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AbstractÐThis paper studies the optimal dynamic resource
allocation problem for a Reconfigurable Intelligent Surface (RIS)
aided MIMO wireless network with multi-user under uncertain
time-varying wireless channels. Recently, RIS has been considered
one of the most promising techniques to upgrade dynamic wireless
network quality. However, the capacity of RIS has been restricted
due to RIS hardware limitations and uncertainties from time-
varying wireless channels. Therefore, a novel dynamic resource
allocation technique needs to be developed that cannot only
optimize the overall network quality, e.g. maximizing energy
efficiency, minimizing power consumption, etc., but also consider
the RIS hardware limitations and the uncertainty from the time-
varying wireless channels. In this paper, a novel online data-
enabled actor-critic-barrier reinforcement learning algorithm is
developed and utilized along with neural networks (NNs) to learn
the optimal transmit power control, RIS phase shift control policies
under hardware limitations and wireless channel uncertainties.
Eventually, numerical simulations are provided to demonstrate
the effectiveness of the developed scheme.

Index TermsÐReconfigurable intelligent surfaces, RIS phase
shift, energy efficiency, hardware limitation,

I. INTRODUCTION

With highly demanding data exchanges from significantly

increasing number of users in the past decade, traditional

wireless communication system needs to be further upgraded.

Recently, Reconfigurable Intelligent Surface (RIS) has attracted

more and more interests due to its potential to enhance the

wireless network spectrum efficiency significantly without

raising network costs, e.g. power consumption, etc.

Due to the capability of reflecting radio frequency (RF)

signal, RIS can be used as an adjustable relay to enhance the

connections between base station (BS) to distributed multi-

users (UEs) especially when there has either no or weak line-

The support of the National Science Foundation (Grants No. 2128656, No.
2128482, No. 2128511) is gratefully acknowledged

of-sight. Different from other existing active relaying technique,

e.g. Amplify-and-Forward (AF) relay [1], Decode-and-Forward

(DF) relay [2] and so on, the RIS is made of passive RF

reflecting array units that don’t require extra power consumption

[3]. Also, the performance of the amplify and forward (AF)

relay and RIS has been compared in [1], RIS can deliver a much

higher energy efficiency than AF relay. Therefore, RIS-aided

wireless network that integrating RIS with current wireless

network has been considered as one of most promising next

generation of wireless system [4].

However, every coin has two sides. RIS also introduces

more non-trivial challenges to wireless network management

especially for dynamic resource allocation. For instance, new

resource allocation algorithm for RIS-aided wireless network

becomes more sensitive to the uncertainties in wireless channels.

Also, practical RIS unit has certain hardware limitations that

specifically limits the capability of RIS phase shifting. To

overcome those challenges, a novel barrier function has been

designed firstly to convert resource allocation optimization

problem with RIS hardware constraints to unconstrained

optimization problem. Then, a novel data-enabled actor-critic-

barrier (ACB) reinforcement learning algorithm is developed

to learn the optimal resource allocation policies for RIS-aided

wireless network with both uncertainties from wireless channels

and limitations from RIS hardware. The major contributions

of this paper are given as following:

• A time-varying and uncertain wireless communication

environment has been considered.

• A novel barrier function that simplified resource allocation

optimization problem.

• An online data-enabled learning algorithm has been designed

to learn the optimal resource allocation policies.
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Fig. 1: RIS-assisted wireless communication network

II. SYSTEM AND CHANNEL MODEL

A. System Model

Considering the RIS assisted wireless network with multi-
users being shown in Figure 1, which has one Base Station (BS)
equipped with NT antennas and K receivers (Rx) equipped
with one antenna each, and one RIS equipped with M
electronically controlled RF units. The BS and distributed
UEs can communicates through RIS. Then the received signal
from BS to k-th Rx at time t can be presented as

yk(t) = (gHk (t) + HRR,k(t)Θk(t)HTR(t))x(t) + nk(t), (1)

where gHk (t) is direct wireless channel from BS to k-th Rx.

