
1.  Introduction
As paleoclimate and paleoceanographic data continue to increase in size, diversity, and quality, it remains a 
longstanding challenge to adequately extract and visualize the quantitative information present in such records 
so as to constrain model estimates of past and future change (National Academies of Sciences, Engineering, and 
Medicine, 2021). Indeed, these datasets often violate basic statistical assumptions (i.e., normality, independence, 
even sampling in time, high signal-to-noise ratio), requiring specific tools and workflows that go beyond what can 
be found in standard software libraries. In addition to recent efforts in R (McKay et al., 2021) and Matlab (Greene 
et al., 2019), a similar offering in the Python research ecosystem was heretofore lacking. Python's popularity 
among physical and data scientists has been on the rise (Perkel, 2015), with a growing collection of libraries for 
data analysis (e.g., pandas (McKinney, 2010), statsmodels (Seabold & Perktold, 2010), SciPy (Virtanen 
et al., 2020)) and visualization (e.g., matplotlib (Hunter, 2007), seaborn (Waskom, 2021) and Cartopy 
(Elson et al., 2022)), including libraries tailored to climate research (e.g., xarray (Hoyer & Hamman, 2017) and 
climlab (Rose, 2018)). However, none of the existing packages can natively handle the challenges of paleocli-
matological and paleoceanographic datasets (i.e., observations are often unevenly-spaced in time, uncertainties 
are present in both abscissa and ordinate, proxies hold an often complex relationship to dynamically-relevant 
variables). As such, standard analysis methods do not work “out-of-the-box,” often requiring time-consuming 
adaptation by users. In addition, several well-established statistical techniques (e.g., controlling for spurious 
null hypothesis rejection with the False Discovery Rate (Benjamini & Hochberg, 1995) or performing wave-
let analysis on unevenly-spaced data (Foster, 1996)) are not currently implemented in a widely-available, well 
documented, and user-friendly package in a major programming language. Lastly, there is a persistent language 
barrier between data generated by paleo-observations and model simulations, which few frameworks address 
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Plain Language Summary  This article describes a software application called Pyleoclim meant 
to help scientists analyze datasets of ordered observations, particularly applicable to the study of past climates, 
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explicitly, particularly from the viewpoint of uncertainty quantification (Dee et al., 2015). To remedy this situa-
tion, we present Pyleoclim, a Python package specifically designed for scientific studies in paleoceanography 
and  paleoclimatology, using data generated from both observations or models. While it is impossible to antic-
ipate all user needs, the package is meant to provide a one-stop shop for the most common tasks encountered 
in the  analysis of timeseries in our field, like interpolation, filtering, spectral and wavelet analysis, correlation 
analysis, principal component analysis (PCA), and many more. It has been, and will continue to be, used for 
research and teaching.

The remainder of this paper is organized as follows: Section  2 describes the Pyleoclim codebase and its 
re-use of emerging data standards for paleoclimate datasets; Section 3 describes three case studies, highlighting 
how Pyleoclim allows for Findable, Accessible, Interoperable, and Reusable (FAIR) paleoclimate research; 
Section 4 provides a conclusion and outlook toward future versions and scientific uses of the package.

2.  The Pyleoclim Codebase
2.1.  Philosophy

Pyleoclim was designed to harness the power of various Python libraries for data science (e.g., NumPy (Harris 
et  al.,  2020), Pandas (McKinney,  2010), SciPy (Virtanen et  al.,  2020), and scikit-learn (Pedregosa 
et  al.,  2011)) and visualization (Matplotlib (Hunter,  2007), seaborn (Waskom,  2021), and Cartopy 
(Elson  et  al.,  2022)) for paleoclimatology and paleoceanography. The user application programming inter-
face (API) is designed around manipulating objects (such as a time series) for analysis. This design, called 
object-oriented programming (OOP), places the data at the center of the analysis, rather than the functions. The 
objects contain both data and metadata in the form of fields that can be entered by a user (e.g., a timeseries would 
require at least values for time and the quantity being measured in time, but optionally allow for labels and units) 
and code that represents procedures that are applicable to each object. The number of data and metadata fields 
is dictated by the procedures (and their desired level of automation). OOP is ubiquitous in Python and presents 
several advantages over method-oriented programming: it follows the natural relationship between an object and 
a method, with each call representing a clearly defined action that helps constructing workflows through method 
chaining (for an example, see Section 2.3).

Pyleoclim is supported by extensive documentation (https://pyleoclim-util.readthedocs.io/) that provides 
minimal usage examples for the code. Scientific examples in the form of Jupyter notebooks (Kluyver 
et  al.,  2016) are available on several GitHub repositories (Emile-Geay et  al.,  2019; Khider, Emile-Geay, 
James, et  al.,  2022; Khider, Emile-Geay, & Zhu,  2022; Khider, Emile-Geay, Zhu, & James,  2022). Tuto-
rials are also provided on YouTube (https://www.youtube.com/playlist?list=PL93NbaRnKAuF4WpIQf-4y_
U4lo-GqcrcW) and in the form of a Jupyter Book (http://linked.earth/PyleoTutorials/). The LinkedEarth 
Discourse forum (https://discourse.linked.earth) also provides an avenue to discuss the science applications 
of Pyleoclim.

The package is open-source and follows the principle of Open Development. As such, the code is available 
on GitHub under an open-source license. A contributing guide (https://pyleoclim-util.readthedocs.io/en/
master/contribution_guide.html) details how the community can engage in Pyleoclim's development. The 
simplest level of engagement is to report bugs as GitHub issues and starting community discussions about 
scientific use cases on the LinkedEarth Discourse forum (https://discourse.linked.earth). More proficient 
programmers can also contribute by upgrading existing functionalities or creating new ones through GitHub 
pull requests.

Finally, publishers and funding agencies are increasingly promoting the principles of FAIR science, not only 
for data (Wilkinson et al., 2016) but also software (Lamprecht et al., 2020) and scientific workflows (Goble 
et al., 2020). Pyleoclim follows the guidelines set forth for FAIR software: it is available and versioned on 
GitHub, licensed under a GNU public license, registered on the Python Package Index (Pypi), and citable from 
a Zenodo Digital Object Identifier. Various versions of the software are available through Docker containers 
stored on quay.io. As such, Pyleoclim supports the development of FAIR scientific workflows (Goble 
et al., 2020).
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2.2.  Functionalities

Pyleoclim contains functionalities designed to help users customize their own workflows from data 
pre-processing (such as standardizing, detrending, removing outliers, placing time series on a common time 
axis) to analysis (spectral and wavelet analysis, paleo-aware correlation, spatial and temporal decomposition) and 
visualization of the results. Most Pyleoclim functionalities leverage existing and well-documented software 
packages:

Visualizations were built upon the Matplotlib (Hunter,  2007) and seaborn packages (Waskom,  2021). 
Mapping capabilities are provided through Cartopy (Elson et al., 2022).
�Signal processing and statistics: the SciPy package (Virtanen et al., 2020) supports signal processing function-

alities, including methods for digital filtering and spectral analysis (namely the basic periodogram, Welch's 
periodogram, and the Lomb-Scargle periodogram (VanderPlas, 2018)). Pyleoclim also allows for the use 
of the multi-taper method (Thomson, 1982) as implemented in nitime (Millman & Brett, 2007), many types 
of interpolation (e.g., linear, quadratic, natural splines), statistics (e.g., kernel density estimation, quantile 
estimation) and various optimization functions used internally by Pyleoclim.

�Machine Learning: the scikit-learn (Pedregosa et  al.,  2011) package supports clustering for outlier 
detection.

�Timeseries modeling statsmodels (Seabold & Perktold, 2010) supports principal component analysis (PCA 
(Hannachi et al., 2007)), parametric timeseries modeling, and Granger causality estimation.

�Wavelet analysis via the continuous wavelet transform, as implemented in Matlab by Torrence and Compo (1998), 
was recently ported to Python (Predybaylo et al., 2022).

These basic functionalities were adjusted for paleoclimate data either by changing the default parameter values 
to ones more appropriate for the data characteristics, raising errors when appropriate (e.g., when trying to apply 
a method meant for evenly-spaced series on an unevenly-spaced series), or performing regridding within the 
analysis function at the user's request.

