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SAM-RL: Sensing-Aware Model-Based Reinforcement Learning via
Differentiable Physics-Based Simulation and Rendering

Jun Lv!, Yunhai Feng?, Cheng Zhang?, Shuang Zhao®, Lin Shao** and Cewu Lu®*

Abstract—Model-based reinforcement learning (MBRL) is rec-
ognized with the potential to be significantly more sample efficient
than model-free RL. How an accurate model can be developed
automatically and efficiently from raw sensory inputs (such
as images), especially for complex environments and tasks, is
a challenging problem that hinders the broad application of
MBRL in the real world. In this work, we propose a sensing-
aware model-based reinforcement learning system called SAM-
RL. Leveraging the differentiable physics-based simulation and
rendering, SAM-RL automatically updates the model by com-
paring rendered images with real raw images and produces
the policy efficiently. With the sensing-aware learning pipeline,
SAM-RL allows a robot to select an informative viewpoint to
monitor the task process. We apply our framework to real
world experiments for accomplishing three manipulation tasks:
robotic assembly, tool manipulation, and deformable object
manipulation. We demonstrate the effectiveness of SAM-RL
via extensive experiments. Videos are available on our project
webpage at https://sites.google.com/view/rss-sam-rl.

I. INTRODUCTION

Over the past decade, deep reinforcement learning (RL) has
resulted in impressive successes, including mastering Atari
games [1], winning the games of Go [2], and solving Rubik’s
cube with a human-like robot hand [3]. However, deep RL
algorithms adopt the paradigm of model-free RL and require
vast amounts of training data, significantly limiting their
practicality for real-world robotic tasks. Model-based rein-
forcement learning (MBRL) is recognized with the potential to
be significantly more sample efficient than model-free RL [4].

How to automatically and efficiently develop an accurate
model from raw sensory inputs, especially for complex envi-
ronments and tasks, is a challenging problem that hinders the
wide application of MBRL in the physical world.

One line of works [5, 6, 7, 8] adopt representation learning
approaches to learn the model from raw input data. They aim to
learn low-dimensional latent states and action representations
from high-dimensional input data like images. But the learned

*Equal advising.

LJun Lv is with the Department of Electronic Engineering, Shanghai Jiao
Tong University, China. [lyujune_sjtu@sjtu.edu.cn]

2Yunhai Feng is with the Department of Computer Science and Engineer-
ing, University of California San Diego, USA. [yuf020@ucsd.edu]

3Cheng Zhang and Shuang Zhao are with the Department of Com-
puter Science, University of California Irvine, USA. [chengz20@uci.edu,
shz@ics.uci.edu]

4Lin Shao is with the Department of Computer Science, National University
of Singapore, Singapore. [linshao@nus.edu.sg]

5Cewu Lu is the corresponding author, the member of Qing Yuan Re-
search Institute and MoE Key Lab of Artificial Intelligence, Al Insti-
tute, Shanghai Jiao Tong University, China and Shanghai Qi Zhi Institute.
[lucewu@sjtu.edu.cn]

Model

Differentiable
Physics
Simulation

[eayqcuis

*

Bad View T

Good View 1 !

Real World

Fig. 1. Our proposed SAM-RL enables robots to autonomously select an
informative camera viewpoint to better monitor the manipulation task (for
example, the Needle-Threading task). We leverage the differentiable rendering
to update the model by comparing the raw observation between simulation
and the real world, and differentiable physics simulation to produce policy
efficiently.

deep network might not satisfy the physical dynamics, and its
quality may also significantly degenerate beyond the training
data distribution when testing in the wild. Recent develop-
ments in differentiable physics-based simulation [9, 10, 11,
12, 13, 14, 15, 16] and rendering [17, 18, 19, 20] provide an
alternative direction to model the environment [21, 22]. Lv
et al. [23] use differentiable physics-based simulation as the
backbone of the model and train robots to perform articulated
object manipulation in the real world. Their pipeline produces
a file of Unified Robot Description Format (URDF) [24] of the
environment, which is loaded into the differentiable simulation
from raw point clouds gathered by an RGB-D camera mounted
on its wrist. However, a sequence of camera poses is needed
to scan the 3D environment every time step, and these camera
poses are manually predefined, which is time-consuming and
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difficult to adapt to various tasks. Object colors and geometric
details are not included in the model, limiting its representation
capability [23].

