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sensitivity, and interpretability.
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As one of the biggest game changers in addressing climate change, the transition to a
carbon-neutral electric grid poses significant challenges to conventional paradigms of modern grid planning
and operation. Artificial intelligence (Al) has the potential to address the challenges posed by large decision-
making scale and increased uncertainty, as many key decision-making mechanisms of grid planning and
operation can be formulated as representative Al problems. However, Al needs to be tailored for power sys-
tem applications in three layers of technology, market, and policy to meet the needs of safety criticality, time

Proof-of-Concept: Data science output has been formulated,
implemented, and tested for one domain/problem

SUMMARY

The transition toward carbon-neutral electricity is one of the biggest game changers in addressing climate
change since it addresses the dual challenges of removing carbon emissions from the two largest sectors of
emitters: electricity and transportation. The transition to a carbon-neutral electric grid poses significant
challenges to conventional paradigms of modern grid planning and operation. Much of the challenge arises
from the scale of the decision-making and the uncertainty associated with the energy supply and demand.
Artificial intelligence (Al) could potentially have a transformative impact on accelerating the speed and scale of
carbon-neutral transition, as many decision-making processes in the power grid can be cast as classic,
though challenging, machine-learning tasks. We point out that to amplify Al’s impact on carbon-neutral tran-
sition of the electric energy systems, the Al algorithms originally developed for other applications should be
tailored in three layers of technology, markets, and policy.

INTRODUCTION

To grapple with climate change, many countries are striving to
achieve carbon neutrality of their electricity sectors. As an
example, the US aims for 100% electricity generation from
zero-carbon resources by 2035. However, today’s decarboniza-
tion rate in the US electricity sector may not be able to realize
such an aggressive agenda sector.’

Speeding up the carbon-neutral transition of the electricity
sector requires massive integration of renewable generation
at an unprecedented rate. Such large-scale renewable inte-

gration poses significant challenges to the operational para-
digm that today’s grid employs. Reliable operation depends
on both offline planning as well as real-time decision-making,
including monitoring, control, and protection. In the emerging
electricity landscape with deep renewables, due to the
temporally variable nature of renewable generation, the num-
ber of scenarios needing to be considered in planning studies is
extremely large, which creates significant difficulties for grid
planners. Moreover, impactful anomalies in a low-carbon grid,
e.g., oscillations and large voltage deviations, may appear
more often than in the conventional grid. Consequently, there
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Figure 1. A layered vision of energy system digitization

is a stringent need to monitor and correct these anomalies in a
timely manner. Such anomaly monitoring and correction
require closed-loop decision-making tools that can convert
high-dimensional streaming data into reliable decisions and
apply the decisions to the physical infrastructure in a timely
fashion. However, there is generally a lack of such tools for
most such anomalous scenarios.

The above operational challenges are likely to become
a major bottleneck to accelerating the carbon-neutral
transition of the electricity sector. These challenges may
benefit from artificial intelligence (Al)-based solutions. In
recent years, Al-based applications are transforming all as-
pects of human society and endeavors.” In many successful
applications, Al algorithms make decisions based on data
without requiring detailed models. This is a highly desirable
feature for future power grid operation since accurate physical
models of phenomena based on weather or consumer
behavior are likely either unknown or complex. On the
other hand, as will be seen in what follows, some grid
operational needs can be translated into classic Al problems.
However, this will require the translation of the potential of Al
into solutions at full scale that can empower the ambitious
carbon-neutral transition in the electricity grid®* under the
additional requirements of safety, time sensitivity, and inter-
pretability.

While several survey papers’>° review the applications of Al in
electric energy systems and point out the research directions of
this field from a technological viewpoint, how to unleash the po-
wer of Al in decarbonizing the electricity sector is a complex
problem in a broader social-economic-technological space.
This perspective argues that general-purpose Al needs to be
carefully tailored in three layers before it can be applied in
safety-critical grid infrastructure applications. These three layers
include technology, markets, and policy, as summarized in
Figure 1.

