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Abstract We present a Python package geared toward the intuitive analysis and visualization of paleoclimate
timeseries, Pyleoclim. The code is open-source, object-oriented, and built upon the standard scientific Python
stack, allowing users to take advantage of a large collection of existing and emerging techniques. We describe the
code's philosophy, structure, and base functionalities and apply it to three paleoclimate problems: (a) orbital-scale
climate variability in a deep-sea core, illustrating spectral, wavelet, and coherency analysis in the presence of

age uncertainties; (b) correlating a high-resolution speleothem to a climate field, illustrating correlation analysis
in the presence of various statistical pitfalls (including age uncertainties); (c) model-data confrontations in the
frequency domain, illustrating the characterization of scaling behavior. We show how the package may be used
for transparent and reproducible analysis of paleoclimate and paleoceanographic datasets, supporting Findable,
Accessible, Interoperable, and Reusable software and an open science ethos. The package is supported by an
extensive documentation and a growing library of tutorials shared publicly as videos and cloud-executable
Jupyter notebooks, to encourage adoption by new users.

Plain Language Summary This article describes a software application called Pyleoclim meant
to help scientists analyze datasets of ordered observations, particularly applicable to the study of past climates,
environments, and ecology. Pyleoclim is meant to be used by domain scientists as well as students interested
in learning more about Earth's climate through examples provided in the documentation and online tutorials.
Pyleoclimis intended to help scientists save time with their analyses, documenting the steps for better
transparency, and as such, allows other scientists to reproduce results from previous studies.

1. Introduction

As paleoclimate and paleoceanographic data continue to increase in size, diversity, and quality, it remains a
longstanding challenge to adequately extract and visualize the quantitative information present in such records
S0 as to constrain model estimates of past and future change (National Academies of Sciences, Engineering, and
Medicine, 2021). Indeed, these datasets often violate basic statistical assumptions (i.e., normality, independence,
even sampling in time, high signal-to-noise ratio), requiring specific tools and workflows that go beyond what can
be found in standard software libraries. In addition to recent efforts in R (McKay et al., 2021) and Matlab (Greene
et al., 2019), a similar offering in the Python research ecosystem was heretofore lacking. Python's popularity
among physical and data scientists has been on the rise (Perkel, 2015), with a growing collection of libraries for
data analysis (e.g., pandas (McKinney, 2010), statsmodels (Seabold & Perktold, 2010), SciPy (Virtanen
et al., 2020)) and visualization (e.g., matplotlib (Hunter, 2007), seaborn (Waskom, 2021) and Cartopy
(Elson et al., 2022)), including libraries tailored to climate research (e.g., xarray (Hoyer & Hamman, 2017) and
climlab (Rose, 2018)). However, none of the existing packages can natively handle the challenges of paleocli-
matological and paleoceanographic datasets (i.e., observations are often unevenly-spaced in time, uncertainties
are present in both abscissa and ordinate, proxies hold an often complex relationship to dynamically-relevant
variables). As such, standard analysis methods do not work “out-of-the-box,” often requiring time-consuming
adaptation by users. In addition, several well-established statistical techniques (e.g., controlling for spurious
null hypothesis rejection with the False Discovery Rate (Benjamini & Hochberg, 1995) or performing wave-
let analysis on unevenly-spaced data (Foster, 1996)) are not currently implemented in a widely-available, well
documented, and user-friendly package in a major programming language. Lastly, there is a persistent language
barrier between data generated by paleo-observations and model simulations, which few frameworks address
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explicitly, particularly from the viewpoint of uncertainty quantification (Dee et al., 2015). To remedy this situa-
tion, we present Pyleoclim, a Python package specifically designed for scientific studies in paleoceanography
and paleoclimatology, using data generated from both observations or models. While it is impossible to antic-
ipate all user needs, the package is meant to provide a one-stop shop for the most common tasks encountered
in the analysis of timeseries in our field, like interpolation, filtering, spectral and wavelet analysis, correlation
analysis, principal component analysis (PCA), and many more. It has been, and will continue to be, used for
research and teaching.

The remainder of this paper is organized as follows: Section 2 describes the Pyleoclim codebase and its
re-use of emerging data standards for paleoclimate datasets; Section 3 describes three case studies, highlighting
how Pyleoclim allows for Findable, Accessible, Interoperable, and Reusable (FAIR) paleoclimate research;
Section 4 provides a conclusion and outlook toward future versions and scientific uses of the package.

2. The Pyleoclim Codebase
2.1. Philosophy

Pyleoclim was designed to harness the power of various Python libraries for data science (e.g., NumPy (Harris
et al., 2020), Pandas (McKinney, 2010), SciPy (Virtanen et al., 2020), and scikit-learn (Pedregosa
et al., 2011)) and visualization (Matplotlib (Hunter, 2007), seaborn (Waskom, 2021), and Cartopy
(Elson et al., 2022)) for paleoclimatology and paleoceanography. The user application programming inter-
face (API) is designed around manipulating objects (such as a time series) for analysis. This design, called
object-oriented programming (OOP), places the data at the center of the analysis, rather than the functions. The
objects contain both data and metadata in the form of fields that can be entered by a user (e.g., a timeseries would
require at least values for time and the quantity being measured in time, but optionally allow for labels and units)
and code that represents procedures that are applicable to each object. The number of data and metadata fields
is dictated by the procedures (and their desired level of automation). OOP is ubiquitous in Python and presents
several advantages over method-oriented programming: it follows the natural relationship between an object and
a method, with each call representing a clearly defined action that helps constructing workflows through method
chaining (for an example, see Section 2.3).