By integrating differentiable physics-based simulation and
rendering, we propose a sensing-aware model-based reinforce-
ment learning system called SAM-RL. As shown in Fig. 1, we
apply SAM-RL on a robot system with two 7-DoF robotic
arms (Flexiv Rizon [25] and Franka Emika Panda), where
the former mounts an RGB-D camera, and the latter handles
manipulation tasks. Our framework is sensing-aware, which
allows the robot to automatically select an informative camera
view to effectively monitor the manipulation process, provid-
ing the following benefits. First, the system no longer requires
obtaining a sequence of camera poses at each step, which
is extremely time-consuming. Second, compared with using
a fixed view, SAM-RL leverages varying camera views with
potentially fewer occlusions and offers better estimations of
environment states and object status (especially for deformable
bodies). The improved quality in object status estimation
contributes more effective robotic actions to complete various
tasks. Third, by comparing rendered and measured (i.e., real-
world) images, discrepancies between the simulation and the
reality are better revealed and then reduced automatically using
gradient-based optimization and differentiable rendering.

In practice, we train the robot to learn three challeng-
ing manipulation skills: Peg-Insertion, Spatula-Flipping, and
Needle-Threading. Our experiments indicate that SAM-RL can
significantly reduce training time and improve success rate by
large margins compared to common model-free and model-
based deep reinforcement learning algorithms.

Our primary contributions include:

e proposing an active-sensing framework named SAM-RL
that enables robots to select informative views for various
manipulation tasks;

« introducing a model-based reinforcement learning algo-
rithm to produce efficient policies;

« conducting extensive quantitative and qualitative evalua-
tions to demonstrate the effectiveness of our approach;

« applying our framework to robotic assembly, tool manip-
ulation, and deformable object manipulation tasks both
in simulation and real world experiments.

II. RELATED WORK

We review related literature on key components in our
approach, including model-based reinforcement learning, next
best view, integration of differentiable physics-based simula-
tion and rendering, and robotic manipulation. We describe how
we are different from previous work.

A. Model-based Reinforcement Learning

MBRL is considered to be potentially more sample efficient
than model-free RL [4]. However, automatically and efficiently
developing an accurate model from raw sensory data is a
challenging problem, which retards MBRL from being widely
applied in the real world. For a broader review of the field
on MBRL, we refer to [26]. One line of works [5, 6, 7, 8]

use representation learning methods to learn low-dimensional
latent state and action representations from high-dimensional
input data. But the learned models might not satisfy the
physical dynamics, and the quality may also significantly drop
beyond the training data distribution. Recently, Lv et al. [23]
leveraged the differentiable physics simulation and developed
a system to produce a URDF file to model the surrounding
environment based on an RGB-D camera. However, the RGB-
D camera poses used in [23] are predefined and can not adjust
to different tasks. Our approach allows the robot to select the
most informative camera view to monitor the manipulation
process and update the environment model automatically.

B. Next Best View in Active Sensing

Next Best View (NBV) has been one of the core problems
in active sensing. It studies the problem of how to obtain a
series of sensor poses to increase the information gain. The
information gain is explicitly defined to reflect the improved
perception for 3D reconstruction [27, 28, 29, 30], object
recognition [31, 32, 33, 34], 3D model completion [35], and
3D exploration [36, 37]. Unlike perception-related tasks, we
explore the NBV over a wide range of robotic manipulation
tasks. Information gain in the robotic manipulation tasks is
difficult to define explicitly and is implicitly related to task
performance. In our system, the environment changes accord-
ingly after the robot’s interaction. We integrate the information
gain into the () function to reflect the informative viewpoint
for manipulation.

C. Integration of Differentiable Physics-Based Simulation and
Rendering

Recently, great progresses have been made in the field of
differentiable physics-based simulation and rendering. For a
broader review, please refer to [9, 10, 11, 12, 13, 14, 15, 16]
and [38, 39]. With the development of these techniques,
Jatavallabhula et al. [21] first proposed a pipeline to leverage
differentiable simulation and rendering for system identifi-
cation and visuomotor control. Ma et al. [22] introduced a
rendering-invariant state predictor network that maps images
into states that are agnostic to rendering parameters. By
comparing the state predictions obtained using rendered and
ground-truth images, the pipeline can backpropagate the gradi-
ent to update system parameters and actions. Sundaresan et al.
[40] proposed a real-to-sim parameter estimation approach
from point clouds for deformable objects. Different from these
works, we use the differentiable simulation and rendering to
find the next best view for various manipulation tasks and
update the object status in the model by comparing rendered
and captured images.

D. Manipulation

Our framework can be adopted to improve the performance
of a range of manipulation tasks. We review the related work
in these domains. /) Peg-insertion. Peg insertion is a classic
robotic assembly task with rich literature [41, 42, 43]. For a
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Fig. 2. The overall approach of SAM-RL includes Real2Sim, Learn@Sim, and Sim2Real stages. SAM-RL automatically develop and update the model during

Real2Sim stage. During the Learn@Sim stage, it learns the sensing-aware @ function and actor 75'™

in the model. The differentiable physics simulation

generates training data (rendered image, action, and associated return) to learn the @ function and actor function, which allows the robot to select an informative
view. In the Sim2Real stage, SAM-RL learns a residual policy to reduce the sim-to-real gap.