In addition, some functionalities were coded in Python specifically for the package, such as the Weighted Wavelet 
Z-Transform (Foster, 1996; Kirchner & Neal, 2013) and Liang-Kleeman causality (Liang, 2013, 2014, 2015, 201
6, 2018). Because of the nonlinear and nonstationary nature of many paleoclimate timeseries (Ghil et al., 2002), 
Pyleoclim features advanced detrending techniques such as empirical mode decomposition (Huang et al., 1998) 
and Savitzky-Golay filtering (Savitzky & Golay,  1964). On the analysis side, Pyleoclim enables Singular 
Spectrum Analysis (SSA) (Ghil et al., 2002; Vautard et al., 1992; Vautard & Ghil, 1989)), including significance 
testing for “red” timeseries (Allen & Smith, 1996) and tolerance for missing values (Schoellhamer, 2001), which 
enables SSA to be used as an interpolant.

All these functionalities are available through the Pyleoclim utilities APIs, which are meant for developers and 
apply to NumPy (Harris et al., 2020) arrays. This means that those methods, which often are not specific to obser-
vational paleoclimate data, can easily be repurposed by other packages that rely on arrayed data (e.g., climate 
model output). However, most users are expected to interact with the Pyleoclim user APIs, which group these 
functionalities into a common interface attached to specific objects, which we now describe.

2.3.  User API

The main interface for Pyleoclim revolves around objects that can be manipulated for analysis (Figure 1). The 
functionalities described in Section 2.2 are grouped into object methods that offer a common interface to call the 
various functions from the supporting libraries and internally handle the data transformation for these functions. 
At the user level, Pyleoclim allows scientists to concentrate on their workflows rather than handle data trans-
formations among the various Python data objects and types.

The main object in Pyleoclim is the Series object, which takes as arguments the values for time and the 
variable of interest, as well as their names and units. These Series objects can be easily created from various 
file formats, for example, csv files:
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The Series object ts contains both the data in the time and value arguments as well as relevant metadata, 
such as the name and units of each variable. The metadata become especially relevant for plotting; however, 
Pyleoclim has a rudimentary understanding of paleo-relevant time and attempts to correct time units when 
two series are compared (for instance one in kyr BP and the other in yr BP). The label metadata is used to 
build the legend on figures. The argument clean_ts is used here to remove NaNs and sort the timeseries in 
increasing time.

Figure 1.  Diagram of the objects and associated functions in the Pyleoclim user application programming interfaces (APIs).
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Once the data are loaded into a Series object, complex analyses can be made through simple commands. For 
illustrative purposes, we run it through spectral and wavelet analysis:

Code lines [6]-[8] correspond to pre-processing steps (in this case, detrending, interpolation, and standardizing) 
using the default methods in Pyleoclim. The spectral density is computed through the MTM method, and the 
result stored in a new PSD object, from which a significance test against an AR(1) benchmark (Emile-Geay, 2017) 
can be performed.

One advantage of OOP is method chaining: since each method returns a Pyleoclim object, the calls can be 
chained together in a single statement without having to store the intermediate results. With method chaining, the 
block code above can be rewritten as a single line:

PSD_signif = ts.detrend().interp().standardize().spectral(method=’mtm’).
signif_test()

It can be beneficial to limit the chaining to the pre-processing steps so the resulting Series can be used with 
other methods like wavelet analysis, which produces a Scalogram object:

The wavelet analysis presented here follows the method of Torrence and Compo (1998) to obtain the scalogram 
and significance level. Pyleoclim contains various methods to visualize timeseries, periodograms, and scalo-
grams. Here, we will generate a summary of our analysis through a single method:

The resulting figure is shown in Figure 2. All figures generated by Pyleoclim are highly customizable, either 
directly through our APIs or Matplotlib/Cartopy. Let's examine the code above, which provides examples 
of the various options. Line [13] is for the direct customization of the resulting plot through Pyleoclim with 
the following information: the limits for the time axis through the time_lim argument, the limits for the y-axis 
of the timeseries plot (value_lim argument), a new x-axis label for the periodogram (psd_label argument), 
removal of the time axis label (time_label argument), a dictionary of Matplotlib arguments to deal with 
legend placement for the timeseries plot, and another dictionary to deal with the spacing between the various 
plots.
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Line [14] sets an appropriate label for the colorbar.

Note that these plots can also be obtained individually:

ts.plot()

PSD_signif.plot()

scal_signif.plot()

Even though plotting methods are available for the Series, PSD, and 
Scalogram objects, the behavior depends on the object to which it is 
attached. This is another advantage of OOP: since the methods are attached 
to objects, they can share a name for a similar action (e.g., plotting) while 
behaving in a manner appropriate for each object.

Although we expect that users will be creating Series objects from an 
existing file (e.g., xls, csv, NOAA, PANGAEA, netCDF), many Pyleo-
clim objects are generated as results of the analysis. For instance PSD is 
generated by spectral analysis methods, Scalogram by wavelet analysis 
methods, Coherence by cross-wavelet analysis methods, and Corr by 
correlation methods. Object creation in the development of Pyleoclim 
was motivated by the need to attach specific methods with specific behavior 
to particular objects (e.g., significance testing for spectral and wavelet anal-
ysis or plotting methods).

Several objects use the prefix Multiple (e.g., MultipleSeries, 
MultiplePSD), which signal that this object is comprised of a list of the 
basic Pyleoclim objects. For instance, the MultipleSeries object 
contains several Series objects, with dedicated plotting (e.g., stack-
plot()) and analysis (e.g., principal component analysis) methods that are 
applicable to collections of paleoclimate timeseries.

2.4.  Leveraging Paleoclimate Data Standards

In addition to the data science and visualization libraries mentioned above, Pyleoclim is compatible with the 
Linked Paleo Data (LiPD (McKay & Emile-Geay, 2016)) format. LiPD is a universally-readable data container 
that stores metadata in a JSON-LD file (JavaScript Object Notation for Linked Data) and the data in tables 
saved in CSV format. Utilities have been written in Matlab, Python, and R to manipulate these metadata-rich 
files. Consequently, we created two objects in Pyleoclim that take advantage of the additional, standardized 
metadata: the LiPD object, which allows users to deal with one file or a collection of files and have mapping 
capabilities, and the LipdSeries object, a child of the Series object. As such, LipdSeries inherits all the 
methods available for Series with additional functionalities that take advantage of the richness of the metadata, 
such as dashboards for displaying relevant information (Figure 3).

3.  Three Paleoclimate Studies Enabled by Pyleoclim
To illustrate the use of Pyleoclim in research, we summarize three studies available as fully executable Jupyter 
Notebooks as companion to this manuscript (see the code availability statement in the Data Availability section). 
The first study walks through spectral, wavelet, and cross-wavelet analysis in the presence of age uncertainties. 
The second study is reproduced from Hu et al. (2017) and presents the pitfalls of using correlation analysis for 
the interpretation of a paleoclimate record. Finally, the last study shows how to reproduce the results of Zhu 
et  al.  (2019), using spectral analysis to assess whether current models can capture the continuum of climate 
variability.

Figure 2.  Summary of the spectral and wavelet analysis performed on the 
Niño 3.4 sea surface temperature (SST) anomalies timeseries as encoded in 
Pyleoclim. The series displays significant power in the 2–7 years band, 
consistent with the El Niño Southern Oscillation.
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3.1.  Orbital-Scale Climate Variability in a Deep Sea Core

The first case study concerns the analysis of paleoclimate records in the frequency domain (specifically spectral, 
wavelet, and coherence analysis). This type of analysis is often performed to look at common periodicities among 
records or between a record and its hypothesized forcing. Analysis of paleoclimate time series in the frequency 
domain is complicated by several factors:
�Irregular sampling: most spectral methods are designed for series that are evenly spaced in time. Hypothesizing 

over missing values can bias the statistical results and enhance the low-frequency components of the spectrum 
at the expense of the high-frequency components (Schulz & Mudelsee, 2002; Schulz & Stattegger, 1997). 
Methods that do not require interpolation, such as the Lomb-Scargle periodogram (Lomb,  1976; 
Scargle, 1982, 1989), also have known biases (Schulz & Mudelsee, 2002; VanderPlas, 2018). The trade-offs 
of the various options need to be carefully examined in light of the data.

