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Abstract—This paper studies the optimal dynamic resource
allocation problem for a Reconfigurable Intelligent Surface (RIS)
aided MIMO wireless network with multi-user under uncertain
time-varying wireless channels. Recently, RIS has been considered
one of the most promising techniques to upgrade dynamic wireless
network quality. However, the capacity of RIS has been restricted
due to RIS hardware limitations and uncertainties from time-
varying wireless channels. Therefore, a novel dynamic resource
allocation technique needs to be developed that cannot only
optimize the overall network quality, e.g. maximizing energy
efficiency, minimizing power consumption, etc., but also consider
the RIS hardware limitations and the uncertainty from the time-
varying wireless channels. In this paper, a novel online data-
enabled actor-critic-barrier reinforcement learning algorithm is
developed and utilized along with neural networks (NNs) to learn
the optimal transmit power control, RIS phase shift control policies
under hardware limitations and wireless channel uncertainties.
Eventually, numerical simulations are provided to demonstrate
the effectiveness of the developed scheme.

Index Terms—Reconfigurable intelligent surfaces, RIS phase
shift, energy efficiency, hardware limitation,

I. INTRODUCTION

With highly demanding data exchanges from significantly
increasing number of users in the past decade, traditional
wireless communication system needs to be further upgraded.
Recently, Reconfigurable Intelligent Surface (RIS) has attracted
more and more interests due to its potential to enhance the
wireless network spectrum efficiency significantly without
raising network costs, e.g. power consumption, etc.

Due to the capability of reflecting radio frequency (RF)
signal, RIS can be used as an adjustable relay to enhance the
connections between base station (BS) to distributed multi-
users (UEs) especially when there has either no or weak line-
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of-sight. Different from other existing active relaying technique,
e.g. Amplify-and-Forward (AF) relay [1], Decode-and-Forward
(DF) relay [2] and so on, the RIS is made of passive RF
reflecting array units that don’t require extra power consumption
[3]. Also, the performance of the amplify and forward (AF)
relay and RIS has been compared in [1], RIS can deliver a much
higher energy efficiency than AF relay. Therefore, RIS-aided
wireless network that integrating RIS with current wireless
network has been considered as one of most promising next
generation of wireless system [4].

However, every coin has two sides. RIS also introduces
more non-trivial challenges to wireless network management
especially for dynamic resource allocation. For instance, new
resource allocation algorithm for RIS-aided wireless network
becomes more sensitive to the uncertainties in wireless channels.
Also, practical RIS unit has certain hardware limitations that
specifically limits the capability of RIS phase shifting. To
overcome those challenges, a novel barrier function has been
designed firstly to convert resource allocation optimization
problem with RIS hardware constraints to unconstrained
optimization problem. Then, a novel data-enabled actor-critic-
barrier (ACB) reinforcement learning algorithm is developed
to learn the optimal resource allocation policies for RIS-aided
wireless network with both uncertainties from wireless channels
and limitations from RIS hardware. The major contributions
of this paper are given as following:

e A time-varying and uncertain wireless communication
environment has been considered.

e A novel barrier function that simplified resource allocation
optimization problem.

e An online data-enabled learning algorithm has been designed
to learn the optimal resource allocation policies.
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Fig. 1: RIS-assisted wireless communication network

II. SYSTEM AND CHANNEL MODEL

A. System Model

Considering the RIS assisted wireless network with multi-
users being shown in Figure 1, which has one Base Station (BS)
equipped with Np antennas and K receivers (Rx) equipped
with one antenna each, and one RIS equipped with M
electronically controlled RF units. The BS and distributed
UEs can communicates through RIS. Then the received signal
from BS to k-th Rx at time t can be presented as