Θk(t) denotes RIS phase shift diagonal matrix used for k-th Rx.

Θk(t) is defined as Θk(t) = diag[ejθ1(t), ejθ2(t), ..., ejθM (t)] ∈
C

M×M . HTR ∈ C
M×NT and HRR,k ∈ C

1×M present the

wireless channel from BS to RIS and from RIS to k-th Rx

respectively. yk(t) and nk(t) denote the received signal and

noise at k-th Rx respectively. nk(t) is the additive white noise

following normal distribution CN (0, σ2
k).

And with transmitted signal:

x(t) =

K
∑

k=1

√

pk(t)qk(t)sk(t) (2)

where pk(t), qk(t), sk(t) represent the transmit power, beam-
forming vector at BS and transmitted data to user k respectively.

Next, let W k =
√

pk(t)qk(t), the power of the transmit signal
is under the maximum transmit power constrain as

E[|x|2] = tr(WH
k W k) ≤ Pmax (3)

B. RIS-aided time-varying wireless channel model
There are two types of dynamic wireless channel in

RIS-aided wireless network that need to be modeled, i.e.
BS to RIS channel time-varying model:

HBR(t) =
√

βBR(t)× a(ϕRIS , θRIS , t)× a
H(ϕBS , θBS , t) (4)

where
√

βBR(t) denotes the time-varying channel gain from
BS to RIS, a(ϕBS , θBS , t) ∈ C

NT×1 and a(ϕRIS , θRIS , t)
∈ C

M×1 represent the multi-antenna array response vectors
used for data transmission from BS to RIS respectively,
with a(ϕBS , θBS , t) = [a1(ϕBS , θBS , t), ..., aNT

(ϕBS , θBS , t)]
T ,

a(ϕRIS , θRIS , t) = [a1(ϕRIS , θRIS , t), ..., aM (ϕRIS , θRIS , t)]
T .

RIS to k-th UE channel time-varying model:

HRU,k(t) =
√

βRU,k(t)× ak(ϕUE , θUE , t)× a
H
k (ϕRIS , θRIS , t)

(5)

where
√

βRU,k(t) describes the time-vary channel gain

from RIS to k-th UE at time t, ak(ϕUE , θUE , t) ∈
C

1×1, ak(ϕRIS , θRIS , t) ∈ C
M×1 present the multi an-

tenna array response vector from RIS to k-th UE with

a(ϕUE , θUE , t) = [ak,1(ϕUE , θUE , t))]
T , a(ϕRIS , θRIS , t) =

[ak,1(ϕRIS , θRIS , t), .., ak,M (ϕRIS , θRIS , t)]
T .

Next, the time-varying Signal-to-Interference-plus-Noise
Ratio (SINR) at k-th UE can be presented as

γk(t) =
|(gH

k (t) + HRU,k(t)Θk(t)HBR(t))Wk(t)|
2

∑K

i=1,i ̸=k
|(gH

i (t) + HRU,iΘiHBR)Wk(t)|2 + σ2

k

, (6)

Moreover,the real-time sum-rate of multi-users in RIS-aided

wireless network can be obtained as

Rs(t) =

K
∑

k=1

Rs,k(t) =

K
∑

k=1

Blog2(1 + γk(t)), (7)

with B being the bandwidth of the channel.

III. PROBLEM FORMULATION

A. Total power consumption representation

Firstly, utilizing RIS-aided wireless system and channel

models defined in Eqs. (4) and (5), the real-time power

consumption for the k-th UE can be represented as

Ps,k(t) = µWH
k (t)W k(t) + PRIS,k(t) + PBS + PUE,k (8)

with µ being the efficiency of the transmission power amplifier
at BS, PBS and PUE,k being the circuit powers of BS and

k-th UE respectively, PRIS,k being the power consumption of

the RIS used for k-th UE communication.

