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Abstract—How well do code-writing tasks measure students’
knowledge of programming patterns and anti-patterns? How can
we assess this knowledge more accurately? To explore these ques-
tions, we surveyed 328 intermediate CS students and measured
their performance on different types of tasks, including writing
code, editing someone else’s code, and, if applicable, revising their
own alternatively-structured code. Our tasks targeted returning
a Boolean expression and using unique code within an if and
else.

We found that code writing sometimes under-estimated student
knowledge. For tasks targeting returning a Boolean expression,
over 55% of students who initially wrote with non-expert
structure successfully revised to expert structure when prompted
— even though the prompt did not include guidance on how to
improve their code. Further, over 25% of students who initially
wrote non-expert code could properly edit someone else’s non-
expert code to expert structure. These results show that non-
expert code is not a reliable indicator of deep misconceptions
about the structure of expert code.

Finally, although code writing is correlated with code editing,
the relationship is weak: a model with code writing as the
sole predictor of code editing explains less than 15% of the
variance. Model accuracy improves when we include additional
predictors that reflect other facets of knowledge, namely the
identification of expert code and selection of expert code as
more readable than non-expert code. Together, these results
indicate that a combination of code writing, revising, editing,
and identification tasks can provide a more accurate assessment
of student knowledge of programming patterns than code writing
alone.

Index Terms—Code writing, Code Revising, Code Editing,
programming patterns and anti-patterns, code refactoring, code
readability, Code quality, code structure

I. INTRODUCTION: CODE STRUCTURE

Well-structured code uses control flows, idioms, and pro-
gramming patterns that are suited to the task at hand [1]-[3].
While well- and alternatively-structured code can have the
same functionality, well-structured code is easier for others
to understand and maintain (e.g., [4]). Code structure is an
important element of code readability, and is distinct from
other elements such as comments [5], proper naming of vari-
ables [6], and formatting [7]. Selecting an appropriate control
structure for a task requires programmers to follow conven-
tions that are often implicit — what Soloway and Ehrlich [8]
termed discourse rules. For example, repeating code within an
if-block and its corresponding else-block violates the general
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discourse rule of using appropriate language constructs since
the code is within a conditional statement but executes in all
cases [9].

Ideally, we want students to write well-structured code in
regular IDEs by (1) coding with appropriate structures initially,
and (2) improving the structure of existing code (their own and
others’). However, as a necessary prior step, our community
needs more studies on understanding students’ knowledge of
discourse rules and supports they need to modify alternatively-
structured code.

Although our field has taken steps toward understanding
students’ knowledge of discourse rules, code writing is often
the only metric used to measure this knowledge [10]-[13],
with anti-patterns interpreted as indicating larger issues or
misunderstanding of patterns [1], [14]. However, using the
prevalence of anti-patterns as the only metric may under-
estimate student knowledge. First, students may not be in-
centivized to attend to code structure. Second, students may
use the anti-pattern even when they can use the correct pattern
— many do both within the same assignment [15]. Learning
science theories explain that deliberate attention can impact
performance [16], and that students have knowledge bases that
are not always activated when they produce an answer (e.g.,
write code), but may be activated when they evaluate one (e.g.,
revise code) [17].

Recent work has begun exploring code editing as another
lens for assessing students’ knowledge of code structure,
where students are given alternatively-structured but functional
code and asked to improve its style [18]. Our work builds on
the idea of using alternative lenses for evaluating students’
knowledge in order to gain a clearer picture of their mastery
of code structure choices. We examine whether students’
performance on tasks other than code writing indicates gaps
in knowledge about code structure, as well as the degree
of similarity in performance between writing code, editing
someone else’s code, and revising one’s own code. We explore
these through three research questions:

RQ1 To what extent do anti-patterns indicate knowledge
gaps regarding the target code structure? We explore
what amount of information students need to revise their
non-expert code by providing progressive hints. Hints
start by flagging the code as non-expert and building



to an isomorphic worked example. Our pre-registered
hypothesis (https://osf.io/32wuv) is that at least 20% of
students who were asked to revise their code would
correctly revise it to expert structure at the first prompt.
At least 30% would correctly revise without being given
the worked example, and at least 50% would successfully
revise overall. Note that we did not pre-register hypothe-
ses for the other research questions.
RQ2 How useful is code writing as a predictor of success-
ful editing and revision? Specifically, is writing with
correct functionality and/or expert style positively corre-
lated with successfully editing someone else’s code? For
code flagged as non-expert, is code-writing functionality
positively correlated with successful revision?
What facets of knowledge (beyond those assessed by
code writing) impact students’ success in revising their
own code and in editing someone else’s? Specifically,
considering models that use code writing to predict
successful editing and/or revision, how useful is it to
additionally include other measures of knowledge (e.g.,
successful identification of the expert pattern and/or pref-
erence for the expert pattern). For predicting successful
revision and editing, how predictive is success on the
other task?

RQ3

II. PRIOR WORK

The considerable research on code structure and anti-
patterns highlights the challenges in developing approaches
for teaching code structure that are effective and scalable.

A. Writing Well-Structured Code is Difficult

Well-structured code uses language constructs and idioms
that best suit the task, and follows programming conventions
(discourse rules [8]) that make the code easier for others to
read and understand. However, it is difficult for students to
write well-structured code: Discourse rules are often implicit,
and violating them will not always affect overall functionality.
Therefore, students may not recognize these violations in their
code. Feedback on the correct usage of discourse rules can
help, but in-depth feedback requires hand-inspecting student
code, which is difficult and time-consuming [19], [20]. Under-
standably, instructors may focus on code functionality , which
can be auto-graded. Consequently, students who are only being
graded for functionality (and do not receive feedback on
structure) undervalue the importance of writing well-structured
code [21].

Scalable ways to help students write well-structured code
are needed. Prior work has focused on two general approaches:
(1) using static code analyzers for automated feedback on
coding assignments, and (2) directly teaching students pro-
gramming patterns and refactoring.

