweight
model is highly desirable in order to reduce the communica-
tion overhead during model parameter updates among the
cloud and the edges.

Parameter sharing scheme is widely-used to reduce the
number of training parameters. In our design, both the
encoder and decoder networks of GCAE are convolutional
neural networks in which parameter sharing is used. More
concretely, convolutional layer, the core building block of
CNN, shares weights by all neurons in a particular feature
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map (the output received on convolving the image with a
particular filter). Max-pooling layer, followed convolutional
layer, is to progressively reduce the spatial size of the repre-
sentation. However, purely adopting CNN will cause a lot
of information loss and further lead to inaccurate health
monitoring. With the autoencoder mechanism, the encoder
network of GCAE is able to learn compact and representa-
tive feature vector of user’s health monitoring data via
unsupervised scheme, ensuring that the low-dimensional
input feature vector ey(x;) fed in prediction network is
nearly lossless. Therefore, GCAE is able to reduce commu-
nication overhead without compromising performance,
which is of great significance in federated settings.

Algorithm 2. Model Update on Each Edge Server

1: ClientUpdate(k,): // Run on client k
B «— (split D, into batches of size B)
for each local epoch e from 1 to E do

for batch b € B do

@ — o—nVL(w,b)

end for
end for
return the trained model parameter w

Algorithm 3. Personalization on Each Edge Server

1: ClientPersonalization(D, »): //Personalization process

2:  calculate low-dimensional feature representation eg(x; ) for
x; using encoder network of GCAE for all samples in D and
get the low-dimensional dataset '

3:  construct a class-balanced dataset D} by adopting SMOTE
algorithm on 7/

4:  refine model parameters of prediction network p(y) with
dataset D} and get a new prediction model p(y)

5: return model M(w') = f(¢,0,vy")

3.3 The Holistic Algorithm

To sum up, the holistic mechanism of FedHome is presented
in Algorithm 1, in which the edges train a globally shared
GCAE model for in-home health monitoring under the coor-
dination of a cloud server by leveraging federated learning. In
each communication round, each edge uses the current cloud
model as the initial model parameters in order to train its local
model using its local user data, and then sends its local model
parameters to the cloud (see Algorithm 2). This process
repeats until the GCAE model on the cloud converges. Then,
the trained GCAE model can be deployed in the edge server
of each home. Each home user can further learn a personal-
ized model by synthesizing a class-balanced dataset with her
personal data and then refining model parameters with the
generated dataset (see Algorithm 3). Note that this framework
works continuously with the new emerging user data. In other
words, FedHome is able to perform incremental learning [29].
That is, when facing new user data, both cloud model and
edge client models can be updated continuously. Moreover,
the longer the user uses the healthcare application, the more
personalized the client model can be. Besides, the learned
cloud model, which captures the generic information of
healthcare application users, can be easily deployed as a prior
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TABLE 2
Human Activity in MobiAct Dataset
Category Code Activity Description
STD Standing Standing with subtle movements
WAL Walking Normal Walking
ADLs STU Stairs up Stairs up (10 stairs)
STN Stairs down Stairs down (10 stairs)
JUM Jumping Continuous jumping
JOG Jogging Jogging
CSI Car step in Step in a car
Fall-like Activities | CSO Car step out Step out of a car
SCH Sit chair Sitting on a chair
Forward-lying Fall forward from standing, use of hands to dampen fall
Falls Fall Front-knees-lying Fall forward from standing, first impact on knees
Sideward-lying Fall sideward from standing, bending legs
Back-sitting-chair Fall backward while trying to sit on a chair

model to a new joining home that is new for the healthcare
application and has almost no usage records.

The FedHome framework can also adopt other deep neu-
ral networks tailored to specific task, for example, recurrent
neural networks for modeling Alzheimer’s Disease (AD)
progression [30], attention network for dementia status pre-
diction from brain magnetic resonance imaging [31]. This
makes FedHome as a general framework flexible for sup-
porting many privacy-preserving healthcare applications.

4 EXPERIMENTS

In this section, we first briefly describe the used dataset and
our implementation details for human activity recognition, a
specific task highly relevant to in-home health monitoring.
Then we evaluate the performance of FedHome framework by
comparing with both traditional widely-adopted approaches
and federated learning based methods.