Next, the overall power consumption for the entire RIS-aided

multi-user MISO wireless network can be defined as

Ps(t) =

K
∑

k=1

Ps,k(t) (9)

Moreover, a power consumption vector can be defined as
P(t) = [Ps,1(t)Ps,2(t)...Ps,K(t)].

B. Finite horizon resource allocation optimization with RIS

hardware limitations

Considering transmit power being distributed to multi-
antennas in BS as W(t) = [W1(t), ..,Wk(t), ..,WK(t)],
and RIS phase shifting matrix being selected as Θ(t) =
[Θ1(t), ..,Θm(t), ..,ΘM (t)], where Θm(t) = ejθm(t),m =
1, ...,M , θm(t) denotes RIS RF unit parameter and M de-
notes the number of RIS RF units. In addition, due to the
limitation from RIS hardware, RIS RF units are constrained as
θmin ≤ θm(t) ≤ θmax with θmin, θmax being lower and upper
bounds for RIS RF unit parameter. Then the finite horizon
resource allocation optimization problem with RIS hardware
limitation can be defined as

min
uΘ,uW

TF
∑

t=1

[

1

ηEE(t)
+ g1(uΘ,t) + g2(uW,t)

]

s.t. tr(WH
k W k) ≤ Pmax;

θmin ≤ θm ≤ θmax, ∀m = 1, 2, ...,M

(10)

where uΘ,t, uW,t represent the transmit power reallocation
and RIS phase shifting matrix adjustment policy respectively,
g1(·), g2(·) are positive definitive functions describing the
costs of transmit power reallocation and RIS phase shifting
adjustments, TF is the fixed final time. Moreover, ηEE(t)
stands for the energy efficiency in RIS-aided wireless network
that is defined as the ratio between the network achievable
sum rate in bps and total power consumption in Joule, i.e.
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ηEE(t) =Rs(t)/Ps(t). It can be further expressed by using
(7), (8) and (9) as

ηEE(t)=

∑K

k=1
Blog2(1 + γk(t))

∑K

k=1
{µWH

k W k+PRIS,k}(t)+PTx+PRx,k

(11)

Different than other existing optimization problems [10], the

this paper formulates a finite horizon optimization problem

(see Eq. (10)) that can jointly optimize the transmit power

allocation and RIS phase shifting adjustment policies along

with time, i.e. t ∈ [0, TF ]. Hence, the finite horizon optimal

polices can be obtained as

[u∗

Θ, u
∗

W]=argmin

TF
∑

t=1

[

1

ηEE(t)
+ g1(uΘ,t) + g2(uW,t)

]

s.t. tr(WH
k W k) ≤ Pmax;

θmin ≤ θm ≤ θmax, ∀m = 1, 2, ...,M
(12)

IV. STATE-SPACE BASED FINITE HORIZON

OPTIMIZATION DESIGN WITH BARRIER FUNCTION

A. State-space based finite horizon optimization problem

Considering the RIS phase shift Θ and transmit power

W as the system states in the RIS-aided MISO wireless

communication network with multi-users, the dynamics of

the resource allocation system can be presented as

Θ(t+1) = Θ(t) + uΘ(t)

W (t+1) =W (t) + uW (t)
(13)

Next, recall to Eq. (10), the finite horizon optimization problem
can be further represented along with state-space resource

allocation dynamics as

min
uΘ,uW

TF
∑

t=1

[

1

ηEE(t)
+ g1(uΘ,t) + g2(uW,t)

]

s.t. Θ(t+ 1) = Θ(t) + uΘ(t)

W (t+ 1) =W (t) + uW (t)

tr(WH
k W k) ≤ Pmax

θmin ≤ θm ≤ θmax, ∀m = 1, 2, ...,M

(14)