Uk (t) = (g8 (t) + Hra i () Ok () Hrr(1)x(t) + nk(t), (1)

where gi(t) is direct wireless channel from BS to k-th Rx.
Oy (t) denotes RIS phase shift diagonal matrix used for k-th Rx.
Oy (t) is defined as @ (t) = diag[e?? (1) 1% i0m (1)) ¢
CM*M_ Hpp € CM*NT and Hgry € CY*M present the
wireless channel from BS to RIS and from RIS to k-th Rx
respectively. yi(t) and nk(t) denote the received signal and
noise at k-th Rx respectively. nk(t) is the additive white noise

following normal distribution CA/(0, 07).
And with transmitted signal:

xX(t) = > /pr(t)ai ()sk(t) 2)

where py(t), q,(t), sk(t) represent the transmit power, beam-
forming vector at BS and transmitted data to user k respectively.
Next, let W, = /pi(t)q,(t), the power of the transmit signal
is under the maximum transmit power constrain as
E[x]’] = tr(W{ W) < Pras 3)

B. _RIS-aided time-varying wireless channel model .

There are two types™ of dynamic wireless channel in
RIS-aided wireless network that need to be modeled, i.e.
BS to RIS channel time-varying model:

Hir(t) = /Ber(t) x a(¢ris,Orrs, t) x a” (pps,Ops,t) (4)

where a/ t) denotes the time-varying channel gain from
BS to Ig,BRa((%BSﬁBSJ) € (C]%T“y a%ld a(¢RIg;,9Rls,t)

€ CM*1 represent the multi-antenna array response vectors
used for data transmission from BS to RIS respectively,
with a(¢ps,08s,t) = [a1(éBs,OBs,t), ... anr (¢BS,0Bs, 1)),
a(dris,Oris,t) = [a1(Pr1s, Orrs,t), ...,an (¢ris, Oris, )] .
RIS to k-th UE channel time-varying model:

Hrok(t) = /Bruk(t) X ax(ouE, Our,t) x ay (Pris, Oris,t)
)

where \/Bruk(t) describes the time-vary channel gain
from RIS to k-th UE at time ¢, ap(dvg,fur,t) €
CY™ 1, ap(érrs,Orrs,t) € CM*1 present the multi an-
tenna array response vector from RIS to k-th UE with

a(¢uE,0ve,t) = [aki(Pvr,0ue,t)]” , a(¢rrs,Oris,t) =
[ax,1(drrs, OIS, 1), -, an 0 (RIS, ORIS, )] .

Next, the time-varying Signal-to-Interference-plus-Noise
Ratio (SINR) at k-th UE can be presented as

_ (g () + Hrua (O () Hpr(1)) Wi ()]
Vi () i - -,
Yic1izk (@ () + Hrui©Hpr)Wi(t)|? + 0f

©)

Moreover,the real-time sum-rate of multi-users in RIS-aided
wireless network can be obtained as

K K
Re(t) = Rox(t) =Y Bloga(1+(1), (D
k=1

k=1
with B being the bandwidth of the channel.

III. PROBLEM FORMULATION
A. Total power consumption representation

Firstly, utilizing RIS-aided wireless system and channel
models defined in Eqgs. (4) and (5), the real-time power
consumption for the k-th UE can be represented as

P i(t) = uWE ()W 1, (t) + Prisk(t) + Pes + Puek (8)

with p being the efficiency of the transmission power amplifier
at BS, Pgpg and Pyg j being the circuit powers of BS and
k-th UE respectively, Prrs,, being the power consumption of
the RIS used for k-th UE communication.

Next, the overall power consumption for the entire RIS-aided
multi-user MISO wireless network can be defined as

K
Py(t) = Pilt) ©)
k=1

Moreover, a power consumption vector can be defined as
P(t) = [Ps1(t)Ps2(t)...Ps, k (1)].

