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Abstract—This paper investigated the optimal dynamic re-
source allocation problem for multi mobile reconfigurable intel-
ligent surface (RIS) aided wireless network with uncertain time-
varying wireless channels. Recently, RIS has been considered as
one of the most promising techniques for enhancing dynamic
wireless network quality, e.g. maximizing spectrum efficiency,
etc., without increasing power consumption. Comparing with
the traditional RIS techniques, the mobility of RIS through
the unmanned aerial vehicles(UAV) is stimulated in this paper.
Before harvesting the benefits from mobile RIS, a novel resource
allocation technique needs to be developed that cannot only
optimize the overall network quality, e.g. maximizing energy
efficiency, coverage, minimizing power consumption, etc., but also
adapt to the uncertainty of the environment, such as time-varying
wireless channel, in real time. Hence, a novel online reinforcement
learning based optimal resource allocation algorithm has been
designed. Firstly, a Q-learning Adaptive Dynamic Programming
algorithm is utilized to optimize the deployment of the RIS.
Then, an online actor-critic reinforcement learning algorithm is
developed along with neural networks (NNs)to learn the optimal
transmit power control as well as mobile RIS phase shift control
policy. Eventually, numerical simulations have been provided to
demonstrate the effectiveness of the developed scheme.

Index Terms—Reconfigurable intelligent surfaces, Unmanned
aerial vehicles, dynamical channel model, RIS phase shift, energy
efficiency, Reinforcement Learning

I. INTRODUCTION

During the past decade, serious challenges for the next
generation of wireless communication networks are emerging
due to the significantly increased number of wireless users
with highly demanding data rate requirements. With the higher
frequencies, which are the millimeter(30-100 GHz) and sub-
millimeter(above 100 GHz) wave bands [1] using in future, a
variety of entities, e.g. sensors, robots, etc. will be populated
in the complex environment to perform a broad range of
tasks such as sensing, communicating and so on. It poses
a serious challenge to next generation of wireless network
since existing network is very difficult to provide reliable
and resilient service for a large number of deterministic and
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mobile users with different quality-of-service (QoS) require-
ment. To address those challenges, different techniques, such
as relay-assisted communication network [2], Reconfigurable
Intelligent Surface (RIS) [4], etc. have attracted enormous
interest from both research societies and industrial commu-
nities. Compared with relay-enhanced networks [2], RIS-
assisted wireless networks can expand the network coverage as
well as throughput without increasing the installation cost by
reflecting signals through RIS passively. For instance, passive
non-reconfigurable reflectors and nearly passive smart surfaces
have been studied more and more.

The RIS is consist of the passive units that don’t neet
extra power supply comparing with the active relay enhanced
wireless network [5]. The performance of the conventional
amplify and forward(AF) relay and RIS has been compared
in [2], the results demonstrate that the RIS has a much
lower power consumption with a higher energy efficiency.
However, most existing works consider the RIS units are static
which has limit capability to handle the dynamic and complex
environment. Strengthening RIS unit by adding mobility can
pave the way for implementing RIS-assisted wireless network
into future applications such as the Internet of Things(IoT)
[3].

Meanwhile, Unmanned aerial vehicles (UAVs) have been
widely adopted to enhance the adaptivity of wireless commu-
nication by using its mobility [6]. In [7], an UAV employed
onboard RIS system has been designed to support the strin-
gent constraints of ultra-reliable low latency communication
(URLLC). In [9], the authors study the performance of UAV-
enhanced RIS-aided wireless system and focus on optimal
UAV altitude and location development. And In [10], the UAV-
enhanced RIS-assisted wireless downlink communication to
multi-users has been studied with static wireless channel.

