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Abstract
Complementing previous theoretical and experimental work, we explore
new types of short-range modifications to Newtonian gravity arising from
spacetime-symmetry breaking. The first non-perturbative, i.e. to all orders in
coefficients for Lorentz-symmetry breaking, are constructed in the Newtonian
limit. We make use of the generic symmetry-breaking terms modifying the
gravity sector and examine the isotropic coefficient limit. The results show
new kinds of force law corrections, going beyond the standard Yukawa para-
meterization. Further, there are ranges of the values of the coefficients that
could make the resulting forces large compared to the Newtonian prediction
at short distances. Experimental signals are discussed for typical test mass
arrangements.

Keywords: Lorentz symmetry, short-range forces, tests of general relativity,
spacetime symmetry tests

(Some figures may appear in colour only in the online journal)

1. Introduction

Presently, the nature of gravity is still largely unknown on length scales less than micrometers.
In fact, new types of forces many times stronger than the Newtonian gravitational force could
exist on short length scales and still be consistent with current experimental limits [1]. Sug-
gestions for hypothetical new forces that could modify gravity at short ranges abound in the
literature [2–8]. In particular, miniscule but potentially detectable violations of fundamental
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symmetries underlying general relativity (GR) can arise in a plethora of ways [9–15]. The
breaking of local Lorentz symmetry, for instance, can modify gravity on short ranges while
being consistent with longer range measurements [16, 17].

To categorize the phenomenology of spacetime symmetry breaking one needs a compre-
hensive test framework. Effective field theory (EFT) is a widely used tool for describing poten-
tially detectable new physics [18]. EFT descriptions of spacetime-symmetry breaking, includ-
ing local Lorentz symmetry breaking, are based on including the action of GR and a standard
matter sector action [19]. To these basic pieces, are added a series of symmetry breaking terms
that can be organized by number of derivatives, curvature, mass dimensions, and so on [20–22].
This approach has the advantage that one can in principle calculate the effect on some observ-
able due to some symmetry breaking terms, which can then be compared with entirely different
observables in different scenarios, for measurements of the same coefficients controlling the
size of the effects. Other formalisms for testing symmetries in gravity are parametrized directly
from the form of a GR observable [23–25], or are based on specific models of alternatives to
GR [26–29].

We will consider in this work modifications to the gravity sector that, contrary to stand-
ard GR, break local Lorentz symmetry and diffeomorphism symmetry explicitly or spontan-
eously. These spacetime symmetries can be thought of as gauge symmetries for gravity, and
thus GR is a gauge theory of gravity with local Lorentz and diffeomorphism symmetries as
the gauge symmetries, analogous to Standard Model physics based on gauge groups [30]. The
subtle issue of the role of broken spacetime symmetries in the context of curved spacetime,
particularly when assuming asymptotically flat scenarios or not, has been discussed at length
elsewhere [22, 31, 32]. While we do not fully discuss these concepts and subtleties here, we
shall refer to conventions and categories of transformations in these references as needed.

In the EFT approach taken here, we highlight comparison of short-range (SR) gravity tests
with gravitational wave (GW) observations, thus comparing two tests ‘across the Universe’ for
measuring the same quantities describing spacetime-symmetry breaking for gravity. In fact, we
show certain rotational scalar coefficients that can be measured in GW tests can also be probed
in SR tests. Further, there are some coefficients that cannot be completely disentangled with
GW tests alone, but using also SR gravity tests could accomplish this.

In [16, 17] solutions for SR gravity tests were found, but these used an approximation of
leading order in the coefficients. We show here that exact, non-perturbative, solutions can
reveal where other combinations of coefficients, not yet disentangled, can show up in exper-
iment. As we are concerned in this paper with modifications to gravity that do not break the
Weak-Equivalence Principle, we do not discussWEP violations here. The connection between
Lorentz violation and WEP has been discussed at length elsewhere [33–36].

Since we examine non-perturbative solutions, the results in this work also touch on the
nature of higher than second order derivatives in the action and how that might affect gravity.
For this latter topic, we do not attempt a comprehensive investigation of these issues but simply
note where results exhibit behavior expected of such models [37–39], and how they might be
consistent with perturbative approaches.

The paper is organized as follows. In section 2, we review two commonly used EFT schemes
for the description of spacetime symmetry breaking in gravity and we discuss prior results in
SR gravity signals for Lorentz violation. In section 3, we explore non-perturbative solutions
with a special case model to identify key features. Following this, we go on to solve the general
EFT framework in the static, isotropic coefficient limit. Features of the solutions are discussed
and explained with several plots. We discuss attempting exact solutions with anistropic coeffi-
cients in section 4, and compare to perturbativemethods. For section 5, we apply the theoretical
results to simulate the signal of the gravitational field above a flat plate of mass, and comment
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on the experimental signatures. A summary and outlook is provided in section 6. Finally, in
the appendix we include a review of relevant differential equations, the details of the tensor
analysis for isotropic coefficients used, and special cases of the SR gravity solutions. In this
work, we assume four-dimensional spacetime with metric signature −+++ and units where
ℏ= c= 1. Latin letters are used for three-dimensional space, and Greek letters for spacetime
indices.

2. Background theory

2.1. Action and field equations

One can work with an observer covariant EFT expansion or an action designed for weak-field
applications, the latter formulated in a quadratic action expansion. The two approaches are
overlapping descriptions of physics beyond GR and the SM when spacetime symmetries are
broken. We display both approaches here, to emphasize recent points of view in the literature,
and because we use them in this work.

It is a basic premise that in the EFT context, a breaking of spacetime symmetries is indic-
ated by the presence of a background tensor field of some kind that couples to matter or gravity
or both [9, 19, 20]. The details and subtleties of this premise have been discussed at length
elsewhere [22, 31, 32]. Suffice it to say here that the EFT maintains coordinate invariance of
physics (observer invariance) while the actionmay not be invariant under symmetry transform-
ations of localized field configurations (particle transformations). The latter violation is due to
the presence of the background tensor fields, which remain fixed under such transformations.

The observer covariant expansion has a Lagrange density that takes the form of a series of
terms:

L=
√
−g
2κ

(
R+ k(4)αβγδR

αβγδ + k(5)αβγδκ∇
κRαβγδ

+k(6)κλµναβγδR
κλµνRαβγδ + · · ·

)
+L ′. (1)

In this expression, the determinant of the metric is
√
−g, Rαβγδ is the Riemann curvature

tensor, R is the Ricci scalar, and k(4)αβγδ , k
(5)
αβγδκ, and k

(6)
κλµναβγδ are the coefficients controlling

the degree of symmetry breaking [16, 22]. The coupling is κ= 8πGN, where GN is the grav-
itational constant. The first term is the Einstein–Hilbert lagrange density, while the remaining
terms are the symmetry-breaking terms. Note that additional terms for the coefficients can
be included in L ′. For instance, a general expansion for such terms exists, for the case of a
two-tensor sµν ∝ k(4)αµαν , and takes the form

L ′ =

√
−g
2κ

[
a3 1

2 (∇µsνλ)(∇µsνλ)+ a4 1
2 (∇µs

µλ)(∇λs
β
β)

+ · · ·+ a7sµνsκλR
µκνλ + a8sµνs

µ
λR

νλ + · · ·
]
, (2)

which can be viewed as terms of second order in the coefficients or as dynamical terms [32, 40].
Alternatives to (2) can adopt the explicit symmetry breaking scenario, where the coefficients
in (1) are given a priori, this latter possibility given emphasis more recently [41–44].

An alternative overlapping approach, the quadratic action approach, assumes an expansion
around flat spacetime ηµν , of the standard form

gµν = ηµν + hµν . (3)
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We examine the quadratic action [45, 46] in the limit that maintains the usual linearized gauge
invariance of GR: hµν → hµν − ∂µξν − ∂νξµ. The Lagrange density for this approach takes
the form

L=− 1
4κh

αβGαβ +
1
8κhµν(ŝ

µρνσ + q̂µρνσ + k̂µρνσ)hρσ, (4)

where Gαβ is the linearized Einstein tensor. The ‘hat’ operators are built from background
coefficients for spacetime-symmetry breaking and partial derivatives. The three types appear-
ing in (4) are given by,

ŝµρνσ = s(d)µρϵ1νσϵ2...ϵd−2∂ϵ1 . . .∂ϵd−2 ,

q̂µρνσ = q(d)µρϵ1νϵ2σϵ3...ϵd−2∂ϵ1 . . .∂ϵd−2 ,

k̂µνρσ = k(d)µϵ1νϵ2ρϵ3σϵ4...ϵd−2∂ϵ1 . . .∂ϵd−2 . (5)

While the expansions in (5) appear similar for the three types of coefficients, the s, q, and k in
fact differ by symmetry and tensor properties. The detailed tensor properties of these terms are
described in the Young tableau of table 1 of [45], (some samples are included in appendix (59)).
In particular, ŝµρνσ is anti-symmetric in the pairs of indices µρ and νσ, while q̂µρνσ is anti-
symmetric in µρ and symmetric in νσ, and finally k̂µνρσ is symmetric in the pairs of indices µρ
and νσ. In terms of discrete spacetime symmetries, The ŝ operators have even CPT symmetry
and mass dimension d⩾ 4; q̂ operators have odd CPT and mass dimension d⩾ 5; k̂ operators
have even CPT and mass dimension d⩾ 6.