B. Finite horizon resource allocation optimization with RIS
hardware limitations

Considering transmit power being distributed to multi-
antennas in BS as W(t) = [Wy(t),.., Wg(t),.., Wk (t)],
and RIS phase shifting matrix being selected as ©(t) =
[O1(1), .., Om(t), .., On(t)], Where O,,(t) = &) m =
sy M, 0p,(t) denotes RIS RF unit parameter and M de-
notes the number of RIS RF units. In addition, due to the
limitation from RIS hardware, RIS RF units are constrained as
Omin < Om(t) < Omaz With Oy, Oma. being lower and upper
bounds for RIS RF unit parameter. Then the finite horizon
resource allocation optimization problem with RIS hardware
limitation can be defined as

= L;ET(t) +91(ve,0) + g2(uw,e)

s.t. tT‘(W?Wk) < Paz;
Hmm S em S amazavm = 1727 7M

10)

where ue ¢, uw; represent the transmit power reallocation
and RIS phase shifting matrix adjustment policy respectively,
91(+), g2(-) are positive definitive functions describing the
costs of transmit power reallocation and RIS phase shifting
adjustments, T is the fixed final time. Moreover, ngg(t)
stands for the energy efficiency in RIS-aided wireless network
that is defined as the ratio between the network achievable
sum rate in bps and total power consumption in Joule, i.e.
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nee(t) = Rs(t)/Ps(t)
(7), (8) and (9) as

. It can be further expressed by using

S, Bloga(1 + (t))
Zk AW EW o+ Pris,c}(t)+ Pro+ Pra.k

Different than other existing optimization problems [10], the

this paper formulates a finite horizon optimization problem
(see Eq. (10)) that can jointly optimize the transmit power
allocation and RIS phase shifting adjustment policies along
with time, i.e. t € [0, Tr]. Hence, the finite horizon optimal
polices can be obtained as

nee(t)= (1

Tr
[ug, uy] —M‘gmm; [nEE 0 +g1(ue,) + g2(uw,)
st. tr(WEWL) < Phaa;
emin < 9m < emamavm = 1, 2, 7]\4
(12)

IV. STATE-SPACE BASED FINITE HORIZON
OPTIMIZATION DESIGN WITH BARRIER FUNCTION

A. State-space based finite horizon optimization problem

Considering the RIS phase shift ® and transmit power
W as the system states in the RIS-aided MISO wireless
communication network with multi-users, the dynamics of
the resource allocation system can be presented as

O(t+1) = O(t) +ue(t)
W(t+1) = W(t) + uw (t)

Next, recall to Eq. (10), the finite horizon optimization problem
can be further represented along with state-space resource

allocation dynamics as
Tr

(13)

i 2 [ E;(w o)t gl
st. ©(t+1)=0(t) +ue(t) (14)
W(t+1) = W(t) +uw(t)

tr(Wk:HWk) < Pmaav
gmin S Hm S emaxvvm == ].,2, 7J\I

B. Transformation of finite optimization problem with con-
straints with a barrier function

The key to transform a constrained optimization problem
with state-space representation into an unconstrained problem
is to find an appropriate one-to-one reversible mapping mech-
anism that can convert the original constrained state space
into an unconstrained state-space. Once the optimal solution
is obtained in the unconstrained state-space, the relevant
optimal solution in original constrained state space can be
obtain by using reversible mapping mechanism. To realize
this mapping mechanism in RIS-aided finite horizon optimal
resource allocation with constraints, the barrier functions can
be generated and applied for transmit power allocation and
RIS phase shifting matrix as follows

ann'n

omam
efn :fem, (va amin, e'm,am) - ln < *

_ 0m
emin - em ’

emaw

VYm = ].72, ...,M,Vam S (amin79mam)
Dmaz  Pmin — Wk
Wi = Wi Pmin, Pmaz) = In * )
i =fw,(Wk: Prin, Prmaz) (pmm pmax—Wk>
Vk=1,2,...., K,YWi € (Pmins Pmaz)
(15)

where 6,,, W} are original state space with constrains,
Omin, Omaz aNd Prin, Pmae are bounds for RIS phase shifting

and transmit power allocation caused by hardware limits.
Moreover, 6}, W), represent the transformed state space with
no constrains, ie. ¢;, € R, and W; € R. In addition, the
unconstrained state can be transformed back to original state
space with constraints through the inverse barrier functions as,

fg ( m2n7 emax)
eei” 37%
= Omin * Omaz 05, N ,V@fn eR
emine 2 _ema167 2
—1 .
Wy, = fwk (Wlfvpminapmax)
e V‘;g e V‘;]f
= Pmin * Pmazx WE We ,VW];S eR
Pmin€ 2 — Pmaz€ 2
(16)