The rest of this perspective is organized as follows. First, we
briefly introduce key decision-making mechanisms associated
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with the operation of modern power grids. Then, we highlight
the connection between grid operation and Al. Finally, we elab-
orate on the tri-layer tailoring of Al for the carbon-neutral transi-
tion of the electric grids.

THE ROLE OF AI IN CARBON-NEUTRAL TRANSITION OF
POWER GRID

This section elaborates on Al’s potential for addressing chal-
lenges in the carbon-neutral transition of the electricity energy
systems. We provide a brief overview of power grid operation
(see a detailed overview of power system basic functionalities
in the review paper by Xie et al.®) and highlight the decision-mak-
ing processes (Figure 2). Then, we present the connection be-
tween these decision-marking processes and representative
problems in the Al field.

Overview of modern power grid operation

The stringent balance requirement between electricity supply
and demand in the modern grid is accomplished by a two-stage
strategy, which consists of offline planning and real-time opera-
tion (the grid operation described here is for transmission
systems; the decision-making processes in current distribution
system operation generally are a subset of those in transmission
systems). Offline planning includes generation and transmission
planning and several forward financial markets. Generation plan-
ning leverages reliability studies to decide when and how much
additional generation capacity should be added over a planning
horizon of several years.” The objective of transmission planning
is to ensure that the transmission lines deliver electricity from the
generators to the loads. In the transmission planning stage, sys-
tem planners scrutinize the grid behavior at multiple timescales
by comprehensively conducting physical model-based simula-
tions for future possible scenarios based on past operational
experience. Such a procedure is called system security analysis.
Once the power grid is physically established, system operators
can leverage financial markets, such as day-ahead, reserve,
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Figure 2. Decision-making modules of
power (transmission) system operation
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sion with properly selected input fea-
tures.’® Another example concerns grid
online stability assessment that aims to
determine if the system is stable given
real-time measurements. This is a stan-
dard classification problem, with the
measurements as inputs and a binary var-
iable (1: stable or 0: unstable) as output.
Conventional stability assessment relies
heavily on time-consuming simulations

and capacity markets, for enhancing the grid’s economical effi-
ciency. Unit commitment (UC) and economic dispatch (ED) are
key modules that support energy trading in a day-ahead market.

The decision-making in real-time operation leverages real-
time measurements,® e.g., those obtained over supervisory con-
trol and data acquisition (SCADA), and phasor measurement
units (PMUs), in a hierarchical manner. At the global level, the en-
ergy management system (EMS) at a control center pre-pro-
cesses raw measurements from the grid and provides system
operators with monitoring and control functionalities. System
security analysis is also conducted based on the most recent
measurements. At the local level, grid components are regulated
and protected by local control and protection apparatus. The
economic efficiency of the grid is ensured by a real-time (spot)
market. The spot electricity prices are determined by solving
ED problems based on the most recent measurements and
short-term load forecasts.

Background of grid operation with Al support
This subsection establishes connections between the decision-
making modules of grid operation and the three representative
formulations of Al problems, i.e., supervised, unsupervised,
and reinforcement learning.
Supervised learning for prediction and detection
Given a set of vectors with labels, a supervised-learning method
is used for constructing the relationship between the vectors and
their labels. Formally, suppose that a procedure takes vector X
as input and generates a label vector Y, where the label can be
either numerical or categorical. The elements of X are called
“features.” The supervised-learning method aims to construct
afunction fthat maps X to Y by learning from N historical records
of input-output pairs generated from the procedure, i.e.,
{(x1,¥1),(X2,Y2), .,(Xn,y¥n)}. When a new input, say, Xy+1, appears,
the resulting yn+1 is expected to be approximated by f(xy.1) with
reasonable accuracy. If the number of options for Y is finite, the
problem is called one of classification; if continuous variables
constitute the output vector Y, the problem is called regression.’
Many decision-making modules for grid operation involve
classification and regression with clear definitions of the input
vector X and the response vector Y. For example, it can be
shown that battery cycle life can be predicted by linear regres-

that cannot be carried out in real time. It
has been reported that a convolution neu-
ral network (CNN) can quickly achieve
high accuracy.'' Table 1 shows other Al adoption examples
with inputs and outputs clearly defined in the context of power
grids. Researchers are striving to build state-of-the-art ma-
chine-learning benchmarks for several challenging use cases
with open datasets."?