�Pre-processing steps: in addition to interpolation, detrending and removal of outliers can affect the results of 
the analysis. Whether to use these options needs to be evaluated for the specific data set and hypothesis to be 
tested.

�Age uncertainties: age uncertainties affect the location of features in time, so methods need to allow for an ensem-
ble of plausible chronologies (generated, for instance, by a Bayesian age model).

Pyleoclim offers a variety of pre-processing and spectral/wavelet analysis methods to allow for a robust 
assessment of the time series characteristics in the frequency domain. This section and accompanying note-
book walks the reader through spectral, wavelet, and coherence analysis of a marine deep sea record (Ocean 
Drilling Program (ODP) Site 846) covering the past 5 million years and obtained from benthic δ 18O (Mix 
et  al.,  1995; Shackleton et  al.,  1995) and alkenone paleothermometry (Lawrence et  al.,  2006). The core 
location is in the Eastern tropical Pacific (3.1°S, 90.8°W, 3296 m). The age model (Khider et al., 2017) for 
the record was obtained by aligning the benthic record to the benthic stack of Lisiecki and Raymo (2005, 

Figure 3.  Example dashboard in Pyleoclim enabled by LiPD. The dashboard consists of four panels: the top left panel plots the timeseries, in this case the speleothem 
record from Crystal Cave (McCabe-Glynn et al., 2013). Note that axis labels and legend are automatically generated from the metadata in the file. The envelope 
represents the age uncertainty obtained from Bchron (Haslett & Parnell, 2008), a Bayesian age modeling software. The top right panel shows the distribution of values. 
The bottom left panel displays the location of the record while the bottom right displays the results of spectral analysis using the Lomb-Scargle method. To assess the 
effect of age uncertainty on the interpretation of the peaks in the record, the spectral analysis is performed on each of the members present in the age ensemble from 
Bchron.
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LR04) using the HMM-Match algorithm developed by Lin et al. (2014). 
HMM-Match is a δ 18O Bayesian alignment technique based on a hidden 
Markov model to develop age models and accompanying uncertainties for 
deep sea cores.

We first analyze the benthic δ 18O record using both spectral and wave-
let analysis appropriate for uneven timeseries. In this example, we use the 
Lomb-Scargle periodogram for spectral analysis and the Weighted Wavelet 
Z-Transform (Foster, 1996; Kirchner & Neal, 2013, WWZ) for both spectral 
and wavelet analysis (Figure 4). In both cases, the significance is assessed 
against an AR(1) benchmark. Within Pyleoclim, we use the same func-
tionalities as presented in Section 2.3. We find that the record displays signif-
icant periodicities in the 40 and 100 kyr bands. This result is hardly surpris-
ing considering that the age model was obtained through alignment to the 
orbitally-tuned LR04 record, which strongly oscillates at those frequencies. 
Furthermore, the scalogram reveals the non-stationary character of these 
periodicities, with a drop in power in the 100 kyr band at the mid-Pleistocene 
transition, ca 0.8 Ma (Paillard, 2001).

The sea surface temperature (SST) record (Lawrence et al., 2006) shows 
similar, albeit less defined, power in the orbital band (Figure 5). Since the 
age model returns an ensemble of posterior draws (Khider et al., 2017; Lin 
et al., 2014), we can perform spectral analysis on each ensemble member to 
assess the robustness of our conclusions. Pyleoclim allows to load an age 
ensemble as a EnsembleSeries object, equipped with its own plotting 
and analysis functions. As illustrated in the companion notebook, we make 
use of the plot method, which shows various traces based on individual 
realizations of the age model and the plot_envelope method, which 
uses confidence intervals to communicate age uncertainty. The spectral 
method as applied to EnsembleSeries computes the periodogram for 
each age model realization in the ensemble. Pyleoclim allows users to 
plot the resulting ensemble periodograms to assess the robustness of the 
spectral peaks in face of age uncertainty. In the case of the Site ODP846 

SST record, the age uncertainty precludes any meaningful interpretation of specific peaks in power for periods 
shorter than 40–50 kyr.

Finally, we use Pyleoclim to perform wavelet coherence analysis (Grinsted et al., 2004) between the SST 
record from ODP Site 846 (Figure 6) and insolation at 5°S calculated using the climlab package (Rose, 2018). 
We limit the analysis to the first 3 million years of the record, when significant periodicities were apparent 
in the scalogram. The wavelet_coherence method returns a Coherence object, which contains the 
cross-wavelet transform (XWT) and the wavelet transform coherence (WTC). XWT informs about areas where 
there is high common power between the two series. The analysis reveals high common power in the precession 
band (23 kyr) but the phase angles are irregular. This is not surprising given the spectral analysis on the age 
ensemble, which shows large effects of age uncertainty at 20 kyr scales (compared to 40–100 kyr). Even if there 
was a regular behavior, the age uncertainty prevents us from capturing it in the analysis. WTC shows areas of 
common behavior between the two time series even if there is low power. The analysis reveals coherence in the 
23, 40, 100 and 400 kyr bands, consistent with orbital forcing of climate. The phase angles in the two upper bands 
are also regular and show and an in-phase behavior in the eccentricity band (particularly around 1 Ma) and nearly 
in phase quadrature in the 400 kyr band.

The example illustrates how Pyleoclim facilitates the use of sophisticated spectral and wavelet analysis 
methods to paleoclimate datasets, especially in regards to age uncertainties and irregular sampling. The package 
also offers a variety of pre-processing steps (i.e., detrending, removal of outliers and, if desired, interpolating 
schemes in the time domain) to construct workflows and easily assess the effect of each of these steps on the 
conclusions.

Figure 4.  Summary of the spectral and wavelet analysis performed on 
the benthic δ 18O record of Ocean Drilling Program (ODP) Site 846 (Mix 
et al., 1995; Shackleton et al., 1995). Both analyses were performed using the 
Weighted Wavelet Z-Transform (Foster, 1996; Kirchner & Neal, 2013) method. 
The record displays significant periodicities in the 40 and 100 kyr bands with 
a drop in power in the 100 kyr band at the mid-Pleistocene transition.
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3.2.  Speleothem Correlations With a Temperature Field

Correlation analysis, despite its many shortcomings, remains a centerpiece of 
empirical analysis in many fields, particularly the paleosciences. Computing 
correlations is trivial enough; the difficulty lies in properly assessing their 
significance. Of particular importance are four considerations:
�Irregular sampling: comparing two records with different time axes, possibly 
unevenly spaced, is a challenge to standard methods, which assume concord-
ant observations.
�Persistence: persistence violates the standard assumption that the data are 
independent (which underlies the classical t-test of significance implemented 
in most software packages).
�Age uncertainties: age uncertainties affect the location of features in time, so 
methods need to allow for an ensemble of plausible chronologies (generated, 
for instance, by a Bayesian age model).
�Test multiplicity: test multiplicity, aka the “Look Elsewhere effect,” states 
that repeatedly performing the same test can result in unacceptably high type 
I error (accepting correlations as significant, when in fact they are not). This 
arises for example, when correlating a paleoclimate record with an instru-
mental field, assessing significance at thousands of grid points at once, or 
assessing significance within an age ensemble.

Accordingly, Pyleoclim facilitates an assessment of correlations that deals 
with all these challenges, makes the necessary data transformations transpar-
ent to the user, and allows for one-line plot commands to visualize the results.

This section and accompanying notebook use Pyleoclim to reproduce the 
study of Hu et al. (2017), particularly the example of their Section 4, which 
illustrates all the above challenges at once. The example uses the speleo-
them record of McCabe-Glynn et  al.  (2013) from Crystal Cave, Califor-
nia, in Sequoia National Park. Based on correlations with the instrumental 
sea-surface temperature (SST) field of Kaplan et al. (1997), McCabe-Glynn 
et al. (2013) interpreted their δ 18O record as a proxy for SST in the Kuroshio 

Extension region of the West Pacific. This interpretation was shown in Hu et al. (2017) to be invalid because of 
persistence, test multiplicity, and age uncertainties. This notebook repeats the analysis of Hu et al. (2017) lever-
aging Pyleoclim and the updated SST analysis of HadSST4 (Kennedy et al., 2019); in so doing, we extend the 
original work by showcasing three different methods for assessing the significance of linear correlations: (a) a t 
test with degrees of freedom adjusted for autocorrelation (Dawdy & Matalas, 1964), as used by Hu et al. (2017); 
(b) the phase-randomization procedure of Ebisuzaki (1997) (dubbed “isospectral” because it preserves a series' 
amplitude spectrum) and (c) an “isopersistent” method that gauges the observed correlation against a large sample 
of AR(1) timeseries with identical persistence parameter as the target series.