The phenomenology of the terms in (1) and (4) has been studied in a number of works.
Observable effects in weak-field gravity tests have been established for a subset of the possible
terms [16, 47, 48] and somework has been done on strong-field gravity regimes like cosmology
[42, 49–51]. Effects on GWs have been studied, showing that dispersion and birefringence
occur generically as a result of CPT and Lorentz violation [45]. Analysis has been performed
in tests such as lunar laser ranging [52], gravimetry [53], pulsars [54], and using the catalog of
GW events [55–59]. An exhaustive list of up to date experimental limits and papers on gravity
sector coefficients can be found in [60].

On the theory side, explicit local Lorentz and diffeomorphism symmetry cases have been
explored various contexts. A ‘3+1’ formulation of the EFT framework has been explored
in [42, 43, 61]. Extensive work has been completed mapping out the approach to explicit
symmetry breaking with Finsler geometry [62–65]. Other work includes much attention to
vector and tensor models of spontaneous symmetry breaking [26, 27, 66–70] and how these
models can be matched to the EFT expansion above [42, 44, 71, 72]. More recently, black hole
solutions have been studied [73–75]. Also, the systematic construction of dynamical terms for
the spontaneous symmetry breaking scenario, like in (2), has been undertaken in the gravity
sector [40]. Finally we note some recent theoretical work has identified general properties of
backgrounds in EFT [32], and new types of tests are possible that search for non-Riemann
geometry [76].

Of the two approaches identified above, the latter, equation (4), is appropriate for SR gravity
tests. Such tests involveweak gravitational fields in the Earth laboratory setting, thus the typical
size of components of hµν are much less than unity, in cartesian coordinates. Furthermore, to
keep a reasonable scope we will truncate the series (5) to mass dimensions 4, 5, and 6.

Any study of actions with higher than second order derivatives is subject to well-known res-
ults, such as Ostragradsky instabilities [39]. In the present paper, while the test framework (4)
is viewed perturbatively, with the higher derivative terms as small corrections [77], our dis-
cussion of solutions beyond leading order in coefficients will overlap with features in higher
derivative models. Some features are discussed in our results in sections 3 and 4.
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2.2. Prior SR gravity results

In [16, 17], Lorentz-symmetry breaking solutions for SR gravity tests were found using an
approximation of first order in the coefficients. We summarize these results briefly here for
comparison. Assuming a static matter source and using the framework of (4), one solves
the field equations perturbatively assuming any modifications to the field equations from
symmetry-breaking terms are small [16, 17, 47]. The leading order modified Newtonian poten-
tial from a point mass m at the origin can be written in terms of Newton spherical coefficients
kN(d)labjm as a series

U=
GNm
r

+
∑
djm

GNm
rd−3

Yjm(θ,ϕ)k
N(d)lab
jm , (6)

where the angular dependence θ,ϕ in the spherical harmomics Yjm(θ,ϕ) pertains to the vector
from the origin to the field point r⃗= r(sinθ cosϕ,sinθ sinϕ,cosθ) and r= |⃗r|. The spherical
coefficients kN(d)labjm are related to the coefficients in equation (5) as linear combinations, but
the expressions are lengthy and omitted here, and relations between the dimension label (d)
and the allowed values of j can be found in [17]. The superscript ‘lab’ means that the coef-
ficients are written in the laboratory coordinate system. Typically, the lab frame coefficients
are re-expressed in terms of the Sun-centered Celestial Equatorial Frame coefficients using an
observer Lorentz transformation, revealing harmonic time dependence [78–80].

The result in equation (6) has already been used for analysis in experiments [81–84]. In fact,
new experiments can be designed to maximize the type of anisotropic signal in (6) [83, 85, 86].
Recent result place limits on 14 kN(6)jm coefficients and 22 kN(8)jm coefficients at the 10−9m2 and
10−12m4 levels, respectively. However, the leading order approximation used for (6) makes
searches in some SR tests challenging, as some tests are designed to probe very small length
scales at the cost of sensitivity to the Newtonian force from the test masses [87]. Such tests
often lie outside the range of applicability of the result (6), which assumes the extra correction
term to the Newtonian potential is smaller than the first term.

One other observation is that, with the exception of mass dimension four coefficients, no
rotational scalar coefficients, or isotropic coefficients show up in the result (6). In fact, it has
been shown that one combination of isotropic coefficients does show up in the perturbative
analysis, but only as contact term that vanishes outside of the matter distribution [16]. As
we show below, a non-perturbative treatment reveals in more detail the role played by these
coefficients.

3. Isotropic coefficients, Newtonian limit, nonperturbative

3.1. Special case model

We begin with a special case to illustrate the features of the solutions studied in this work. One
particular model that contains the interesting features of exact SR solutions is the following
Lagrange density:

L= 1
2κ

√
−g

(
R+ kαβR

αβR
)
, (7)

which is a special case of (1). The second term is the non-standard one with the coefficients
for Lorentz violation denoted kαβ . These ten quantities have units of length squared or inverse
mass squared in natural units.

5
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The action in (7), yields the field equations in appendix (53), upon variation with respect
to the full metric gµν . In the linearized gravity limit, and assuming the coefficients kαβ have
vanishing partials ∂αkβγ = 0, the field equation (53) become,

(GL)
µν =− 1

2η
µνkαβ∂

α∂βRL− ηµνkαβ∂
γ∂γ(RL)

αβ + 1
2k

να∂α∂
µRL

+ 1
2k

µα∂α∂
νRL+ kαβ∂

µ∂ν(RL)
αβ − 1

2k
µν∂α∂αRL+κTµν , (8)

where Tµν is the matter stress-energy tensor. Note that in the linearized gravity case, indices
are raised and lowered with ηµν , the linearized Ricci tensor is (RL)µν = (1/2)(∂µ∂αhαν +
∂ν∂

αhαµ − ∂α∂
αhµν − ∂µ∂νhαα), RL = ∂α∂βhαβ − ∂α∂

αhββ , and (GL)
µν = (RL)µν −

(1/2)ηµνRL. The task is next to obtain a space and time component decomposition of these
field equation (8).

If we further restrict attention to the static limit and only isotropic coefficients k00 and
kjj, in a special coordinate system, we obtain the following coupled equations for the metric
components h00 and hjj (in harmonic gauge):

∇2(h00 + hjj)− 3(k00 − 1
9kll)∇

4h00 +(k00 − kll)∇4hjj =−32πGNρ,

∇2(3h00 + hjj)+ 4(k00 − 1
3kll)∇

4h00 + 8
3kll∇

4hjj = 0. (9)

Note that kll− k00 = kµνηµν is a Lorentz invariant scalar combination. We have assumed a
static pressure-less matter distribution so that only T00 = ρ is nonzero in Tµν . We also find in
this limit that the equation for h0i is simply Laplace’s equation:

∇2h0i = 0. (10)

For the remaining components of hij it is advantageous to express the solution in terms of
a traceless piece. By this we mean that if the equations for hij are denoted Eij = 0, the relevant
projection is Eij− (1/3)δijEkk. This yields

∇2(hij− 1
3δijhkk)− 2(k00 − 1

3kll)Dij∇2h00 − 4
3kllDij∇2hkk = 0, (11)

whereDij = ∂i∂j− 1
3δij∇

2 is a traceless operator. Evidently, if one can solve independently for
h00 and hll, then equation (11) can be viewed as an inhomogeneous equation for the traceless
piece of hij with source terms involving projections of h00 and hll.

Our main focus is to solve the equations (9) for h00 and hjj, since h00 is the metric compon-
ent directly related to the Newtonian potential UN via h00 = 2UN. The solution can be found
using standard methods of solving PDEs. We first discuss the construction of a Green function
solution where we assume a point source 4πGNρ= δ(3)(⃗r− r⃗ ′). The point source solutions for
h00 and hjj are denoted G1 and G2.