B. Code Analyzers Are Not Sufficient

To provide automated feedback to students about their code
structure, prior work has either (1) leveraged professional
static code analyzers or (2) developed pedagogical analyzers

specifically for students. In the first approach, researchers
use professional static code analyzers like PMD [22], Find-
Bugs [23], and SonarQube [24] to identify and flag the location
of anti-patterns. However, professional analyzers flag many
issues that are not relevant to novice learning, while ignoring
other pedagogically important structural issues common in
student code [10]. The messages from these analyzers are
difficult to interpret and act on, both for students [25] and
also for professional software developers [26], [27]. Further,
students’ use of static analyzers does not seem to impact their
code structure, when compared with students who do not use
these tools [10].

In the second approach, researchers develop educational
code analyzers specifically for students. The main advantage
of using these tools over professional analyzers is that they
exclusively check for pedagogically important violations [14],
[28]-[31]. However, even these tools have many limitations:
current educational code analyzers only capture a small subset
of important structural violations. Their hint messages are
often very detailed, based on the assumption that students’
violations are indicators of significant knowledge gaps or
misunderstandings [14]. Yet, because there is limited literature
on what level of supports students need, these comprehensive
messages could be more information than is needed, adding
significant cognitive load for students who interact with the
tool. The literature on student interaction with educational an-
alyzer messages is very sparse. One such study, on Autostyle,
found that many students had trouble following the hint
messages, taking on average four tries to do so correctly [32].

C. Students Can Practice Code Structure Directly

While code analyzers can add support for existing program-
ming assignments, their instructional support is limited by
the types of patterns that the analyzers can detect. Another
approach is to create dedicated activities for teaching code
structure, which can also target anti-patterns that can’t yet
be detected automatically. Weinman et al. found that faded
Parsons problems were effective and time-efficient for teaching
specific programming patterns [33]. (Faded Parsons problems
present mis-ordered lines of code to re-arrange, where some
lines include blanks for the students to fill in.) Keuning et
al.’s Refactoring Tutor teaches students code structure at the
method level. The Refactoring Tutor gives students functional
but alternatively-structured code to revise. At any time, stu-
dents can check their code functionality against test cases,
and get progressively informative hints on how to improve the
code’s structure [30].

A key difference between the two approaches — detecting
anti-patterns in programming assignments vs. creating stan-
dalone opportunities to learn code structure — is that in
the detection approach, only students who use anti-patterns
get instructional support, while in the standalone approach,
all students get this support. This difference prompts two
questions: (1) do students who write alternatively-structured
code require extra instruction and practice with code structure,
and (2) do students who avoid anti-patterns in their writing not



need further support? The answer depends on the extent to
which usage of patterns and anti-patterns indicates knowledge
of patterns and anti-patterns. Here, we focus on the first
question.

Most approaches to assessing students’ knowledge of code
structure in our field rely on counting violations detected by
professional or educational code analyzers. It makes sense that
usage of an anti-pattern indicates misunderstandings of the
correct pattern, and that code writing tasks are crucial for
assessing knowledge of code structure [1], [13], [14]. Yet,
some studies have found that other methods of measuring
understanding of code structure, such as asking students to
select the best structured or most readable code, can lead
to different conclusions about students’ knowledge than only
looking at their code writing [34], [35]. Therefore, this study
examines the extent of code structure knowledge gaps in
students who use anti-patterns, and the effectiveness of using
code writing as a predictor for success in code editing and
revision tasks.

D. Students May Know More Than They Show

According to Ohlsson’s theory of learning from errors, less
knowledge is available when performing actions than when
evaluating them [17]. This theory explains why checking your
work is useful: people can often correct mistakes without new
information, because additional knowledge becomes activated.
This theory suggests that students who use anti-patterns when
writing may be capable of revising them correctly, without
instruction on the anti-pattern, since they may have some
knowledge of the code structure that was not available at first.

The dual process theory describes another pathway for
correct revision without additional instruction. This theory pro-
poses two types of cognitive processes: autonomous judgement
that is fast, does not require deliberate attention, and executes
with little effort, and deliberate process that is slower, more
reflective, and requires deliberate effort and concentration [16].
Since writing code with readable structures is a deliberate
process, greater attention to the task should result in more
success. Students may not pay attention to code structure
if they believe the task only requires correct functionality.
Therefore, alerting students to the expectation of good code
structure may provide the necessary motivation for revision.
Consistent with these hypotheses, some recent research [18]
found that students do not always need extra information
on how to edit an alternatively-structured code to use the
expert structure. They gave students functional (but non-
expert) code to revise, and in their analyses examining what
level of progressive series of hints students needed, they found
that the amount of needed support varied across different
types of control structures. While their main intention was
instruction for students, their findings also provides a finer-
grained assessment of student knowledge of code quality and
structure. In this study, we build on this approach of providing
progressively more information. We first start with code that
students wrote and we focus explicitly on the amount of
support they need to revise errors across several different

structures. We also examine how students edit a given piece
of alternatively-structured code.

III. METHODS

We surveyed 328 CS students across two courses (CS2 and
the following course in the major sequence). Students had one
week to complete the self-paced online survey. In this paper
we mainly focus on the survey’s code writing, editing and
revising tasks.

A. Survey Overview and Topics

We build on the Readability and Intelligibility of Code
Examples (RICE) survey, which consists of five sections: code
writing, style and readability preferences, comprehension,
code editing, and code revising [35].