Pyleoclim is supported by extensive documentation (https://pyleoclim-util.readthedocs.io/) that provides
minimal usage examples for the code. Scientific examples in the form of Jupyter notebooks (Kluyver
et al., 2016) are available on several GitHub repositories (Emile-Geay et al., 2019; Khider, Emile-Geay,
James, et al., 2022; Khider, Emile-Geay, & Zhu, 2022; Khider, Emile-Geay, Zhu, & James, 2022). Tuto-
rials are also provided on YouTube (https://www.youtube.com/playlist?list=PL93NbaRnKAuF4WplQf-4y_
U4lo-GqercW) and in the form of a Jupyter Book (http://linked.earth/PyleoTutorials/). The LinkedEarth
Discourse forum (https://discourse.linked.earth) also provides an avenue to discuss the science applications
of Pyleoclim.

The package is open-source and follows the principle of Open Development. As such, the code is available
on GitHub under an open-source license. A contributing guide (https://pyleoclim-util.readthedocs.io/en/
master/contribution_guide.html) details how the community can engage in Pyleoclim's development. The
simplest level of engagement is to report bugs as GitHub issues and starting community discussions about
scientific use cases on the LinkedEarth Discourse forum (https://discourse.linked.earth). More proficient
programmers can also contribute by upgrading existing functionalities or creating new ones through GitHub
pull requests.

Finally, publishers and funding agencies are increasingly promoting the principles of FAIR science, not only
for data (Wilkinson et al., 2016) but also software (Lamprecht et al., 2020) and scientific workflows (Goble
et al., 2020). Pyleoclim follows the guidelines set forth for FAIR software: it is available and versioned on
GitHub, licensed under a GNU public license, registered on the Python Package Index (Pypi), and citable from
a Zenodo Digital Object Identifier. Various versions of the software are available through Docker containers
stored on quay.io. As such, Pyleoclim supports the development of FAIR scientific workflows (Goble
et al., 2020).
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2.2. Functionalities

Pyleoclim contains functionalities designed to help users customize their own workflows from data
pre-processing (such as standardizing, detrending, removing outliers, placing time series on a common time
axis) to analysis (spectral and wavelet analysis, paleo-aware correlation, spatial and temporal decomposition) and
visualization of the results. Most Pyleoclim functionalities leverage existing and well-documented software
packages:

Visualizations were built upon the Matplotlib (Hunter, 2007) and seaborn packages (Waskom, 2021).

Mapping capabilities are provided through Cartopy (Elson et al., 2022).

Signal processing and statistics: the SciPy package (Virtanen et al., 2020) supports signal processing function-
alities, including methods for digital filtering and spectral analysis (namely the basic periodogram, Welch's
periodogram, and the Lomb-Scargle periodogram (VanderPlas, 2018)). Pyleoclim also allows for the use
of the multi-taper method (Thomson, 1982) as implemented in nitime (Millman & Brett, 2007), many types
of interpolation (e.g., linear, quadratic, natural splines), statistics (e.g., kernel density estimation, quantile
estimation) and various optimization functions used internally by Pyleoclim.

Machine Learning: the scikit-learn (Pedregosa et al., 2011) package supports clustering for outlier
detection.

Timeseries modeling statsmodels (Seabold & Perktold, 2010) supports principal component analysis (PCA
(Hannachi et al., 2007)), parametric timeseries modeling, and Granger causality estimation.

Wavelet analysis via the continuous wavelet transform, as implemented in Matlab by Torrence and Compo (1998),
was recently ported to Python (Predybaylo et al., 2022).

These basic functionalities were adjusted for paleoclimate data either by changing the default parameter values
to ones more appropriate for the data characteristics, raising errors when appropriate (e.g., when trying to apply
a method meant for evenly-spaced series on an unevenly-spaced series), or performing regridding within the
analysis function at the user's request.

In addition, some functionalities were coded in Python specifically for the package, such as the Weighted Wavelet
Z-Transform (Foster, 1996; Kirchner & Neal, 2013) and Liang-Kleeman causality (Liang, 2013, 2014, 2015, 201
6, 2018). Because of the nonlinear and nonstationary nature of many paleoclimate timeseries (Ghil et al., 2002),
Pyleoclimfeatures advanced detrending techniques such as empirical mode decomposition (Huang et al., 1998)
and Savitzky-Golay filtering (Savitzky & Golay, 1964). On the analysis side, Pyleoclim enables Singular
Spectrum Analysis (SSA) (Ghil et al., 2002; Vautard et al., 1992; Vautard & Ghil, 1989)), including significance
testing for “red” timeseries (Allen & Smith, 1996) and tolerance for missing values (Schoellhamer, 2001), which
enables SSA to be used as an interpolant.