Unsupervised learning for modeling high-

dimensional data

Unsupervised learning addresses samples without labels. Sup-
pose that only N samples {xi,x,, .,xn} are available, without
any labels. Unsupervised learning aims to achieve one of the
following objectives: (1) clustering aims to find samples that
share similarities; (2) density estimation aims to determine the
probability distribution governing the given samples (explicitly
or implicitly) and to generate new samples with the same proba-
bility distribution as the given samples; and (3) dimensionality
reduction attempts to project the high-dimensional samples
into a low-dimensional space that allows for visualization or
easily discovering irregularities in the samples.

The three objectives above are relevant in addressing some
challenges associated with the grid. For example, the offline
planning problem requires realistic scenarios, including load
data conditioned on weather and the season. Generating the
scenarios can be formulated as a density estimation problem,
which can then generate new scenarios with the same probabil-
ity density as historic scenarios. The density estimation problem
can be solved by a generative adversarial network (GAN).*! In a
distribution system, a utility company divides its customers into
several representative clusters in order to understand cus-
tomers’ behaviors.?” This problem can be solved by various
clustering algorithms, such as k-means.”” In addition, deci-
sion-making in the control center often involves high-dimen-
sional data collected from a wide area of the grid. It can be
shown that the high-dimensional grid data can be projected
into a low-dimensional space by principal-component analysis
(PCA), allowing for efficient data storage and early event detec-
tion.” Table 2 maps some power system challenges to the three
goals of the unsupervised learning.

Reinforcement learning

The goal of reinforcement learning (RL) is to make decisions by
interacting with an environment under study.’ Generally, an RL
algorithm includes the following elements: states, actions, a
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Table 1. Power grid applications with supervised-learning formulation

Challenge Application

Input: X Output: Y

t13

Load/renewable forecasts short-term forecas

Reliability studies fast state evaluation,'® state enumeration®®

external grid modeling,'® contingency
screening’’

Security analysis

binding constraint prediction,' constrain
convex relaxation®’

Unit commitment and
economic dispatch
anomaly classification,?° stability

Monitoring
assessment,’’ battery cycle life prediction

0

8]

data on energy and/or weather® photovoltaic (PV) forecasts*?

success/failure status of buses,**

renewable generation®®

bus generation info,'* weather®®

interface power flow,'® bus
voltage and security index*’

interface voltage,'® bus flow
injection®’

scenarios,'® 3-phase voltage'’ binary variable for each
constrain,® power flow*®

20 binary indicator,'! event type,*’

battery cycle life'°

streaming data, info. from
discharge voltage curves and
capacity fade curves'®

policy, and a reward function. A state sy at time k can be
measured from the environment, and an action a, can be applied
to the environment at time k, resulting in a new state s.1. The
state transition from sy to sk is determined by the environment,
whose governing laws are either unknown or complex. The ac-
tion and the resulting state transition lead to a real-value reward
assigned by a reward function R(sk,ax,Sk+1). A policy p maps a
state to an action. RL searches for an optimal policy that
maximizes the total reward over a planning horizon. Possible ap-
plications of RL in power systems include model calibration,’®
demand modeling,”’ energy trading,’® reactive power control,?’
tap changer control,*® and relay timer setting in distribution sys-
tems.*! Table 3 identifies the standard RL ingredients for each of
the algorithms.