Code writing tasks provided a description of the expected
behavior and the method signature, and asked students to fill
in the method body. All methods could be written with fewer
than ten lines of code. For readability and style preferences,
students were shown 3-4 code blocks: the readability prompt
asked which code block was most readable, and the style
prompt asked which had the best style, as an expert would
view it. Code editing tasks asked students to improve the
style of a given method without changing its functionality.
Finally, code revision tasks showed students their own non-
expert code from the writing section and asked if they could
improve the code’s style. The survey questions are available on
github!. For the tasks discussed in this paper, all students saw
the same questions. To control for ordering effects, students
were randomly assigned to forward or reversed question order
for writing and preference tasks. Editing and revising tasks
were ordered by expected difficulty from low to high. Detailed
descriptions of these tasks are in section III-B.

The survey tasks targeted 7 control structures topics (pat-
terns). For each topic, the appropriate structure indicates the
most readable structure (unanimous agreement from three
instructors) and alternative structures reflects common novice
implementations. Each topic involved method-level structures;
all are taught in the first semester of CS and can be accom-
plished with only a few lines of code.

Although other sections of the survey targeted 7 control
structures, code revising only targeted 3 topics where alter-
native code structures could be detected most simply, with
regular expressions (allowing them to be checked within our
survey software):

T1 Returning a Boolean expression with an operator vs.
literals: Returning the expression is appropriate (return
x > 7). An if statement returning true or false is an
example of alternative structures.

T2 Returning a Boolean expression with method call vs.
literals: Similar to topic 1, an example with appropriate
structure is return s.equals ("a").

T3 Unique vs. repeated code within if and else: When
some code is shared across all 1 £ and else branches, it

Thttps://github.com/SaraNrl/ICSE2023



could be written once, outside the i f-else (appropri-
ate), or repeatedly inside all branches (alternative).
Although the guidelines for expert code in T1, T2, and T3
apply to simple contexts (as targeted by our survey and other
prior work [18], [36]), they do not apply in all contexts. For ex-
ample, sometimes it is more readable to return an intermediate
variable or a Boolean literal (rather than an expression) [37],
[38]. Exploring how students’ structure choices differ across
related contexts is an important avenue for future work.

B. Code Revision and Editing

In this paper, we primarily focus on students’ code revising
performance, support they need to revise correctly, and other
facets of knowledge that affect their revising success (RQI1
and RQ2). Thus, while code revising was the final section of
the survey, within our methods and results sections, we discuss
revising first and editing afterwards.

1) Code Revising: Revision tasks asked students to revise
their non-expert code from the code writing section of the
survey. For two topics T1 and T2 (returning a Boolean
expression), student responses from the code writing section
were flagged for revision if they included an if statement.
Students’ writing responses for T3 (Unique vs. repeated code)
were flagged if they included an else or had more than one
return statement, (both likely indicators of repeated code for
our context). While this strategy for flagging had high accuracy
for T1 and T2, it was less accurate for T3. See Table IV for
the details.

( Prompt

(Only students who were flagged for their initial writing saw the prompt)
“Copy and paste your code into the box below and see if you can improve its style. If
you see any other issues, please correct them.”

L 2

Hints
(Only students whose code was flagged again after the first revision opportunity saw hints)
[These hints suggested question-specific control flows to use or avoid, and asked students
if they could follow the suggestions. Students answered by selecting either "yes" or "no".]

' Y

.

Vs

Wagh . Students who answered "No" were given a worked example
Students who answered "Yes" were asked to implement N .
showing a non-expert code sample and the corresponding
those changes .
expert revision, and were asked to follow the example

Figure 1: Code revision steps.

Revision opportunities had three steps: (1) Students were
shown the first prompt and their own code writing response,
and asked if they could improve the style of their code (and
correct any other errors they noticed). (2) If that revision was
also flagged, the next question offered a hint (e.g., “Can you
improve the style of your code by re-writing it without an if
statement?”). Students indicated if they could follow the hint,
and (3) they were given a second chance to revise. Students
who said they could not follow the hint were also given
a worked example. The worked example showed two code
samples matched to the topic, one having the expert-structure
and one using an alternative structure. Students were told that
the code samples had the same functionality. Fig. 1 indicates
a flowchart of code revising steps. The code writing tasks,

prompts, hints, and worked examples are shown in Table I

(T1 and T2) and Table III (T3).

Return a Bool. expression w/operator

Return Bool. expression w/method call

Code Writing Task: Write a function
that takes an int as input and returns a
boolean.

e when input is 7 return true.

o otherwise return false.

Code Writing Task: Write a function
that takes a String as input and returns
a boolean.

o when input starts with “A”, return

true.

o otherwise return false.
Hint: word.startsWith ("x") re-
turns true when the String word starts
with “x”.

Prompt for 15t Revision:

if (num ==7) {
return true;
} else {
return false;

}

Copy and paste your code into the box below, and see if you can improve its style.
If you see any other errors, please correct them. Student responses:

if (word.startsWith ("A"))
return true;
return false;

Hint for 2" Revision:

Selected: “Yes, I could do that.”
Final revision:
return num ==7;

Can you improve the style of your code by re-writing it without an if statement?

Selected:
“No, I don’t know how to do that.”

Worked Example (for students who said

Check out this example, these two
code blocks do the same thing.

Ex. 1:
if (num >9 )
return true;
return false;

Ex. 2:

return num > 9;

they could not follow the hint)

Check out this example, these two code
blocks do the same thing.

Ex. 1:
if (word.equals ("ABC"))
return true;
return false;

Ex. 2:
return word.equals ("ABC") ;

[this student said they could follow
the hint, so they were not shown the
worked example]

Final revision:
return word.startsWith ("A");

Table I: Sequence of prompts and hints for T1 and T2 (re-
turning a Boolean expression with either operators or method

calls). Two students’ answers show

their progressive revisions

in response to each opportunity. For T2, since the student said
they could not follow the hint, they were shown the worked

example.

2) Code Editing: The survey included five editing tasks,
targeting six topics. In this section, students were given
functional but poorly structured code blocks and were asked to
edit them for the style without changing the code functionality

(with the same inputs, the edited

and original code should

produce the same outputs). If students thought the code already
had the best possible style, they could leave it unchanged.
In this study, we only discuss students’ performance on the
editing tasks that targeted the three topics that were also
targeted in the code revising tasks (Table II).