broad review of peg-insertion, we refer to [44]. 2) Spatula-
Flipping. Chebotar et al. [45] used the tactile sensor to train
the robot learning to perform a scraping task with a spatula.
Tsuji et al. [46] studied the dynamic object manipulation by
a spatula. They clarified the conditions for achieving dynamic
movements and presented a unified algorithm for generating
a variety of movements. 3) Needle-Threading. The needle
threading task requires the robots to adapt action according
to the thread deformation. Silvério et al. [47] relied on a high-
resolution laser scanner to perceive the thread and needle.
Huang et al. [48] used a high-speed camera to monitor the
process and provide high-speed visual feedback. Kim et al.
[49] proposed a deep imitation learning algorithm for the
needle threading task. Unlike approaches above, we develop
a sensing-aware model-based reinforcement learning approach
to learn these skills.

III. TECHNICAL APPROACH

Given a manipulation task denoted as 7, our pipeline takes
as input images gathered from an RGB-D camera and outputs
a policy to select the camera pose P¢ followed by producing
an action a. An overview of our proposed method is shown
in Fig. 2. In what follows, we first briefly introduce the
model M that integrates differentiable physics-based simula-
tion and rendering in Sec. III-A. Then, we describe developing
and updating the model in M (Real2Sim) in Sec. II-B,
training robots to learn the perception and action with the
model (Learn@Sim) in Sec. III-D, and applying the learned
model to the real world (Sim2Real) in Sec. III-C.

A. Model with Differentiable Simulation and Rendering

In this work, we combine the differentiable physics-based
simulation and rendering. The resulting differentiable system
plays the backbone of the model, which we denote as M,
for the model-based reinforcement learning. The model can
load robots, cameras, and objects denoted as {Oj-im} along
with their visual/geometric (e.g., shape, pose, and texture)
and physical attributes (e.g., mass and inertial). We denote
the attributes of all objects loaded in the simulation as one
type of model’s parameters 1), as follows:
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The model can render an image Z°™ under the camera pose
P¢ and model parameter 1o, through:

5™ = M(amq, PC; render) )

We can get the gradients OZ°"™/9P° and 9I*™/DO5"™
using differentiable rendering [18]. Note that 9Z%" /905"
contains only the gradient with respect to object visual and
geometric attributes.

Additionally, given the state s{*™ including the object
attributes ¥4 and the robots’ status, when an action denoted
as afim is executed (for example, an external force is exerted
on the object), the model simulates the next state via

i = M(s5"™, a;™™; forward) 3)

in a differentiable fashion [10], providing the gradients
0s3t /0a7"™ and Os§yy /O0s§™.



B. Real2Sim: Developing Model from the Real World

1) Build the Initial Model: For model-based reinforcement
learning, the first step is to build an initial model of the
environment. The initial model does not need to be accurate
and can be created using current 3D object reconstruction
methods with RGB-D cameras like BundleFusion [50] and
KinectFuction [51]. In our setting, as shown in Fig. 2, a
calibrated RGB-D camera is mounted on the robot’s wrist.
Therefore the robot system takes a set of images with corre-
sponding accurate camera poses. The initial model can also
be built directly from a CAD model [52] or following the
pipeline described in SAGCI [23] to produce the URDF. After
the initialization, the model M contains the robots, objects and
an RGB-D camera.

2) Update the Model with Differentiable Siumulation and
Rendering: After having an initial model, we then describe
how to update the model by directly comparing the raw
visual observation in simulation and the real world, leveraging
the differentiable simulation [10] and rendering [18]. In this
work, we only care about one object and assume we can
get accurate object segmentation of real world images. With
common techniques such as Mask R-CNN [53], it’s feasible
to get a fine object-level instance segmentation.

At the beginning, we update the camera and robot pose in
simulation to match the corresponding camera and robot pose
in the real world. Then we get the rendered RGB-D image
from M and corresponding real RGB-D image with associated
segmentation. Based on the camera parameters, we transform
the depth image to point cloud and segment the point cloud.
We denote the RGB image, associated object segmentation,
and segmented point cloud (ISim’Tgb, G5 X5 in the
simulation and (Z7€ebreb  Greal  yrealy in the real world.
For simplicity, we use Z° to represent the (257790 Gsim,
Xy and ¢ is defined accordingly.

We define the loss functions as follows.

El _ ||g7'eal ®I’r'eul,7‘gb _ gsim ® Isim,'r'gbnl (4)
Ly = EMD(X*"™, X7 (5)
L=ML1+ XL (6)

where ® represents the pixel-wise product operator and
EMD represents the Earth Mover Distance [54] to mea-
sure the distance between two 3D point clouds. Note that
(Zsimirgb Gsim xsim) = M(yhpq, P render), as explained
in Sec. III-A, is differentiable. With the gradient 9L/ a4, we
can update the model M’s parameters 1, including object
mesh vertices, colors, and poses so that the loss £ is reduced.
oL
VM < thm AM@wM @)
During the manipulation, at each time step t, the model
parameters like the poses would be changed by the robot action
a;. We denote the object poses as PP. We will first update
the object pose via the forward simulation by

Pﬁl — M(PP, a;, forward) (8)

However, the sim-to-real gap may make the model pose in
simulation inaccurate. So we still need to use the method
described in 7 to further update the model pose.