A THREE-LAYERED APPROACH TO TAILOR DESIGN Al
FOR CARBON-NEUTRAL ELECTRIC GRIDS

Given the safety criticality, time sensitivity, and desire for inter-
pretability in the electric power system operation, we postulate
a three-layered approach to tailor Al for power system applica-
tions, namely technology, markets, and policy. At each layer,
the domain-specific constraints require Al development to be
suitably designed; innovations in Al also shed light on how
each layer can be further evolved by taking full advantage of
future developments.

At the technology layer

Power grid operation entails complicated interactions of millions
of physical components. The decision-making processes over
the electricity infrastructure typically employ the mathematical
descriptions of these interactions, which in turn are derived
from first principles, such as Newtonian mechanics and electro-
dynamics. The mathematical descriptions of these processes

may possess some properties that may not be straightforward
to discern, even for power engineers. For example, high-dimen-
sional data concerning electrical variables, such as measure-
ments of voltage and current over the power grid, may possess
a low-rank structure. This is because electrical variables at
different locations are correlated by transmission/distribution
lines. The hidden properties of the nature of the power grid phe-
nomena can guide the selection/design of Al algorithms to
address the operational challenges facing power grids. One
can consider the localization of the source of the forced oscilla-
tion as an example, which consists of the determination the loca-
tion of anomalous sources given the measurements over the
grid. At first glance, the source localization problem seems to
be closely related to a typical supervised classification problem
in that we aim to classify the locations into two categories, i.e.,
locations close to the anomaly source versus locations far
away from the source. The performance of the supervised-
learning algorithm generally depends heavily on the size and
data quality of the training sets. However, it is generally chal-
lenging to generate a large, high-quality training set for large-
scale power systems. By recognizing the low-rank property of
the sensor measurements over the grid, and the sparsity prop-
erty of anomalous sources, one can choose an unsupervised
learning algorithm called robust PCA (RPCA) to pinpoint the
source. Such an algorithm does not require a large amount of
training data and exhibits promising performance.”® While it is
well accepted that domain knowledge can help identify applica-
tion scenarios of general-purpose Al algorithms, as well as to
select useful features feeding the Al algorithms, the structural
properties that are hidden under the complicated mathematical
descriptions of the electricity infrastructure should be exploited
at all stages of development of the Al algorithms for grid applica-
tions in order to obtain robust, interpretable Al-powered tools for
the grid applications.

lable Z. Power grid applications with unsupervised-lfearning rormulation

Challenge Application

Samples Goal

Load/renewable scenario generation’!

Forecasts
load modelling,?? generator
coherency identification?*

Security analysis

Monitoring anomaly detection,” localization®”

data of energy and weather?! density estimation?’

customer energy data,22 22,24

synchrophasor data’*

clustering

streaming data”** dimensionality reduction®**°
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Table 3. Power grid applications with reinforcement-learning formulation

Challenge Application State si

Action ai Policy Goal R

model parameters,’°
load fraction?’

model calibration,?®
demand modeling”’

Security analysis

Unit commitment and
economic dispatch

energy trading?® past wholesale price-

demand-price pairs*®

Control reactive power control,”®  binary security status,’’
tap changer control*° voltage and tap ratio®”
Protection relay timer setting in line current, breaker status,

distribution systems®* and timer value®

quantity pairs and retail

model parameter modification,?®
load fraction modification?’

response mismatch
minimization’®?’
L. g ) R
retail price profit maximization of a
load serving entity?®

29,30 29,30

tap ratio, reactive power
compensation?’

flow/voltage tracking

timer setting®! minimizing

misoperation rate®!

At the markets layer

One of major Al applications in electricity markets is to accel-
erate large-scale optimization. For instance, UC and ED, which
are fundamental problems in electricity markets, face critical
challenges due to increasing uncertainty caused by deepening
penetration of renewables. Several data-driven, scenario-based
optimization approaches have been proposed to efficiently
obtain optimal solutions that explicitly provide the probability
that the solution is feasible.’”** Another machine-learning-
based approach has been proposed to identify active sets of
safety constraints to obtain optimality more efficiently.*® Addi-
tionally, the advances in Al can potentially help to optimize the
allocation of market investment resources. As an example, ma-
chine-learning-based demand responses from just a few tar-
geted locations have been found to be effective in mitigating
price volatility. Therefore, resources for demand response pro-
grams can be strategically concentrated in targeted areas, rather
than one size fits all, to achieve the most effective social welfare
improvements.?’