Please copy and paste the function into the box below, and then edit
the function so that it has good style, as an expert would view
it. Do not change the functionality (that is, if your new code and
original code were called with the same input, they should have the
same output.) If the function is already written with the best possible
style, simply copy and paste it without editing. Note: you do not need
to add comments.

public static boolean ending(String word) {
if (word.endsWith ("ing")|lword.endsWith ("ed")) {
return true;
}else {
return false;
}
}

public static boolean between (int max,

int min,
int num) {
if (min < num) {
if (max > num) {
return true;
}
}

return false;

}

Table II: Editing questions targeting returning a Boolean
expression with operator (top code) and with method call
(bottom code). The text prompt was the same for both topics.

C. Farticipants

Participants were recruited from two intermediate courses in
the CS major: data structures and algorithms, and introduction
to software engineering (the next course in the major sequence,
taught by the same instructor). The instructor publicized the
survey to all students and offered extra credit for completion.
Students could access the survey and receive extra credit
without participating in the research. The study was approved
by our IRB (protocol number 00124175). 328 participants
consented to the research and skipped no more than one
question per section.

D. Data Coding for Non-Multiple Choice Questions

Data from the code writing, editing, and revising items
were evaluated in two ways. First, each code block was
compiled and evaluated using automated tests to determine
if it exhibited the correct functionality. For code that did not
compile, small manual edits were made in some cases to
fix compile issues while attempting to preserve intent. For
example, for an array variable, arr.length () could be
modified to arr.length; allowed changes were included
in the pre-registration and refined as we found new errors.

We evaluated responses for structure if they met a threshold
for completion. For T1 and T2, the code needed to compile
after the allowed manual edits. For T3, the response needed
to include code that addressed a specified sub-set of the
method requirements (e.g., checking if the ending of the
inputted String matched a pre-determined String), but did
not need to compile or pass any test cases. Coding guide-
lines (for categorizing the responses) were developed based
on the appropriate structure for each task, refined through

examination of student responses to each item, and verified
by the course instructor. To evaluate whether responses met
the coding guidelines, a combination of human and automated
coding was used. Tl and T2 were evaluated with regular
expressions looking for any i f statement, and double-checked
by the second and third authors, who specifically looked for
ternary operators and insufficient functionality (e.g., always
returning false). For T3, the second and third authors coded
each response independently and resolved any disagreements

through discussion?.

Unique vs. repeated code within an if and else

Code Writing Task: Write a function that takes a String as input and
returns a String. For input Strings that ends in “sh”, concatenate the
ending “-ishness” and return a message saying how long the new word is.
Follow the format of the examples:
o Input: Fish
— Output: Your word was Fish. The length of Fish-ishness is 12.
o Input: Hat
— Output: Your word was Hat. The length of Hat is 3.
Write the function so that it would be easy for someone else to modify.
Hint: word.endsWith ("sh") will return true if the word ends with
(’sh”). The message should be returned not printed. You may use + to
concatenate strings. For example:
e String word2 = wordl + " there";
e If wordl is "hello", word2 is "hello there"

Prompt for 1% Revision:

Copy and paste your code into the box below, and see if you can improve
its style. If you see any other errors, please correct them.

Hint for 2" Revision:
We detected at least one of these issues in your code:

e The code has an else.

e The code has more than one return.

e The code has a print statement.
For the correct functionality, there shouldn’t be any print statements.
For optimal style, there should be no else, and only one return.

Worked Example (for students who said they could not follow the hint):

Check out this example, these two code blocks do the same thing.
Ex. I:
if (word.startsWith ("b"))
return word +"BBB" + " is a fun word." + word +

" has"+ (word.length() + 3) +" letters.";
else
return word + " is a fun word." + word + " has"

+ (word.length()) + " letters.";
Ex. 2:
String secondWord = word;
if (word.startsWith("b"))
secondWord = "BBB"+ word;
return word + "is a fun word." + secondWord +
" has" + secondWord.length() + " letters.";

Table III: Code writing and code revising prompts for Unique
vs. repeated code within an if and else.



) Expert code correctly
Topics

Non-expert code Expert code Non-expert code

not flagged correctly flagged incorrectly flagged incorrectly not flagged
Returning a Boolean expression w/operators 178 148 0 2
Returning a Boolean expression w/method call 193 133 1 1
Unique vs. repeated code within 1f and else 101 169 25 33

Table IV: Survey flagging accuracy for the initial writing. Flagging accuracy was lower for unique vs. repeated code.

Topics Code Writing

Hint + Worked

Hint Example

Prompt

54% (178/328)
59% (194/328)
38% (126/328)

Returning a Boolean expression with operators

Returning a Boolean expression w/method call

Unique vs. repeated code within if and else

57% (84/148)
69% (92/133)
6.5% (11/169)

89% (39/44)
88% (23/26)
26% (27/105)

7% (12/17)
69% ( 9/13)
37% (14/38)

Table V: Percentage of students who used expert structure, by stage and topic. For the revision stages, percentages are based
on the number of students whose attempts at the prior stage were correctly flagged by the survey software as non-expert.

IV. FINDINGS
A. Anti-Patterns Don’t Always Mean Big Knowledge Gaps

1) Returning a Boolean Expression with Operator:

For this topic, 178 students wrote well-structured code.
The survey flagged 148 student code writing responses for
using alternative structures and missed flagging two student
code that used ternary operators. (See Table IV for flagging
accuracy.) Of students who wrote alternatively-structured code,
57% successfully revised their structure at the first revision
opportunity. Table I indicates revision prompts for the first
two topics. Aside from incentivizing the style, the first prompt
provided no additional information on how students should
revise the code. This implies that the non-expert structured
code of these students should not be associated with a lack of
knowledge of correct structure. These students only required
an incentive or additional time to reflect on their understanding
of the structure.