Given the form of the solution to the equation with ∇2 and ∇4 in appendix (57), we pro-
pose the ansatz that the general solutions will take the form of the following functions of
R= |⃗r− r⃗ ′|:

G1 =
1
R

(
A1e

−q1R+A2e
−q2R+A3

)
,

G2 =
1
R

(
B1e

−q1R+B2e
−q2R+B3

)
. (12)

Here theAn’s andBn’s are constants to be solved for as well as the q1 and q2. In constructing this
solution we are assuming the boundary conditions such that the metric components go to zero
far from the source, and we neglect any homogeneous solutions to (9). Insertion of (12) into
the point source version of (9), followed by using the properties of functions of R= |⃗r− r⃗ ′|,
allows one to solve for the eight parameters A1, A2, A3, B1, B2, B3, q1, and q2 from eight
resulting algebraic equations.

6
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First, we find that for nontrivial solutions, both q21 and q22 must satisfy the quartic equation:

1+(k00 − 5
3kll)q

2 +(k00 + 1
3kll)

2q4 = 0. (13)

The solutions to (13) can be obtained from the quadratic result,

q2 = u± v, (14)

where u and v are given by:

u=
−(k00 − 5

3kll)

2(k00 + 1
3kll)

2
,

v =

√
(k00 − 5

3kll)
2 − 4(k00 + 1

3kll)
2

2(k00 + 1
3kll)

2
. (15)

The four possible roots of the equation (13) can be obtained generally by taking the complex
square roots of (14). The position of z= q2 in the complex plane depends on the values of
the coefficients k00 and kll. Note that u is real and v can be real or complex. The values of the
coefficients determine the properties of the four possible roots {q= z1/2 =±(u± v)1/2}. If
q is entirely real and positive, then the solutions in (12) will exhibit exponential damping in
R or SR Yukawa-like behavior. The case where q is negative and real will result in runaway
exponential increase and is not physically viable. When q has an imaginary piece or is entirely
imaginary, the solution will have oscillations in R.

In what follows we assume the condition q21 ̸= q22. This condition ensures that the coeffi-
cients k00 and kll are treated a priori independent. This condition implies that in (14), q21 takes
one sign in the ±, and q22 takes the other sign. For this case we obtain the solutions for the
Green function G1 as follows.

G1 =
1

2πR
− 1

4π

1+
k00 + 11

3 kll√
(k00 − 5

3kll)
2 − 4(k00 + 1

3kll)
2

 e−R/λ+

R

− 1
4π

1−
k00 + 11

3 kll√
(k00 − 5

3kll)
2 − 4(k00 + 1

3kll)
2

 e−R/λ−

R
, (16)

where the λ± constants are defined by

1
(λ±)2

= u± v, (17)

and they act like two distinct length scales.
We note the contrast of this result with previous results. First, unlike the Yukawa potential,

UY =
Gm
r

(
1+αe−r/λ

)
, (18)

we have two length scales in (17). Second, the amplitudes of the two terms vary depending on
the values of the coefficients. In particular, we find that these amplitudes could take on large
values for a narrow range of coefficient ratios kll/k00, even if the coefficients themselves are
small compared to the length scales probed. This is in contrast to standard assumptions of the
smallness of Lorentz-violating effects. Note that the length scales would also be small, so such
large Lorentz-breaking forces could escape detection in long-range tests, and this philosophy
is along the lines of proposals for new SR forces more generally.

7
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Figure 1. A plot of the ratio of the modified potential of equation (16) divided by the
Newtonian potential for a unit mass at the origin. The horizontal axis is the coefficient
ratio kjj/k00 while the solid curve, dashed curve, and dotted curves are the cases of
different positions away from the point mass, R=

√
k00, R= 3

√
k00, and R= 5

√
k00,

respectively.

To get an idea of the behavior of these solutions as the values of the coefficients change, in
figure 1, we plot the potential U= 2G1 for a point mass of unit strength as a function of kll/k00
for several values of the distance R (more specifically, the ratio of the distance R to

√
k00).

This can be compared to the standard Newtonian potential which would be a horizontal line
in the same graph. We clearly see a singular point in the kll, k00 parameter space as the kll/k00
approaches −3/7.

The solution obtained in (16) above agrees precisely with an alternative method, where
one uses Fourier decomposition in momentum space, followed by contour integration. For
practical evaluation over distributions of matter, such as those used in experiment, one would
take the integral of the Green functions over the smooth matter distributions ρ(⃗r ′) as usual.
Thus, since h00 = 2U, the Newtonian potential is

U= 2πGN

ˆ
d3r ′ρ(⃗r ′)G1(⃗r, r⃗

′). (19)

3.2. General EFT case

Here we consider generalizing the solution of section 3.1. A more general treatment includes
the quadratic Lagrange density of (4). First we examine the field equations for this approach,
which are obtained from (4) by variation with respect to hµν :

(GL)
µν + δMµνρσhρσ = 8πGNT

µν , (20)

where we have adopted the notation of [17] with

δMµνρσhρσ =−
[
1
4 (ŝ

µρνσ + ŝµσνρ)+ 1
2 k̂

µνρσ

+ 1
8 (q̂

µρνσ + q̂νρµσ + q̂µσνρ + q̂νσµρ)
]
hρσ. (21)

8
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3.2.1. Determining the field equations. Nextwewill focus attention onmass dimension d= 6
or less to keep the scope reasonable. Furthermore, as we are taking the static limit, as the
prior section, only spatial derivatives appear. We will again choose to look at only isotropic
coefficients, as these we expect to result in field equations we can solve exactly in analytic
form, and to reveal the role of these coefficients in SR gravity tests.

It is not exactly trivial to extract the isotropic coefficients in the expansions (5) but we
outline the process here and leave most of the details for the appendix. Consider the µ= 0,ν =
0 component of (21), including terms up to mass dimension 6. Tensor symmetry properties of
the coefficients in (21) can be used to eliminate some contributions outright (see the Young
tableau in table 1 of [45] and the appendix of this paper (59) ). For instance, antisymmetry of the
indices yields ŝ0000 = 0= ŝ000i and q̂000i = 0. The surviving contributions to the 00 component
of (21) are initially collected as

δM00ρσhρσ =− 1
2k

(6)0i0j0k0l∂ijklh00 −
{

1
2k

(6)0j0k0lim∂jklm+
1
4q

(5)0ij0k0l∂jkl

}
h0i

−
{

1
2

[
s(4)0ik0jl∂kl+ s(6)0ik0jlmn∂klmn+ k(6)0k0limjn∂klmn

]
+ 1

4

[
q(5)0ik0ljm+ q(5)0jk0lim

]
∂klm

}
hij (22)

where we make use of a short-hand (∂ijk... = ∂i∂j∂k . . .) for multiple partials. Among the coef-
ficients occurring in (22), those that are isotropic will be invariant under observer rotations
SO(3), and thus expressible in terms of rotational scalar contractions, the kronecker delta δij

and the levi-civita ϵijk.
As an example of how to decompose the terms in (22), consider the first term on the first line

with the coefficients k(6)0i0j0k0l, which has ij and kl index symmetry. This would lead us to the
only available scalar contractions being k(6)0i0i0j0j and k(6)0i0j0i0j. However, because the under-
lying tensor satisfies the cyclic identity k(6)µϵ1νϵ2ρϵ3σϵ4 + k(6)µϵ1νϵ3ϵ2ρσϵ4 + k(6)µϵ1νρϵ2ϵ3σϵ4 = 0,
one can show that k(6)0i0j0i0j = k(6)0i0i0j0j. Therefore the k(6)0i0j0k0l coefficients, in the isotropic
limit, must be proportional to combinations of kronecker deltas δijδkl+ . . . and the one scalar
k(6)0i0i0j0j. Symmetry considerations lead us to

k(6)0i0j0k0l = 1
15 (δ

ijδkl+ δikδ jl+ δilδ jk)k(6)0m0m0n0n, (23)

and thus

− 1
2k

(6)0i0j0k0l∂ijklh00 =− 1
10k

(6)0m0m0n0n∇4h00, (24)

which simplifies the first term in (22) to the desired form.
For the second line in (22), the coefficients k(6)0j0k0lim and q(5)0ij0k0l do not appear to have

any scalar contractions due to the number of indices, or the symmetry properties. Nor can
they be written in terms of purely δij and ϵijk. We conclude their isotropic limit contribution
vanishes:

−{ 1
2k

(6)0j0k0lim∂jklm+
1
4q

(5)0ij0k0l∂jkl}h0i
iso
= 0. (25)

One proceeds along similar lines for the remaining terms in (22). The details are relegated to
the appendix.