To fully stimulate the potential of UAV and RIS, this paper
investigates UAV placement optimization along with resource
allocation optimization in Multi-RIS carried by UAV aided
wireless network with uncertain and time-varying wireless
channel. The developed optimal solution needs to ensure the
optimality, reliability and resilience of time-varying wireless
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communication for densely distributing multi-users. The major
contribution of this paper are given as following:
• A time-varying and uncertain environment has been con-
sidered. Specifically, a state-space model has been developed
to represent the dynamic resource allocation system in multi
RIS carried by UAV aided wireless network.
• A finite horizon optimal resource allocation problem has
been formulated along with RIS optimal placement. Using
dynamic programming [11] and Q-learning technique, we can
find the best RIS placement and further optimize mobile RIS-
assisted wireless network.
• A two-stage online optimization algorithm has been de-
signed for RIS placement and mobile RIS-assisted wireless
network resource allocation. At stage 1, A deep Q learning
based Adaptive Dynamic Programming(ADP) clustering algo-
rithm is developed to solve the RISs’ optimal deployment.
At stage 2, a novel online actor-critic reinforcement learning
algorithm has been developed to learn the optimal resource
allocation for mobile RIS-assisted wireless network.

The rest of this paper is organized as follows. In Section
II, we introduced the system model and channel model for
the RIS assisted communication. In Section III, the problems
are formulated. In Section IV, the algorithms are proposed.
The numerical simulation results are presented in Section V.
Finally, we conclude the article in Section VI.

II. SYSTEM AND CHANNEL MODEL

A. System Model

Considering the multi-RISs aided wireless network as
shown in Figure 1, there are base station (BS) with NB

antennas, R reconfigurable intelligent surfaces(RISs) carried
by UAVs each with NR elements that are controlled electron-
ically, and K single-antenna users (UEs). The K users are
divided into R clusters and each cluster has Kr, r = 1, ..., R
users, The direct signal links from BS to users are blocked
by trees, buildings and other obstacles. Hence, the BS needs
to transmit signal through the multi UAV-carried RIS to users
via two-hop and multipath. Then in real time t, the received
signal at user k with k = 1, ...,K can be presented as

yk(t) =

Non∑
i=1

[hRU,i,k(t)Φi(t)HBR,i(t)x(t)] + nk(t), (1)

where Non represents the number of RIS that used for
transmiting data from BS to user k simultaneously. Where
x(t) ∈ CNB×1 denotes the transmitted signal, yk(t) denotes
the received signal, nk(t) is the additive white noise following
normal distribution CN (0, σ2

k), HBR,i(t) ∈ CNR×NB and
hRU,i,k(t) ∈ C1×NR represent channel gain matrix from BS
to RISi and from RISi to user k respectively for two-
hop RISs-assisted communication at time t. Moreover,Φi(t)
is a diagonal matrix used for managing effective phase
shifts that applied by RISi reflecting elements. Specifi-
cally, Φi(t) for user k at time t is defined as Φi(t) =
diag[ejθ1(t), ejθ2(t), ..., ejθNR

(t)] ∈ CNR×NR . In addition, the
transmitted signal x(t) at time t can be further represented as

Fig. 1: UAV-enhanced RIS-assisted wireless network at tactical edge

x(t) =
∑K

k=1

√
pk(t)qk(t)sk(t) with pk(t),qk(t), sk(t) being

the transmit power, beamforming vector at BS and transmitted
data to user k respectively. Moreover, transmit power at BS is
limited and needs to satisfy the following constraints, i.e.

E[|x|2(t)] = tr(P(t)QH(t)Q(t)) ≤ Pmax, (2)

where Pmax denotes the maximum transmit power, Q(t) is
defined as Q(t) = [q1(t), ...,qK(t)] ∈ CNB×K , and P(t) =
diag[p1(t), ...,pK(t)] ∈ CK×K .