However, 43% of students (64 students) who were flagged
for writing with alternative structures could not succeed at
the first revising opportunity and were flagged again. These
students were shown the second revising prompt and were
asked if they can revise the code. Of those, 44 students
answered “yes” and were given a final chance of revision, 17
students answered “no” and observed the worked examples
and 3 did not answer this question. Finally, 89% of students
who only saw the hint and 71% of students who also saw the
worked example could properly revise their code.

Overall, 91% of students who were flagged for revision
ended up revising successfully (135/148), resulting in 95%
students using appropriate structure by the end (313/328). (See
Fig. 2, bool w/Operator.)

Examining the code by students who could not prop-
erly revise after given opportunities revealed three patterns
that may reflect conceptual gaps. These few students may
need further support or brief instruction on this topic:

2Full coding guidelines in here: https:/github.com/SaraNrl/ICSE2023

100%

7% 15%
%

28%
8
59%

Retum Bool. expr.  Unique us. repeated
w/method call code

90% Non-expert code mistakenly

not flagged
@ Did not revise properly after
all opportunities
Succesded after worked example
Succeeded after hint
@ Succeeded after prompt
@ Wrote expert initially

80%

I

12%

70% 7
60%
50%
0%

30% 54%
20%
10%
0%

Rerum Bool. expr.
w/operator

9% Of students

Figure 2: Percentage of students who succeeded in using the
expert structure after each revision opportunity. Percentages are
shown only for groups with at least 5%. For returning Boolean
expressions, many students revised successfully after the first
prompt, which simply asked students to improve their code (but
did not say what was wrong or how to fix it).

(1) changing if statement into a while loop (two stu-
dents); (2) return int == 7 or return 7 rather than
return number == 7 (three students); (3) copying and
pasting worked examples or inappropriately using it (four
students).

2) Returning a Boolean Expression with Method Call: For
this topic, 194 students wrote with the expert structure. The
survey correctly flagged 133 student code writing responses.
(See Table IV for flagging accuracy.) Two students left the
survey at that point, and 92 students could properly revise
their code at the first prompt (see Table V). Therefore, 69%
of the students who wrote with alternative structures could
revise correctly without further information, supporting our
hypothesis that many students who use alternative structures
do not have a deep knowledge gap and code writing alone
may not provide an accurate means for measuring student
knowledge of code structure. However, 31% could not revise
their code to follow the appropriate structure and thus, were
flagged again by the survey software and saw the second
prompt (41 students, including the two students who left



the revising questions blank). After the second prompt, 26
students answered they know how to modify their code, and
13 answered they don’t know how to improve the code. Similar
to T1, a few students overestimated their revising capability
and could not achieve the expert structure. Of 13 students
who saw the worked examples, four students could not revise
correctly.

Overall, 93% of students who were flagged for revision
ended up revising successfully (124/133), resulting in 97% of
students using the expert structure by the end (318/328). (See
Fig. 2, T2.) Among students who could not revise after all
revision opportunities, common patterns were: (1) changing
explicit else to an implicit by removing the else (two
students); (2) copying and pasting of worked examples (two
students); (3) copying and pasting their alternatively-structured
code from a former revising step (three students).

3) Unique vs. Repeated Code within an if and else:
Although our simple survey detector was accurate for the first
two topics, it was less accurate for this topic, resulting in
more false positives and negatives (see Table IV). Therefore,
interpretation of the results is more complicated for this topic.

For this topic 38% of students wrote with expert structure.
The survey flagged 194 students including three students
who left the corresponding code writing task blank. Hand
inspection of the flagged cases indicated that 169 non-expert
code were flagged correctly (including the 3 students who
left the code writing tasks blank). However, 25 expert code
were flagged incorrectly. Of 169 correctly flagged cases, we
couldn’t evaluate the structure of 23 code as they did not
have the minimum required functionality to be assessed for
the structure, and we wanted them flagged.

After the first revision opportunity, only 6.5% of students
could correctly remove all of the repeated code (See Table V).
Besides those three students who left the code writing task
blank, the rest (155 code) either lacked the minimum func-
tionality to be evaluated for the structure or used alternative
structures. Of these 158 students who did not revise properly,
71% either copied and pasted their code from the code writing
section of the survey or just changed the formatting elements
like white space or brackets.

After the first revision, 143 student code got flagged cor-
rectly and those students saw the hint message. The prompts
for this topic can be observed in Table III. Of students who
saw the hint, 105 students answered they know how to revise
their code and were given their final revising opportunity. 38
students answered they don’t know how to revise, and saw the
worked examples. Of students who said they could revise, only
26% succeeded (See Table V), and 78 students overestimated
their revision capability.

Of students who saw the worked examples, only 37% could
revise correctly, 26% copied the worked examples, 29% either
used alternative structures or their code lacked the minimum
required functionality to be evaluated, and the rest made
no substantial changes to their code from the prior revision
opportunity. This suggests that our progressive prompts were
not sufficient for this topic.

Overall, only 31% of students who were flagged for re-
vision could revise successfully (52/169), resulting in 54%
of students using appropriate structure by the end (178/328).
This lower number of students who could successfully revise
the code structure indicates that this topic was much more
challenging for students compared to the first two.

Among students who did not succeed in revision task for
this topic, common patterns were: making explicit else im-
plicit, or vice versa; removing one of the return expressions
that impaired the full functionality of the code; improving
the code functionality but not using the appropriate structure
like changing print statements into return statements; and
fixing semicolons or parenthesis.