The final simplification to the isotropic coefficient case for (22) results in

δM00ρσhρσ =− 1
10k

(6)0m0m0n0n∇4h00 +
{

1
12 s

(4)0kl0kl+ 1
30 s

(6)0kl0klmm∇2

+ 1
30k

(6)0k0klmlm∇2
}
× (∂i∂j− δij∇2)hij. (26)

9
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Note the absence of the h0i components in this case. The remaining components of (21)
µ= 0,ν = i and µ= i,ν = j are worked out in the appendix. The equation for h0i decouples
from the remaining components of hµν and we display below the coupled equations for the
components h00 and hjj. As in the special case of the previous section, the off-diagonal com-
ponents of hij can be obtained from a traceless version of appendix (65), of secondary interest
in this work.

To obtain the relevant differential equations we make the partial choice of gauge: ∂jhij =
∂i(hjj− h00)/2. Furthermore, it will be convenient for solving the differential equations towork
with the trace-reversed components h̄00 = (1/2)(h00 + hjj) and h̄jj = (1/2)(3h00 − hjj). Also,
since they can be probed with other tests [48], we disregard the mass dimension 4 isotropic
coefficients. With these choices and the results of the appendix, the two coupled equations are
given by,

− 1
2 [∇

2 +(k1 + k2)∇4]h̄00 − 1
2k1∇

4h̄jj = 8πGNρ, (27)

− 1
2 [∇

2 + k2∇4]h̄jj− 1
2 (k2 + k3)∇4h̄00 = 0, (28)

where the k1, k2, and k3 are the combinations

k1 = 1
10k

(6)0i0i0j0j,

k2 = 1
15 [s

(6)0kl0klmm+ k(6)0k0klmlm],

k3 = 1
18 s

(6)klmklmnn+ 1
15k

(6)klklmnmn. (29)

These equations are very similar to those in (9), except that now we have three a priori inde-
pendent combinations of coefficients, instead of two. The combinations appearing in (29) over-
lapwith the isotropic coefficient combination appearing inGW tests, which is in appendix (67).

It is important to emphasize that the assumption of isotropy in a special coordinate system
is a special case of the general coefficients in the EFT framework. The focus here is on these
particular coefficients, effectively setting the others to zero. However, in principle one can use
the coordinate covariance of the EFT to transform the coefficients from one frame to another.
Isotropic coefficients are rotational scalars. Under SO(3) rotations of the spatial coordinates
(x ′)j = R j

kx
k they do not change. Under observer boosts, however, the components would mix

with others. Once one introduces a boost velocity β, this is typically of order 10−4, and to be
consistent one needs the full post-Newtonian metric with includes the velocity of matter v j

included. We do not consider this here but it has been done elsewhere for coefficients in the
gravity sector [35, 47, 88].

3.2.2. Solving the coupled equations. With a similar approach to section 3.1, we seek Green
function solutions for a unit point source 4πGNρ= δ(3)(R⃗), and choose boundary conditions
so that the fields vanish at spatial infinity. Denoting the Green functions for h̄00 and h̄jj as G1

and G2, respectively, we obtain the Green function matrix equation,(
∇2 +(k1 + k2)∇4 k1∇4

(k2 + k3)∇4 ∇2 + k2∇4

)(
G1

G2

)
=

(
−4δ(3)(R⃗)

0

)
. (30)

Next we use Fourier transforms of the Green functions via

Gn =
1

(2π)3

ˆ
d3pei⃗p·⃗RG̃n, (31)

10
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where n= {1,2}. With this, the matrix equation becomes algebraic in momentum space as(
−1+(k1 + k2)p2 k1p2

(k2 + k3)p2 −1+ k2p2

)(
p2G̃1

p2G̃2

)
=

(
−4
0

)
, (32)

where p= |⃗p| and p2 is factored from the matrix to make it unitless. Since it is of crucial
importance for the pole structure and the solutions, we record here the determinant of the
matrix M in (32):

detM= 1− (k1 + 2k2)p
2 +(k22 − k1k3)p

4. (33)

Inverting the matrix in (32), we obtain the momentum space solutions:

G̃1 =
4(1− k2p2)
p2 detM

,

G̃2 =
4(k2 + k3)

detM
. (34)

Inserting the results into (31), and taking advantage of the spherically symmetric nature of the
solutions in (34), we can directly integrate the angular part via d3p= p2dpdΩp, What remains
is a one-dimensional Fourier transform integral over the magnitude of the momentum p. For
instance, for G1 we obtain

G1 =− i
π2R

ˆ ∞

−∞
eipR

1− p2k2
p[1− (k1 + 2k2)p2 +(k22 − k1k3)p4]

dp, (35)

with a similar integral for G2. This integral may be evaluated using contour integration in
complex p space. Clearly the poles of (33) play a strong role.

The result of the complex integration calculation gives the Green functions G1 and G2 in
position space. We find,

G1 =
1
πR

[
1+ 1

2

(
ζ1ζα√
1+ 4χ

− 1

)
e±iw1R− 1

2

(
ζ1ζα√
1+ 4χ

+ 1

)
e±iw2R

]
,

G2 =
χζ1ζα√
1+ 4χπR

(e±iw1R− e±iw2R), (36)

where we define χ, the poles w1 and w2, and the ‘zetas’ as

χ=
k2 + k3
k1

, (37)

w1 =
1√

2|k22 − k1k3|

(
ζα(k1 + 2k2)+ |k1|

√
1+ 4χ

)1/2
, (38)

w2 =
1√

2|k22 − k1k3|

(
ζα(k1 + 2k2)− |k1|

√
1+ 4χ

)1/2
, (39)

ζ1 = sign(k1), (40)

ζα = sign(k22 − k1k3). (41)

The± signs in the exponential functions are to be chosen to ensure an exponential decay rather
than growth, and the choice depends on the sign of the complex part of w1 and w2.

Examination of the solutions (36) reveals that the amplitudes of the exponential terms
appear to become arbitrarily large as χ→−1/4 from above or below. However, in the same
limit we have w1 appearing to coincide with w2, and so the two terms in (36) appear as though
they might cancel. So it is not immediately clear the behavior of the solution in this limit. To
understand the general solution better, we explore some limiting cases.

11
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3.2.3. Exploration of solutions. First, we will focus the attention on the combination of the
Green functions related to the Newtonian potential, G1 = (1/2)(G1 +G2). This simplifies to

G1 =
1

2πR

[
1+

1
2

(
ζ1ζα(1+ 2χ)√

1+ 4χ
− 1

)
e±iw1R− 1

2

(
ζ1ζα(1+ 2χ)√

1+ 4χ
+ 1

)
e±iw2R

]
. (42)

Note that this solution reduces to the one appearing in the prior section 3.1 with the substitu-
tions k1 = kll/3− k00, k2 = k00 − kll, and k3 = 8kll/3. The Newtonian potential for a realistic
source is obtained from the matter distribution integral (19).

Consider a sample case of the k1, k2, and k3 parameter space. Let χ=−6/25 so that√
1+ 4χ= 1/5. Then we further specialize to the case k3 = 0. Inserting these assumptions

into (42) leaves a solution valid for a one parameter subset (chosen as k2). Specifically we find

G1 =

{
1

2πR

(
1− 9

5e
−R/λ1 + 4

5e
−R/λ2

)
, k2 > 0

1
2πR

(
1− 9

5e
∓iR/λ1 + 4

5e
∓iR/λ2

)
, k2 < 0

(43)

where the length scales are λ1 =
√

3|k2|/2 and λ2 =
√

2|k2|/3. Note that in this case, with a
negative sign for k2, one obtains purely oscillatory corrections with no exponential damping.
For this latter case, if desired one can obtain a real solution by superposition of the two signs.

If the length scale of the coefficients, λ∼
√
|k2|, are expected to be small compared to

accessible laboratory length scales than the solution for k2 > 0 is consistent with a new force
that arises only on short scales. This situation is consistent with the spacetime symmetry break-
ing being small, and the terms added to the action being small corrections to known physics.
On the other hand, if k2 < 0, with small length scales λ, one finds a rapidly spatially varying
Newtonian potential with a substantial (of order unity or higher) amplitude. The lack of such
observed long range forces could be used to theoretically reject this region of the coefficient
space of solutions as unphysical. Note that this latter case bears similarity to considerations of
higher derivative models where, in some cases, one does not find a smooth limit to a perturb-
ative approach [89, 90]. Similarly here, trying extrapolate k2 → 0 when k2 < 0 simply results
in rapidly varying (unobserved) forces. In contrast, again, the former solution k2 > 0 with the
decaying exponential reduces to a delta function at the origin when k2 → 0, like the contact
term found by a perturbative approach in [16]. Such terms also arise in other models [91].