B. RIS aided wireless channel model

There are two types of dynamic wireless channel that need
to be modeled, i.e.
BS to RISi channel model:

HBR,i(t) =
√
βBR,i(t)× ai(ϕR, θR, t)× aHi (ϕBS , θBS , t)

(3)
where

√
βBR,i(t) denotes the time-varying BS to RISi

channel gain, ai(ϕBS , θBS , t) and ai(ϕR, θR, t) represent the
multi-antenna array response vectors used for data transmis-
sion from BS to RISi respectively, with ai(ϕBS , θBS , t) =
[ai,1(ϕBS , θBS , t), ..., ai,NB

(ϕBS , θBS , t)]
T ∈ CNB×1 and

ai(ϕRIS , θR, t) = [ai,1(ϕR, θR, t), ..., ai,NR
(ϕR, θR, t)]

T ∈
CNR×1. Since we consider one BS and one RISi for multiple
users in this paper, BS to RISi aided wireless channel has
been shared by all the users under RISi’s coverage.
RISi to UEk wireless channel model

hRU,i,k(t) =
√
βRU,i,k(t)× aHi (ϕRU,i,k, θRU,i,k, t) (4)

where
√
βRU,i,k(t) describes the time-vary channel gain from

RISi to user k at time t, k = [1, ...,K], ai(ϕRU,i,k, θRU,i,k, t)
is the multi-antenna array response vector used for data
transmission from RISi to user k with a(ϕRU,i,k, θRU,i,k, t) =
[ai,1(ϕRU,i,k, θRU,i,k, t), .., ai,M (ϕRU,i,k, θRU,i,k, t)]

T ∈
CNR×1.

Next, considering non-line of sight (NLOS) data communi-
cation in Multi-RIS aided wireless network, the time-varying

2022 IEEE Globecom Workshops (GC Wkshps): Workshop on Wireless Communications for Distributed Intelligence

1091
Authorized licensed use limited to: UNIVERSITY OF NEVADA RENO. Downloaded on September 02,2023 at 00:27:07 UTC from IEEE Xplore.  Restrictions apply. 



Signal-to-Interference-plus-Noise Ratio (SINR) at the user k
with k ∈ (1, ...,K) can be obtained as

γk(t) =

∑Non
i pk(t)|(hRU,i,k(t)Φk(t)HBR,i(t))qk(k)|

2∑R
r ̸=i

∑K
j ̸=k pj(t)|h

H
RU,i,k(t)Φk(t)HBR,i(t))qj(t)|2 + σ2

k

,

(5)
Furthermore,the real-time system Spectral Efficiency(SE) in

bps/Hz can be represented as

R(t) =
K∑

k=1

log2(1 + γk(t)), (6)

III. PROBLEM FORMULATION

Although multi-RIS assisted dynamic wireless network is
capable of optimizing the communication service for massive
users without increasing installing cost, it is still very challeng-
ing to develop an effective resource allocation algorithm due to
the mobility of RIS as well as uncertain RIS-aid wireless chan-
nel. To address this issue, we formulate the optimal resource
allocation problem for multi-RIS assisted dynamic wireless
network into two-phase optimization problem, i.e. Phase 1:
Multi-RISs optimal deployment with given resource allocation,
i.e. transmission power and RIS phase shifting, and Phase 2:
Dynamic resource allocation optimization with given multi-
RISs deployment. Through operating two phases repeatedly,
we will obtain the joint optimal multi-RISs deployment and
resource allocation. Next, details are given

A. Optimization of Multi-RISs Deployment

Firstly, considering the position of i-th RIS as Si, the
dynamic of position of i-th RIS can be presented as

Si(t+ 1) = fd(Si(t)) + gd(Si(t))uRIS,i(t) (7)

where Si denotes the position states of RISi, fd is a non-
linear function of Si presenting the movement dynamics, gd
denotes the control effects and uRIS,i is the control input
which defined as uRIS,i = [uRISi,movine, uRISi,rotation], i =
1, 2, ...,K. uRISi,moving vector includes the moving op-
tions corresponding to the moving direction and distance,
uRISi,rotation vector includes the rotation options of i-th RIS.