4.1 Dataset Description and Preprocessing

Our study in this paper is based on a publicly accessible
human activity recognition dataset called MobiAct [32].
There are 57 volunteers (42 men and 15 women) within an
age bracket of 20-47 years participating in the generation of
MobiAct dataset. Each volunteer wears a Samsung Galaxy
S3 smartphone with the accelerometer and gyroscope

sensors. The fri-axial linear accelerometer and angular
velocity signals are recorded at a constant sampling fre-
quency of 200 Hz by the embedded sensors while volun-
teers perform predefined activities. The recorded activities
can be divided into three types: (1) activities of daily living
(ADL): the most common everyday activities like walking,
standing, stairs up and stairs down; (2) fall-like activities
which are sudden or rapid and are similar to falls, such as
sitting on a chair or stepping in and out of a car; (3) falls, for
example, fall forward from standing, fall backward while
trying to sit on a chair, etc. Typically, there are four different
types of falls as described in Table 2. Note that this dataset
can provide the relevant application scenario to mimic in-
home health monitoring through human activity recogni-
tion (e.g., fall detection for elderly people).

Before data preprocessing, we first introduce human activ-
ity model which is established based on the Cartesian coordi-
nate system [33] in accordance with the direction of the sensors
in a smartphone as shown in Fig. 5a. In the 3-dimensional coor-
dinate system, a,, a,, a, denote the acceleration along the z, y
and z axis, respectively. Correspondingly, ., ®,, @, represent
for the angular velocity of the human body around the z, y and
z axis. Since one second is enough for users to perform an activ-
ity (e.g., from falling down to touching the ground), a fixed 1-
second sliding window is used for feature extraction and the
overlapping rate between successive windows is 80 percent.
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Fig. 5. Data preprocessing procedure. (a) Human activity model. (b) Tri-axial acceleration and angular velocity data segmented for one activity. (c)

Mapping the tri-axial sensor data into an RGB ima;
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Fig. 5b shows the tri-axial acceleration and angular velocity
data segmented for one activity. As the sampling frequency is
200 Hz, each activity contains 200 data points for each sensor
along each axis, and totally 200 x (3 + 3) = 1200 data points. If
we consider the 3-axes of the human activity model as the 3-
channels of an RGB image, the values of the tri-axial accelera-
tion and angular velocity data can be mapped into the pixels in
an RGB image. As depicted in Fig. 5¢, the first 200 data in the
RGB image are tri-axial accelerations while the last 200 data are
tri-axial angular velocities.

To practically mimic smart healthcare environments, we
randomly select 30 volunteers and regard them as users in
multiple dispersed homes. Each user can offload their model
training task to the trustworthy edge node (e.g., smart gate-
way or personal computer at home) for fast training or train
the model locally on device. Moreover, as the skewed data
distribution is an inherent characteristic in federated settings,
we employ three approaches of training data partition:

e Balanced data partition: There are 30 homes with one
isolated user at each home. For each user, we extract
48 samples for each activity. Totally, one user has
480 samples for model training.

e Imbalanced data partition: There are 30 homes with one
isolated user at each home. For each user, we take a ran-
dom number of samples for each activity and finally,
we ensure that each user has 480 samples for model
training.

e Home data partition: The dataset for each user is the
same with imbalanced data partition case. However,
werandomly divide these 30 users into 10 homes with
1 to5 family members per home. Users can share their
health data with their family members at the edge.

The test data for the above three data partition manners is
the same. For the selected 30 users, each user has 160 samples
under balanced distribution. It is worth noting that the data
distribution is always non-1ID as different users have different
physical characteristics, lifestyles and lifelong medical data,
and as a consequence, different data distributions.

4.2 Implementation Details

Generative convolutional autoencoder network is adopted on
both the cloud server and the edges at users” homes for model
training and prediction. The encoder network of GCAE is
composed of 3 convolutional layers with filter size of 3 x 3 to
encode the original data into a hidden latent representation.
The filter numbers of the three convolutional layers are 32, 16
and 8, respectively, and each of the first two convolutional
layers is followed by a 2 x 2 max-pooling layer. For the
decoder network, three 5 x 5 deconvolution layers with 16,
32, 3 filters and two 2 x 2 up-sampling layers are applied to
decode the hidden representation. The activation function for
the third convolutional layer is Sigmoid and we use Relu func-
tion for other layers in both the encoder and the decoder net-
works. The output of the encoder is flattened and then fed in
an MLP network which is composed of 2 fully-connected
layers with 128 and 10 units, respectively. Softmaz is adopted
in the final fully-connected layer of the MLP network to calcu-
late the probability of the output results. The weighting factor
of the decoder network, A, is set to be 0.01. The model is
trained by minibatch Stochastic Gradient Descent optimizer
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with a learning rate of 0.01. These hyperparameters are tuned
using cross-validation procedure.