Next, we describe how to update objects’ physical attributes.
Starting from poses P§ at timestep ¢ = 0, with a sequence of
actions {a;}7_, applied, the simulation calculates the object
poses at timestep ¢ = T denoted as P}Q based on objects’
physical attributes by simulating Eqn. 8 for T steps.

73%9 — /\/1(73697 {at}z;o7 forward) 9)

The object poses from the real-world at timestep ¢t = 71" are
gathered with differentiable rendering denoted as 73$ . We then
calculate the distance between the two poses.

L, =|Pg - P2 (10)

Then object physical attributes w%y (mass and inertial) are
updated to minimize the loss L.

oL,
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Through this, we can keep reducing the discrepancy be-
tween the simulation and the real world, making the model

more and more accurate. Up to now, we have introduced how
to build and update the model.

Ve U = A (11

C. Sim2Real: Learning Residual Policy in the Real World

We delay the discussion of how to learn the policy to
complete the task 7 with the model in the simulation to
the next subsection III-D. Here we assume that we have the
policy 7*"™ in simulation which takes rendered images 7™
as inputs and outputs actions denoted as

asim — ﬂ,sim(Isim) (12)
We describe how to apply the learned policy from simulation
to the real world by learning a residual policy 7"“° to reduce
the sim-to-real gap in this subsection.

We set the same camera pose denoted as P¢ both in the
simulation and the real world and get images denoted as
750 and Z7°*. We first update the model’s parameter 1,
by minimizing the loss with Eqn. 6 as described in Sec. I1I-B2
and then get the new images Z°"™ with the updated ).

With the Z5"™ and Z7°*, we get an action from simulation
a®™. Instead of directly applying the action a®™ in the real
world, we train a residual policy that takes in the real image
Zreal and the a®'™, outputs the residual action

6areal _ 7_‘,res(l-real a (13)

sim)
?

Then actor model in the real world gets the action as follows.
areal — 7T_7’eal (Ireal’ asim) _ asim 4 6a7’eal

(14)

We follow the training process of residual policy described
in [55]. The residual policy should never make a good initial
policy worse. We therefore initialize the residual policy so that

qres (IT'eal’ asim) -0 (15)



before training. We do this by initializing the last layer of
the network to be zero. Once the real world action a™*® is

. . . ’
executed, we receive the next image Zreal” and the reward

preal _ 1 succeed
0 otherwise

The task will be considered done when it succeeds or exceeds
the max action step number. To train the residual policy
7.(.7’85’ we store the (z'real7a/real7 asim’ Trealydone)l'real') to
the reply buffer to update the 7"¢° following a common deep
reinforcement learning procedure 7D3 [56], an actor-critic
deep RL method.

(16)

D. Learn@Sim: Learning Sensing-aware Action in Simulation

With the model, we discuss how to learn the informative
camera pose P¢ associated with the rendered image Z°™ and
action a**™ to complete the given task 7 in the simulation.

1) Sensing-aware Q-function: We adopt the @ function
Q'™ (Z5"™  a*'™) to reflect the informative viewpoint. We can
calculate the gradient of Q**™ with respect to the camera pose
P¢ as follows.

aQsim (Isim’ a aQszm (Isim7 asim) 8[517‘@
oPpe B oLsim oPpe

Here the first term 0Q*"™ /OZ*"™ is available through the
backward propagation of the neural network. The second
term OI°"™/9P° can be obtained from the differentiable
renderer [18]. The gradient Q™ /OP¢ provides information
on how to find a more informative viewpoint, which makes the
pipeline sensing-aware. Under the more informative viewpoint,
the actor has a better sense of the state to generate an action
associated with a higher () value. We verify our hypothesis
by visualizing the learned @) function in Sec IV-B2.

2) Learning Actor in Simulation to Reflect the Sensing
Quality in the Real World: In this part, we discuss how we
learn an actor 7°"™ in simulation, which takes rendered image
Z*"™ and outputs the action a*"™. There are multiple ways to
learn the 75" in the simulation via reinforcement learning
or imitation learning. In this work, we choose the imitation
learning approach to learn the 7%, which we find effective
and efficient. With the model M built with the differentiable
physics simulation [10], our pipeline generates trajectories
completing the tasks {(s5™, af"™|T)}]_, to train the actor
in simulation 7™, To effectively generate the trajectories
inside the differentiable physics simulation [10], we follow
the method mentioned in [23]. Given task 7, we optimize the
trajectory via the following equations.