Next we look at what happens when we approach χ=−1/4 from ‘below’. Consider χ=
−13/50 so that

√
1+ 4χ= i/5. Again we assume k3 = 0 and we obtain in this case,

G1 =

{
1

2πR

(
1− e−R/λ1 [cos(R/λ2)+

12
5 sin(R/λ2)]

)
, k2 > 0

1
2πR

(
1− e−R/λ2 [cos(R/λ1)− 12

5 sin(R/λ1)]
)
, k2 < 0

(44)

where now λ1 =
√

26|k2|/25 and λ2 =
√

26|k2|. We now have a damped exponential beha-
vior accompanied with oscillatory behavior in R. Changing the sign of k2 merely swaps the
length scales involved in damping versus oscillations.We plot the cases described above in (43)
and (44) in figure 2. All of the examples exhibit behavior strikingly different from the New-
tonian case. Note in particular, a resemblance of the modified Newtonian potential solutions
in (44) to a Dilaton-gravity coupling proposed long ago [2].

Returning to the general case of (42), we enumerate the different functional forms of the
solution for different regions of the space spanned by the coefficients k1, k2, k3 in table 1. We
assume that we do not make contact with the singular point in w (41), k22 = k1k3, as this point
would correspond to the disappearance of the p4 term in (33), and would impose a condition on
the a priori independent coefficients. Nonetheless we include this case in the appendix ‘Special
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Figure 2. A plot of the modified potential of equations (43) and (44) for a unit mass
at the origin (r= 0). The vertical axis is the scaled potential and the horizontal axis
is the distance from the source in terms of the length unit

√
|k2|. The solid curve is

the Newtonian potential 1/r falloff. The dashed and dotted curves are the solutions in
equation (43), with χ=−6/25 and k2 > 0 and k2 < 0, respectively. The dot-dashed and
thin curves are the solutions from equation (44) for χ=−13/50, again with k2 > 0 and
k2 < 0, respectively.

Table 1. Four cases of the general solution (42) for the Newtonian potential Green
function G1, categorized by conditions on the coefficient combinations k1, k2, and k3.

Here a= ζα(k1 + 2k2) and b= |k1|
√
1+ 4χ. The length scales are λ± =

√
2|k22−k1k3|

|a±b|

and λ1,2 = 2
√

(k22−k1k3)

(2
√

(k22−k1k3)−k1−2k2)
. For the last row, the case of χ+ 1

4 < 0 implies

k22 − k1k3 > 0.

G1 sign(χ+ 1
4 ) a, b cond.

1
2πR

[
1+ 1

2

(
ζ1ζα(1+2χ)√

1+4χ
− 1

)
e±iR/λ+ + | ab |< 1

− 1
2

(
ζ1ζα(1+2χ)√

1+4χ
+ 1

)
e−R/λ−

]
1

2πR

[
1+ 1

2

(
ζ1ζα(1+2χ)√

1+4χ
− 1

)
e±iR/λ+ + a

b > 1

− 1
2

(
ζ1ζα(1+2χ)√

1+4χ
+ 1

)
e±iR/λ−

]
1

2πR

[
1+ 1

2

(
ζ1ζα(1+2χ)√

1+4χ
− 1

)
e−R/λ+ + a

b <−1

− 1
2

(
ζ1ζα(1+2χ)√

1+4χ
+ 1

)
e−R/λ−

]
1

2πR − 1
2πR exp

(
− R

λ1

)[
cos

(
R
λ2

)
− ζ1(1+2χ)√

|1+4χ|
sin

(
R
λ2

)]
− N/A
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cases: k22 − k1k3 = 0∨ k1 + 2k2 = 0’ since it may be of interest. Also, as in section 3.1, we can
explore what happens near the apparent singularity in the solution (42), and this is discussed
in appendix ‘Large amplitude limit of the solution’.

To end this subsection, we revisit the equation (28) using a perturbative method adopted
in past works. This method amounts to assuming the metric components can be obtained
from a series hµν = h(0)µν + h(1)µν + . . .. We assume that the 0th order, GR solution, satisfies
equations (28) for the case of vanishing k1, k2, and k3. Next we solve for the first correction
to this solution h(1)µν . Using this method, we find the zeroth and first correction for h00 to be
given by

h00 = 2U0 +κ(k1 + 2k2 + k3)ρ, (45)

where U0 is the usual Newtonian potential from a mass density ρ and the first order correction
is a contact term that is nonvanishing only within the mass distribution [16, 91]. The first order
solution (45) can be contrasted with the results of table 1. Clearly the solutions in table 1
represent a more detailed, careful look at the effects of the isotropic coefficients in (29).

4. Anisotropic exact solutions

While not the main focus of the paper, we discuss features of exact solutions when the coef-
ficients are anisotropic. In the special limit that the only nonzero coefficients in (21) are
k(6)0i0j0k0l, and still assuming the static matter situation, the equations for hjj and h00 can be
decoupled. In this case the equation satisfied by h00 is given by

−∇2h00 − 1
2k

(6)0i0j0k0l∂ijklh00 = 8πGNρ. (46)

An equation of this form was the subject of [16, 17], where a perturbative approach to the
solution was taken (with the result contained in (6)). In the perturbative approach, the second
term in (46) is treated as much less than the first term, and a zeroth order solution is inserted in
for h00 in that term. As one of the goals in this paper is to examine the exact, nonperturbative
solutions, we attempt here to look at anisotropic cases.

It turns out, exact analytic solutions for (46) for the 15 independent components of an arbit-
rary k(6)0i0j0k0l are quite challenging. Instead we examine a special case to show the features
of such solutions. We adopt a case where k(6)0i0j0k0l can be written in terms of a contraction
Kij = k(6)0i0j0k0k and its trace Kjj. This reduces (46) to the form,

−∇2(1+ 3
7K

ij∂ij− 3
70K

jj∇4)h00 = 8πGNρ. (47)

Next we assume only diagonal elements Kxx, Kyy, and Kzz, such that Kxx = Kyy = Kzz/18,
then the equation can be written in the simpler form,

∇2(1−λ2∂2
z )h00 =−8πGNρ, (48)

where λ=
√

8|Kzz|/21 and Kzz < 0, so one independent coefficient is left. As before, we con-
struct the Green function solution for a point source. By writing the Green function version of
equation (48) as two equations (1−λ2∂2

z )Φ =−δ(3)(⃗r) and ∇2G =Φ, which can be solved
separately [92, 93], and then combining the results, we reduce the answer to an integral over
one variable:

G(ρ,z) = 1
8πλ

ˆ ∞

−∞
dz ′

e−|z ′|/λ√
ρ2 +(z− z ′)2

, (49)

14
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Figure 3. Plot of the scaled anisotropic potential of (49) (damped case), shown in light
red versus the Newtonian potential, in transparent green. The source is a point mass at
the origin. The behavior is the same in the y direction by the azimuthal symmetry of (49).

where we adopt cylindrical coordinates ρ,ϕ,z and Kzz < 0. If instead we consider the case of
Kzz > 0, there is a sign change in (49) and the integral changes to

G(ρ,z) = −i
8πλ

ˆ ∞

−∞
dz ′

ei|z
′|/λ√

ρ2 +(z− z ′)2
. (50)

We have been unable to evaluate these integrals analytically, so we take a numerical approach.
In the figures 3 and 4, we plot the results from (49) and (50). The standard Newtonian

result 1/r is plotted along with a numerical evaluation of (49) and (50). In the case of the
damped-type solution in (49), we see a narrowed or cuspy behavior of the potential along the
x or y direction, and the amplitude is reduced. In the other case of the oscillating-type solution
in (50), we see large oscillations along the z direction that do not fall off rapidly.

To contrast with the numerically generated (49) and (50), we outline some features of the
perturbative approach. The idea is to solve for the Green function iteratively G = G(0) +G(1) +
G(2) + . . ., where the subscript indicates powers of λ2. The equations for the 0 th and sub-
sequent orders are given by

∇2G(0) =−δ(3)(⃗r),
∇2G(1) = λ2∂2

z∇2G(0),

. . .

∇2G(n) = λ2n∂2n
z ∇2G(n−1). (51)

This type of approach is what led to the results in equation (6), where only the first order term
is used but arbitrary coefficients assumed.
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Figure 4. Plot of the scaled anisotropic potential of (50) (oscillating case), shown in light
red versus the Newtonian potential, in transparent green. The source is a point mass at
the origin. The behavior is the same in the y direction by the aximuthal symmetry of (50).

The nth term in the series (51) can be solved by using standard results for the derivatives of
1/r [94]. For G(n) we find

G(n) =
λ2n

4π
(4n− 1)!!
r2n+1

n<zzz...>, (52)

where n j = rj/r is a unit vector and n<jkl...> is a symmetric trace free (STF) tensor formed
from unit vectors and δij (for example, n<jk> = n jnk− (1/3)δij). The STF tensor in (52) is to
be evaluated along the z direction. Note that the convergence of such a series is not clear, since,
for example, the size of successive terms grow with n.