B. Transformation of finite optimization problem with con-

straints with a barrier function

The key to transform a constrained optimization problem

with state-space representation into an unconstrained problem

is to find an appropriate one-to-one reversible mapping mech-

anism that can convert the original constrained state space

into an unconstrained state-space. Once the optimal solution

is obtained in the unconstrained state-space, the relevant

optimal solution in original constrained state space can be

obtain by using reversible mapping mechanism. To realize

this mapping mechanism in RIS-aided finite horizon optimal

resource allocation with constraints, the barrier functions can

be generated and applied for transmit power allocation and

RIS phase shifting matrix as follows

θsm =fθm(θm; θmin, θmax) = ln

(

θmax

θmin

∗
θmin − θm
θmax − θm

)

,

∀m = 1, 2, ...,M, ∀θm ∈ (θmin, θmax)

W s
k =fWk

(Wk; pmin, pmax) = ln

(

pmax

pmin

∗
pmin −Wk

pmax −Wk

)

,

∀k = 1, 2, ...,K, ∀Wk ∈ (pmin, pmax)
(15)

where θm, Wk are original state space with constrains,
θmin, θmax and pmin, pmax are bounds for RIS phase shifting

and transmit power allocation caused by hardware limits.

Moreover, θsk, W s
k represent the transformed state space with

no constrains, i.e. θsm ∈ R, and W s
k ∈ R. In addition, the

unconstrained state can be transformed back to original state

space with constraints through the inverse barrier functions as,

θm = f−1
θm

(θsm; θmin, θmax)

= θmin ∗ θmax

(

e
θsm
2 − e−

θsm
2

θmine
θsm
2 − θmaxe−

θsm
2

)

, ∀θsm ∈ R

Wk = f−1
wk

(W s
k ; pmin, pmax)

= pmin ∗ pmax





e
Ws

k
2 − e−

Ws
k

2

pmine
Ws

k
2 − pmaxe−

Ws
k

2



 , ∀W s
k ∈ R

(16)

Next, using the developed one-to-one reversible barrier func-
tion, the original system can be transformed to unconstrained

state space equally as

Θ
s(t+ 1) = Θ

s(t) + us
Θ(t)

W s(t+ 1) =W s(t) + us
W

(t)
(17)

with us
Θ = fΘ(uΘ), us

W
= fW (uW ).

Recall to finite horizon optimization problem with constraints
that formulated in Eq. (10), the value function in terms of
unconstrained state space can be defined as

V (Θs
,W

s
, t) =

TF
∑

τ=t

r(Θs
,W

s
, u

s
Θ, u

s
W, τ)

=

TF
∑

τ=t

[

1

ηEE(τ)
+ g1(u

s
Θ,τ ) + g2(u

s
W,τ )

]

(18)

where us
Θ

, us
W represent RIS phase shifting and transmit

power allocation policies under unconstrained state space, and

TF is the finite final time. Moreover, r(Θs,Ws, us
Θ
, us

W, τ)
is positive definitive finite horizon cost-to-go function for the

RIS-aided wireless system under unconstrained state space.

According to Bellman’s principle of optimality [6], the
optimal value function can be represented dynamically as

V
∗(Θs

,W
s
,t) = min

us
Θ

,us
W

TF
∑

τ=t

[

1

ηEE(τ)
+ g1(u

s
Θ,τ ) + g2(u

s
W,τ )

]

= min
us
Θ

,us
W

r(Θs
,W

s
,u

s
Θ,u

s
W,t)+V

∗(Θs
,W

s
,t+1)

(19)

Eq. (19) is also known as Bellman Equation [6]. Using Bellman
Equation along with dynamic programming [7] and optimal

control theory [5], optimal transmit power allocation and RIS

phase shifting policies in unconstrained state space can be

solved as
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(us
Θ)∗ = −

1

2
R−1

1

∂V ∗(Θs,Ws, t+ 1)

∂Θs(t+ 1)
(20)

(us
W)∗ = −

1

2
R−1

2

∂V ∗(Θs,Ws, t+ 1)

∂Ws(t+ 1)
(21)

Furthermore, the practical optimal policies used for original
constrained state space can be obtained through barrier function

as u∗

W = f−1
wk

[(us
W)∗] and u∗

Θ
= f−1

θm
[(us

Θ
)∗].