To maximize the coverage of multi-RIS assisted dynamic
wireless network with given transmission power and RIS phase
shifting, the optimal multi-RISs deployment can be defined as

Q∗(t) = min
uRIS

R∑
i=1

[

Non∑
j=1

[Jr(dRU (j, i)] + J(dBR(i))− l(uRIS,i)]

(8)
where

∑Non

j=1 [Jr(dRU (j, i)] is the reward function about the
coverage effectiveness between RISi to users, J(dBR(i)) is
the reward function about the coverage effectiveness between
BS and RISi, and l(uRIS,i) represents the costs of multi-
RISs movement, and Ni is the number of users that covered
by RISi. Next, the optimal multi-RIS deployment policy can
be obtained as

u∗
RIS(t) = argmin

R∑
i=1

[

Non∑
j=1

[Jr(dRU (j, i)]+J(dBR(i))−l(uRIS,i)]

(9)

To find the optimal solution, we will adopt Q-learning
along with adaptive dynamic programming. After multi-RIS
deployment is obtained, we need to develop optimal power
allocation and phase shifting algorithm to maximize the com-
munication quality under given multi-RIS deployment and
complex environment.

B. Resource allocation for multi-user sharing one RIS

The total power dissipated in the i-th RIS assisted cluster in
which including Ui users concludes the BS transmit power(pi),
hardware static power at BS(PBS,i),RIS hardware(PR,i) as
well as at user equipment(PUE,i). Using this consumption, the
total power operated on the i-th RIS assisted wireless network
downlink cluster is defined as

Pi−total(t) =

Ui∑
u=1

(ξpu(t) + PUE,u(t)) + PBS,i(t) + PR,i(t),

(10)
where ξ ∼= ν with ν being the efficiency of the transmit power
amplifier. u = [1, ..., Ui] presents the user numbers assisted by
i-th RIS. The total power for the entire system is

Ptotal(t) =

R∑
i=1

Pi−total(t) (11)

Similar to [12], Considering (10) as the denominator of
the energy efficiency(EE) function, then the EE performance
ηEE

∼= (B · R)/Ptotal with B presenting the Bandwidth, can
be obtained using (6) and (10) as

ηEE(t) =
B
∑Ui

u=1 log2(1 + γu(t))∑Ui

u=1(ξpu(t) + PUE,u(t)) + PBS,i(t) + PR,i(t)
,

(12)
The goal is to maximize the energy efficiency ηEE(t)

and minimize the power consumed by jointly optimizing the
transmit power P = [p1(t), p2(t), ..., pUi

(t)] from BS and
phase shift matrix Φ = [ϕ1(t), ϕ2(t), ..., ϕNR

(t)] from
RIS.

Considering the transmit power P(t) and RIS phase shifts
Φ(t) as two system state in the RIS aided wireless system, the
dynamics of the system resource allocation can be represented
as

P(t+ 1) = P(t) + uP (t) (13)

Φ(t+ 1) = Φ(t) + uΦ(t) (14)

with P ∈ CU×U , Φ ∈ CNR×NR being RIS aided wireless
system states, and uP ∈ CU×U , uΦ ∈ CNR×NR being
resource allocation control policy, i.e. transmit power control
policy and RIS phase shifts control policy. Next, to optimize
the RIS aided wireless system, the resource allocation finite
horizon cost functioned as

V (P,Φ, t) =

TF∑
τ=t

r(P,Φ, uP , uΦ, τ)

=

TF∑
τ=t

{(tr(P(τ)Q(τ)HQ(τ))) +
1

ηEE(P,Φ, τ)

+ uT
P (τ)RP uP (τ) + uT

Φ(τ)RΦuΦ(τ)}

(15)
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where r(P,Φ,uP ,uΦ, t) = L(P,Φ, t) + uT
P (t)RP uP (t) +

uT
Φ(t)RΦuΦ(t) is positive definite finite horizon cost-

to-go function includes L(P,Φ, t) represent the trans-
mit power cost as well as energy efficiency cost and
uT
P (t)RP uP (t),uT

Φ(t)RΦuΦ(t) represent the cost of trans-
mit power control and RIS phase shifts control respectively,
ηEE(P,Φ, t) is positive energy efficiency function that defined
in Equ. (12), RP , RΦ are positive definite weighting matrices
for transmit power control and RIS phase shifts control, and
TF is the finite final time.