T-1 )
_ Zl szm flm,T)

sim)

a7

(18)
s.t. sfi"f = M(s5"™ ai"™, forward) (19)
887,771 — Sinlt (20)

Here we explain the loss function in Eqn. 18.

(s, a7"; T) 2D
azim||2 t<T—1
[s$20 = G(Thl?* t=T1—1

={: (22)
agim|? Tpoi—1<t<T,—1
Is7my = G(Tull® t=T,~1

G(T) is the goal of the task. to make it easier to generate
the trajectories, we define n sub-goals for each task. In
practice, instead of directly optimizing the whole trajectory,
the pipeline will optimize the trajectory to achieve each sub-
goal in sequence. Once a goal is achieved, the pipeline will
move on to the next goal.

After gathering these trajectories {(s{™™,af"™|T)}L; in
the simulation, we rendered multiple 1mages {Z5m(Peh)}
for each state s{*™ under different camera poses {P%*}. We
train an actor 7r“m( ¢ (s57™ PS4)) to predict the action a;*™
to imitate the correspondlng action a;*™. In the process, the
prediction error is deﬁned as follows

s7.m

HAS’Lm szm”

(23)

During the learning process, the prediction error also de-
pends on the sensing quality. Our hypothesis is the actor
might not learn the effective ground-truth action if there
is insufficient state information in the rendered image. For
example, if the camera is always looking into the sky and the
object does not appear in the rendered image, it will be difficult
for the actor to learn the correct action. We visualize the
prediction error in Sec.IV-B2. Note that the learning process
also generates success and failure trajectories, which are used
to learn the @) function.

3) Learning Sensing-aware () Function: Here we de-
scribe how to learn the sensing-aware () function denoted
as Q*™(Z*™ q*™). There are also multiple ways to learn
the () function. In this work, we formulate it as a su-
pervised learning problem. We roll out the trajectories in
the simulation to generate the training data. Given a trajec-
tory {(IS”"(P Y, a3}, we calculate the return Ry =
ZZ t'y 'r; associated with each image and action pair,
where r; is the reward with same definition as Eqn. 16 and
v is the discount factor. We then train a deep network that
takes Z7"™ and a;*™ as inputs and outputs the @) value by
minimizing the following loss.

Q= ™I™, &™) — Ryl (24)

4) Selecting Perception and Action Leveraging the Actor
and Q-function: Starting from an initial viewpoint P¢, the
simulation rendered an image Z°™. We feed the image into
the actor model to get an action ™ = 75" (Z*"™), and then
send the image and action to the () function to get the value
Q™ (Z5™ a*"™). We get the gradient with respect to the P¢
and update the camera pose as follows.
aQsim (Ishn7 a

ope

sim)

P =P+ A

(25)



Algorithm 1: Overall algorithm

Input: the model M with its model parameters 1o, camera
pose P, take the real image using real camera Cam(P)

1 for t in each iteration do

2 5 M, P;render), I7¢% < Cam(P);

3 Update o by reducing ||Z52™ — Z7e%||;

4

5

I3 M(Ya, P;render), asi™ = gsim(Zsim);
while True do

sim _sim
6 P =P+ ap 2 e,
7 Tsim’ M(Yaq, P render), Treal’ Cam(P’);
8 Update ¥4 by reducing ||IS"”, — greal’ II5
- . . .y

9 Iszm <_ M(’IJJM,PI;T‘eTLdET‘), aszm e 7.(.57,7”,(151”77, );
10 if Qsim(Isim asim) < Qsim(Isim' asim') then

s > s
1 greal — I’real" astm asim/;
12 break;
13 end
14 Isim (_Isim’ P 7)/ asim «— asim’.

> s ;
15 end

16 Add the updated Model with ), to data buffer to
generate trajectories;
17 Update the actor and Q function;

18 areal — 7r'real (I'r‘ecl,l7 asim);

19 Execute the action a"¢?! both in the real world and in
simulation;

20 Add the transition data into the replay buffer to sim2real;

21 Update the residual policy

22 end

With the new camera pose P, we gather the new rendered
image 7™, action a*"™ = s (Z5™") and the associated
Q™ (5™ q¥™"). We accept the new camera pose P¢ and
new action as if Q(Z5™ a*™") > Q(T5"™, as"™).

E. Overall Learning Process

We summarize the overall test stage pipeline in the follow-
ing Alg. 1. Given an initial model, we leverage the differen-
tiable rendering and simulation to update the model parameter
1a and select the camera pose (Line 1-15).