All these functionalities are available through the Pyleoclim utilities APIs, which are meant for developers and
apply to NumPy (Harris et al., 2020) arrays. This means that those methods, which often are not specific to obser-
vational paleoclimate data, can easily be repurposed by other packages that rely on arrayed data (e.g., climate
model output). However, most users are expected to interact with the Pyleoclim user APIs, which group these
functionalities into a common interface attached to specific objects, which we now describe.

2.3. User API

The main interface for Pyleoclim revolves around objects that can be manipulated for analysis (Figure 1). The
functionalities described in Section 2.2 are grouped into object methods that offer a common interface to call the
various functions from the supporting libraries and internally handle the data transformation for these functions.
At the user level, Pyleoclim allows scientists to concentrate on their workflows rather than handle data trans-
formations among the various Python data objects and types.

The main object in Pyleoclim is the Series object, which takes as arguments the values for time and the
variable of interest, as well as their names and units. These Series objects can be easily created from various
file formats, for example, csv files:
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Figure 1. Diagram of the objects and associated functions in the Pyleoclim user application programming interfaces (APIs).

[1] import pandas as pd
[2] import pyleoclim as pyleo
[3] url = 'https://raw.githubusercontent.com/LinkedEarth/Pyleoclim_util/' +\

'master/example_data/oni.csv'

[4] df = pd.read_csv(url,header=0)

[6] ts = pyleo.Series(time=df['Dec year'],value=df ['NINO34_ANOM'],

time_name='Year', value_name='SST anomaly',
time_unit='CE', value_unit='$"\circ$C',
label='Ni\"{n}o 3.4', clean_ts=True)

The Series object ts contains both the data in the t ime and value arguments as well as relevant metadata,
such as the name and units of each variable. The metadata become especially relevant for plotting; however,
Pyleoclim has a rudimentary understanding of paleo-relevant time and attempts to correct time units when
two series are compared (for instance one in kyr BP and the other in yr BP). The 1abel metadata is used to
build the legend on figures. The argument clean ts is used here to remove NaNs and sort the timeseries in
increasing time.
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Once the data are loaded into a Series object, complex analyses can be made through simple commands. For
illustrative purposes, we run it through spectral and wavelet analysis:

[6] ts_detrend = ts.detrend() # remove trends

[7] ts_interp = ts_detrend.interp() # interpolate over missing values
[8] ts_std = ts_interp.standardize() # standardizing

[9] PSD = ts_std.spectral(method='mtm') #spectral analysis

[10] PSD_signif = PSD.signif_test() #run AR(1) significance test

Code lines [6]-[8] correspond to pre-processing steps (in this case, detrending, interpolation, and standardizing)
using the default methods in Pyleoclim. The spectral density is computed through the MTM method, and the
result stored in a new PSD object, from which a significance test against an AR(1) benchmark (Emile-Geay, 2017)
can be performed.

One advantage of OOP is method chaining: since each method returns a Pyleoclim object, the calls can be
chained together in a single statement without having to store the intermediate results. With method chaining, the
block code above can be rewritten as a single line:

PSD signif = ts.detrend() .interp() .standardize () .spectral (method="mtm’) .
signif test()

It can be beneficial to limit the chaining to the pre-processing steps so the resulting Series can be used with
other methods like wavelet analysis, which produces a Scalogram object:

[11] scal = ts_std.wavelet(method='cwt') #wavelet analysis
[12] scal_signif=scal.signif_test(method='arlasym') #run AR(1) significance test

The wavelet analysis presented here follows the method of Torrence and Compo (1998) to obtain the scalogram
and significance level. Pyleoclim contains various methods to visualize timeseries, periodograms, and scalo-
grams. Here, we will generate a summary of our analysis through a single method:

[13] fig, ax = ts.summary_plot(PSD_signif, scal_signif,
time_lim=[1871,2022],
value_lim=[-3.5,3.5],
psd_label='PSD',
time_label='",
ts_plot_kwargs={'lgd_kwargs':{'loc': 'upper right',
'bbox_to_anchor':(1.4,0.95)}},

gridspec_kwargs={'hspace':0, 'wspace':0}) #plot
[14] ax['cb'].set_xlabel('Amplitude')

The resulting figure is shown in Figure 2. All figures generated by Pyleoclim are highly customizable, either
directly through our APIs or Matplotlib/Cartopy. Let's examine the code above, which provides examples
of the various options. Line [13] is for the direct customization of the resulting plot through Pyleoclim with
the following information: the limits for the time axis through the time 1im argument, the limits for the y-axis
of the timeseries plot (value_ 1im argument), a new x-axis label for the periodogram (psd_label argument),
removal of the time axis label (time label argument), a dictionary of Matplotlib arguments to deal with
legend placement for the timeseries plot, and another dictionary to deal with the spacing between the various
plots.
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5 Line [14] sets an appropriate label for the colorbar.