Although there have been many studies showing the potential
of Al technology in improving the reliability and economy of elec-
tric grids, the lack of appropriate market design is holding it
back. For example, an RL-based framework has been proposed
to provide voltage regulation via reactive power support in
distribution grids with deep solar photovoltaic penetration.®
However, the lack of auxiliary markets in distribution grids hin-
ders the realization of economic revenue from providing reactive
power support, thus weakening the economic impacts of Al
techniques. Therefore, changes to the design of the electricity
market are imperative to accommodate technological innovation
and translate advances in Al into reality.

At the policy layer

Electric grids are heavily regulation and policy driven. With the
increasing complexity of electric grids, Al ushers in unique op-
portunities to integrate interdisciplinary knowledge and leverage
heterogeneous data to provide effective insights for policy mak-
ing. For example, a machine-learning-based approach has been
proposed to comprehend the correlation between electricity
consumption, number of COVID-19 cases, level of social
distancing, and degree of commercial activity during the
COVID-19 pandemic using cross-domain datasets. It can be
used as an indicator for predicting changes caused by such an
unprecedented event.>’ As another example, the design of green
energy policies, such as encouraging the adoption of household

rooftop solar panels, will require insights from Al techniques. An
example is a machine-learning-based solar deployment data-
base in the US*? to improve energy justice and equity for diverse
populations and analyze social impacts on job creation. An Al-
informed policy design would be a prudent approach to driving
the carbon-neutral transition in the electricity sector. On the
other hand, new regulations must be developed to regulate Al
applications in such a critical infrastructure system to ensure reli-
ability and privacy. For example, an Al application must possess
some key properties, such as interpretability, to facilitate further
inspection and investigation by human operators. The increasing
demand for data acquisition in power grids also requires new
regulations on data privacy and data availability and regulating
data acquisition processes to protect the privacy of data owners
while maximizing the utility of data.

CONCLUDING REMARKS

Energy system decarbonization is one of the most challenging
and exciting areas of research and innovation for the 21st cen-
tury. This perspective presents a view on how digitization and
Al could play a crucial role in the carbon-neutral transition of
the energy sector. We argue that higher impact of digitization
and Al in the electric energy industry could be achieved through a
“three-layered” integrated approach that encompasses tech-
nology, markets, and policy layers. Domain-tailored digitization
and Al will draw upon unique specifications in all three layers in
the energy sector while providing fertile ground for use-inspired
innovations in methodology and algorithms. There are several
actionable recommendations that would potentially bring the en-
ergy and Al communities closer together.

d To involve more power domain-agnostic researchers from
the broader Al community, the energy and power commu-
nity should develop a suite of problem formulations that are
accessible to general Al researchers. These problems
should be motivated by real-world needs and have the
potential to engage the Al community. As an example,
the workshop on “Learning to run a power network
(L2RPN)” provides a platform for such problem definition
and solution.”*

A suite of open, cross-domain datasets that are well
benchmarked and labeled for representative power sys-
tem operating conditions should be developed and shared
with the broader Al community. A possible example is an
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open-source, cross-domain dataset’® that includes elec-
tricity consumption, public health, and mobility data, which
was released for broader communities to understand the
short-run impact of COVID on the US electricity sector in
a data-driven manner.

d On the educational front, both the power/energy commu-
nity and the Al/digitization community should provide
use-inspired cases and tools that will be accessible to un-
dergraduates in both areas. Helping students become
“bilingual” in both energy and Al terms would be impor-
tant. Examples include data science and machine-learning
courses for power systems in universities, such as Texas
A&M University,*> University of Texas, Austin,”> and
University of Washington, Seattle.**
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