Our algorithm add the update model M into our data
buffer. Then our framework starts to generate the trajectories to
accomplish the according task starting from the state described
by the model M associated with the parameter M. (Line 16)

We calculate the return value and expert actions to train the
actor network and Q network in simulation. (Line 17)

Then we train the residual policy to deal with the sim2real
gap. (Line 18-21)

IV. EXPERIMENTS

In this section, we introduce our experimental setup and
conduct quantitative and qualitative evaluations to demonstrate
the effectiveness of our approach. Our experiments focus on
evaluating the following questions

o Can our proposed selecting perception and action pro-
cedure described at III-D4 improve the performance of
various manipulation tasks?

e How does our SAM-RL approach compare with model-
free and model-based deep reinforcement learning algo-
rithms?

o How effective is each component in our proposed SAM-
RL algorithm?

o How effective is the model update process leveraging the
differentiable simulation and rendering?

A. Experimental Setup

1) Real World: We set up the real world experiment with
two 7 DoF robotic arms as shown in Fig 1. One robot is the
Franka Panda performing the manipulation task. The other
robot is Flexiv Rizon [25] holding the RGB-D RealSense
camera. We calibrate the camera intrinsic matrix and the hand-
eye transformation between the camera and the Flexiv’s end-
effector. We also measure the relative transformation between
two robots’ bases in the world coordinate.

Real World

Simulation

Needle-Threading

Peg-Insertion Spatula-Flipping

Fig. 3. Visualization of experiment setup for Peg-Insertion, Spatula-Flipping,
and Needle-Threading.

2) Simulation: In the simulation, we set the camera intrinsic
matrix and relative transformations of the camera to Flexiv
and Flexiv to Franka based on the real-world calibration
results. We use PyBullet [57] to simulate the real world,
which is different from our differentiable physics simulation
for quantitative experiments. Objects are initialized with a
random pose within manually defined bounds as described
following.

3) Differentiable Physics Simulation and Rendering: We
combine the differentiable physics-based simulation and ren-
dering to model the real world, update objects attributes,
calculate expert trajectories, and optimize camera pose. We
use NimblePhysics [10] as differentiable simulation and Red-
ner [18] as differentiable renderer.

4) Manipulation Tasks: We design three different manipu-
lation tasks as shown in Fig. 3, and the goal of each task as
shown in Fig. 4.

Peg-Insertion, which is inserting a peg into a hole. We
assume the robot holds the peg tightly, so the state of the
task is the translation of the peg, which is 3-dimension and
could be calculated via robot forward kinematic. And the hole
is initialized at a random location by 10cm x 10cm both in
simulation and real world. The task is considered successful
if the peg is inserted into the hole. Our pipeline adopt an
automatic termination function in real world by comparing
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Fig. 4. The goal of each task. The first row is Peg-Insertion, the second is
Needle-Threading, and the third is Spatula-Flipping.

the distance between the current state and goal state of the
peg. The max number of action steps is 100.

Spatula-Flipping, which is flipping a pancake with a spat-
ula. The state of the task is the translation of the pancake,
which is 3-dimension. The pancake is initialized at a random
location by 2¢m X 2¢m both in simulation and real world. The
Spatula-Flipping is successful if the pancake is lifted up by the
spatula and then flipped. We track the position of the pancake
via the method mentioned in Sec. III-B2. Our pipeline also
adopt an automatic termination function for Spatula-Flipping
in real world by comparing the distance between the current
state and goal state. The max number of action steps is 200.

Needle-Threading, which is threading a needle. In simu-
lation, the thread is simulated using 10 links. There are two
revolute joints (See Fig. 5) between the links next to each
other. The state of the task is the position of each link of
the thread, which is 30-dimension in total. In the real world,
the thread is manually randomly bent to initialize. While in
simulation, for each revolute joint described in Fig. 5, the
state of the joint is initialized ranging from —10° to 10°. We
manually decide success for Needle-Threading, because it is
hard to detect whether the thread is through the needle hole
automatically with high precision. The max number of action
steps is 100.

link,, link, 44

Fig. 5. There are two revolute joints between links, rotate along the x and
y axis (blue and red).

5) Training Details: The size of the input images is
128 x 128 x 6 (RGB-XYZ), while the size of the action space
is 3, we only enable the translation of the Franka’s end-
effector and disable the rotation. For both the actor and critic
(Q function) of 7™ and 7"¢*, the network contains a CNN
feature extractor and a MLP head. The feature extractor has
5 layers to extract a 128-dimensional vector from images,
while the MLP head has 3 layers takes in the extracted vector,

outputs the action or () value. Note that other inputs, like the
predicted action for the critic network or the base action for
residual actor, will be concatenated with the images and input
to the feature extractor.

In real world experiments, we train the residual policy net-
work for 100 episodes for Needle-Threading and 10 episodes
for Peg-Insertion and Spatula-Flipping. To better reduce the
sim-to-real gap, we also augment the training image Z*'™ by
adding noise to the RGB and XYZ value of each pixel to imitate
the sensor noise.