:_‘; 2.5 — Nifio 3.4 Note that these plots can also be obtained individually:
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scal signif.plot ()

Even though plotting methods are available for the Series, PSD, and
Scalogram objects, the behavior depends on the object to which it is
attached. This is another advantage of OOP: since the methods are attached
to objects, they can share a name for a similar action (e.g., plotting) while
behaving in a manner appropriate for each object.

Although we expect that users will be creating Series objects from an
existing file (e.g., xls, csv, NOAA, PANGAEA, netCDF), many Pyleo-
clim objects are generated as results of the analysis. For instance PSD is
generated by spectral analysis methods, Scalogram by wavelet analysis
methods, Coherence by cross-wavelet analysis methods, and Corr by
correlation methods. Object creation in the development of Pyleoclim
was motivated by the need to attach specific methods with specific behavior

0.0 1.2 24 3.6 48 6.0 7.2 to particular objects (e.g., significance testing for spectral and wavelet anal-
Amplitude . .
ysis or plotting methods).
Figure 2. Summary of the spectral and wavelet analysis performed on the Several objects use the prefix Multiple (e.g.,, MultipleSeries,

Nifio 3.4 sea surface temperature (SST) anomalies timeseries as encoded in
Pyleoclim. The series displays significant power in the 2—7 years band,
consistent with the El Nifio Southern Oscillation.

MultiplePSD), which signal that this object is comprised of a list of the
basic Pyleoclim objects. For instance, the MultipleSeries object
contains several Series objects, with dedicated plotting (e.g., stack—
plot ()) and analysis (e.g., principal component analysis) methods that are
applicable to collections of paleoclimate timeseries.

2.4. Leveraging Paleoclimate Data Standards

In addition to the data science and visualization libraries mentioned above, Pyleoclim is compatible with the
Linked Paleo Data (LiPD (McKay & Emile-Geay, 2016)) format. LiPD is a universally-readable data container
that stores metadata in a JSON-LD file (JavaScript Object Notation for Linked Data) and the data in tables
saved in CSV format. Utilities have been written in Matlab, Python, and R to manipulate these metadata-rich
files. Consequently, we created two objects in Pyleoclim that take advantage of the additional, standardized
metadata: the LiPD object, which allows users to deal with one file or a collection of files and have mapping
capabilities, and the LipdSeries object, a child of the Series object. As such, LipdSeries inherits all the
methods available for Series with additional functionalities that take advantage of the richness of the metadata,
such as dashboards for displaying relevant information (Figure 3).

3. Three Paleoclimate Studies Enabled by Pyleoclim

To illustrate the use of Pyleoclimin research, we summarize three studies available as fully executable Jupyter
Notebooks as companion to this manuscript (see the code availability statement in the Data Availability section).
The first study walks through spectral, wavelet, and cross-wavelet analysis in the presence of age uncertainties.
The second study is reproduced from Hu et al. (2017) and presents the pitfalls of using correlation analysis for
the interpretation of a paleoclimate record. Finally, the last study shows how to reproduce the results of Zhu
et al. (2019), using spectral analysis to assess whether current models can capture the continuum of climate
variability.
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Figure 3. Example dashboard in Pyleoclim enabled by LiPD. The dashboard consists of four panels: the top left panel plots the timeseries, in this case the speleothem
record from Crystal Cave (McCabe-Glynn et al., 2013). Note that axis labels and legend are automatically generated from the metadata in the file. The envelope
represents the age uncertainty obtained from Bchron (Haslett & Parnell, 2008), a Bayesian age modeling software. The top right panel shows the distribution of values.
The bottom left panel displays the location of the record while the bottom right displays the results of spectral analysis using the Lomb-Scargle method. To assess the
effect of age uncertainty on the interpretation of the peaks in the record, the spectral analysis is performed on each of the members present in the age ensemble from

Bchron.

3.1. Orbital-Scale Climate Variability in a Deep Sea Core

The first case study concerns the analysis of paleoclimate records in the frequency domain (specifically spectral,

wavelet, and coherence analysis). This type of analysis is often performed to look at common periodicities among

records or between a record and its hypothesized forcing. Analysis of paleoclimate time series in the frequency
domain is complicated by several factors:

Irregular sampling: most spectral methods are designed for series that are evenly spaced in time. Hypothesizing
over missing values can bias the statistical results and enhance the low-frequency components of the spectrum
at the expense of the high-frequency components (Schulz & Mudelsee, 2002; Schulz & Stattegger, 1997).
Methods that do not require interpolation, such as the Lomb-Scargle periodogram (Lomb, 1976;
Scargle, 1982, 1989), also have known biases (Schulz & Mudelsee, 2002; VanderPlas, 2018). The trade-offs
of the various options need to be carefully examined in light of the data.

Pre-processing steps: in addition to interpolation, detrending and removal of outliers can affect the results of
the analysis. Whether to use these options needs to be evaluated for the specific data set and hypothesis to be
tested.