RQ1: To what extent do anti-patterns indicate knowledge
gaps regarding the target code structure? If usage of an anti-
pattern were associated with missing knowledge of what the
correct pattern is, or how to implement the correct pattern, we
would expect that students who used the anti-pattern would
need informative hints or other supports to revise. Instead,
for the returning Boolean topics (T1 and T2), the majority of
students who used the anti-pattern could revise correctly at
the first prompt (which asked them to improve their code but
gave no information on what to change or how to implement
the revision). For Unique vs. Repeated code (T3), very few
students revised correctly at the first prompt. These findings
show that usage of an anti-pattern may indicate important
knowledge gaps in some cases, but not in all cases.

B. Code Writing Is Correlated with Editing but Not Revising

We examined and compared performance on code editing
tasks for students who wrote well-structured vs. alternatively
structured code. Although students who wrote well-structured
code were better at code editing, many students who wrote
non-expert code were also successful in code editing, sug-
gesting that students who write with alternatively-structured
code can still use the expert code in other contexts.

Code writing style and functionality can weakly predict
students’ success on code editing and code revising tasks.
Overall, we found students’ code writing style across all
topics is significantly correlated with their editing success.
Code functionality, on the other hand, only had a significant
correlation with editing success in T2. There was no reliable
correlation between code writing functionality and student
success in code revision opportunities.

1) Code Writing Is a Weak Predictor of Code Editing: In
the code editing section of the survey, students were given
functional but alternatively-structured code blocks and asked
to edit the style. To observe how students’ code writing
structure affects their code editing, we separately report code
editing results for students who wrote expert code vs. non-
expert code for the same topic. Overall, we found that for
T1 and T2 (returning a Boolean expression) more than 65%
of the students who wrote well-structured code, could also
edit their code to follow the appropriate structure. While the
percentage of students who edited successfully was lower
for students who wrote with non-expert structures, a large



minority of them (more than 25%) were still successful. This
finding supports our hypothesis that students’ alternatively-
structured code writing in many cases is not an indicator of
deep conceptual gaps. Similar to our findings for revising, the
percentage of students who could edit successfully was much
lower for T3 (unique vs. repeated code) than for T1 and T2,
indicating that T3 was a more difficult topic.

a) Returning a Boolean Expression with Operator:
Table VI shows students’ code editing performance for each
topic. For T1, of 178 students who wrote well-structured
code, 69% could also edit properly for this topic. However, of
students who used non-expert structures (150 students), only
27% edited the code to return the Boolean expression directly.

We conducted two chi-square tests for code editing: one on
the relationship with code structure on the initial writing task
and the other on the relationship with code functionality on the
initial writing task (if the code passed all test cases or not). We
found a significant positive correlation between writing struc-
ture and editing success (p < 0.0001). The correlation between
code writing functionality and code editing, on the other hand,
was not significant (p = 0.817). To determine the extent to
which writing style can predict students’ editing success, we
ran a logistic regression and found that, while code writing is a
significant predictor of code editing, it is not a strong predictor
(writing style 3 = 1.9073,p < 0.001, pseudo — R? = .14).

b) Returning a Boolean Expression with Method Call:
For this topic, 67% of students who wrote well-structured code
and 33% of students who wrote with alternative structures
could edit the code block to follow this pattern. Again,
we ran two chi-square tests between code writing struc-
ture/functionality and code editing and we found that, for
this topic, both code writing style and functionality are sig-
nificantly correlated with editing (writing style vs. editing
p < .0001); writing functionality vs. editing p = .040).
Logistic regression with writing style and functionality as
independent variables and code editing as dependent variable
again reveals that code writing is not a strong predictor of
code editing (writing functionality 8 = .7034, writing style
B = 1.2764, pseudo — R? = .15).

c) Unique vs. Repeated Code within an if and else:
The question targeting this topic was longer and more compli-
cated than the first two. It also targeted two more topics of con-
Jjoined conditions rather than nested ifs and if-else-if
instead of sequential if statements with exclusive conditions
which we do not discuss in this paper. Therefore, for this topic
only 14% of students who wrote well-structured code and only
6% of students who wrote with alternative structures could
remove repeated code. Chi-square tests for this topic indicates
a significant correlation between code editing and code writing
style (p = .00258) but the correlation between code editing
and code writing functionality was not significant (p = .158).
The Logistic regression with code writing style as the inde-
pendent variable and code editing as the dependent variable
resulted in: (3 = 1.4428.p = .012, pseudo — R? = 0.08)

2) Code Writing Functionality is not Significantly Corre-
lated with Code Revising Success: Since the code revising

Readability Prompt: All of these code samples do the same thing. Which
one is most readable to you: which one makes it easiest for YOU to
understand what the code does?

Style Prompt: These are the same code samples as the previous
question. All of these code samples do the same thing. Which one
would an expert say has the best style? Style is the use of language
that makes code elegant, efficient, and revealing of design intent.

public boolean functionl(){ public boolean function3(){

if (head == null) if (head == null)
return true; return ti H

else return false;
return lse; }

}

public boolean function2(){
return head == null;

}

An expert would say they
all have equal style.

Figure 3: Prompts for the readability and style questions for re-
turning a Boolean expression with operators.

tasks were at the continuation of code writing questions and
only students who wrote with less readable code structures
were flagged and saw at least one of the revising prompts, we
cannot examine the effect of writing style on students’ success
in code revising opportunities. Thus, we only examined the ef-
fect of code writing functionality on students’ revising success.
Running a series of chi-square tests between students success
at each revising opportunity vs. their code writing functionality
we could not find any reliable significant correlation for any
of the topics.

RQ2: How useful is code writing as a predictor of
successful editing and revision? For all three topics, students
who used the expected pattern (rather than an anti-pattern)
in their own code were more likely to edit another’s code
correctly. However, this relationship is weak. While logistic
regressions show that writing style is a significant predictor
for each topic, using it as the only predictor results in models
explain a very small portion of the variance (pseudo-R? for all
three models was < .15). Code functionality was not a useful
predictor for either editing or revising success.