However, it is very difficult to solve the optimal policies since

it needs the optimal value function that can only be obtained

by solving Bellman Equation backward-in-time. To address

this challenge, we design a Actor2-Critic-Barrier reinforcement

learning algorithm. They are described as

Critic NN (Learning the optimal value function): Used to

learn the optimal value function V ∗(Θs,W s, t) along with

time using the real-time system state Θ
s(t),W s(t).

Actor NN 1 (Unconstrained RIS phase shifts Control): To

learn the optimal RIS phase shifts control (us
Θ
)∗(t) along with

time by using Eq. (20) and the learned optimal value function

from Critic component.

Actor NN 2 (Unconstrained transmit power Control): To

learn the optimal transmit power control (us
W

)∗(t) along with

time by using Eq. (21) and the learned optimal value function

from Critic component.

Barrier function (State space transformation): The barrier

function is utilized to transform learned optimal transmit power

allocation and RIS phase shifting policies under unconstrained

state space ((us
Θ
)∗(t), (us

W
)∗(t)) to constrained state space

(u∗

Θ
(t), u∗

W
(t)).

The structure of Actor2-Critic-Barrier reinforcement learning

algorithm is shown as Figure.2. The details are given next.

C. Actor2-Critic-Barrier RL based optimal resource allocation

design

To learn the optimal value function as well as optimal

transmit power and optimal RIS phase shifts control policy,

Neural Networks can be used to approximate the optimal value

function, optimal transmit power control and optimal RIS phase

shift policy with unconstrained state space as

V̂ (Θs,W s, t) = ŴT
V (t)ψV (Θ

s,W s, t) (22)

û
s
Θ(Θs,W s, t) = Ŵ

T

u,Θs(t)Ψu,Θs(Θs,W s, t) (23)

û
s
W

(Θs,W s, t) = Ŵ
T

u,W s(t)Ψu,W s(Θs,W s, t) (24)

with ŴV (t) ∈ C
lV ×1, Ŵu,Θs(t) ∈ C

lu,Θs×M , Ŵu,W s(t) ∈
C

lu,W×K being the estimated NN weight for Critic NN and

two Actor NNs, ψV (t) ∈ C
lV ×1, Ψu,Θs(t) ∈ C

lu,Θs×M ,

Ψu,W s(t) ∈ C
lu,W ×K being NNs activation functions. To

ensure the estimated values from NNs can converge to ideal

optimal solutions, the appropriate NN update laws are needed

to force the estimated NN weights to converge to targets.
According to optimal control theory [5], the optimal value

function is the unique solution to maintain the Bellman
Equation, i.e.

0 = r((Θs)∗, (W s)∗)+V
∗(Θs

,W
s
, t+1)−V

∗(Θs
,W

s
, t) (25)

Then, substituting the estimated value function from Critic

Fig. 2: Actor2-Critic-Barrier reinforcement learning structure.

NN into Bellman Equation, Eq. (25) will not hold and lead to

a residual error eBE(t) defined as

eBE(t) = r(Θs,W s) + V̂ (Θs,W s, t+ 1)− V̂ (Θs,W s, t)

= r(Θs,W s) + ŴT
V (t)∆ψV (Θ

s,W s, t)
(26)

with ∆ψV (Θs,W s, t) = ψV (Θs,W s, t+ 1)−ψV (Θs,W s, t).
To force the estimated value function to converge to optimal

value function, the estimated Critic NN should be updated to
reduce the residual error. Hence, using the gradient descent
algorithm [11], the update law of Critic NN is designed as

