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Abstract— Much change is happening in electricity markets
due to the entrance of small-scale prosumers that both generate
and consume electricity. Both large and small consumers can
also be incentivized to reduce their demand during peak load
periods, referred to as demand-response. The net effect of
such distributed energy resources (DERs) on the grid can be
quite substantial, and designing secondary markets wherein
such DERs can participate repeatedly over time has become
important. Many such marketplaces have a so-called potential
game structure, in that a unilateral change in the strategy of
an agent causes equivalent changes in both its own reward
and a global potential function. We consider a dynamic setting
in which each stage is a potential game, but is accompanied
by Markovian state transitions, which we call Markov Potential
Games (MPG). It is well known that it is formidably challenging
to compute or learn Nash Equilibria (NE) in Markov Games.
We develop a key concept that we term as the potential value
function that ties together the potential function in the stage
game with the value function in a Markov Decision Process. We
first show that an NE can be computed in a centralized manner
by maximizing the potential value function. We also show NE
can also be obtained in a multi-agent manner via asynchronous
better (not necessarily best) response updates that are consistent
with a simple multi-agent reinforcement learning algorithm.
Finally, we show several examples wherein the MPG framework
applies to DER dynamics in an electricity marketplace, and
numerically study the efficiency of the equilibria attained.

I. INTRODUCTION

With increasing adoption of photo-voltaic cells in homes

the number of individuals who are both producers and con-

sumers within electric grids have greatly increased recently.

We call these types of individuals prosumers who wish to

engage with the electricity marketplace [1]. Other entrants

into the marketplace are small and large consumers that

can modify their consumption based on the peaks in power

consumption by the rest of the grid or during emergency

events. Demand Response (DR) programs seek to engage

such consumers by incentivizing such demand shaping [2],

[3]. The aggregate effect of including these distributed energy

resources (DERs) can be substantial in lowering the variabil-

ity of demand, thereby stabilizing prices and making the grid

more reliable, and potentially also reducing carbon emissions

through inclusion of cleaner energy sources. Indeed, the

Electric Reliability Council of Texas (ERCOT) organizes
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a variety of programs to engage with DERs, including

demand response approaches for flexible loads arising from

emerging applications such as Bitcoin mining. Given their

increasing importance, modeling and analyzing marketplaces

for DER participation presents an interesting problem space.

For example, we can consider a demand-response market-

place as a Cournot competition, where the price per unit-

reduction depends on the offers for reduction made by all

the participating individuals. The equilibrium price in such

cases dictates the level of reduction for the agents taking

part in these markets. It is well known that in these kinds

of Cournot games, there is a special function called the

potential function such that a unilateral change in reward by

any player is aligned across all players through the potential

function. The game is then referred to as potential game

(PG), and the game’s Nash Equilibrium (NE) is associated

with the maximizing strategy of the potential function. Finite

PG can attain such a NE point with a simple class of

dynamics, namely, asynchronous best response dynamics,

under which the agents asynchronously take best responses

until no further better response is possible. However, while

these games can model the demand as a function of prosumer

participation, they are poor at modeling external states and

their evolution. For instance, it is insufficient to model the

demand-response marketplace as a stateless Cournot game,

since the reduction in demand might not necessarily lower

the price due to a high baseline demand in a particular time

period. We are therefore interested in the setting where the

states themselves follow a Markovian structure. Specifically,

if we consider the state of the system as the current demand,

a demand reduction made in a particular time period could

result in a net demand increase in the next time period.

Thus, the demand at any time period could depend both on

exogenous factors such as the weather, as well the previous

demand reduction actions.

In this Markov marketplace setting, each agent essentially

solves a Markov Decision process (MDP) to identify its best

response to the other agents’ strategies, with the fixed point

being an NE. Thus, we are interested in Markov potential

games (MPG), which appear in a variety of resource sharing

problems. These are Markov games in which the difference

in utility (over the time horizon) induced by a change in

strategy for any player is exactly equal to the difference

in the value of an auxiliary potential function. Note, in

our case each state induces its own potential game with a

corresponding potential function, thus, we refer to the value

(over the time horizon) engendered by the stage potential

functions in this case as the potential value function (PVF).
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Concretely, we focus on an attractive structure where the

auxiliary potential function is identical to the potential value

function—a condition that we call Strong Markov Potential

Games (S-MPG). The goal of this work is first to establish

conditions for existence of S-MPGs, and then to propose

approaches for computing and learning an associated NE.