4.3 Experimental Results
4.3.1 Baselines

The baselines for human activity recognition can be divided
into the following two groups:

Traditional Centralized Algorithms. traditional algorithms
usually collect a large amount of user data in a centralized
cloud server to train a satisfactory model. Support Vector
Machine (SVM), k-Nearest Neighbor (kNN) and Random For-
est (RF) are widely adopted in many healthcare applications
[34]. With the recent success of deep learning, Multi-Layer
Perceptron and Convolutional Neural Network are also intro-
duced to in-home health monitoring and have achieved great
performance improvement [35]. We also test the accuracy of
Generative Convolutional Autoencoder proposed in this
paper in a centralized fashion. We collect all the training data
of 30 users to form the training dataset of traditional central-
ized algorithms and describe these algorithms as below.

e  Support Vector Machine (SVM) is a popular classifier
that is demonstrated to be effective on a wide range
of classification problems [36].

e  k-Nearest Neighbor (kNN) is a non-parametric method.
It is introduced to measure the difference or similarity
between instances according to a distance function
[37].

e Random Forest (RF) is an ensemble learning method
that builds a set of decision trees with random sub-
sets of attributes and then bags them for classifica-
tion results [38].

e  Multi-Layer Perceptron (MLP) is a supervised learning
technique that makes final predictions through fully-
connected layers. In our design, the MLP network is
composed of three fully-connected layers with 1200,
100 and 10 neural units.

e (NN has strong representation capability and is widely
adopted in healthcare scenarios, such as in human
activity recognition [39]. CNN used in this paper is
designed as the combination of an encoder and an MLP
classifier which has the same architecture with that in
our GCAE model.

e Generative Convolution Autoencoder (GCAE) takes
advantage of the feature extraction ability of CNN,
dimension reduction capability of autoencoder and
over-sampling strategy of SMOTE [40].

Federated Learning Based Methods. in federated settings, each
client trains a local model with its personal-generated data,
and FedAvg method is applied to obtain a globally shared
model by aggregating local models without compromising
users’ privacy. This process repeats until it converges.

e FL-MLP: both the cloud and client models are imple-
mented with MLP.

e FL-CNN: CNN model is adopted as both the cloud
and client models.

e FL-CNN-Large: The difference between FL-CNN-
Large and FL-CNN is that the filter numbers of the
three convolutional layers in the CNN model of FL-

NN-Large are 64, 32 and 16, resEechvel v
ctions apply.
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Fig. 6. The test accuracy and time cost under different number of participating clients in each communication round. We choose K = 5 by making a

trade off between the stability and the efficiency of the learning algorithm.

e FedHome: FedHome is the proposed federated learning
framework for in-home health monitoring. GCAE is
used as both the cloud and the client models. When
the training process converges, the client will first bal-
ance its data distribution and then conduct model
personalization with its own personal data.

e  FedHome-p: FedHome framework without client perso-
nalization is named FedHome-p.

4.3.2 Performance Evaluation

In federated settings, there are three key parameters which
may influence the performance of federated learning: (1) K,
the number of participating clients (homes participating in
FL) in each communication round; (2) E, training passes over
each client’s local data and (3) B, local minibatch size. We first
conduct experiments with the number of clients participating
in each communication round. First, we fix B = 10and E = 5,
and evaluate the test accuracy under different values of K.
More concretely, we study the effect of K by setting K equal
to1,3,5,10 and 30, which can also be regarded as , 1=, ¢, 5
and 100 percent of the whole training data. As shown in
Fig. 6a, the leaming algorithms with different choices of K
can all converge within 500 communication rounds. The test
accuracies under different values of K improve with the
increase of the communication rounds. However, when K is
small (e.g., K = 1), the test accuracy shows a significant gap
compared with the case with bigger K. For example, the test
accuracy is 79.15 percent when K = 1 while 84.23 percent in
the case that K = 30. Besides, the learning curve exists erratic
fluctuation to some extent with a smaller K and becomes
smoother as K increases. Although the test accuracies are sim-
ilar except the case that K = 1, the training time for each value
of K varies dramatically as demonstrated in Fig. 6b. For exam-
ple, the training time in the K = 1 case is 120s when experi-
menting on a desktop PC equipped with a quad-core Intel
processor at 3.4 GHz with 8 GB of RAM. The training time for
K =3 is 1.07 times longer compared with the training time
when K = 1, while the training time for K = 30 is 3.28 times
more than that in the K =3 case. We make a trade-off
between the stability and the efficiency of the learning algo-
rithm in the training process and fix K =5 for the following

experiments.