C. What Predicts Students’ Success in Code Editing and Code
Writing ?

As discussed in section III-A, the survey included 5 tasks,
including perception of normative style and readability. This
allowed us to examine what other aspects of knowledge can
predict students’ success in editing and revision. Fig. 3 shows
the readability/style prompts for T1, Returning a Boolean
expression with operator.

1) Students Who Correctly Identified the expert Styled Code
and Selected that as Most Readable, are More Likely to
Edit Properly: To examine the relationship between code
editing and other facets of knowledge, we ran three logistic
regressions (one per topic). Each regression used code editing
success as the dependent variable, with five independent vari-
ables: structure at the initial writing task, functionality at the



Topics Code writing Copied the given code | Edited to expert style Edits remained non-
with no edits expert
T1: Returning a Boolean Expert: 178 4 (2%) 123 (69%) 51 (29%)
expression w/operator Non-expert: 150 16 (11%) 40 (27%) 94 (63%)
T2: Returning a Boolean Expert: 194 23 (12%) 131 (67%) 40 (21%)
expression w/method call Non-expert: 134 41 (31%) 44 (33%) 49 (36%)
T3: Unique vs. repeated Expert: 126 25 (20%) 14 (11%) 87 (69%)
code within if and else Non-expert: 202 58 (29%) 6 (3%) 135 (67%)

Table VI: Students’ performance on code editing tasks for each topic, separated by their initial code writing structure. More
than 25% of students who wrote non-expert code still edited successfully for returning Boolean topics. In contrast, for all
topics, more than 30% of students who wrote expert code could not successfully edit.

initial writing task, revision success, and students’ selection
of expert code on the style and readability questions.

For T1 (Returning a Boolean expression with operator),
regression result indicates only students’ choice of expert style
as the best-styled code (p = .044, 8 = 0.6342) and selection
of the expert code as the most readable one (p = .005,5 =
0.9859) are significant predictors for students’ code editing
success (pseudo — R? = 0.2594).

For T2 (Returning a Boolean expression with method
call) the regression indicates that code writing structure
(p < .001,8 = 1.2311), perception of exert style (p <
.001,8 = 1.4967) and readability (p = .001,5 = 0.9845)
all are significant predictors of students’ success in editing
(pseudo — R? = 0.2029).

For T3 (Unique vs. repeated code within an if and else)
as explained in section IV-B1, very few students could edit the
code block targeting this topic. Consequently, the regression
result for this topic also shows no significant relationship
between students’ success in code editing and our predictors.

2) Selection of Expert Code as Most Readable Predicts
Success in Writing, and Revising: We used logistic regression
to investigate how students’ success in code editing, code writ-
ing functionality, and their style and readability preferences
can predict (1) their initial code writing style, and (2) their
revising success. All students are included in the first model
(initial writing style). However, for the second model ( first and
second revision opportunities) only students who were flagged
for those revisions are included in the respective models.

For T1 (Returning a Boolean expression with operators),
the significant predictors of writing with the appropriate
structure were: the selection of expert-styled code as most
readable (p = .001, 8 = 1.4712), writing functionality, (p <
.001, 8 = 2.7587) and editing success (p < .001, g = 1.5613,
pseudo — R?> = 0.2313). For the first revising opportunity,
only students’ selection of expert styled code as most readable
(p < .001,8 = 1.6297) and their success in editing others’
code (p < .001,3 = 3.2566, pseudo — R? = 0.2985) were
significant predictors. None of the predictors were significant
for success on the second revising opportunity.

For T2, (Returning a Boolean expression with method
call) the significant predictors of writing with the appropriate
structure were: the selection of expert-styled code as most

readable (p < 0.001,8 = 1.0152), writing functionality
(p = 0.039, B = 0.8275), and editing success (p < 0.001, 5 =
1.2632, pseudo — R? = 0.1260). However, only code editing
was a significant predictor of success on the first revision
opportunity (p < 0.001, 3 = 2.7007, pseudo — R? = 0.1534).
Again, none of the predictors were significant for success on
the second revision opportunity.

For T3 (Unique vs. repeated code within an if and else)
the significant predictors of writing with the appropriate struc-
ture were: the selection of expert-styled code as most readable
(p = .005,8 = 1.0226, pseudo — R?> = 0.1284), writing
functionality (p < .001,8 = 0.5171), and editing success
(p = 012,58 = 1.4573). Again, only code editing was a
significant predictor of success on the first revision opportunity
(p = .010, B = 2.3963, pseudo — R? = 0.07839). None of the
predictors were significant for success on the second revision
opportunity.

RQ3: What facets of knowledge (beyond those assessed by
code writing) impact students’ success in revising their own
code and in editing someone else’s? Students’ identification
of expert style and selection of that code as most readable
for them were both significant predictors of editing success.
Logistic regressions for the two returning Boolean topics show
that these predictors are significant even when code writing
structure is included in the models. While the inclusion of
these additional predictors improved the explanatory power of
the models, the models still have a lot of unexplained variance
(pseudo-R? < .26). For code writing, selection of expert style
as most readable was a significant predictor of success, but
correct identification of expert style was not.

V. DISCUSSION

To provide students with appropriate feedback and instruc-
tion on code structure, we must first assess their knowledge to
determine the level of support they need. Current approaches
to assessing students’ knowledge have primarily focused on
counting structural violations (anti-patterns) in students’ code
writing assignments and viewing them as knowledge gaps that
require remediation through instruction (as in [1], [13], [39])
or comprehensive feedback [14]. However, there are other
explanations for students’ alternatively-structured code. One
is that when students are graded primarily or entirely on code



functionality, attending to code structure may be a low priority,
especially when they are short on time [21]. Consistent with
the dual process learning theory [16], such students do not
need further information to revise their code. They may only
need to be prompted to pay attention to structural choices or
given time to reflect on their prior knowledge.