Age uncertainties: age uncertainties affect the location of features in time, so methods need to allow for an ensem-
ble of plausible chronologies (generated, for instance, by a Bayesian age model).

Pyleoclim offers a variety of pre-processing and spectral/wavelet analysis methods to allow for a robust
assessment of the time series characteristics in the frequency domain. This section and accompanying note-
book walks the reader through spectral, wavelet, and coherence analysis of a marine deep sea record (Ocean
Drilling Program (ODP) Site 846) covering the past 5 million years and obtained from benthic §'80 (Mix
et al., 1995; Shackleton et al., 1995) and alkenone paleothermometry (Lawrence et al., 2006). The core
location is in the Eastern tropical Pacific (3.1°S, 90.8°W, 3296 m). The age model (Khider et al., 2017) for
the record was obtained by aligning the benthic record to the benthic stack of Lisiecki and Raymo (2005,
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Figure 4. Summary of the spectral and wavelet analysis performed on
the benthic §'*0 record of Ocean Drilling Program (ODP) Site 846 (Mix
et al., 1995; Shackleton et al., 1995). Both analyses were performed using the
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ODP846 Benthic 6180 LRO04) using the HMM-Match algorithm developed by Lin et al. (2014).

1 2
3000 4000 5000 10 10

HMM-Match is a §'80 Bayesian alignment technique based on a hidden
Markov model to develop age models and accompanying uncertainties for
deep sea cores.

We first analyze the benthic §'%0 record using both spectral and wave-
let analysis appropriate for uneven timeseries. In this example, we use the
Lomb-Scargle periodogram for spectral analysis and the Weighted Wavelet
Z-Transform (Foster, 1996; Kirchner & Neal, 2013, WWZ) for both spectral
and wavelet analysis (Figure 4). In both cases, the significance is assessed
against an AR(1) benchmark. Within Pyleoclim, we use the same func-
tionalities as presented in Section 2.3. We find that the record displays signif-
icant periodicities in the 40 and 100 kyr bands. This result is hardly surpris-
ing considering that the age model was obtained through alignment to the
orbitally-tuned LRO4 record, which strongly oscillates at those frequencies.
Furthermore, the scalogram reveals the non-stationary character of these
periodicities, with a drop in power in the 100 kyr band at the mid-Pleistocene
transition, ca 0.8 Ma (Paillard, 2001).

The sea surface temperature (SST) record (Lawrence et al., 2006) shows
similar, albeit less defined, power in the orbital band (Figure 5). Since the

200299 [ky BP] PSD age model returns an ensemble of posterior draws (Khider et al., 2017; Lin
et al., 2014), we can perform spectral analysis on each ensemble member to

0.8 1.2 1.6 20 assess the robustness of our conclusions. Pyleoclim allows to load an age
Amplitude ensemble as a EnsembleSeries object, equipped with its own plotting

and analysis functions. As illustrated in the companion notebook, we make
use of the plot method, which shows various traces based on individual
realizations of the age model and the plot envelope method, which

Weighted Wavelet Z-Transform (Foster, 1996; Kirchner & Neal, 2013) method.  uses confidence intervals to communicate age uncertainty. The spectral
The record displays significant periodicities in the 40 and 100 kyr bands with method as applied to EnsembleSeries computes the periodogram for

a drop in power in the 100 kyr band at the mid-Pleistocene transition. each age model realization in the ensemble. Pyleoclim allows users to

plot the resulting ensemble periodograms to assess the robustness of the

spectral peaks in face of age uncertainty. In the case of the Site ODP846
SST record, the age uncertainty precludes any meaningful interpretation of specific peaks in power for periods
shorter than 40-50 kyr.

Finally, we use Pyleoclim to perform wavelet coherence analysis (Grinsted et al., 2004) between the SST
record from ODP Site 846 (Figure 6) and insolation at 5°S calculated using the c1imlab package (Rose, 2018).
We limit the analysis to the first 3 million years of the record, when significant periodicities were apparent
in the scalogram. The wavelet coherence method returns a Coherence object, which contains the
cross-wavelet transform (XWT) and the wavelet transform coherence (WTC). XWT informs about areas where
there is high common power between the two series. The analysis reveals high common power in the precession
band (23 kyr) but the phase angles are irregular. This is not surprising given the spectral analysis on the age
ensemble, which shows large effects of age uncertainty at 20 kyr scales (compared to 40—100 kyr). Even if there
was a regular behavior, the age uncertainty prevents us from capturing it in the analysis. WTC shows areas of
common behavior between the two time series even if there is low power. The analysis reveals coherence in the
23, 40, 100 and 400 kyr bands, consistent with orbital forcing of climate. The phase angles in the two upper bands
are also regular and show and an in-phase behavior in the eccentricity band (particularly around 1 Ma) and nearly
in phase quadrature in the 400 kyr band.