Tounfold the impact of parameter B and E on test accuracy
and communication cost, we set six combinations of parameter
settings as shown in Fig. 7. We can see that the learning curve
converges rapidly with larger E and smaller B. When B = 10
and E = 20, the test accuracy of human activity recognition
can reach 83.57 percent within only 300 communication
rounds. While for the case that B =50 and E =1, it may
require a large number of communication rounds to reach the
same test accuracy. In fact, for a client with n; local samples,
the number of local updates per round is given by E . Thus,
either increasing E, decreasing B, or both, will result in more
computation per client on each round. This observation
inspires us that adding more local SGD updates per communi-
cation round can produce a dramatic decrease in communica-
tion cost, which is essential in federated learmning. As the
performance of the case B = 10 and E = 5 is comparable with
the best one, we choose to use B = 10 and E = 5 under the
consideration of computation cost for the following experi-
ments. It’'s worthnoting that the training process of FedHome
can be conducted offline to learn a satisfactory shared model
by reaping the benefits of user data from multiple homes with-
out compromising their data privacy. When the globally
shared model is deployed on edges or user’s IoT devices, Fed-
Home enables fast personalization (retraining with local data
of a family or a user) and real-time inference (prediction with
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Fig. 7. Test accuracy versus communication rounds under different com-
binations of Band E.
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TABLE 3
Test Accuracy of the Models in Human Activity Recognition

Methods Test Accuracy Model P

et Balanced Data Imbalanced Data el Parameters
SVM 77.25 +£1.77% 67.88 £+ 0.50% -
KNN 80.85 +1.48% 74.99 +0.67% -
RF 84.27 £0.34% 74.28 +0.29% —
MLP 92.31 +1.45% 87.94 +1.32% -
CNN 91.77 £1.43% 87.92 +0.15% -
GCAE 92.02 +0.92% 88.10 +0.14% -
FL-MLP 89.28 +1.17% 85.06 = 0.59% 1,562,310 (29.96 x)
FL-CNN 85.07 +0.44% 82.91 +0.34% 33,698 (0.65x)
FL-CNN-Large 87.24 +0.46% 84.87 +0.72% 77,498 (1.49x)
FedHome-p 89.13 +0.93% 84.22 +0.37% 52,149
FedHome 95.87 + 0.23% 95.41 + 0.11% 52,149

the input data by simply conducting matrix multiplications of
the local neural network model).

Table 3 illustrates the performances of different human
activity recognition approaches under both balanced and
imbalanced data cases. For each method, we compute the
average and standard deviation of test accuracy by repeating
the training and prediction processes five times. We can see
that the test accuracies of all methods in balanced dataset are
higher than those in imbalanced dataset. Moreover, the results
show that deep learning based methods (MLP, CNN and
GCAE) can all achieve a higher accuracy than traditional
machine learning methods (SVM, KNN and RF) when the
data samples of all clients are aggregated in a centralized loca-
tion. This is due to the strong representation capability of deep
neural networks. Besides, deep learning based methods can be
updated and enhanced by incremental learning without
retraining. This property is valuable in federated learning
where model reuse is important and helpful because new data
emerges continuously and the model should be quickly
adapted to it. When adopting these deep leaming methods in
federated settings, the test accuracy decreases to some extent.
For example, the test accuracy of FL-MLP under balanced data
case is 3.03 percent smaller than that of MLP approach, this is
mainly because of the non-IID nature of datasets generated by
the users at different homes. The imbalanced data samples for
each user or home will also deteriorate the test accuracy. Nev-
ertheless, our proposed FedHome approach can mitigate the
statistical challenge inherent in federated settings (imbalanced
and non-IID nature of dataset from different users) and
improve the test accuracy to 95.87 percent for balanced data
case and 95.41 percent for the imbalanced data case. Specifi-
cally, we also examine the performance of FedHome without
personalization, which is essentially a federated version of
GCAE. The results show that test accuracy will drop by 6.74
and 11.19 percent in balanced and imbalanced data cases,
respectively, when compared with FedHome.