To illustrate this, we plot the exact numerical evaluation of (49) with the successive approx-
imations (51). Figure 5 shows the approximations up to the third term in the series. While the
approximations approach the exact answer as x/λ decreases, they vary considerably at scales
of order x∼ λ. In fact, it appears successive terms added to the first G(1) are worse than the
just the first approximation alone!

From this brief study we can draw several conclusions and open an area for future
work. We find that in the case of the damped exponential, where the equation to solve is
(1−λ2∂2

z )∇2G1 =−δ(3)(⃗r), the first order approximation follows the exact solution until the
ρ and z reach the scale of λ. This behavior is expected and justifies the use of the perturbative
method generally. On the other hand we see from figure 5, successive terms in a series (51)
appear to fail to converge to the exact result. It would be of interest to study in detail how well
these approximations could follow an exact solution in general.

Of course, without knowing the true nature of the Newtonian level potential at short ranges
from an unknown fundamental theory, we can only speculate. Suppose, hypothetically, that the
potential in equations (49) or (50) was indeed the potential coming from an underlying theory
of physics. The question then is how well a perturbative approach could match this in the
appropriate range. We see above that for some choices of constants, the perturbative approach
does not capture the behavior correctly. However, there is an important caveat to include. We
truncated the expansion in (3.2) to mass dimension 6. In the perturbative approach, beyond a
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Figure 5. Plot of the potential of (49) along with successive approximations in a per-
turbative scheme from (51). In black is the exact solution, blue is the first approx-
imation G0 +G1, red is the second approximation G(0) +G(1) +G(2), and purple is
G(0) +G(1) +G(2) +G(3).

first order approximation to the equation (1+λ2∂2
z )∇2G1 =−δ(3)(⃗r), would necessitate the

inclusion of mass dimension 8 terms in the action, for consistency. Indeed, it could be that
higher order terms in the action could contribute to an approximation scheme, and provide
‘counterterms’ that result in smooth connection to the underlying potential [95]. For example,
imposing requirements term by term in a series expansion, could place theoretical constraints
on the coefficients themselves. It would be of interest to attempt a general study of this in
gravity or other sectors like the photon sector. Furthermore, this paper studies only the static
limit, so it is of interest to study these issues in the time-dependent limit.

Currently, experimental constraints on many of the anisotropic coefficients already exist
using experiments that satisfy the experimental constraint of being sensitive enough to meas-
ure the Newtonian forces between test masses [96]. Thus if we assume that the perturbative
approach is valid, then the coefficient space for anisotropic coefficients is well covered in SR
gravity tests [81, 82, 84, 97].

5. Experimental implications

Typical short range gravity tests are designed to measure the attraction between two masses,
for instance two flat plates [96, 98]. To see what implications the results of section 3 have on
experimental signatures, we plot the gravitational field above a circular disk of mass (figure 6).
We include the cases of the Newtonian gravity, the Yukawa potential term (18), and the four
sample cases of spacetime-symmetry breaking of equations (43) and (44) and display the ver-
tical component in figure 7.

It is clear that the cases studied here exhibit behavior quite different from the Yukawa para-
metrization. The Yukawa parametrization shows a deviation from the Newtonian case with the
force becoming stronger on shorter scales, as expected. The different Lorentz violation cases
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Figure 6. A point mass lies above a thin disk of mass. The gravitational field g⃗= ∇⃗U
is integrated over this distribution.

Figure 7. A plot of the gravitational field gz = ∂U/∂z at a point above the center of
a large flat disk of mass. We include two samples of the Yukawa force with α= 1,5
and the four types of solutions in equations (43) and (44). The vertical axis is the scaled
gravitational field and the horizontal axis is the height above the disk z in units relative to
the length scale λ. We set the scale of Lorentz violation to be

√
|k2|= λ. The four cases

of Lorentz violation show damping only (D), oscillation only (O), and fast damping (FD)
with slow oscillation (SO) and finally slow damping (SD) with fast oscillation (FO).

have oscillatory behavior with and without damping. To get an idea how analysis might pro-
ceed, we produce the same plot with one of the four cases, the damped and oscillating solution,
but with varying values of |k2|, in plot 8. As |k2| becomes smaller, the effects deviating from
the Newton case narrow to a region at smaller and smaller length scales. This shows that some
of the solutions have the feature that |k2| could be constrained to be below a certain length
scale. For example, we can make a crude estimate from figures 7 and 8: if the Yukawa-type
force has been constrained to a region of standard α−λ space where α∼ 1 and λ∼ 200 µm,
like the experiment in [1], than roughly

√
k2 < 200 µm, if one used the specific case of (43).

However, what we plot here in figure 8 is only a one coefficient special case, in the full
model one could use each of the cases in table 1 to fit data and rule out a region of k1 − k2 − k3
space, similar to the way exclusion regions are mapped out in α−λ plots in the experimental
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Figure 8. A plot of the gravitational field gz = ∂U/∂z at a point near a large flat plate
of mass. In this plot we let k2 vary and show the effect on the damped and oscillating
solution from equation (44).

literature. In general, the region of k1 − k2 − k3 affects the amplitude of the exponential and
oscillatory terms and the length scales involved, as can be seen from table 1.

6. Summary and outlook

In this paper, we studied SR gravity signals for Lorentz violation that go beyond the leading
order approximation, by taking a non-perturbative approach. The focus was on isotropic coef-
ficients, since they are generally harder to measure in experiments and observations. The main
results are the coupled field equations for the metric components h00 and hjj in the static limit,
equations (28), and the general solution for the Green function G1 for h00 = 2U, organized into
four cases in table 1.

These solutions go beyond the standard Yukawa parametrization (18) and could be studied
in SR gravity tests of all kinds. Particularly, it may be of interest for SR tests that probe large
non-Newtonian forces. One option for data analysis is to restrict attention to the solutions in the
last two rows in table 1, which do not exhibit undamped oscillations. One could then attempt
to use experimental data to measure the coefficient combinations k1, k2, and k3 (equation (29))
contained in these expressions. Analysis could also proceed with a simpler two coefficient
special case model in section 3.1, or, in the case of tests sensitive to very large non-Newtonian
forces, one could use the large amplitude, χ=−1/4+ ϵ limit, outlined in the appendix and
table 4.

The isotropic mass dimension 6 coefficients that can be probed using the solutions in this
work, in equation (29), appear to be distinct combinations from the combination appearing in
GW propagation tests [99], as shown in (67). This demonstrates the usefulness of additional
SR gravity test analysis outlined in this work, providing an independent probe of isotropic
coefficients from GW tests.
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In this work, we also collect some useful pedagogical results with explicit examples of the
construction of isotropic coefficients from Young tableau, as discussed in appendix ‘Isotropic
limit of coefficients’. In section 4 we discussed exact solutions in the case of anisotropic coef-
ficients, and compared the results to perturbative methods used so far. It would be of interest
to compute integrals like (49) and (50) analytically, if possible. In addition, a study of the
convergence of the series (51) and related topics like adding time dependence would be of
interest. Considerations of this paper could be applied to the photon sector [77, 100], where,
analogous to gravity, new types of massive photon-like signals may be revealed.
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Appendix

Special case model

We record the exact field equations for the action in (7), L= 1
2κ

√
−g

(
R+ kαβRαβR

)
. Upon

variation with respect to the full metric gµν we obtain:

Gµν = 1
2g

µνkαβR
αβR− kµαR

ναR− kναR
µαR− kαβR

αβRµν

− 1
2g

µν∇α∇β(kαβR)− gµν∇2(kαβR
αβ)+ 1

2∇α∇µ(kναR)

+ 1
2∇α∇ν(kµαR)+∇µ∇ν(kαβR

αβ)− 1
2∇

α∇α(k
µνR). (53)

Here we treat kαβ as a fixed background set of coefficients and do not consider field equations
obtained with the variation δkαβ , but this could be generalized.

Differential equation results

Here we record some basic results that we use in constructing the general solutions for the
PDE’s in the paper. Boundary conditions are assumed where the fields vanish at spatial infinity.
First we note the Helmholtz equation for a field ψ

(∇2 +ω2)ψ =−δ(3)(R⃗). (54)

This is solved with the following Green function (e.g. see [92])

ψ =
e±iωR

4πR
. (55)

Note that if ω is a general complex number, ω = a+ ib then one obtains

ψ =
e±iaR

4πR
e∓bR, (56)
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which shows that oscillation and damping or growth can occur. When a= 0 and ∓b< 0, then
the solution to the Proca or modified Helmholtz equation is recovered.