The example illustrates how Pyleoclim facilitates the use of sophisticated spectral and wavelet analysis
methods to paleoclimate datasets, especially in regards to age uncertainties and irregular sampling. The package
also offers a variety of pre-processing steps (i.e., detrending, removal of outliers and, if desired, interpolating
schemes in the time domain) to construct workflows and easily assess the effect of each of these steps on the
conclusions.
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ODP846 Sea Surface Temperature 3.2. Speleothem Correlations With a Temperature Field
o el Correlation analysis, despite its many shortcomings, remains a centerpiece of
0'9‘5 250 empirical analysis in many fields, particularly the paleosciences. Computing
225 correlations is trivial enough; the difficulty lies in properly assessing their
2000 significance. Of particular importance are four considerations:
Irregular sampling: comparing two records with different time axes, possibly
1000 unevenly spaced, is a challenge to standard methods, which assume concord-
5001 ant observations.
Persistence: persistence violates the standard assumption that the data are
@ 2001 independent (which underlies the classical #-test of significance implemented
B in most software packages).
E’ 1004 Age uncertainties: age uncertainties affect the location of features in time, so
g methods need to allow for an ensemble of plausible chronologies (generated,
501 for instance, by a Bayesian age model).
Test multiplicity: test multiplicity, aka the “Look Elsewhere effect,” states
201

1018

0.0

Figure 5. Summary of the spectral and wavelet analysis performed on the

that repeatedly performing the same test can result in unacceptably high type
I error (accepting correlations as significant, when in fact they are not). This
arises for example, when correlating a paleoclimate record with an instru-
mental field, assessing significance at thousands of grid points at once, or

1,02 S e
3000 4000 5000 1010 assessing significance within an age ensemble.
Age [kyr BP] PSD

Accordingly, Pyleoclim facilitates an assessment of correlations that deals
09 19 15 with all these challenges, makes the necessary data transformations transpar-

Amplitude ent to the user, and allows for one-line plot commands to visualize the results.

This section and accompanying notebook use Pyleoclim to reproduce the

sea surface temperature record of Ocean Drilling Program (ODP) Site 846 study of Hu et al. (2017), particularly the example of their Section 4, which
(Lawrence et al., 2006). Both analyses were performed using the Weighted illustrates all the above challenges at once. The example uses the speleo-
Wavelet Z-Transform (Foster, 1996; Kirchner & Neal, 2013) method. The them record of McCabe-Glynn et al. (2013) from Crystal Cave, Califor-

record displays significant periodicities in the 40—100 kyr bands.

nia, in Sequoia National Park. Based on correlations with the instrumental
sea-surface temperature (SST) field of Kaplan et al. (1997), McCabe-Glynn
et al. (2013) interpreted their §'30 record as a proxy for SST in the Kuroshio
Extension region of the West Pacific. This interpretation was shown in Hu et al. (2017) to be invalid because of
persistence, test multiplicity, and age uncertainties. This notebook repeats the analysis of Hu et al. (2017) lever-
aging Pyleoclim and the updated SST analysis of HadSST4 (Kennedy et al., 2019); in so doing, we extend the
original work by showcasing three different methods for assessing the significance of linear correlations: (a) a ¢
test with degrees of freedom adjusted for autocorrelation (Dawdy & Matalas, 1964), as used by Hu et al. (2017);
(b) the phase-randomization procedure of Ebisuzaki (1997) (dubbed “isospectral” because it preserves a series'
amplitude spectrum) and (c) an “isopersistent” method that gauges the observed correlation against a large sample
of AR(1) timeseries with identical persistence parameter as the target series.

In Pyleoclim, the correlation () method enables tests (a—c), with the default implementing the isospec-
tral method with 1,000 surrogates. The method works between two series, between a series and an ensemble, or
between two ensembles, with the same user experience. In the case of ensembles, the object holding the result
(CorrEns) is equipped with a plotting method (Figure 7) that displays the histogram of correlations, the propor-
tion of correlations with a p-value under the test level a (i.e., correlations deemed significant by this test), and
the proportion of those that also meet the False Discovery Rate criterion of Benjamini and Hochberg (1995).
In this case, we see that only 1 out of the 327 grid points displays a significant correlation with the published
Crystal Cave §'%0 record (Figure 7, top). In addition, the published age model is simply the median of a broader
ensemble, which was not made available by the authors. We therefore generated another ensemble of 1,000 draws
from the posterior distribution of ages using the Bayesian age model Bchron (Haslett & Parnell, 2008) within the
GeoChronR software (McKay et al., 2021)—the resulting ensemble of possible timeseries is shown in Figure 3
(top). For illustration, we show the result of correlating this ensemble with SST at a single grid point in the Kuro-
shio Extension region, where McCabe-Glynn et al. (2013) originally reported significant correlations (Figure 7,
bottom). While the correlation between HadSST4 SST and the published §'#0 record was over 0.32, we see that
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Figure 6. Coherence analysis in Pyleoclim. (a) Sea surface temperature (SST) over the past 3 million years obtained
from alkenone paleothermometry at Ocean Drilling Program (ODP) Site 846 (blue) and insolation at 5°S (orange) calculated
using the c1imlab package (Rose, 2018). (b) Wavelet transform coherency (WTC) obtained from WWZ between the two
timeseries. Contours display WTC, which indicates the degree of resemblance between the signals at each time and scale.
The angle of the phase arrows show the relative phasing at each time and scale (e.g., in-phase records are indicated by
arrows pointing to the right, out-of-phase to the left, and in phase quadrature up and down). Phase angles are only shown for
areas with significant coherence values, assessed against 1,000 random realizations of an AR(1) process. (c) Cross-wavelet
transform, with contours displaying areas of high common power, and phase arrows as above. For details on the method, see
Grinsted et al. (2004).