In Pyleoclim, the correlation() method enables tests (a–c), with the default implementing the isospec-
tral method with 1,000 surrogates. The method works between two series, between a series and an ensemble, or 
between two ensembles, with the same user experience. In the case of ensembles, the object holding the result 
(CorrEns) is equipped with a plotting method (Figure 7) that displays the histogram of correlations, the propor-
tion of correlations with a p-value under the test level α (i.e., correlations deemed significant by this test), and 
the proportion of those that also meet the False Discovery Rate criterion of Benjamini and Hochberg (1995). 
In this case, we see that only 1 out of the 327 grid points displays a significant correlation with the published 
Crystal Cave δ 18O record (Figure 7, top). In addition, the published age model is simply the median of a broader 
ensemble, which was not made available by the authors. We therefore generated another ensemble of 1,000 draws 
from the posterior distribution of ages using the Bayesian age model Bchron (Haslett & Parnell, 2008) within the 
GeoChronR software (McKay et al., 2021)—the resulting ensemble of possible timeseries is shown in Figure 3 
(top). For illustration, we show the result of correlating this ensemble with SST at a single grid point in the Kuro-
shio Extension region, where McCabe-Glynn et al. (2013) originally reported significant correlations (Figure 7, 
bottom). While the correlation between HadSST4 SST and the published δ 18O record was over 0.32, we see that 

Figure 5.  Summary of the spectral and wavelet analysis performed on the 
sea surface temperature record of Ocean Drilling Program (ODP) Site 846 
(Lawrence et al., 2006). Both analyses were performed using the Weighted 
Wavelet Z-Transform (Foster, 1996; Kirchner & Neal, 2013) method. The 
record displays significant periodicities in the 40–100 kyr bands.
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the bulk of the histogram is far below this value, with a substantial fraction of ensemble members exhibiting 
negative correlations. This is a powerful illustration that age uncertainties can go as far as reversing the sign of a 
correlation, and must be taken into account in this type of exercise. Once all three pitfalls (persistence, multiple 
comparisons, age uncertainties) are considered, no significant correlation is found.

The example illustrates the risk of relying exclusively on correlations between a paleoclimate record and an 
instrumental field for interpretation. Historically, this has not been an isolated incident (Hu et  al.,  2017), so 
this case study should not be viewed as an indictment of a particularly study or group of authors. Rather, it is a 
reminder of how easy it is to be fooled by spurious correlations, and how easy it is to avoid them with proper 
methods, such as those made available in Pyleoclim.

3.3.  Model-Data Confrontations in the Frequency Domain

The third case study tackles an emerging need in the paleoclimate community: quantitatively comparing paleo-
climate observations with transient climate model simulations. In addition to technical challenges (model output 

Figure 6.  Coherence analysis in Pyleoclim. (a) Sea surface temperature (SST) over the past 3 million years obtained 
from alkenone paleothermometry at Ocean Drilling Program (ODP) Site 846 (blue) and insolation at 5°S (orange) calculated 
using the climlab package (Rose, 2018). (b) Wavelet transform coherency (WTC) obtained from WWZ between the two 
timeseries. Contours display WTC, which indicates the degree of resemblance between the signals at each time and scale. 
The angle of the phase arrows show the relative phasing at each time and scale (e.g., in-phase records are indicated by 
arrows pointing to the right, out-of-phase to the left, and in phase quadrature up and down). Phase angles are only shown for 
areas with significant coherence values, assessed against 1,000 random realizations of an AR(1) process. (c) Cross-wavelet 
transform, with contours displaying areas of high common power, and phase arrows as above. For details on the method, see 
Grinsted et al. (2004).
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is evenly spaced; observations typically are not), a conceptual difficulty is 
due to sensitive dependence to initial conditions (chaos): slight changes in 
initial conditions can result in wildly different climate trajectories despite 
identical (or even constant) boundary conditions. In paleoclimatology, those 
initial conditions are unknown, as there typically is no reliable estimate of 
the 3D state of the climate system at a given point in time. Thus, except 
when one seeks to compare the expression of external forcings (e.g., Zhu 
et al., 2020, 2022), it is often sensible to discard phase information altogether 
and to restrict the comparison to spectral features (peaks, scaling exponents) 
(Dee et al., 2017; C. L. E. Franzke et al., 2020; Laepple & Huybers, 2014).

This section and accompanying notebook use Pyleoclim to reproduce 
the comparative study of Zhu et al. (2019), which used several paleoclimate 
observational datasets to test the ability of a hierarchy of climate models to 
simulate the continuum of climate variability. Figure 8 emulates part of the 
original study's Figure 2, and compares the spectral scaling exponents from 
3 transient simulations and five observational datasets, estimated using the 
WWZ method. The notebook illustrates how few function calls are needed to 
perform this complex comparison with Pyleoclim, including uncertainty 
estimates of the scaling exponents.

Zhu et al. (2019) concluded that these models produced simulations of the 
continuum of climate variability consistent with what can be estimated from 
paleoclimate observations, provided information about the deglaciation was 
specified. Most remarkably, these 3 simulations show scaling exponents 
similar to those observed over the past millennium, despite the models having 
no knowledge of what are believed to be the leading causes of climate vari-
ability over this interval (solar and volcanic forcing). For more details and a 
discussion of the broader implications of this result, see the original study.

Figure 7.  Ensemble correlations in Pyleoclim. Top: histogram of Pearson 
correlations (r) between the published Crystal Cave record of McCabe-Glynn 
et al. (2013) with the HadCRUT4 Sea surface temperature (SST) field over 
the North Pacific (327 grid points). Bottom: histogram of Pearson correlations 
(r) between the Crystal Cave record of McCabe-Glynn et al. (2013) with a 
1000-member Bchron (Haslett & Parnell, 2008) age model ensemble with the 
HadCRUT4 SST at 32.5°N, 142.5°W in the Kuroshio Extension region. On 
both panels, “FDR” denotes the False Discovery Rate criterion of Benjamini 
and Hochberg (1995).

Figure 8.  A spectral estimate of the global-average surface temperature variability as portrayed by transient model 
simulations (TraCE-21ka (Liu et al., 2009), DGns (Menviel et al., 2011), SIM2bl (Timm & Timmermann, 2007), colors) 
and observational datasets (gray): HadCRUT4, The Met Office Hadley Centre gridded data set of global historical surface 
temperature anomalies (Morice et al., 2012); PAGES2k/LMR, the Last Millennium Reanalysis framework (Hakim 
et al., 2016; Tardif et al., 2019) applied to the PAGES2k data set (PAGES 2k Consortium, 2017); the reconstruction of global 
average surface temperature of Snyder (2016); ProbStack: A probabilistic Pliocene-Pleistocene stack of benthic δ 18O (Ahn 
et al., 2017). The regional data set EPICA Dome C Ice Core 800 Kyr Deuterium Data and Temperature Estimates (Jouzel 
et al., 2007). β's denote the estimated scaling exponents over each appropriate frequency band: βCM is the centennial-to-
millennial scale exponent estimated over scales of 400–2,000 years, while βDC is the decadal-to-centennial–scale exponent, 
estimated over 20–400 years.
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4.  Conclusion and Outlook
We have presented a new, Python-based toolkit for the analysis and visualization of paleoclimate and paleocean-
ographic data, whether from observations or models. As of publication, Pyleoclim supports a broad array of 
functionalities to load, process, analyze and visualize timeseries and their relationships to other variables.