We also record here the less common nonlocal equation considered long ago in generalized
electrodynamics [37, 38],

(∇2 −λ2∇4)ψ =−δ(3)(R⃗). (57)

For this equation, the Green function is (e.g. see [93]),

ψ =
1

4πR
− e−R/λ

4πR
. (58)

Here again, λ could be complex, yielding oscillatory behavior.

Isotropic limit of coefficients

We record here the portion of the field equations in the static limit involving the δMµνρσhρσ
(definition in equation (21)). It is useful in what follows to enumerate the specific tensor sym-
metries of the coefficients involved (5). For convenience, we display here the young tableau
[45] for the coefficients with spacetime indices:

Later below, we break down these coefficients into spatial subsets. Young tableau and the
process of breaking down tableau into representations of subgroups is described elsewhere
[101, 102].

For the space and time components δM00ρσhρσ , δM0iρσhρσ , and δM ijρσhρσ , we obtain

δM00ρσhρσ =− 1
2k

(6)0i0j0k0l∂ijklh00 −
{

1
2k

(6)0j0k0lim∂jklm

+ 1
4q

(5)0ij0k0l∂jkl

}
h0i−

{
1
2

[
s(4)0ik0jl∂kl+ s(6)0ik0jlmn∂klmn

+k(6)0k0limjn∂klmn
]
+ 1

4 [q
(5)0ik0ljm+ q(5)0jk0lim]∂klm

}
hij, (60)
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δM0iρσhρσ =−{ 1
2k

(6)0kil0m0n∂klmn− 1
4q

(5)0ik0l0m∂klm}h00
+ { 1

4 [s
(4)0ik0jl∂kl+ s(6)0ik0jlmn∂klmn]− 1

2k
(6)0kilomjn∂klmn

− 1
8 [−q

(5)0ik0ljm+ q(5)0jk0lim+ q(5)ijk0l0m]∂klm}h0j
−{ 1

2 [s
(4)0jlikm∂lm+ s(6)0jlikmnp∂lmnp] + 1

2k
(6)0limjnkp∂lmnp

+ 1
4 [q

(5)0jlimkn+ q(5)ijl0mkn]∂lmn}hjk, (61)

δMijρσhρσ =−{ 1
2 [s

(4)0ik0jl∂kl+ s(6)0ik0jlmn∂klmn] + 1
2k

(6)ikjl0m0n∂klmn

+ 1
4 [q

(5)0ik0ljm+ q(5)0jk0lim]∂klm}h00 −{ 1
4 [s

(4)i0ljkm∂lm

+ s(6)i0ljkmnp∂lmnp] + 1
4 [i⇌ j] + 1

2k
(6)0lkminjp∂lmnp

+ 1
8 [q

(5)i0ljmkn+ q(5)j0limkn+ q(5)ikljm0n+ q(5)jklim0n]∂lmn}h0k
−{ 1

2 [s
(4)ikmjln∂mn+ s(6)ikmjlnpq∂mnpq] + 1

2k
(6)imjnkplq∂mnpq

+ 1
4 [q

(5)ikmjnlp+ q(5)jkminlp]∂mnp}hkl, (62)

where we have already used the tensor symmetry properties of the coefficients in (5). To sim-
plify the terms occurring in (62), we assume only isotropic coefficients and express each set
of coefficients occurring in (62) in terms of its scalar contractions. To elucidate the process,
the results for each of the coefficients are recorded in tables 2 and 3 below. Note that isotropic
limits of the coefficients are of interest independently of the present paper. This is due to the
challenges of their measurement with the same precision as anisotropic coefficients [103].

The results from the tables 2 and 3 are then inserted in the expressions (62) and simplified
to the following:

δM00ρσhρσ =− 1
10k

(6)0m0m0n0n∇4h00 + { 1
12 s

(4)0kl0kl+ 1
30 s

(6)0kl0klmm∇2

+ 1
30k

(6)0k0klmlm∇2}× (∂i∂j− δij∇2)hij, (63)

δM0iρσhρσ = { 1
24 s

(4)0kl0kl+ 1
60 s

(6)0kl0klmm∇2 − 1
30k

(6)0k0klmlm∇2}
× (δij∇2 − ∂i∂ j)h0j− 1

24 (
∗q0l0l0 )ϵijk∇2∂jh0k, (64)

δMijρσhρσ =
{
− 1

12

(
s(4)0kl0kl+ 1

2 s
(4)klmklm

)
− 1

30

(
s(6)0kl0klmm

+ k(6)0k0klmlm
)
∇2 − 1

72 s
(6)klmklmnn∇2

− 1
240k

(6)klklmnmn∇2
}
δij∇2h00 + { 1

12 (s
(4)0kl0kl+ s(4)klmklm)

+ 1
30 (s

(6)0kl0klmm+ k(6)0k0klmlm)∇2 + 1
36 s

(6)klmklmnn∇2

− 1
240k

(6)klklmnmn∇2}∂ijh00 −{ 1
24 s

(4)klmklm

+ 1
72 s

(6)klmklmnn∇2 + 1
240k

(6)klklmnmn∇2}δij∇2hpp

+ { 1
12 s

(4)klmklm)+ 1
36 s

(6)klmklmnn∇2 − 1
60k

(6)klklmnmn∇2}∇2hij

+ 1
80k

(6)klklmnmn∇2∂ijhpp

− 1
24

∗
qlnln0 (ϵmki∂m∇2hjk+ ϵmkj∂m∇2hik). (65)

When needed above, one uses the Kronecker delta δij to raise spatial indices. Note that for
the last of equations (65), one takes the trace in ij to obtain the result (28). The equations for
the off-diagonal components hij− 1

3δijhkk can be obtained from (65) by subtracting the trace
appropriately. Like the sample case in section 3.1 (see equation (11)) hij− 1

3δijhkk is sourced
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Table 2. Mass dimension 4 and 5 coefficients expressed assuming isotropic coefficients
only. The dual is defined by ∗qαβγδ

λ =− 1
3! ϵλµνκq

µνκαβγδ with ϵ0123 =+1.

Coefficients Tableau isotropic form

s(4)0ik0jl 1
6 (δ

ijδkl− δkjδil)s(4)0mn0mn

s(4)0jlikm 0

s(4)ikmjln 1
6 ϵ

ikmϵjlns(4)pqrpqr

q(5)0ij0k0l 0

q(5)0ik0ljm 0

q(5)ijk0l0m − 1
3 ϵ

ijkδlm(∗q0n0n0 )

q(5)0jlimkn 0

q(5)ijl0mkn 0

q(5)ikmjnlp − 1
6 ϵ

ikm(δjlδnp− δjpδnl)(∗qqrqr0 )

by h00 and hjj and since h00 is of primary interest in this work we do not include the solution
here.

To compare the results with those obtained by looking at propagation effects in GWs, we
record here the isotropic combination of coefficients in the gravity sector called (k(6)I )00. The
spherical coefficients are defined by (see [99]),

1
2 (ŝ

+−+− + k̂++−−) =
∑
jm

ω4(−1)jYjm(v̂)(k
(6)
I )jm, (66)

where the coefficients on the left hand side are to be evaluated at d= 6 only, and from (5)
with the substitution ∂µ →−ipµ. The +, −, and the v̂ refer to a helicity basis for GW’s so
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Table 3. Mass dimension 6 coefficients expressed assuming isotropic coefficients only.
For two of the sets of coefficients, s(6)ikmjlnpq and k(6)imjnkplq, the expression in terms of
Kronecker deltas is abbreviated due to its length. It can be calculated using the ‘Young-
Project’ command of the xTras package for xTensor [104].