According to Bellman’s principle of optimality [14], the
finite horizon optimal cost function can be represented dy-
namically as

V ∗(P,Φ, t) = min
uΦ,uP

{r(P,Φ, t)}+ V ∗(P,Φ, t+ 1) (16)

Eq. (16) is also well-known as Bellman Equation. Using
Bellman Equation along with optimal control theory [13],
optimal control policies including optimal transmit power and
RIS phase shifts are solved by dynamic programming [15] as

u∗
P = −1

2
R−1

P

∂V ∗(P,Φ, t+ 1)

∂P(t+ 1)
(17)

u∗
Φ = −1

2
R−1

Φ

∂V ∗(P,Φ, t+ 1)

∂Φ(t+ 1)
(18)

IV. TWO-PHASE RIS PLACEMENT AND RESOURCE
ALLOCATION OPTIMIZATION WITH ONLINE

LEARNING

A. Phase 1: Deep Q-Learning based Adaptive Dynamic Pro-
gramming (ADP) Optimal RIS Deployment

Considering the optimal multi-RISs deployment problem,
the Q-learning could help to learn through direct interaction
with environment. Meanwhile, the ADP algorithms are re-
ferred to as planning method. Then a Q-ADP based algorithm
is proposed to solve this problem.

In this Q-ADP method, the learning process is driven by real
data as standard Q-learning and Q(s,uRIS) is being updated
during the process. In addition, at each decision point t, a
planning process is realized by the ADP algorithm through
generating several short sample paths starting from the state
st and computing the values of the states on the sample paths.
The Q(s,uRIS) will also be updated through the one-step
transition probabilities and the reward function. The Q-ADP
learning algorithm for optimal RIS path planning is shown in
Algorithm 1.

B. Phase 2: Online Actor-Critic Reinforcement Learning
Based Optimal Resource Allocation Design

Actor-Critic RL structure: As shown in Figure 2, we have
Critic (Cost Function): To learn the optimal cost function
V ∗(P,Φ, t) along with time by using the real-time RIS-
wireless system state P(t),Φ(t). The Critic component will be
tuned through Bellman Equation since optimal cost function
is the unique solution to maintain the Bellman Equation.

Algorithm 1 Deep Q Learning Based Intelligent multi-UAV
RIS deployment (Phase 1)

1: Initialize RIS position s, Q(s,uRIS)
2: Repeat
3: s← current state
4: uRIS ← Q(s,uRIS)withϵ greedy
5: Execute control uRIS ; observe new state s

′
, reward r

6: Q(s,uRIS) ← Q(s,uRIS) + α[r + γQ(s
′
,u

′
)RIS −

Q(s,uRIS)]
7: Planning at state s
8: Repeat l times(l : numberofsamplepaths)ŝ
9: Repeat k times(k : number of time steps on a path)

10: For each possible control policy ûRIS

11: Find all possible next state ŝ
′

12: Q(ŝ, ûRIS) ←
∑

ŝ′ P
ûRIS

ŝ̂s′
[RûRIS

ŝŝ′
+

γQ(ŝ
′
,uRIS)]

13: û∗
RIS ← Q(ŝ,uRIS)

14: Compute next state ŝ
′
= fd(ŝ) + gd(ŝ)ûRIS

15: ŝ← ŝ
′

16: s← s
′

17: Until the simulation ends

Fig. 2: 2-stage network structure.

Actor 1 (Transmit Power Control): To learn the optimal
transmit power control u∗

P (t) along with time by using Eq.
(17) along with the learnt optimal cost function from Critic.
Actor 2 (RIS phase shifts Control): To learn the optimal RIS
phase shifts control u∗

Φ(t) along with time by using Eq. (18)
along with the learnt optimal cost function from Critic.
Actor-Critic NN based Optimal Resource Allocation Design:
To learn the optimal cost function as well as optimal transmit
power control policy and optimal RIS phase shifts control
policy, Neural Networks can be used to approximate the
optimal cost function, optimal transmit power control and
optimal RIS phase shift policy as