Assessing students’ code structure knowledge through code
editing and revising revealed that code writing did not provide
a complete picture of student knowledge: many students who
wrote non-expert structured code were able to correctly edit
and revise these same structures without receiving any addi-
tional instruction or information about expert structure. For
return Boolean topics, more than 55% of students who wrote
with non-expert code structures were able to successfully
revise their code without receiving additional guidance on how
to revise. More than 25% of students who wrote with these
non-expert structures were able to successfully edit others’
code for the same topic. This is consistent with Ohlsson’s work
that suggests more knowledge is available when evaluating a
task compared to when performing it [17]. As a whole, these
findings show that for the return Boolean topics, students’
usage of anti-patterns does not necessarily indicate a deep
conceptual gap in their knowledge, echoing Nurollahian et al.’s
finding that students who wrote with an anti-pattern were also
capable of using the pattern correctly [15]. Researchers thus
must find additional ways to measure student knowledge that
go beyond measure anti-pattern usage in student code. A better
approach to understanding student knowledge is to employ
multiple modes of assessment that include comprehension and
evaluation tasks in addition to code writing performance.

We found that students’ performance on code writing,
editing other’s code, and revising their own code was lower on
unique vs. repeated code within an if and else compared
to other topics, suggesting less understanding. One reason
for students’ greater struggle on this topic could be that
correctly editing or revising unique vs. repeated code requires
working with longer sequences of code and considering more
possible modifications. In contrast, converting from non-expert
to expert structure for the returning Boolean topics can be done
in a few rote steps, with minimal adjustment to apply these
steps to a particular snippet of code. This is consistent with
previous examinations of students’ code editing performance
that found simplifying complex control structures to be the
most challenging task [30]. Further study is needed to explore
gradations of difficulty across other control structures topics in
order to determine where students need the most support. Such
research could help instructors decide which control structures
to prioritize when allocating instructional time, and could help
researchers to develop educational code analyzers that provide
students with sufficient feedback.

Using multiple modes of assessment reveals significant vari-
ation across students’ knowledge. For instance, the majority of
students wrote expert-structured code or revised correctly after
a single prompt for the return Boolean items. However, some
students required further support to revise properly, and for a
few students our hints were not sufficient. Students who wrote

with non-expert structured code are thus not homogeneous,
and we cannot view students’ knowledge of code structure as
a single binary skill, even when focused on a particular topic.

Our findings also indicate that while most students could
identify the expert style, the correct identification did not
significantly correlate with students’ success in writing well-
structured code or revising their code. This is in line with
Ohlsson’s learning theory that makes a distinction between
knowledge bases required for performing (writing with expert
structure) and evaluating (judging expert style) [17]. While
these students can identify the expert style, they may not
feel comfortable using it or may not have an appropriate
understanding of it. Therefore, only showing the correct usage
of the pattern may not be sufficient for students to gain mastery
on implementing it in a correct manner.

A final finding was that students exhibited better perfor-
mance when revising their own code compared to editing
someone else’s code. One possible explanation is that to edit
others’ code, students must first understand what the code
does. This increases the cognitive load of editing compared to
revising. A confounding factor is that the editing questions in
our study typically targeted multiple control structures, rather
than focusing on each topic in isolation. Overall, our results
indicate that code writing, editing, and revising are not strong
predictors of one another. Therefore, researchers should be
cautious about using one task to measure or predict students’
performance in other tasks.

VI. LIMITATIONS AND THREATS TO VALIDITY

This study only examined three control structure topics
where instances of anti-patterns in student code could be easily
identified with regular expressions. Therefore, the results may
not generalize to other topics. The appropriate structure for
each topic was selected based on unanimous agreement from
three instructors. However, this selection is to some degree
subjective, and instructors’ opinions may not reflect profes-
sional software developers’ preferences.

Regular expressions were not very accurate for flagging
non-expert code for unique vs. repeated code within an if
and else, resulting in false positives (in which normatively-
structured code was erroneously flagged as non-expert) and
false negatives (in which non-expert structured code was not
detected). Further, we cannot distinguish between students
who lacked the knowledge to correctly complete the tasks and
those who could have done so but chose not to put in the effort.
Those students who did not revise correctly after all prompts
may have needed further support, but some may simply not
have read the provided prompts.

Although our first revising prompts did not include infor-
mation on how students should revise the code, they did alert
students that something was wrong. The student-generated
methods were short, simplifying the task of locating the
problems. Thus, students’ performance in code editing and
revising tasks does not necessarily predict how well students
could identify issues in their own code in other settings.



Ecological validity is an important concern for our survey.
The survey setting lacks some features of the environments in
which students typically write code: students could not com-
pile or run their code to identify bugs or syntactic issues. Some
students may have felt less comfortable changing non-expert
structured (but still functional) code because they lacked the
ability to run the code and verify that they had not changed its
functionality. The survey was online, self paced, and optional,
which may have offered a more relaxed atmosphere than
typical course assignments. Further, students received the extra
credit regardless of whether the answers were correct, thus,
students may have expended less effort than they would on
regular course assignments. Since the survey tasks were short
and relatively simple, they may not predict performance on
longer or more complex tasks. Nevertheless, this study shows
the importance of assessing students’ knowledge of code
structure through measures of code revising and editing. It
also indicates how common approaches to measuring students’
knowledge, such as counting students’ violations, can give an
incomplete picture of students’ capabilities.

VII. CONCLUSION

We assessed 328 CS students on their knowledge of code
structure. We present results from three tasks (code writing,
editing others’ code, and revising their own code) on three
structures (returning a Boolean expression with and without
method calls, and unique code within an if and its corre-
sponding else). Our results show that code writing is not a
very accurate measure of students’ knowledge of code struc-
ture. Writing expert code is only weakly predictive of editing
someone else’s code correctly. Further, many students who
initially wrote alternatively-structured code were able to revise
successfully without additional information on how to do so.
A constellation of tasks, including writing, editing, revising,
and even selecting which style of code is most readable can
provide a more informative assessment of students’ knowledge
than code writing alone.
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