Next, using the developed one-to-one reversible barrier func-
tion, the original system can be transformed to unconstrained

state space equally as
O%(t+1) =
We(t+1) =

©°(1) + ug(t)

1
W (1) + uiy (1) a7

with u% = f@(ll@), u;‘, = fw('uW)

Recall to finite horizon optimization problem with constraints
that formulated in Eq. (10), the value function in terms of
unconstrained state space can be defined as

V(O W* t) = TZFT(QS,WS,u%,uév,T)
T=t (18)
- Z | b + (i)
where ug, uyy represent RIS phase shifting and transmit

power allocation policies under unconstrained state space, and
Tp is the finite final time. Moreover, r(©°, W*, ug,, ujy, 7)
is positive definitive finite horizon cost-to-go function for the
RIS-aided wireless system under unconstrained state space.

According to Bellman’s principle of optimality [6], the
optimal value function can be represented dynamically as
T

VIO Wit = —— 4+ g1(up ) + g2 (uw -
© W= min 5[ 06, gt
= min r(©°,W* ug,uw, )+ V" (@° W* t+1)
@ W

19)

Eq. (19) is also known as Bellman Equation [6]. Using Bellman
Equation along with dynamic programming [7] and optimal

control theory [5], optimal transmit power allocation and RIS
phase shifting policies in unconstrained state space can be
solved as
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s *771 —18V*(®Sawsvt+1)
S \*¥ __ 1 —18V*(®8vwsvt+1)

Furthermore, the practical optimal policies used for original
constrained state space can be obtained through barrier function

as wiy = [ [(uiy)] and ug = £, [(up)"]

However, it is very difficult to solve the optimal policies since
it needs the optimal value function that can only be obtained
by solving Bellman Equation backward-in-time. To address
this challenge, we design a Actor?-Critic-Barrier reinforcement
learning algorithm. They are described as
Critic NN (Learning the optimal value function): Used to
learn the optimal value function V*(@°% W? t) along with
time using the real-time system state @°(t), W*(¢).

Actor NN 1 (Unconstrained RIS phase shifts Control): To
learn the optimal RIS phase shifts control (ug,)*(¢) along with
time by using Eq. (20) and the learned optimal value function
from Critic component.

Actor NN 2 (Unconstrained transmit power Control): To
learn the optimal transmit power control (u};,)*(¢) along with
time by using Eq. (21) and the learned optimal value function
from Critic component.

Barrier function (State space transformation): The barrier
function is utilized to transform learned optimal transmit power
allocation and RIS phase shifting policies under unconstrained
state space ((ug)*(t), (uf;,)*(t)) to constrained state space
(05 (1), uiy ().

The structure of Actor?-Critic-Barrier reinforcement learning
algorithm is shown as Figure.2. The details are given next.

C. Actor®-Critic-Barrier RL based optimal resource allocation
design

To learn the optimal value function as well as optimal
transmit power and optimal RIS phase shifts control policy,
Neural Networks can be used to approximate the optimal value
function, optimal transmit power control and optimal RIS phase
shift policy with unconstrained state space as

V(O W t) = WL (t), (©°, W* t) (22)
05 (0°, W' 1) = W, 0. ()W, 0:(0°, W 1)  (23)
@5y (0°, W, 1) = W, e ()T, e (©°, W2 1) (24)

with Wv(t) € Clvx1, VAVm@s (t) € Clu.@s XM VAVWWS (t) €
Cluw>K peing the estimated NN weight for Critic NN and
two Actor NNs, 1y (t) € C'v*1, v, e (t) € Clu.@sxM
W, w:(t) € Cluw*K being NNs activation functions. To
ensure the estimated values from NNs can converge to ideal
optimal solutions, the appropriate NN update laws are needed

to force the estimated NN weights to converge to targets.
According to optimal control theory [5], the optimal value
function is the unique solution to maintain the Bellman