Main Contributions

Our main contributions are as follows:

(i) Our first result is on identifying criteria for the existence

of S-MPGs. There has been recent work in the area of MPGs

under variants of the notion of what makes a strong MPG.

However, work such as [4] present incorrect criteria for their

existence, [5] has an inherently unverifiable condition on the

structure that allows an S-MPG to exist, while work such as

[6] simply assume their existence. Thus, following the work

of [7] we collect criteria for the existence of an auxiliary

potential function and we show verifiable sufficiency condi-

tions for S-MPGs.

(ii) We present three computation algorithms for identifying

a ε-Nash equilibrium. First, following the seminal work of

[8], it is natural to think of a finite improvement path as a

sequence of best response policies. We extend this notion to

the case of S-MPG and show how the PVF can be obtained

by standard techniques such as policy or value iteration.

Second, we propose a centralized approach to maximizing

the PVF using value iteration. Third, we design a sequence

of asynchronous one step better responses by each agent,

forming a convergent decentralized value iteration process.

(iii) We present a model-free learning algorithm for learn-

ing an ε-Nash equilibrium under an unknown model. The

algorithm follows a structure of asynchronous play which

reduces learning in a possibly non-stationary environment of

MPG to learning in a sequence of stationary environments

of Markov Decision Processes.

(iv) Finally, we show under several settings on demand

response, pollution management, and a generic stage-by-

stage S-MPG the nature of what an S-MPG looks like in

practice, and illustrate the performance of our computation

and learning algorithms in discovering NE.

II. RELATED WORK

Potential games were introduced in seminal work [8].

Learning in single stage potential games has a rich history

with the works of [9], [10] and [11] being notable examples.

An extension of the one-shot strategic game is the multi-

stage dynamic game, where agents have an underlying state

and the problem faced by each agent can be modeled as a

Markov decision process, first studied in [12]. Examples of

such games can be found in [13], [14], and [15]. The natural

question of multi-agent reinforcement learning (MARL) is

considered in well-known work such as [16], [17] and [18],

which all assume that the other agents’ strategies are known

well enough to determine a best response in the manner of

a min-max strategy. A survey of MARL is available in [19].

However, the results are quite limited without introducing

additional structure on the nature of the game.

Under the structural assumption of a potential game,

one train of work considers the state-based game approach,

wherein agent actions do not impact transitions, enabling

them to take myopic actions to maximize their immediate re-

ward [20], [21]. Similarly, [22] considers the specific case of

deterministic transitions for greater tractability. Other work

assumes that a condition similar to S-MPG holds, without

attempting to determine if it does so for any game, and

shows that gradient play converges under this setting [6]. [23]

describes a solution to the Markov potential game without

any requirement of the “strong” property, however they are

unable to characterize the rate of convergence. Further, they

provide no sufficiency condition for the structure either.

Closest to our work are approaches that determine struc-

tural properties on the rewards and transitions that enable

tractability of a Markov potential game. Unfortunately, some

work such as [7] and [4] have analytical errors (that we de-

tailed in the supplementary material [24]), while [5] utilizes

a strong condition on the nature of the value function that

cannot realistically be verified for a given game. Thus, the

question of sufficient structure that enables provable con-

vergence of multi-agent computation or learning in dynamic

potential games is still unaddressed.

III. PRELIMINARIES

We consider a Markov dynamic game where each agent

interacts with others by taking actions in a dynamic envi-

ronment over an infinite horizon with discrete time steps.