V̂ (P,Φ, t) = ŴT
V (t)ψV (P,Φ, t) (19)

ûP (P,Φ, t) = Ŵ
T

u,P (t)Ψu,P (P,Φ, t) (20)
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ûΦ(P,Φ, t) = Ŵ
T

u,Φ(t)Ψu,Φ(P,Φ, t) (21)

where ŴV (t) ∈ ClV ×1, Ŵu,P (t) ∈ Clu,P×U , Ŵu,Φ(t) ∈
Clu,Φ×M being the estimated NN weights for Critic NN and
Two Actor NNs, ψV (t) ∈ ClV ×1, Ψu,P (t) ∈ Clu,P×U ,
Ψu,Φ(t) ∈ Clu,Φ×M being NNs activation functions. To ensure
the estimated values from NNs can converge to ideal optimal
solutions, the appropriate NN update laws are needed to force
the estimated NN weights to converge to targets.

According to classic optimal control theory [13], the optimal
cost function is the unique solution to maintain the Bellman
Equation, i.e.

0 = r(P∗,Φ∗, t) + V ∗(P,Φ, t+ 1)− V ∗(P,Φ, t) (22)

However, by substituting the estimated cost function from
Critic NN into Bellman Equation, Eq. (22) will not hold and
lead to residual error eBE(t) defined as

eBE(t) = r(P,Φ, t) + V̂ (P,Φ, t+ 1)− V̂ (P,Φ, t)

= r(P,Φ, t) + ŴT
V (t)∆ψV (P,Φ, t)

(23)

with ∆ψV (P,Φ, t) = ψV (P,Φ, t+ 1)−ψV (P,Φ, t).
To force the estimated cost function to converge to optimal

cost function, the estimated Critic NN should be updated to
reduce the residual error. Hence, using the gradient descent
algorithm, the update law for Critic NN can be designed as

ŴV (t+ 1) = ŴV (t) + αV
∆ΨV (P,Φ, t){eBE − r(P ,Φ, t)}T

1 + ∥∆ΨV (P,Φ, t)∥2
(24)

where αV is Critic NN tuning parameter with 0 < αV < 1.
Next, using the estimated cost function from Critic NN as well
as Eqs. (17) and (18), two Actor NN estimation errors can be
defined as

eu,P (t+ 1) = Ŵ
T

u,P (t)Ψu,P (P,Φ, t) +
1

2
R−1

P

∂V ∗(P,Φ, t+ 1)

∂P(t+ 1)
(25)

eu,Φ(t+ 1) = Ŵ
T

u,Φ(t)Ψu,P (P,Φ, t) +
1

2
R−1

Φ

∂V ∗(P,Φ, t+ 1)

∂Φ(t+ 1)
(26)

Using two Actor NN estimation error, the related NN
weights can be updated as

Ŵu,P (t+ 1) = Ŵu,P (t)− αu,P

Ψ(P,Φ, t)eTu,P (t+ 1)

1 + ∥Ψu,P (P,Φ, t)∥2
(27)

Ŵu,Ψ(t+ 1) = Ŵu,Ψ(t)− αu,Ψ

Ψ(P,Φ, t)eTu,Ψ(t+ 1)

1 + ∥Ψu,P (P,Φ, t)∥2
(28)

where 0 < αu,P , αu,Φ < 1 are two Actor NNs tuning
parameters. The structure of the actor-critic network is shown
in Figure 2. The detailed algorithm is shown in Algorithm2.