Although Pyleoclim was primarily designed as a research tool, its extensive documentation makes it useful 
for established researchers and students alike. At the time of writing, Pyleoclim has been used in three virtual 
workshops (http://linked.earth/paleoHackathon/) to build data science capacity within the paleogeosciences 
communities, and an undergraduate course at the University of Southern California. An in-person training event 
is planned for the summer of 2023. As part of the PaleoCube grant (https://medium.com/cyberpaleo/announc-
ing-the-next-linkedearth-chapter-paleocube-790778b6ffb0), many videos (https://www.youtube.com/channel/
UCo7yzNTM__4g5H-xyWV5KbA) and notebook tutorials (https://github.com/LinkedEarth/PaleoBooks) will 
be made available to the community to further disseminate and demystify these techniques.

Pyleoclim follows an open development model, accessible primarily through its GitHub repository (see data 
and software availability statement in the acknowledgment section). Interactions with developers and other 
users are facilitated by a community Slack channel and Discourse forum (http://linked.earth/community.html), 
to ensure knowledge dissemination and align development to the needs of the scientific community. Currently 
planned extensions include:
�Pandas integration: The Pandas library (McKinney, 2010) contains many functionalities for timeseries data that 

had to be re-implemented for Pyleoclim, since the way time is encoded into Pandas is not appropriate for 
paleoscientific applications: timestamps are represented at nanosecond resolution, so the largest time span that 
can be represented by a 64-bit integer is limited to approximately 584 years (CE 1677 to 2262), an unaccept-
ably short time for our field. Current work with the Pandas community aims at generalizing this representation 
to arbitrary intervals, and we expect Pyleoclim to soon make direct use of Pandas functionalities (e.g., 
slicing, aggregating, resampling and many other built-in methods), which will allow for closer integration 
with climate model output through the popular xarray library (Hoyer & Hamman, 2017).

�Generalized surrogates: currently, the statistical significance of spectral and wavelet features in Pyleoclim can 
only be assessed against parametric AR(1) surrogates. While those are often reasonable first-order approx-
imations to geophysical timeseries (Ghil et al., 2002), many geophysical phenomena are better emulated by 
long-range dependent processes (C. Franzke, 2010; Fredriksen & Rypdal, 2017; Samorodnitsky, 2007). We plan 
for the SurrogateSeries class to include more options, such as phase randomization (Ebisuzaki, 1997) 
(currently only available to correlation and causality methods), fractal and multifractal timeseries generation, 
and maximum entropy bootstrap (Vinod & de Lacalle, 2009).

�Nonlinear Dynamics: Most of the methods currently available in Pyleoclim are linear methods. In the near 
future, we plan to leverage some recent advances in the analysis of nonlinear timeseries via recurrence 
networks (Zou et al., 2019), convergent cross-mapping (Sugihara et al., 2012) and causal discovery (Runge 
et al., 2019).

By making sophisticated and rigorous methods available to non-experienced programmers in a few keystrokes, 
and by providing extensive documentation and training, we expect the package to help streamline the work of 
many readers of this journal, and contribute to heightened statistical rigor in the analysis of paleoclimate and 
paleoceanographic data. Furthermore, the package is broadly applicable to any timeseries-based data, and has 
already been re-used in other fields like astronomy (Peñil et al., 2020)—a trend that we hope spreads to other 
fields of the geosciences and beyond.

Data Availability Statement
v0.9.1 of Pyleoclim (Khider, Emile-Geay, Zhu, James, Landers, et  al.,  2022) was used to generate all the 
examples in this study and the supporting Jupyter Notebooks and is available via a GPL-3.0 license and devel-
oped openly at https://github.com/LinkedEarth/Pyleoclim_util. v0.4 of the accompanying Jupyter Notebooks 
(Khider, Emile-Geay, & Zhu, 2022) that provide examples of how Pyleoclim can be used for scientific studies 
is available via an Apache2.0 license and developed openly at https://github.com/LinkedEarth/PyleoclimPaper. 
Tutorials v0.0.1 (Khider, Emile-Geay, James, et  al.,  2022) are available via an Apache2.0 license and devel-
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oped openly at https://github.com/LinkedEarth/PyleoTutorials and viewable in the form of a Jupyter Book at 
http://linked.earth/PyleoTutorials.

References
Ahn, S., Khider, D., Lisiecki, L. E., & Lawrence, C. E. (2017). A probabilistic Pliocene–Pleistocene stack of benthic δ 18O using a profile hidden 

Markov model. Dynamics and Statistics of the Climate System, 2(1), dzx002. https://doi.org/10.1093/climsys/dzx002
Allen, M. R., & Smith, L. A. (1996). Monte Carlo SSA: Detecting irregular oscillations in the presence of coloured noise. Journal of Climate, 

9(12), 3373–3404. https://doi.org/10.1175/1520-0442(1996)009<3373:mcsdio>2.0.co;2
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the 

Royal Statistical Society: Series B, 57(1), 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
Dawdy, D., & Matalas, N. (1964). Statistical and probability analysis of hydrologic data, part III: Analysis of variance, covariance and time 

series. McGraw-Hill.
Dee, S. G., Emile-Geay, J., Evans, M. N., Allam, A., Steig, E. J., & Thompson, D. M. (2015). PRYSM: An open-source framework for PRoxY 

System Modeling, with applications to oxygen-isotope systems. Journal of Advances in Modeling Earth Systems, 7(3), 1220–1247. https://doi.
org/10.1002/2015MS000447

Dee, S. G., Parsons, L. A., Loope, G. R., Overpeck, J. T., Ault, T. R., & Emile-Geay, J. (2017). Improved spectral comparisons of paleoclimate 
models and observations via proxy system modeling: Implications for multi-decadal variability. Earth and Planetary Science Letters, 476, 
34–46. https://doi.org/10.1016/j.epsl.2017.07.036

Ebisuzaki, W. (1997). A method to estimate the statistical significance of a correlation when the data are serially correlated. Journal of Climate, 
10(9), 2147–2153. do https://doi.org/10.1175/1520-0442(1997)010<2147:amtets>2.0.co;2

Elson, P., de Andrade, E. S., Lucas, G., May, R., Hattersley, R., Campbell, E., et al. (2022). Scitools/cartopy: V0.20.3 [Software]. Zenodo. https://
doi.org/10.5281/zenodo.6775197

Emile-Geay, J. (2017). Data analysis in the Earth & environmental sciences (Third ed.). FigShare. https://doi.org/10.6084/m9.figshare.1014336
Emile-Geay, J., Khider, D., & James, A. (2019). PaleoBooks: Doing science with pyleoclim [Software]. Zenodo. https://doi.org/10.5281/

zenodo.5771123
Foster, G. (1996). Wavelets for period analysis of unevenly sampled time series. The Astronomical Journal, 112(4), 1709–1729. https://doi.

org/10.1086/118137
Franzke, C. (2010). Long-range dependence and climate noise characteristics of Antarctic temperature data. Journal of Climate, 23(22), 6074–

6081. https://doi.org/10.1175/2010JCLI3654.1
Franzke, C. L. E., Barbosa, S., Blender, R., Fredriksen, H.-B., Laepple, T., Lambert, F., et al. (2020). The structure of climate variability across 

scales. Reviews of Geophysics, 58(2), e2019RG000657. https://doi.org/10.1029/2019rg000657
Fredriksen, H.-B., & Rypdal, M. (2017). Long-range persistence in global surface temperatures explained by linear multibox energy balance 

models. Journal of Climate, 30(18), 7157–7168. https://doi.org/10.1175/JCLI-D-16-0877.1
Ghil, M., Allen, R. M., Dettinger, M. D., Ide, K., Kondrashov, D., Mann, M. E., et al. (2002). Advanced spectral methods for climatic time series. 

Reviews of Geophysics, 40(1), 1003–1052. https://doi.org/10.1029/2000RG000092
Goble, C., Cohen-Boulakia, S., Soiland-Reyes, S., Garijo, D., Gil, Y., Crusoe, M. R., et al. (2020). FAIR computational workflows. FAIR Compu-

tational Workflows. Data Intelligence, 2(1–2), 108–121. https://doi.org/10.1162/dint_a_00033
Greene, C. A., Thirumalai, K., Kearney, K. A., Delgado, J. M., Schwanghart, W., Wolfenbarger, N. S., et al. (2019). The climate data toolbox for 

MATLAB. Geochemistry, Geophysics, Geosystems, 20(7), 3774–3781. https://doi.org/10.1029/2019gc008392
Grinsted, A., Moore, J. C., & Jevrejeva, S. (2004). Application of the cross wavelet transform and wavelet coherence to geophysical time series. 