As for communication efficiency which is essential in
federated leaming, we give the number of model parame-
ters of all the FL. based approaches in Table 3. Our proposed
FedHome framework only has 52,149 model parameters
and will reduce the communication load of model transfer
in each round significantly compared with FL-MLP whose
model parameter number is nearly 30 times more than that
of FedHome. Although FL-CNN has fewer parameters than

FedHome, it yields 10.8-12.5 percent accuracy degradation.
As scaling up CNN size (e.g., width, depth, etc.) is known
to be an effective approach for improving model accuracy
[41], we also compare our FedHome model with FL-CNN-
Large, a CNN-based model whose parameter number is
1.49 times larger than that of FedHome. The experimental
results show that FedHome can significantly outperform
FL-CNN-Large in both balanced and imbalanced data parti-
tions. Moreover, even FedHome-p, a federated version of
GCAE without personalization, can achieve comparable
performance to FL-CNN-Large, indicating that GCAE can
reduce the communication overhead without sacrificing
model accuracy. In short, our experiments demonstrate the
effectiveness and applicability of our proposed FedHome
framework in realistic computation and communication-
constrained in-home health monitoring applications.

To give a more detailed performance evaluation, we also
show the average precision, recall and fl-score over all 30
users for each activity. As depicted in Table 4, FedHome
achieves excellent performance on all the metrics for all
activities. For example, the precision scores for JUM and
STD activities are higher than 99 percent, which means that
FedHome can accurately identify these types of activities.
Even for fall and fall-like activities, the precision and recall
scores are all over 90 percent, indicating that our proposed
FedHome framework is able to well distinguish falls from
similar activities. Thus, for some healthcare applications
which focus on fall detection, FedHome can eliminate the
risk of fall-induced injuries among the elderly by signaling
for help when detecting falls.

TABLE 4

The Average Precision, Recall, and F1-Score for Each Activity
Activity Precision Recall Fl-score
Fall 96.24% 90.2% 93.10%
SCH 96.20% 99.54% 97.87%
CsI 93.54% 90.00% 91.30%
cso 93.40% 93.70% 93.47%
STU 95.23% 92.63% 93.83%
STN 93.60% 93.97% 93.70%
JUM 99.01% 98.83% 98.97%
JOG 96.44% 98.87% 97.63%
STD 99.60% 99.30% 99.50%
WAL 95.40% 98.20% 96.63%
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Fig. 8. Test accuracy of different FL approaches under home data partition.

For home data partition, since the training data setting is
the same with imbalanced data partition when applied to cen-
tralized methods, we only conduct experiments on federated
leaming approaches. As shown in Fig. 8, all approaches can
achieve a high average accuracy of 30 users. However, the test
accuracies for these 30 users predicted by FL-CNN vary dra-
matically. For example, the accuracy of some users may lower
than 70 percent while some users can reach a high accuracy of
more than 95 percent. By integrating representation ability of
AE which can reduce information loss to some extent with
parameter sharing, FedHome-p approach can enhance the
prediction performance comparing with FL-CNN. Although
FL-MLP can achieve more competitive performance than Fed-
Home-p, it is rarely applicable to realistic applications due to
its large training parameter size and high communication
cost. As family members in the same home trust and share
data with each other, they can choose to perform personaliza-
tion at either home level or user level. For example, users who
have insufficient private data to develop accurate local mod-
els can choose home-level personalization in order to benefit
from their mutual-trusting family members. While users with
abundant data samples can conduct user-level personaliza-
tion with their personal data. The average test accuracies of
FedHome personalized at home level and user level are 92.97
and 94.03 percent, respectively. Moreover, we can see that the
test accuracies of 30 users vary in a very small scale when per-
forming home-level personalization. This is largely due to the
fact that users with highly-skewed personal data can utilize
their family members’ health data to enhance their own mod-
els. While for some users, personalizing their model using their
own data can make the refined model more tailored to them.

We also investigate the generalization ability of Fed-
Home when facing new users. We first randomly select 5
users who have not participated in the cloud model train-
ing, and then distribute the learned cloud model to these 5
users. After training with only a few rounds using user’s
personal data, the local model for each user can achieve a
good performance. For instance, as depicted in Fig. 9, the
precision score of user 1 is 96 percent and the average preci-
sion score of all 5 users is 90.8 percent.