Coefficients Tableau Isotropic form

s(6)0ik0jlmn
1
60 (δ

inδjmδkl+ δimδjnδkl− δilδjnδkm− δilδjmδkn

−δinδjkδlm+ δijδknδlm− δimδjkδln+ δijδkmδln

−2δilδjkδmn+ 2δijδklδmn)s(6)0pq0pqrr

s(6)0jlikmnp 0

s(6)ikmjlnpq 1
90 (−δ

iqδjpδknδlm− δipδjqδknδlm

+δinδjqδkpδlm+ . . .)s(6)rstrstuu

k(6)0i0j0k0l
1
15 (δ

ijδkl+ δikδjl+ δilδjk)k(6)0m0m0n0n

k(6)0j0k0lim 0

k(6)0k0limjn
1
60 (−2δinδjmδkl− δinδjlδkm− δilδjmδkn− δinδjkδlm

+δijδknδlm− δikδjmδln+ δijδkmδln+ δilδjkδmn

+δikδjlδmn+ 2δijδklδmn)k(6)0p0pqrqr

k(6)0kil0mjn k(6)0kil0mjn = k(6)0k0limjn− k(6)0k0ilmjn

k(6)0limjnkp 0

k(6)imjnkplq 1
240 (2δ

iqδjpδknδlm+ δipδjqδknδlm

+δinδjpδkqδlm+ . . .)k(6)rsrstutu

that pµ = (−1, v̂). A plus or minus in an index indicates a contraction with the helicity basis

vectors e+ and e− (see [77, 99] for more details). Focusing on only the isotropic piece (k(6)I )00
it can be shown the following relation holds:

(k(6)I )00 =
√
4π

[
− 1

12 (s
(6)0ij0ij00 + s(6)ijkijk00 + 1

5 s
(6)0ij0ijkk+ 1

3 s
(6)ijkijkll)

+ 1
60 (4k

(6)0i0i0j0j+ 8k(6)0i0ijkjk+ k(6)ijijklkl)
]
. (67)

Large amplitude limit of the solution

Given the results of the section 3.2, we record here the large amplitude limit, where χ∼−1/4.
Specifically we let χ=−1/4+ ϵ and explore the solutions for small ϵ. When simplifying the
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Table 4. Solutions for the Green function G1 from equation (42) in the (large amplitude)
limit where χ=−1/4+ ϵ for small ϵ. The sign choice for ϵ and the coefficient com-
bination k2 + 2k3 are listed in the right two columns. Here, ψ = |k2 + k3|/|k2 + 2k3| and
the coefficient combinations k1, k2, and k3 are defined in equation (29). Note that ψ and
R/|k2 + 2k3| must be of O(1) or smaller for the approximation to be valid. Error terms
for these approximations are of order

√
ϵ.

G1 sgn(k2 + 2k3) sgnϵ

1
2πR

[
1− 1

2 exp

(
− R√

|k2+2k3|

)[
2+ψ R√

|k2+2k3|

]
+ +

1
2πR

[
1− 1

2 exp

(
±iR√
|k2+2k3|

)[
2± iψ R√

|k2+2k3|

]
− +

1
2πR − 1

2πR exp

(
− R√

|k2+2k3|

)[
cos

(
2ψ

√
|ϵ|

|k2+2k3|R
)

+ −

+ 1
4
√

|ϵ|
sin

(
2ψ

√
|ϵ|

|k2+2k3|R
)]

1
2πR − 1

2πR exp
(
−2ψ

√
|ϵ|

|k2+2k3|R
)[

cos

(
R√

|k2+2k3|

)
− −

+ 1
4
√

|ϵ|
sin

(
R√

|k2+2k3|

)]

solution (42) in this limit, the result depends on the sign of the coefficient combination k2 + 2k3
and the sign of ϵ. Thus the result breaks into four cases. Specifically, when expanding to the
lowest order in ϵ we find the four solutions in the table 4.

Several features are clear in this limit. Firstly, as ϵ→ 0, it can be shown that three of the
four solutions in table 4 are finite. The fourth row, with sgn(k2 + 2k3) =−1 and sgnϵ=−1
diverges as ϵ→ 0. Second, the solutions are oscillatory in Rwith no damping (second row−+
case), a mixture of damped and oscillatory behavior in R (third and fourth row +− and −−
cases), or damped with no oscillations (first row++ case). The nature of the solution depends
critically on which part of the k1, k2, k3 coefficient space one probes.

Special cases: k22 − k1k3 = 0∨ k1 + 2k2 = 0

We record here the solution for the Green function for the Newtonian potential when the coef-
ficient combinations k1, k2, and k3 (equation (29)) take on special values. When k22 − k1k3 = 0,
we cannot apply the solution (42) directly. We go back to re-evaluate the Fourier transform
integral (35) with the p4 term absent. The result for G1, and G2, the Green functions for h̄00
and h̄jj, are given by

G1(⃗r, r⃗
′) =

1
πR

(
1− k1 + k2

k1 + 2k2
e
−i R√

k1+2k2

)
,

G2(⃗r, r⃗
′) =− 1

πR
k2 + k3
k1 + 2k2

e
−i R√

k1+2k2 . (68)

Note that when the sign of k1 + 2k2 is negative, the solution becomes a damped exponential
of the Yukawa form. The Green function for h00 can be obtained from G1 = (1/2)(G1 +G2).
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Also we consider here the special case when k22 − k1k3 = 0 and k1 + 2k2 = 0. In this case
the nonstandard terms in the momentum space functions in (34) are constants, yielding delta
functions with the Fourier transform. The Green function G1 is then given by

G1 =
1

2πR
+ 2k3δ

(3)(R⃗). (69)
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[81] Long J C and Kostelecký V A 2015 Search for Lorentz violation in short-range gravity Phys. Rev.

D 91 092003
[82] Shao C-G, Tan Y-J, TanW-H, Yang S-Q, Luo J and Tobar M E 2015 Search for Lorentz invariance

violation through tests of the gravitational inverse square law at short-ranges Phys. Rev. D
91 102007

28

https://doi.org/10.3847/2041-8213/aa920c
https://doi.org/10.3847/2041-8213/aa920c
https://doi.org/10.1103/PhysRevD.102.024028
https://doi.org/10.1103/PhysRevD.102.024028
https://doi.org/10.1103/PhysRevD.101.104019
https://doi.org/10.1103/PhysRevD.101.104019
https://doi.org/10.3847/1538-4357/ac223c
https://doi.org/10.3847/1538-4357/ac223c
https://doi.org/10.3390/universe7100380
https://doi.org/10.3390/universe7100380
https://doi.org/10.1103/RevModPhys.83.11
https://doi.org/10.1103/RevModPhys.83.11
https://doi.org/10.1016/j.physletb.2011.05.041
https://doi.org/10.1016/j.physletb.2011.05.041
https://doi.org/10.1103/PhysRevD.86.104042
https://doi.org/10.1103/PhysRevD.86.104042
https://doi.org/10.1016/j.physletb.2012.09.002
https://doi.org/10.1016/j.physletb.2012.09.002
https://doi.org/10.1140/epjc/s10052-015-3403-z
https://doi.org/10.1140/epjc/s10052-015-3403-z
https://doi.org/10.1103/PhysRevD.71.065008
https://doi.org/10.1103/PhysRevD.71.065008
https://doi.org/10.1103/PhysRevD.77.065020
https://doi.org/10.1103/PhysRevD.77.065020
https://doi.org/10.1103/PhysRevD.79.084008
https://doi.org/10.1103/PhysRevD.79.084008
https://doi.org/10.1103/PhysRevD.79.065018
https://doi.org/10.1103/PhysRevD.79.065018
https://doi.org/10.1103/PhysRevD.81.065028
https://doi.org/10.1103/PhysRevD.81.065028
https://doi.org/10.1103/PhysRevD.79.124012
https://doi.org/10.1103/PhysRevD.79.124012
https://doi.org/10.1103/PhysRevD.100.084022
https://doi.org/10.1103/PhysRevD.100.084022
https://doi.org/10.1088/0264-9381/23/18/009
https://doi.org/10.1088/0264-9381/23/18/009
https://doi.org/10.1088/0264-9381/27/4/049802
https://doi.org/10.1088/0264-9381/27/4/049802
https://doi.org/10.1103/PhysRevD.97.104001
https://doi.org/10.1103/PhysRevD.97.104001
https://arxiv.org/abs/2209.02209
https://doi.org/10.1103/PhysRevD.104.044054
https://doi.org/10.1103/PhysRevD.104.044054
https://doi.org/10.1103/PhysRevD.80.015020
https://doi.org/10.1103/PhysRevD.80.015020
https://doi.org/10.1103/PhysRevD.60.116010
https://doi.org/10.1103/PhysRevD.60.116010
https://doi.org/10.1103/PhysRevD.66.056005
https://doi.org/10.1103/PhysRevD.66.056005
https://doi.org/10.1103/PhysRevD.92.056002
https://doi.org/10.1103/PhysRevD.92.056002
https://doi.org/10.1103/PhysRevD.91.092003
https://doi.org/10.1103/PhysRevD.91.092003
https://doi.org/10.1103/PhysRevD.91.102007
https://doi.org/10.1103/PhysRevD.91.102007


Class. Quantum Grav. 40 (2023) 045006 Q G Bailey et al

[83] Shao C-G, Chen Y-F, Tan Y-J, Luo J, Yang S-Q and Tobar M E 2016 Enhanced sensitivity to
Lorentz invariance violations in short-range gravity experiments Phys. Rev. D 94 104061

[84] Shao C-G, Chen Y-F, Tan Y-J, Yang S-Q, Luo J, Tobar M E, Long J C, Weisman E and
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