the bulk of the histogram is far below this value, with a substantial fraction of ensemble members exhibiting
negative correlations. This is a powerful illustration that age uncertainties can go as far as reversing the sign of a
correlation, and must be taken into account in this type of exercise. Once all three pitfalls (persistence, multiple
comparisons, age uncertainties) are considered, no significant correlation is found.

The example illustrates the risk of relying exclusively on correlations between a paleoclimate record and an
instrumental field for interpretation. Historically, this has not been an isolated incident (Hu et al., 2017), so
this case study should not be viewed as an indictment of a particularly study or group of authors. Rather, it is a
reminder of how easy it is to be fooled by spurious correlations, and how easy it is to avoid them with proper
methods, such as those made available in Pyleoclim.

3.3. Model-Data Confrontations in the Frequency Domain

The third case study tackles an emerging need in the paleoclimate community: quantitatively comparing paleo-
climate observations with transient climate model simulations. In addition to technical challenges (model output
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: o is evenly spaced; observations typically are not), a conceptual difficulty is
22 H 3 p<0.05(w/FDR) due to sensitive dependence to initial conditions (chaos): slight changes in
354 ; P : 88: (wio FDR) initial conditions can result in wildly different climate trajectories despite
€ 30 == identical (or even constant) boundary conditions. In paleoclimatology, those
8 fg Fraction significant: 7.0% initial conditions are unknown, as there typically is no reliable estimate of
121 the 3D state of the climate system at a given point in time. Thus, except
61 when one seeks to compare the expression of external forcings (e.g., Zhu
0 _d: 02 00 02 04 06 et al., 2020, 2022), it is often sensible to discard phase information altogether
r and to restrict the comparison to spectral features (peaks, scaling exponents)
(Dee et al., 2017; C. L. E. Franzke et al., 2020; Laepple & Huybers, 2014).
1051 | BN pr=0:00(w/EDR) This section and accompanying notebook use Pyleoclim to reproduce
901 H I p <0.05 (w/o FDR) h . dv of Zh | hich used | paleocli

_ 75 1 p=005 the comparative study of Zhu et al. (2019), which used several paleoclimate

S 604 observational datasets to test the ability of a hierarchy of climate models to

?

O 454 Fifpction sinificant 3.9% simulate the continuum of climate variability. Figure 8 emulates part of the
301 original study's Figure 2, and compares the spectral scaling exponents from
151 _J 3 transient simulations and five observational datasets, estimated using the

0
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r

Figure 7. Ensemble correlations in Pyleoclim. Top: histogram of Pearson
correlations (7) between the published Crystal Cave record of McCabe-Glynn
et al. (2013) with the HadCRUT4 Sea surface temperature (SST) field over
the North Pacific (327 grid points). Bottom: histogram of Pearson correlations
(r) between the Crystal Cave record of McCabe-Glynn et al. (2013) with a
1000-member Bchron (Haslett & Parnell, 2008) age model ensemble with the
HadCRUT4 SST at 32.5°N, 142.5°W in the Kuroshio Extension region. On
both panels, “FDR” denotes the False Discovery Rate criterion of Benjamini
and Hochberg (1995).
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WWZ method. The notebook illustrates how few function calls are needed to
perform this complex comparison with Pyleoclim, including uncertainty
estimates of the scaling exponents.

Zhu et al. (2019) concluded that these models produced simulations of the
continuum of climate variability consistent with what can be estimated from
paleoclimate observations, provided information about the deglaciation was
specified. Most remarkably, these 3 simulations show scaling exponents
similar to those observed over the past millennium, despite the models having
no knowledge of what are believed to be the leading causes of climate vari-
ability over this interval (solar and volcanic forcing). For more details and a
discussion of the broader implications of this result, see the original study.

—— TraCE-21ka (Bcw = 2.28+0.32; Bpc = 0.78+0.02)
—— DGns (Bew = 3.1620.38; Bpc = 1.08:0.05)
—— SIM2bl (Bew = 2.61+0.37; Bpc = 0.72+0.03)

10 100 k

10k 1k 100 20105 2 105
Period [yrs]