B. Evaluating the Sensing-aware Function

1) Quantitative Results: To evaluate the learned sensing-
aware () function during Learn@Sim stage, we set up the
following experiments inside the differentiable physics simula-
tion. We use the same actor model 7*“™ trained with rendered
images under multiple camera views, and evaluate the actor
with and without leveraging the sensing-aware () function
to optimize the camera pose during manipulation processes,
denoted as Ours and Ours(w/o pose-opt), respectively. We
also train the same actor with rendered images under a fixed
camera view, and evaluate the trained actor under the same
camera view, denoted as Fixed-View. To make relatively fair
compassion, we train the actor in Fixed-View to have the
same prediction error in the training process as in Ours. We
report the task success rate based on 100 experiments under
these three settings. As shown in Tab. I, our pipeline can find
the informative view to benefit robot manipulation with the
sensing-aware ) function.

TABLE I
QUANTITATIVE RESULTS OF SENSING-AWARE () FUNCTION.

‘ Ours  Ours(w/o pose-opt)  Fixed View
Peg Insertion 0.82 0.64 0.71
Spatula Flipping 0.65 0.57 0.55
Needle Threading | 0.70 0.46 0.66

2) Qualitative Visualization: We visualize the learned @
function (Fig. 6(a)) and the prediction error of the learned
imitation learning policy (Fig. 6(b)) for the Needle-Threading
task. We gather rendered images Z°“™(P%) from multi-
ple view points and send them to the actor 7™ to get
associated actions 75 (Z5"(P?)), and get the @ values
QM (Zstm (Pety, psim (st (Pt))). It indicates that our Q
function learns a reasonable policy to select the camera
viewpoint.

3) Salient Map of Actor Network: In order to have a better
understanding about the actor network, we generate the salient
map of the Needle-Threading task as shown in Fig. 7 . Given
an input image denoted as Z°'™, we calculate the prediction
error denoted as

‘Cs — ”&si’m _ asim||2

sim

(26)

sim

where a°*™ and a®""" are the predicted action and ground-truth
action, respectively. We visualize the gradient 9L, /0™ as
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(b) Visualization of the the prediction error of the learned imitation
learning policy.

Fig. 6. Qualitative visualization of sensing-aware () function for the Needle
Threading. Each pixel corresponds to a yaw and pitch value of the camera
view.

the salient map. Fig. 7 indicates that the network pay more
attentions to the thread’s region, including the curved thread
region and contact region between the thread and the needle.
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(a) Input Image (b) Salient Map

Fig. 7. The input image of the actor network and the corresponding salient
map from the actor network

C. Comparing the SAM-RL with Model-free and Model-based
Deep RL

We compare our SAM-RL with common model-free deep
RL algorithm 7D3 [56], SAC [58] and model-based deep RL
algorithm Dreamer [6]. In this experiment, we adopt pybullet
as the “real world”. For TD3, SAC, and Dreamer, we directly
train the robot in pybullet. The observation including an RGB-
XYZ image and the position of the robot’s end-effector. The
action space is the translation of the robot’s end-effector, which
is 3 dimensions. The reward function of Peg-Insertion is the
distance between the peg and the hole. The reward function
of Needle-Threading is the distance between the thread and
needle hole. The reward function of Spatula-Flipping is the
position of the pancake among z-axis which is perpendicular
to the ground. For SAM-RL, we develop the model via the
differentiable physics-based simulation and rendering and use
the model to complete tasks in pybullet (“real world”). Every
time the environment is initialized or reset, the position and

shape of the thread are randomly set within a certain range
as described in Sec. IV-A. Fig. 8(a), Fig. 8(b), and Fig. 8(c)
show the average success rate of the SAM-RL, SAC, TD3, and
Dreamer during the training stage. Take Needle-Threading as
an example, after training 100k steps, the average success
rate of SAC models and 7D3 models are about 50%, while
Dreamer is about 60%. However, our pipeline achieves a
success rate of around 80% after 8k training steps. It in-
dicates that our proposed SAM-RL is significantly sample-
efficient compared to model-free deep reinforcement learning
approaches and existing model-based method.

—— SAM-RL
3
— sac

— Dream
—————

P

20000 40000 60000 80000 100000 20000 40000 60000 50000 100000

Training Step Training Step

Success Rate
°

Success Rate

—— SAM-RL
TD3

—— SAC

—— Dreamer

(a) Comparison with model-free (b) Comparison with model-free
and model-based RL in simulation and model-based RL in simulation
on Peg-Insertion on Spatula-Flipping

— SAM-RL
—— SAM-RL(w/o update modeling)
-~ SAM-RL(w/o residual policy)
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™3
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—— Dreamer
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(c) Comparison with model-free (d) Ablation studies in real world
and model-based RL in simulation
on Needle-Threading

Fig. 8. Learning Curves of the Peg-Insertion, Spatula-Flipping, and Needle
Threading. The x-axis shows the training steps/episodes and the y-axis
indicates the success rate.