V. SIMULATION

A. Efficiency of RIS Deployment

As Figure.3 shown, the multi-RIS aided wireless network
has one base station three mobile RISs carried by UAV for
covering 50 distributed wireless users in the uncertain and
dynamic wireless communication environment. The developed

Algorithm 2 Actor-Critic online optimal power allocation and
phase shift control (Phase 2)

1: Acquire agent number i
2: Initialize NN weights ŴV,i,Ŵu,P,i, Ŵu,Φ,i randomly
3: Initialize eBE,i, eu,P,i, eu,Φ,i to be ∞
4: while True do
5: Update critic NN weights by solving Eq. (24), i.e.,

ŴV,i = ŴV,i + αV
∆ΨV,i{eBE,i − ri}T

1 + ∥∆ΨV,i∥2

6: Update power actor NN weights by solving Eq. (27),
i.e.,

Ŵu,P,i = Ŵu,P,i − αu,P,i

ΨieTu,P,i

1 + ∥Ψu,P,i∥2

7: Update Phase actor NN weights by solving Eq. (28),
i.e.,

Ŵu,Ψ,i = Ŵu,Ψ,i − αu,Ψ,i

ΨieTu,Ψ,i

1 + ∥Ψu,P,i∥2

8: ûP,i ← Ŵ
T

u,P,iΨu,P,i

9: ûΦ,i ← Ŵ
T

u,Φ,iΨu,Φ,i

10: Execute ûP,i, ûΦ,i and observe new transmitter power
pi and phase shift Φi

11: end while

deep Q-ADP path planning algorithm can learn the optimal
position for RISs to maximize the potential for having a large
wireless coverage.

(a) t1 = 1s (b) t2 = 20s (c) t3 = 60s

Fig. 3: Optimal RIS placement for maximizing coverage with mobile multi-users

B. Performance of Online Actor-Critic Reinforcement Learn-
ing based Optimal Resource Allocation

In the simulation, the channel matrix HBR,k and hRU,k are
following dynamic Rayleigh distribution [20]. The parameters
used in the Multi-mobile-RIS aided wireless networks are
shown in Table I.

TABLE I: Parameters Descriptions

Parameter Description Value
BW Transmission bandwidth 180kHz
αV learning rate for critic network 0.001

αu,P , αu,Φ learning rate for actor network 1&2 0.001
PBS circuit dissipated power at BS 9dBW
ξ circuit dissipated power coefficients at BS 1.2

PUE dissipated power at each user 10dBm
PR,i dissipated power at the i-th RIS 10dBm
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1) Spectral Efficiency and Energy Efficiency with Optimal
Resource Allocation vs. number of BS antennas and RIS units

After RIS being deployed, the developed algorithm will
optimize the transmit power control and RIS phase shift
control to stimulate all the potentials of multi-RIS aided
wireless network. The performances of proposed actor-critic
based RL algorithm are illustrated in the following section.

Figure.4 compares both spectrum efficiency and energy
efficiency with different number of BS antennas, N = 16, 32
and RIS units, i.e. M = 8, 16 under power range from 0 to
50 dBm. As shown in Figure. 4, increasing BS antenna and
RIS units can enhance the spectrum efficiency but degrade the
energy efficiency since more antennas cost more energy.
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Fig. 4: The comparison of SE and EE with different number of BS antennas and RIS
elements under equal number of users and UAV-enhanced RIS-assisted wireless network
relays

2) Online Learning Performance Eventually, the energy ef-
ficiency (EE) and spectrum efficiency (SE) learning process
versus time steps has been evaluated. As shown in Fig.5, EE
and SE can be increased along with P (t), and the developed
Actor-Critic RL based optimal resource allocation algorithm
is able to learn the optimal solution within finite time even
under dynamic environment.
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Fig. 5: The average EE and average SE versus time steps

VI. CONCLUSION

In this paper, a novel online Actor-Critic Reinforcement
Learning algorithm has been developed to optimize the multi-
RIS aided multi-users wireless system within finite time.
Compared with other existing algorithms, the developed al-
gorithm can fully stimulate the potential UAV and RIS by

online learning optimal RIS placement as well as resource
allocation policies. Through deep Q-ADP algorithm, UAVs
carry RIS to find the best places for covering multi-user.
Then, the online actor-critic reinforcement learning algorithm
can learn the optimal transmit power and RIS phase shift to
optimize the wireless network quality, e.g. energy efficiency,
etc., in real-time under uncertainties. Through comparing with
existing algorithms in the simulation, the effectiveness of our
developed algorithm has been demonstrated.
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