5 RELATED WORK

In this section, we elaborate the recent works in in-home

health monitoring and federated learning.
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Fig. 9. Performance of FedHome framework when facing new users.

5.1 In-Home Health Monitoring

In-home health monitoring improves healthcare effective-
ness and lowers healthcare costs by utilizing the mobile and
ambient sensors in smart homes, such as smartphones and
smartwatches. Due to its importance and urgency in the
context of ageing population worldwide, smart healthcare
has evoked notable scientific interest [42]. For example, con-
tinuous monitoring and automatic classification of tremor
severity in Parkinson’s Disease are conducted using a wrist-
watch-type wearable device consisting of an accelerometer
and a gyroscope [43]. Physiological signals (e.g., electroen-
cephalography) are used to detect certain diseases, such as
seizures [44]. Besides, many studies focus on sensor-based
human activity recognition and fall detection due to their
wide range of application domains including assisted liv-
ing, sport, human-computer interaction and healthcare [35],
[45]. In these studies, machine learning approaches, such as
support vector machine, random forest, are widely used for
health status monitoring [34]. With the recent success of
deep learming, many healthcare applications adopt some
representative networks including convolutional neural net-
work, autoencoder, and have achieved satisfactory perform-
ances [35]. It is noteworthy that these traditional health
monitoring applications often build models by aggregating
all the user data in a centralized location and lack privacy
protection and personalization.

Muhammen et al. propose a personalized ubiquitous cloud
and edge-enabled networked healthcare system called Ube-
Health [46]. However, they only emphasize that security poli-
cies should be developed and maintained from the device
manufacturers, software developing organizations and regu-
lators that check the standard and safety, without protecting
user privacy security at the algorithm level [47]. Zhang et al.
propose a collaborative cloud-edge computation system for
personalized driving behavior modeling [48]. Although this
method protects user privacy by keeping user data at the edge
devices, it requires a large amount of data that are anony-
mized and integrated from users who would like to share
their data in the cloud, which is impractical in real-world
applications.

5.2 Federated Learning
Federated leaming is first proposed by Google to solve the
data island and user privacy problems [49]. The key idea is

to build machine learmning models based on datasets
E Xplore. Restrictions apply.
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distributed across multiple devices while preventing data
leakage [50]. McMahan et al. introduce the FederatedA-
verage algorithm which has been verified to be robust and
has been regarded as the fundamental framework in feder-
ated learning settings [17]. While solving the problems of
data island and privacy security, federated learning poses
new challenges, such as imbalanced and highly-skewed
data distribution and high communication cost. Thus,
recent improvements have been focusing on overcoming
these statistical and communication challenges [49], [51],
[52]. Zhao et al. propose a data-sharing strategy to improve
FedAvg with non-IID by creating a small subset of data
which is globally shared among clients [9]. To reduce com-
munication overhead, Jeong et al. propose federated distilla-
tion, a distributed knowledge distillation method whose
communication payload size depends not on the model size
but the output dimension [10]. Prior to operating federated
distillation, the authors empower each participating device
to locally reproduce the data samples of all devices so as to
make the training dataset become IID by using a trained
generative adversarial network. Nevertheless, this approach
requires the user device to upload a few seed data samples
to the server, which may put user privacy as risk. There are
also some research efforts targeting at making federated
learning more personalizable [53]. For example, the pro-
posed FedHealth framework achieves personalized model
learning for each organization through knowledge transfer
while ignoring the fact that class imbalance problem will
bring huge prediction errors [11].

6 CONCLUSION

In this paper, we propose FedHome, a novel cloud-edge
federated learning framework for personalized in-home
health monitoring, which achieves privacy protection by
keeping user data locally. FedHome aggregates the data
from multiple homes and trains a global model without
compromising user privacy, and then achieves personalized
model learning through knowledge transfer. To tackle the
statistical and communication challenge inherent in feder-
ated learning, the cloud model to be learned is designed as
a generative convolutional autoencoder, which empowers
to synthesize samples of minority classes and form a class-
balanced dataset in personalization procedure to address
the imbalanced and non-IID data dilemma. Moreover,
GCAE consists only a small number of model parameters,
and thus can significantly reduce the communication over-
head during model transfer. Extensive experiments on
human activity recognition have demonstrated the effec-
tiveness of the proposed framework in both evaluation per-
formance and communication efficiency. FedHome can be
applied to many healthcare applications without incurring
data leakage and can be a powerful approach for in-home
health monitoring in the future.
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