ŴV (t+1) = ŴV (t)+βV

∆ψV (Θs,W s, t){eBE − r(Θs,W s)}T

1 + ∥∆ψV (Θs,W s, t)∥2
(27)

where βV,k and βV,−k are Critic NN tuning parameters with

0 < βV,k < 1, 0 < βV,−k < 1.
Next, using the estimated value function from Critic NN as

well as Eqs. (20) and (21), two Actor NN estimation errors
can be obtained as

eu,Θs(t+1)= Ŵ
T

u,Θs(t)Ψu,Θs(Θs
,W

s
,t)+

1

2
R

−1

1

∂V ∗(Θs,W s,t+1)

∂Θs(t+ 1)
(28)

eu,W s(t+1)= Ŵ
T

u,W s(t)Ψu,W s(Θs
,W

s
,t)+

∂V ∗(Θs,W s,t+1)

∂W s(t+ 1)
(29)

Then, using two Actor NN estimation error, the related Actor

NN weights can be updated as

Ŵu,Θs(t+1) = Ŵu,Θs(t)−βu,Θs

Ψu,Θs(Θs,W s,t)eTu,Θs(t+1)

1 + ∥Ψu,Θs(Θs,W s,t)∥2
(30)

Ŵu,W s(t+1)=Ŵu,W s(t)−βu,W s

Ψu,W s(Θs,W s,t)eTu,W s(t+1)

1 + ∥Ψu,W s(Θs,W s,t)∥2
(31)

where 0 < βu,Θs , αu,W s < 1 are two Actor NNs tuning

parameters.

V. SIMULATION

In this section, the simulation results of the proposed resource

allocation algorithm for RIS aided wireless network with

constraints are provided. In the simulation, the channel matrix

HTR and hRR are following dynamic Rayleigh distribution

[8]. Also, the results of developed algorithm are compared with

two benchmark methods: Deep Deterministic Policy Gradient

(DDPG) and Deep Q Network (DQN).
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The performances of proposed Actor2-Critic-Barrier rein-

forcement learning algorithm are illustrated next.

1) Spectral Efficiency and Energy Efficiency with Optimal

Resource Allocation vs. number of Tx antennas and RIS units
Figure 3 compares spectrum efficiency and energy efficiency

with different number of Tx antennas, NT = 16, 32 and RIS

units, M = 8, 16 under power range from 0 to 50 dBm. As

shown in Figure 3, increasing BS antennas and RIS units can

enhance SE, degrade EE since more antennas cost more energy.
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Fig. 3: The comparison of SE and EE with different number of BS antennas and RIS

elements under equal number of users and RIS-assisted wireless network relays

2) Online Learning Performance
The energy efficiency (EE) and spectrum efficiency (SE)

learning process versus time steps has been evaluated. As

shown in Figure 4, EE and SE can be increased along with

P (t), and the proposed algorithm is able to learn the optimal

solution within finite time with time-varying wireless channels.
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Fig. 4: The average EE and average SE versus time steps
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Fig. 5: The learned transmit power under barrier function versus time steps

Moreover, the learned time-based overall transmit power

and RIS phase shift control under barrier function is shown in

Figure 5 and Figure 6. These two figures demonstrated that

the developed Actor2-Critic-Barrier Reinforcement Learning
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(a) RIS phase Learning with Barrier
Function |φ| ≤ 1, Pmax = 40dBm.
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Fig. 6: Learning steps of RIS phase under constraints

algorithm cannot only obtain the optimal resource allocation

policies, but also satisfy the given constraints.

VI. CONCLUSION

In this paper, a novel online Actor2-Critic-Barrier Reinforce-

ment Learning algorithm has been developed to optimize the

RIS-aided multi-user wireless network with constraints from

hardware limits. The developed algorithm can fully stimulate

the potential of RIS by online learning optimal resource

allocation policies even with contraints from RIS hardware in

practice. Moreover, online reinforcement learning algorithm

is capable of learning the unique resource allocation policies

that can optimize the RIS-aided wireless network. Through

comparing with existing algorithms in the simulation, the

effectiveness of the developed algorithm has been demonstrated.
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