Equation, i.e.
0= T((eé)*v (Wb)*)+V*(@s> st t+1)_V*(®sa Ws7 t) (25)

Then, substituting the estimated value function from Critic

Transformed Unconstrained State Space v

Critic NN

Actor NN 1 (RIS Phase Shifting)

§ (0%, W*, 1) = W, os (D00 (0°, W5, 1) 7| v ws 0 =Whowy ©5ws 0

RO UAG)
Transformed RiS-aided Wireless Network
without constraints
O(t+ 1) = 05(t) + ug(t)
WS+ 1) = WD) + u3y (L)

Actor NN 2 (Transmit Power Allocation)
Wy (05, WS, 0) = Wi, s (D ws (05, WS, 0) =
W

H

| Barrier Function f,(+), fo (*) |

Transhit Power Allocation ana [IS Phase

Shifting Policies for Original Constrained
System
iy = f (@)
o — fo! (@)

Original Constrained State Space

Original RIS-aided Wireless Network with
constraints

0 (t+1) = 0(t) + ug (£)
W(t+1) = W) +uy ()

Fig. 2: Actor?-Critic-Barrier reinforcement learning structure.

NN into Bellman Equation, Eq. (25) will not hold and lead to
a residual error epg(t) defined as
epp(t) =r(©@°, W?) 4+ V(@S7 Wet+1)— V(@S, W?* . t)
=r(@%, W?) 4+ W$(t)A¢V(®S, W?* . t)
(26)
with A, (©°, W2 1) = ¢, (©°, W? t + 1) — ¢, (©°, W7, 1).
To force the estimated value function to converge to optimal
value function, the estimated Critic NN should be updated to

reduce the residual error. Hence, using the gradient descent
algorithm [11], the update law of Critic NN is designed as

A (©°, W2 tY{epr — r(©°, W*)}T

W) = O T Ry, (on. W o)

27)
where (v 5, and [y, are Critic NN tuning parameters with
0< ﬁVJ@ <1,0< 5V,7k < 1.
Next, using the estimated value function from Critic NN as
well as Egs. (20) and (21), two Actor NN estimation errors
can be obtained as

o T s <xrs 1 _,0VHO°,W?t+1)
stH) =W, s Ty 0: (@ WS t)+-R{ 1227 " T
e.@: (t+1) u,0s P u,0: ( t) ot 90°(t+1)

(28)
V@, W*,t+1)

~T s S
e ws (t+1) =W, e ()T w=(0°, W*it)+ 3W$(t+1)29
29

Then, using two Actor NN estimation error, the related Actor
NN weights can be updated as

T, 0:(0°, W 0T .t +1)
Wu,(—)s (t+1) = Wu,(—)s (t)*ﬂu,(as 2

14 ||¥,0:(@° W52
(30)
U, we(O©°, W tle] yy.(t+1)
14+ ¥, we(@°, W 1)|?
(31)
where 0 < [y @, 0, ws < 1 are two Actor NNs tuning
parameters.

VVu,VVS (t+1) = Wu,WS (t)_ﬁu,Ws

V. SIMULATION

In this section, the simulation results of the proposed resource
allocation algorithm for RIS aided wireless network with
constraints are provided. In the simulation, the channel matrix
Hrgr and hip are following dynamic Rayleigh distribution
[8]. Also, the results of developed algorithm are compared with
two benchmark methods: Deep Deterministic Policy Gradient
(DDPG) and Deep Q Network (DQN).
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The performances of proposed Actor?-Critic-Barrier rein-
forcement learning algorithm are illustrated next.
1) Spectral Efficiency and Energy Efficiency with Optimal
Resource Allocation vs. number of Tx antennas and RIS units

Figure 3 compares spectrum efficiency and energy efficiency
with different number of Tx antennas, Ny = 16,32 and RIS
units, M = 8,16 under power range from O to 50 dBm. As
shown in Figure 3, increasing BS antennas and RIS units can
enhance SE, degrade EE since more antennas cost more energy.