Nonlinear Processes in Geophysics, 11(5/6), 561–566. https://doi.org/10.5194/npg-11-561-2004
Hakim, G. J., Emile-Geay, J., Steig, E. J., Noone, D., Anderson, D. M., Tardif, R., et al. (2016). The last millennium climate reanalysis project: 

Framework and first results. Journal of Geophysical Research: Atmospheres, 121(12), 6745–6764. https://doi.org/10.1002/2016JD024751
Hannachi, A., Jolliffe, I. T., & Stephenson, D. B. (2007). Empirical orthogonal functions and related techniques in atmospheric science: A review. 

International Journal of Climatology, 27(9), 1119–1152. https://doi.org/10.1002/joc.1499
Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., et al. (2020). Array programming with NumPy. 

Nature, 585(7825), 357–362. https://doi.org/10.1038/s41586-020-2649-2
Haslett, J., & Parnell, A. (2008). A simple monotone process with application to radiocarbon-dated depth chronologies. Journal of the Royal 

Statistical Society: Series C (Applied Statistics), 57(4), 399–418. https://doi.org/10.1111/j.1467-9876.2008.00623.x
Hoyer, S., & Hamman, J. (2017). Xarray: N-D labeled arrays and datasets in Python. Journal of Open Research Software, 5(1), 10. https://doi.

org/10.5334/jors.148
Hu, J., Emile-Geay, J., & Partin, J. (2017). Correlation-based interpretations of paleoclimate data – Where statistics meet past climates. Earth and 

Planetary Science Letters, 459, 362–371. https://doi.org/10.1016/j.epsl.2016.11.048
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., et al. (1998). The empirical mode decomposition and the hilbert spec-

trum for nonlinear and non-stationary time series analysis. Proceedings of the Royal Society of London. Series A: Mathematical, Physical and 
Engineering Sciences, 454(1971), 903–995. https://doi.org/10.1098/rspa.1998.0193

Hunter, J. D. (2007). Matplotlib: A 2D graphics environment. Computing in Science & Engineering, 9(3), 90–95. https://doi.org/10.1109/
MCSE.2007.55

Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., et al. (2007). Orbital and millennial Antarctic climate vari-
ability over the past 800,000 years. Science, 317(5839), 793–796. https://doi.org/10.1126/science.1141038

Kaplan, A., Kushnir, Y., Cane, M. A., & Blumenthal, M. B. (1997). Reduced space optimal analysis for historical data sets: 136 years of Atlantic 
sea surface temperatures. Journal of Geophysical Research, 102(C13), 27835–27860. https://doi.org/10.1029/97jc01734

Kennedy, J. J., Rayner, N. A., Atkinson, C. P., & Killick, R. E. (2019). An ensemble data set of sea surface temperature change from 1850: 
The met office Hadley centre HadSST.4.0.0.0 data set. Journal of Geophysical Research: Atmospheres, 124(14), 7719–7763. https://doi.
org/10.1029/2018jd029867

Khider, D., Ahn, S., Lisiecki, L. E., Lawrence, C. E., & Kienast, M. (2017). The role of uncertainty in estimating lead/lag relationships in marine 
sedimentary archives: A case study from the tropical Pacific. Paleoceanography, 32(11), 1275–1290. https://doi.org/10.1002/2016pa003057

Khider, D., Emile-Geay, J., James, A., Landers, J., & Zhu, F. (2022). PyleoTutorials: A gentle introduction to the pyleoclim package [Software]. 
Zenodo. https://doi.org/10.5281/zenodo.6999577

Acknowledgments
Development of Pyleoclim and associated 
documentation and training materials 
has been supported by NSF Grants ICER 
1541029, 2126510, AGS2002556, JP 
Morgan AI Research Awards, and ONR 
N00014-21-1-2437.

 25724525, 2022, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022PA

004509, W
iley O

nline Library on [01/09/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

https://github.com/LinkedEarth/PyleoTutorials
http://linked.earth/PyleoTutorials
https://doi.org/10.1093/climsys/dzx002
https://doi.org/10.1175/1520-0442(1996)009%3C3373:mcsdio%3E2.0.co;2
https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
https://doi.org/10.1002/2015MS000447
https://doi.org/10.1002/2015MS000447
https://doi.org/10.1016/j.epsl.2017.07.036
https://doi.org/10.1175/1520-0442(1997)010%3C2147:amtets%3E2.0.co;2
https://doi.org/10.5281/zenodo.6775197
https://doi.org/10.5281/zenodo.6775197
https://doi.org/10.6084/m9.figshare.1014336
https://doi.org/10.5281/zenodo.5771123
https://doi.org/10.5281/zenodo.5771123
https://doi.org/10.1086/118137
https://doi.org/10.1086/118137
https://doi.org/10.1175/2010JCLI3654.1
https://doi.org/10.1029/2019rg000657
https://doi.org/10.1175/JCLI-D-16-0877.1
https://doi.org/10.1029/2000RG000092
https://doi.org/10.1162/dint_a_00033
https://doi.org/10.1029/2019gc008392
https://doi.org/10.5194/npg-11-561-2004
https://doi.org/10.1002/2016JD024751
https://doi.org/10.1002/joc.1499
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1111/j.1467-9876.2008.00623.x
https://doi.org/10.5334/jors.148
https://doi.org/10.5334/jors.148
https://doi.org/10.1016/j.epsl.2016.11.048
https://doi.org/10.1098/rspa.1998.0193
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1126/science.1141038
https://doi.org/10.1029/97jc01734
https://doi.org/10.1029/2018jd029867
https://doi.org/10.1029/2018jd029867
https://doi.org/10.1002/2016pa003057
https://doi.org/10.5281/zenodo.6999577


Paleoceanography and Paleoclimatology

KHIDER ET AL.

10.1029/2022PA004509

14 of 15

Khider, D., Emile-Geay, J., & Zhu, F. (2022). Example scientific workflows using Pyleoclim [Software]. Zenodo. https://doi.org/10.5281/
zenodo.7093617

Khider, D., Emile-Geay, J., Zhu, F., & James, A. (2022). PaleoHack: Building coding capacity in the paleogeosciences [Software]. Zenodo 
https://doi.org/10.5281/zenodo.6365841

Khider, D., Emile-Geay, J., Zhu, F., James, A., Landers, J., Kwan, M., & Athreya, P. (2022). Pyleoclim: A Python package for the analysis and 
visualization of paleoclimate data [Software]. Zenodo https://doi.org/10.5281/zenodo.1205661

Kirchner, J. W., & Neal, C. (2013). Universal fractal scaling in stream chemistry and its implications for solute transport and water quality trend 
detection. Proceedings of the National Academy of Sciences of the United States of America, 110(30), 12213–12218. https://doi.org/10.1073/
pnas.1304328110

Kluyver, T., Ragan-Kelley, B., Pérez, F., Granger, B., Bussonnier, M., Frederic, J., et al. (2016). Jupyter notebooks—A publishing format for 
reproducible computational workflows. In F. Loizides & B. Schmidt (Eds.), Positioning and power in academic publishing: Players, agents 
and agendas (pp. 87–90).