D. Ablation: Evaluating Components of SAM-RL

We apply SAM-RL in the real robot system and conduct two
ablation study experiments.

o We remove the component of updating the model M by
comparing Z"¢* and Z5™ and denote the experiment as
SAM-RL (w/o update modeling).

e We remove the residual policy used to address the
sim2real gap and directly execute the predicted action
a*"™ in the real world denoted as SAM-RL (w/o residual
policy).

Note that SAM-RL (w/o residual policy) directly apply 7™ in
real world, have no need to train, so it has a constant success
rate. We post the result of Needle Threading in Fig. 8(d).
It shows that these components play important roles in our
pipeline, and removing these components results in significant
performance decreases.



E. Evaluating the Model Updating via Differentiable Simula-
tion and Rendering

1) Pose and Texture: With differentiable simulation and
rendering, we can update the texture of the model M. And
also, we can update the pose of the model M during the
manipulation. For Peg-Insertion, the model’s pose is the trans-
lation of the hole on the table, which is 2-dimension (x and
y). We only need to update this at the beginning of each
episode because the location of the hole is randomly initialized
and fixed during manipulation. For Spatula-Flipping, The
model’s pose is 5-dimension, include the translation of the
pancake, which is 3-dimension (x, y, and z), and rotation of
the pancake, which is 2-dimension (rotate among x-axis and
y-axis) as the pancake is symmetry among the z-axis. For
Needle-Threading, the thread is simulated using 10 links as
described in Sec. IV-A. There are two revolute joints (See
Fig. 5) between the links next to each other. So the model’s
pose is the states of the joints, which is 20-dimension in total.

As shown in Fig. 9, we demonstrate the mean L distance
between the estimated and ground-truth position of the thread’s
links for Needle-Threading, and the L, distance between the
estimated and ground-truth position of the pancake. To get
the ground-truth position of the thread and pancake, we use
the image rendered by Pybullet rendering, which is different
from the differential rendering, as the ground-truth image. It
indicate that our pipeline can reduce the distance between
the estimated and the ground-truth state and texture by model
updating via differentiable rendering. The first row shows the
experiment where the thread (in the left most image) has a
different position and different color from the ground truth
image (as shown in the right most). The second row reflects the
experiment where the thread has the same color but different
position from the ground truth image. The last row shows the
experiment where the pose of the pancake is different from
the ground truth image.

Note that to better evaluate the performance of the model
updating, we make the distance between the initialization and
ground-truth larger. So it takes 200 iterations for Needle-
Threading and 100 iterations for Spatula-Flipping to optimize.
In practice, one action step can only cause a little change to
the thread and pancake, so we only take 20 iterations for the
thread updating and 10 iterations for the pancake updating at
each action step.

2) Physical Attributes: Next we describe how to update
objects’ physical attributes (mass and inertial) in detail. We
still use Pybullet to simulate the real world. We first use the
spatula to push the pancake for 7} time steps, then we stop
moving the spatula and the pancake keeps sliding until time
step 15 (See Fig. 10). We use the robot to manipulate the
spatula in torque control mode. So with the same robot action,
the impulse provided by the robot is constant, and the pancake
pose at time step 75 is influenced by the mass value of the
pancake. We update the object’s physical attributes (mass and
inertial) via the differentiable physics simulation. As shown
in the learning curve, the relative error of the pancake’s mass
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Fig. 9. The initialization and ground-truth image of the model updating for
Needle-Threading and Spatula-Flipping. And the L; distance of the estimated
and ground-truth state during model updating.

value can be reduced from 50% to around 20% after the
optimization.

Relative Error

Iteration

t=0

Error Curve t=T, t=T,

Fig. 10. At timestep ¢ = 0, the robot start to push the pancake with the
spatula until timestep ¢ = 77, then the robot stop moving and the pancake
keep sliding until timestep t = T5.

3) Real World: We also demonstrate the model updating
via differentiable rendering in the real world. (See Fig. 11)

kL

Initialization Optimized

Target

Fig. 11. The rightmost image is the real image, the target image for model
update. The leftmost image and middle image show the initial state of the
thread and the updated thread leveraging the differentiable rendering.

V. CONCLUSION

We propose a sensing-aware model-based reinforcement
learning called SAM-RL leveraging the differentiable physics-
based simulation and rendering. SAM-RL automatically up-
dates the model by comparing the raw observations between
simulation and the real world, and produces the policy effi-
ciently. It also allows robots to select an informative viewpoint
to better monitor the task process. We apply the system to



robotic assembly, tool manipulation, and deformable object
manipulation tasks. Extensive experiments in the simulation
and the real world demonstrate the effectiveness of our pro-
posed learning framework.
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