—e— RIS_DQN_N=16_M=8 K=8 ~o— RIS_DON_N=16_M=8 K=8
4~ RIS_DDPG_N=16_M=8 K=8 4~ RIS_DDPG_N=16_M=8 K=8
~4- Proposed_RL_N=16_M=8 K=8 50{ —&— Proposed_RL_N=16_M=8 K=8

Average EE(Kbit/Joule)

Average SE(bps/Hz)

5 10 15 20 25 30 35 40 45 50 55 o 10 20 30 40 50
Prax(dBm) Prnax(dBm)

(a) Average EE compared with N=16, (b) Average SE compared with N=16,
M=8 and N=32, M=16 M=8 and N=32, M=16

Fig. 3: The comparison of SE and EE with different number of BS antennas and RIS
elements under equal number of users and RIS-assisted wireless network relays

2) Online Learning Performance
The energy efficiency (EE) and spectrum efficiency (SE)

learning process versus time steps has been evaluated. As
shown in Figure 4, EE and SE can be increased along with
P(t), and the proposed algorithm is able to learn the optimal
solution within finite time with time-varying wireless channels.

Average EE(Kbit/joule)
Average SE(bps/Hz)

20 — Average.P,
— Average.P,
— Average.P,

H —— Average P,
— Average_P,
o —— Average_Prax

(a) Average EE versus time steps un- (b) Average SE versus time steps un-
der Ppgz = 20dBm, 22dBm, 24dBm. der Ppqz = 20dBm, 22dBm, 24dBm.

Fig. 4: The average EE and average SE versus time steps

Controlled Transmit Power under constraint P_{max}=40dBm Controlled Transmit Power under constraint P_{max}=20dBm

a0 200

35 175

Transmit Power(dBm)

\

0 2000 4000 6000 8000 10000 [ 2000 4000 6000 8000 10000
Steps Steps

(a) Transmit Power Learning with (b) Transmit Power Learning with
Barrier Function Py,q. = 40dBm. Barrier Function Py, = 32dBm.
Fig. 5: The learned transmit power under barrier function versus time steps

Moreover, the learned time-based overall transmit power
and RIS phase shift control under barrier function is shown in
Figure 5 and Figure 6. These two figures demonstrated that
the developed Actor?-Critic-Barrier Reinforcement Learning

Absolute Amplitude of RIS under constraint |¢] < 1, Prax=20dBm Absolute Amplitude of RIS under constraint [¢] < 1, Pma=40dBm

10 10

08 ——‘\/ 08 D‘,g \C

Absolute Amplitude |9
Absolute Amplitude [¢]
/

0 2000 4000 6000 8000 10000 [ 2000 4000 6000 8000 10000
Steps Steps

(a) RIS phase Learning with Barrier (b) RIS phase Learning with Barrier
Function |¢| < 1, Praz = 40dBm. Function |¢| < 1, Pmaaz = 20dBm.

Fig. 6: Learning steps of RIS phase under constraints

algorithm cannot only obtain the optimal resource allocation
policies, but also satisfy the given constraints.

VI. CONCLUSION

In this paper, a novel online Actor?-Critic-Barrier Reinforce-
ment Learning algorithm has been developed to optimize the
RIS-aided multi-user wireless network with constraints from
hardware limits. The developed algorithm can fully stimulate
the potential of RIS by online learning optimal resource
allocation policies even with contraints from RIS hardware in
practice. Moreover, online reinforcement learning algorithm
is capable of learning the unique resource allocation policies
that can optimize the RIS-aided wireless network. Through
comparing with existing algorithms in the simulation, the
effectiveness of the developed algorithm has been demonstrated.
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