Laepple, T., & Huybers, P. (2014). Ocean surface temperature variability: Large model–data differences at decadal and longer periods. Proceed-
ings of the National Academy of Sciences of the United States of America, 111(47), 16682–16687. https://doi.org/10.1073/pnas.1412077111

Lamprecht, A.-L., Garcia, L., Kuzak, M., Martinez, C., Arcila, R., Martin Del Pico, E., et al. (2020). Towards fair principles for research software. 
Data Science, 3(1), 37–59. https://doi.org/10.3233/ds-190026

Lawrence, K., Liu, Z., & Herbert, T. (2006). Evolution of the eastern tropical Pacific through plio-pleistocne glaciation. Science, 312(5770), 
79–83. https://doi.org/10.1126/science.1120395

Liang, X. S. (2013). The Liang-Kleeman information flow: Theory and applications. Entropy, 15(1), 327–360. https://doi.org/10.3390/e15010327
Liang, X. S. (2014). Unraveling the cause-effect relation between time series. Physical Review E - Statistical Physics, Plasmas, Fluids, and 

Related Interdisciplinary Topics, 90(5), 052150. https://doi.org/10.1103/PhysRevE.90.052150
Liang, X. S. (2015). Normalizing the causality between time series. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Inter-

disciplinary Topics, 92(2), 022126. https://doi.org/10.1103/PhysRevE.92.022126
Liang, X. S. (2016). Information flow and causality as rigorous notions ab initio. Physical Review E - Statistical Physics, Plasmas, Fluids, and 

Related Interdisciplinary Topics, 94(5), 052201. https://doi.org/10.1103/PhysRevE.94.052201
Liang, X. S. (2018). Causation and information flow with respect to relative entropy. Chaos: An interdisciplinary journal of nonlinear science, 

28(7), 075311. https://doi.org/10.1063/1.5010253
Lin, L., Khider, D., Lisiecki, L., & Lawrence, C. (2014). Probabilistic sequence alignment of stratigraphic records. Paleoceanography, 

29(976–989), 976–989. https://doi.org/10.1002/2014PA002713
Lisiecki, L., & Raymo, M. (2005). A Pliocene-Pleistocene stack of 57 globally distributed benthic δ 18O records. Paleoceanography, 20(1), 

PA1003. https://doi.org/10.1029/2004PA001071
Liu, Z., Otto-Bliesner, B. L., He, F., Brady, E. C., Tomas, R., Clark, P. U., et al. (2009). Transient simulation of last deglaciation with a new 

mechanism for bølling-allerød warming. Science, 325(5938), 310–314. https://doi.org/10.1126/science.1171041
Lomb, N. (1976). Least-squares frequency analysis of unequally spaced data. Astrophysics and Space Science, 39(2), 447–462. https://doi.

org/10.1007/bf00648343
McCabe-Glynn, S., Johnson, K. R., Strong, C., Berkelhammer, M., Sinha, A., Cheng, H., & Edwards, R. L. (2013). Variable North Pacific 

influence on drought in southwestern North America since AD 854. Nature Geoscience, 6(8), 617–621. https://doi.org/10.1038/NGEO1862
McKay, N. P., & Emile-Geay, J. (2016). Technical note: The linked paleo data framework – A common tongue for paleoclimatology. Climate of 

the Past, 12(4), 1093–1100. https://doi.org/10.5194/cp-12-1093-2016
McKay, N. P., Emile-Geay, J., & Khider, D. (2021). geoChronR – An R package to model, analyze, and visualize age-uncertain data. Geochro-

nology, 3(1), 149–169. https://doi.org/10.5194/gchron-3-149-2021
McKinney, W. (2010). Data structures for statistical computing in Python. In S. van der Walt & J. Millman (Eds.), Proceedings of the 9th Python 

in science conference (pp. 56–61). https://doi.org/10.25080/Majora-92bf1922-00a
Menviel, L., Timmermann, A., Timm, O. E., & Mouchet, A. (2011). Deconstructing the last glacial termination: The role of millennial and 

orbital-scale forcings. Quaternary Science Reviews, 30(9), 1155–1172. https://doi.org/10.1016/j.quascirev.2011.02.005
Millman, K., & Brett, M. (2007). Analysis of functional magnetic resonance imaging in Python. Computing in Science and Enginering, 9(3), 

52–55. https://doi.org/10.1109/mcse.2007.46
Mix, A. C., Le, J., & Shackleton, N. J. (1995). Benthic foraminiferal stable isotope stratigraphy from site 846: 0-1.8Ma. Proceedings of the Ocean 

Drilling Program. Scientific results, 138, 839–847.
Morice, C. P., Kennedy, J. J., Rayner, N. A., & Jones, P.  D. (2012). Quantifying uncertainties in global and regional temperature change 

using an ensemble of observational estimates: The HadCRUT4 data set. Journal of Geophysical Research, 117(D8), D08101. https://doi.
org/10.1029/2011JD017187

National Academies of Sciences, Engineering, and Medicine. (2021). In R. Silvern & A. Skrivanek (Eds.), Identifying new community-driven 
science themes for NSF's support of paleoclimate research: Proceedings of a workshop. The National Academies Press. https://doi.
org/10.17226/26377

PAGES 2k Consortium. (2017). A global multiproxy database for temperature reconstructions of the Common Era. Scientific Data, 4(1), 170088. 
https://doi.org/10.1038/sdata.2017.88

Paillard, D. (2001). Glacial cycles: Toward a new paradigm. Reviews of Geophysics, 39(3), 325–346. https://doi.org/10.1029/2000RG000091
Peñil, P., Domínguez, A., Buson, S., Ajello, M., Otero-Santos, J., Barrio, J. A., et al. (2020). Systematic search for γ-ray periodicity in active 

galactic nuclei detected by the fermi large area telescope. The Astrophysical Journal, 896(2), 134. https://doi.org/10.3847/1538-4357/ab910d
Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., et al. (2011). Scikit-learn: Machine learning in Python. Journal 

of Machine Learning Research, 12(85), 2825–2830. Retrieved from http://jmlr.org/papers/v12/pedregosa11a.html
Perkel, J. M. (2015). Programming: Pick up Python. Nature, 518(7537), 125–126. https://doi.org/10.1038/518125a
Predybaylo, E., Torrence, C., & Compo, G. (2022). Python wavelet software [software]. ATOC. Retrieved from http://atoc.colorado.edu/research/

wavelets/
Rose, B. (2018). Climlab: A python toolkit for interactive, process-oriented climate modeling. Journal of Open Source Software, 3(24), 659. 

https://doi.org/10.21105/joss.00659
Runge, J., Nowack, P., Kretschmer, M., Flaxman, S., & Sejdinovic, D. (2019). Detecting and quantifying causal associations in large nonlinear 

time series datasets. Science Advances, 5(11), eaau4996. https://doi.org/10.1126/sciadv.aau4996
Samorodnitsky, G. (2007). Long range dependence. Foundations and Trends in Stochastic Systems, 1(3), 163–257. https://doi.org/10.1561/ 

0900000004

 25724525, 2022, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022PA

004509, W
iley O

nline Library on [01/09/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

https://doi.org/10.5281/zenodo.7093617
https://doi.org/10.5281/zenodo.7093617
https://doi.org/10.5281/zenodo.6365841
https://doi.org/10.5281/zenodo.1205661
https://doi.org/10.1073/pnas.1304328110
https://doi.org/10.1073/pnas.1304328110
https://doi.org/10.1073/pnas.1412077111
https://doi.org/10.3233/ds-190026
https://doi.org/10.1126/science.1120395
https://doi.org/10.3390/e15010327
https://doi.org/10.1103/PhysRevE.90.052150
https://doi.org/10.1103/PhysRevE.92.022126
https://doi.org/10.1103/PhysRevE.94.052201
https://doi.org/10.1063/1.5010253
https://doi.org/10.1002/2014PA002713
https://doi.org/10.1029/2004PA001071
https://doi.org/10.1126/science.1171041
https://doi.org/10.1007/bf00648343
https://doi.org/10.1007/bf00648343
https://doi.org/10.1038/NGEO1862
https://doi.org/10.5194/cp-12-1093-2016
https://doi.org/10.5194/gchron-3-149-2021
https://doi.org/10.25080/Majora-92bf1922-00a
https://doi.org/10.1016/j.quascirev.2011.02.005
https://doi.org/10.1109/mcse.2007.46
https://doi.org/10.1029/2011JD017187
https://doi.org/10.1029/2011JD017187
https://doi.org/10.17226/26377
https://doi.org/10.17226/26377
https://doi.org/10.1038/sdata.2017.88
https://doi.org/10.1029/2000RG000091
https://doi.org/10.3847/1538-4357/ab910d
http://jmlr.org/papers/v12/pedregosa11a.html
https://doi.org/10.1038/518125a
http://atoc.colorado.edu/research/wavelets/
http://atoc.colorado.edu/research/wavelets/
https://doi.org/10.21105/joss.00659
https://doi.org/10.1126/sciadv.aau4996
https://doi.org/10.1561/0900000004
https://doi.org/10.1561/0900000004


Paleoceanography and Paleoclimatology

KHIDER ET AL.