Figure 8. A spectral estimate of the global-average surface temperature variability as portrayed by transient model
simulations (TraCE-21ka (Liu et al., 2009), DG, (Menviel et al., 2011), SIM2bl (Timm & Timmermann, 2007), colors)

and observational datasets (gray): HadCRUT4, The Met Office Hadley Centre gridded data set of global historical surface
temperature anomalies (Morice et al., 2012); PAGES2k/LMR, the Last Millennium Reanalysis framework (Hakim

et al., 2016; Tardif et al., 2019) applied to the PAGES2k data set (PAGES 2k Consortium, 2017); the reconstruction of global
average surface temperature of Snyder (2016); ProbStack: A probabilistic Pliocene-Pleistocene stack of benthic 5'*0 (Ahn

et al., 2017). The regional data set EPICA Dome C Ice Core 800 Kyr Deuterium Data and Temperature Estimates (Jouzel

et al., 2007). f's denote the estimated scaling exponents over each appropriate frequency band: -, is the centennial-to-
millennial scale exponent estimated over scales of 400-2,000 years, while f3,. is the decadal-to-centennial-scale exponent,

estimated over 20400 years.
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4. Conclusion and Outlook

We have presented a new, Python-based toolkit for the analysis and visualization of paleoclimate and paleocean-
ographic data, whether from observations or models. As of publication, Pyleoclim supports a broad array of
functionalities to load, process, analyze and visualize timeseries and their relationships to other variables.

Although Pyleoclim was primarily designed as a research tool, its extensive documentation makes it useful
for established researchers and students alike. At the time of writing, Pyleoclim has been used in three virtual
workshops (http://linked.earth/paleoHackathon/) to build data science capacity within the paleogeosciences
communities, and an undergraduate course at the University of Southern California. An in-person training event
is planned for the summer of 2023. As part of the PaleoCube grant (https://medium.com/cyberpaleo/announc-
ing-the-next-linkedearth-chapter-paleocube-790778b6ffb0), many videos (https://www.youtube.com/channel/
UCo7yzNTM__4g5H-xyWVS5KbA) and notebook tutorials (https://github.com/LinkedEarth/PaleoBooks) will
be made available to the community to further disseminate and demystify these techniques.

Pyleoclim follows an open development model, accessible primarily through its GitHub repository (see data
and software availability statement in the acknowledgment section). Interactions with developers and other
users are facilitated by a community Slack channel and Discourse forum (http://linked.earth/community.html),
to ensure knowledge dissemination and align development to the needs of the scientific community. Currently
planned extensions include:

Pandas integration: The Pandas library (McKinney, 2010) contains many functionalities for timeseries data that
had to be re-implemented for Pyleoclim, since the way time is encoded into Pandas is not appropriate for
paleoscientific applications: timestamps are represented at nanosecond resolution, so the largest time span that
can be represented by a 64-bit integer is limited to approximately 584 years (CE 1677 to 2262), an unaccept-
ably short time for our field. Current work with the Pandas community aims at generalizing this representation
to arbitrary intervals, and we expect Pyleoclim to soon make direct use of Pandas functionalities (e.g.,
slicing, aggregating, resampling and many other built-in methods), which will allow for closer integration
with climate model output through the popular xarray library (Hoyer & Hamman, 2017).

Generalized surrogates: currently, the statistical significance of spectral and wavelet features in Pyleoclimcan
only be assessed against parametric AR(1) surrogates. While those are often reasonable first-order approx-
imations to geophysical timeseries (Ghil et al., 2002), many geophysical phenomena are better emulated by
long-range dependent processes (C. Franzke, 2010; Fredriksen & Rypdal, 2017; Samorodnitsky, 2007). We plan
for the SurrogateSeries class to include more options, such as phase randomization (Ebisuzaki, 1997)
(currently only available to correlation and causality methods), fractal and multifractal timeseries generation,
and maximum entropy bootstrap (Vinod & de Lacalle, 2009).

Nonlinear Dynamics: Most of the methods currently available in Pyleoclim are linear methods. In the near
future, we plan to leverage some recent advances in the analysis of nonlinear timeseries via recurrence
networks (Zou et al., 2019), convergent cross-mapping (Sugihara et al., 2012) and causal discovery (Runge
et al., 2019).

By making sophisticated and rigorous methods available to non-experienced programmers in a few keystrokes,
and by providing extensive documentation and training, we expect the package to help streamline the work of
many readers of this journal, and contribute to heightened statistical rigor in the analysis of paleoclimate and
paleoceanographic data. Furthermore, the package is broadly applicable to any timeseries-based data, and has
already been re-used in other fields like astronomy (Peiiil et al., 2020)—a trend that we hope spreads to other
fields of the geosciences and beyond.

Data Availability Statement

v0.9.1 of Pyleoclim (Khider, Emile-Geay, Zhu, James, Landers, et al., 2022) was used to generate all the
examples in this study and the supporting Jupyter Notebooks and is available via a GPL-3.0 license and devel-
oped openly at https://github.com/LinkedEarth/Pyleoclim_util. v0.4 of the accompanying Jupyter Notebooks
(Khider, Emile-Geay, & Zhu, 2022) that provide examples of how Pyleoclim can be used for scientific studies
is available via an Apache2.0 license and developed openly at https://github.com/LinkedEarth/PyleoclimPaper.
Tutorials v0.0.1 (Khider, Emile-Geay, James, et al., 2022) are available via an Apache2.0 license and devel-
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