10.1029/2022PA004509

15 of 15

Savitzky, A., & Golay, M. J. (1964). Smoothing and differentiation of data by simplified least squares procedures. Analytical Chemistry, 36(8), 
1627–1639. https://doi.org/10.1021/ac60214a047

Scargle, J. (1982). Studies in astronomical time series analysis. ii. Statistical aspects of spectral analysis of unevenly spaced data. The Astrophys-
ical Journal, 263(2), 835–853. https://doi.org/10.1086/160554

Scargle, J. (1989). Studies in astronomical time series analysis. III. Fourier transforms, aotocorrelation functions, and cross-correlation functions 
of unevenly-spaced data. The Astrophysical Journal, 343(2), 874–887. https://doi.org/10.1086/167757

Schoellhamer, D. H. (2001). Singular spectrum analysis for time series with missing data. Geophysical Research Letters, 28(16), 3187–3190. 
https://doi.org/10.1029/2000GL012698

Schulz, M., & Mudelsee, M. (2002). Redfit: Estimating red-noise spectra directly from unevenly spaced paleoclimatic time series. Computers & 
Geosciences, 28(3), 421–426. https://doi.org/10.1016/s0098-3004(01)00044-9

Schulz, M., & Stattegger, K. (1997). Spectrum: Spectral analysis of unevenly spaced time series. Computers & Geosciences, 23(9), 929–945. 
https://doi.org/10.1016/s0098-3004(97)00087-3

Seabold, S., & Perktold, J. (2010). Statsmodels: Econometric and statistical modeling with python. In 9th python in science conference.
Shackleton, N. J., Hall, M., & Pate, D. (1995). Pliocene stable isotope stratigraphy of ODP site 846. Proceedings of the Ocean Drilling Program, 

Scientific Results, 138, 337–356.
Snyder, C. W. (2016). Evolution of global temperature over the past two million years. Nature, 538(7624), 226–228. https://doi.org/10.1038/

nature19798
Sugihara, G., May, R., Ye, H., Hsieh, C.-h., Deyle, E., Fogarty, M., & Munch, S. (2012). Detecting causality in complex ecosystems. Science, 

338(6106), 496–500. https://doi.org/10.1126/science.1227079
Tardif, R., Hakim, G. J., Perkins, W. A., Horlick, K. A., Erb, M. P., Emile-Geay, J., et al. (2019). Last millennium reanalysis with an expanded 

proxy database and seasonal proxy modeling. Climate of the Past, 15(4), 1251–1273. https://doi.org/10.5194/cp-15-1251-2019
Thomson, D. J. (1982). Spectrum estimation and harmonic analysis. Proceedings of the IEEE, 70(9), 1055–1096. https://doi.org/10.1109/

proc.1982.12433
Timm, O., & Timmermann, A. (2007). Simulation of the last 21,000 years using accelerated transient boundary conditions. Journal of Climate, 

20(17), 4377–4401. https://doi.org/10.1175/JCLI4237.1
Torrence, C., & Compo, G. (1998). A practical guide to wavelet analysis. Bulletin of the American Meteorological Society, 79(1), 61–78. https://

doi.org/10.1175/1520-0477(1998)079<0061:apgtwa>2.0.co;2
VanderPlas, J. T. (2018). Understanding the lomb–scargle periodogram. The Astrophysical Journal - Supplement Series, 236(1), 16. https://doi.

org/10.3847/1538-4365/aab766
Vautard, R., & Ghil, M. (1989). Singular spectrum analysis in nonlinear dynamics, with applications to paleoclimatic time series. Physica D, 

35(3), 395–424. https://doi.org/10.1016/0167-2789(89)90077-8
Vautard, R., Yiou, P., & Ghil, M. (1992). Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D: Nonlinear Phenomena, 

58(1), 95–126. https://doi.org/10.1016/0167-2789(92)90103-T
Vinod, H. D., & de Lacalle, J. L. (2009). Maximum entropy bootstrap for time series: The meboot r package. Journal of Statistical Software, 

29(5), 1–19. http://www.jstatsoft.org/v29/i05
Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D., et al. (2020). SciPy 1.0: Fundamental algorithms for 

scientific computing in Python. Nature Methods, 17(3), 261–272. https://doi.org/10.1038/s41592-019-0686-2
Waskom, M. L. (2021). Seaborn: Statistical data visualization. Journal of Open Source Software, 6(60), 3021. https://doi.org/10.21105/joss.03021
Wilkinson, M. D., Dumontier, M., Aalbersberg, I. J., Appleton, G., Axton, M., Baak, A., et al. (2016). The FAIR Guiding Principles for scientific 

data management and stewardship. Scientific Data, 3(1), 160018. https://doi.org/10.1038/sdata.2016.18
Zhu, F., Emile-Geay, J., Anchukaitis, K. J., Hakim, G. J., Wittenberg, A. T., Morales, M. S., et al. (2022). A re-appraisal of the ENSO response to 

volcanism with paleoclimate data assimilation. Nature Communications, 13(1), 747. https://doi.org/10.1038/s41467-022-28210-1
Zhu, F., Emile-Geay, J., Hakim, G. J., King, J., & Anchukaitis, K. J. (2020). Resolving the differences in the simulated and reconstructed temper-

ature response to volcanism. Geophysical Research Letters, 47(8), e2019GL086908. https://doi.org/10.1029/2019GL086908
Zhu, F., Emile-Geay, J., McKay, N. P., Hakim, G. J., Khider, D., Ault, T. R., et al. (2019). Climate models can correctly simulate the continuum 

of global-average temperature variability. Proceedings of the National Academy of Sciences, 116(18), 8728–8733. https://doi.org/10.1073/
pnas.1809959116

Zou, Y., Donner, R. V., Marwan, N., Donges, J. F., & Kurths, J. (2019). Complex network approaches to nonlinear time series analysis. Physics 
Reports, 787, 1–97. https://doi.org/10.1016/j.physrep.2018.10.005

 25724525, 2022, 10, D
ow

nloaded from
 https://agupubs.onlinelibrary.w

iley.com
/doi/10.1029/2022PA

004509, W
iley O

nline Library on [01/09/2023]. See the Term
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline Library for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons License

https://doi.org/10.1021/ac60214a047
https://doi.org/10.1086/160554
https://doi.org/10.1086/167757
https://doi.org/10.1029/2000GL012698
https://doi.org/10.1016/s0098-3004(01)00044-9
https://doi.org/10.1016/s0098-3004(97)00087-3
https://doi.org/10.1038/nature19798
https://doi.org/10.1038/nature19798
https://doi.org/10.1126/science.1227079
https://doi.org/10.5194/cp-15-1251-2019
https://doi.org/10.1109/proc.1982.12433
https://doi.org/10.1109/proc.1982.12433
https://doi.org/10.1175/JCLI4237.1
https://doi.org/10.1175/1520-0477(1998)079%3C0061:apgtwa%3E2.0.co;2
https://doi.org/10.1175/1520-0477(1998)079%3C0061:apgtwa%3E2.0.co;2
https://doi.org/10.3847/1538-4365/aab766
https://doi.org/10.3847/1538-4365/aab766
https://doi.org/10.1016/0167-2789(89)90077-8
https://doi.org/10.1016/0167-2789(92)90103-T
http://www.jstatsoft.org/v29/i05
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.21105/joss.03021
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/s41467-022-28210-1
https://doi.org/10.1029/2019GL086908
https://doi.org/10.1073/pnas.1809959116
https://doi.org/10.1073/pnas.1809959116
https://doi.org/10.1016/j.physrep.2018.10.005

	Pyleoclim: Paleoclimate Timeseries Analysis and Visualization With Python
	Abstract
	Plain Language Summary
	1. Introduction
	2. The Pyleoclim Codebase
	2.1. Philosophy
	2.2. Functionalities
	2.3. User API
	2.4. Leveraging Paleoclimate Data Standards

	3. Three Paleoclimate Studies Enabled by Pyleoclim
	3.1. 
          Orbital-Scale Climate Variability in a Deep Sea Core
	3.2. Speleothem Correlations With a Temperature Field
	3.3. 
          Model-Data Confrontations in the Frequency Domain

	4. Conclusion and Outlook
	Data Availability Statement
	References