The agents collect a stage payoff depending on their actions

and the current state of the environment, and which also

together determine the next state. A Markov dynamic game

is a tuple Γ =< S,A, {ri}i∈[I], P, γ > defined as follows:

(1) agents are denoted by i ∈ [I] := {1, 2, . . . , I}, (2) the

globally observed state space denoted as S is a set of finitely

many states, (3) the action space for agent i ∈ [I] denoted

as Ai is a set of finitely many actions and the set of joint

actions is denoted as A := A1 × · · · ×AI , (4) the transition

probability is denoted as P(s′|s, a) from state s to state s′

given a joint action a = (a1, . . . , aI) ∈ A, (5) the stage

payoff function of agent i is denoted as ri : S × A → R

for all i ∈ [I]. We focus on stationary policies, i.e., for each

agent i, denote by πi(s, ai) ∈ [0, 1] the probability that agent

i takes action ai ∈ Ai at state s ∈ S . We denote a joint

policy by π = (π1, . . . , πI), and the set of joint policies

by Π := Π1 × · · · × ΠI where Πi :=
∏

s∈S Δ(Ai) for all

i ∈ [I] where Δ(X) is a distribution over X . We also denote

a joint policy of all agents other than agent i by π−i, (by

abuse of notation) denote π = (πi, π−i) and also denote

Π−i =
∏

j �=i Πj . Moreover, we denote a joint policy in step

k ∈ N by πk = (πk
1 , . . . , π

k
I ) when necessary. Define a value

function V π
i as

V π
i (s) := E

π
s

[

∞
∑

t=0

γtri(st, at)
]

(1)

for all i ∈ [I], s ∈ S , π ∈ Π.
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Definition 1. A joint policy π∗ := (π∗
1 , . . . , π

∗
I ) ∈ Π is

called a Nash equilibrium (NE) if V π∗

i (s) ≥ V
πi,π

∗

−i

i (s) ∀s ∈
S, i ∈ [I], πi ∈ Πi. We also say that πε := (πε

1, . . . , π
ε
I) ∈

Π is an ε-NE if V πε

i (s) + ε ≥ V
πi,π

ε
−i

i (s) ∀s ∈ S, i ∈
[I], πi ∈ Πi.

It is well-known that there exists a Nash equilibrium in

discounted stochastic games [25]. A static game can be

considered as a simplified type of stochastic game that has a

single state and no state transitions. Hence, a reward function

ri reduces to depend only on actions, i.e., ri : A → R for

all i ∈ [I]. We introduce a (static) potential game, which we

extend to a dynamic setting in the next section.

Definition 2. A (static) game is called a potential game (PG)

if there exists a function φ : A → R, called potential, that

satisfies the following condition: ri(ai, a−i)− ri(a
′
i, a−i) =

φ(ai, a−i) − φ(a′i, a−i) for all ai, a
′
i ∈ Ai, a−i ∈ A−i and

i ∈ [I].

In words, in a potential game, a unilateral change of action

by agent i gives him the same reward with ri as a unilateral

change in φ. Since, φ is agent independent, one can view this

as all the agents cooperating to maximize a joint potential

function φ.

IV. MARKOV POTENTIAL GAMES

Consider the Markov dynamic game from the previous

section, Γ =< S,A, {ri}i∈[I], P, γ >, with finite action sets

and state spaces played over an infinite horizon with discount

factor γ. We call this game a Markov Potential Game

(MPG) if there exists a function Λ = S × A → R, we

will call it the Auxiliary Potential Function such that

Λπi,π−i(s)− Λπ′

i,π−i(s) = V
πi,π−i

i (s)− V
π′

i,π−i

i (s) (2)

for every i in each state s. We denote the MPG by Γ =<
S,A, {Ri}i∈[I], P,Λ, γ >.

The following definition of a path will be useful to prove

optimality results in MPGs.

Definition 3. A path is a sequence of joint policies ρ =
(π1, π2, π3, . . .) such that for every k ∈ N, πk+1 =
{π′

i(k), π
k
−i(k)} obtained from πk by allowing a single agent

i(k) (single deviator in step k) to change its policy of agent

i(k).

We can then make an assertion on the existence of a

deterministic NE in the potential game setting.

Theorem 1. Every MPG, Γ has a deterministic Nash policy.

While this result seems intuitive, the fact that we have

state as well as action means that we cannot directly use the

argument of finite improvements from [8], but need a slightly

more nuanced extension to the Markov game setting. The

proof is presented in supplementary material [24].

The next result tells us that if we can find a maximizer for

the auxiliary potential function, then we have found a Nash

equilibrium. Since Λ maps from S × Π → R
|S|, we define

a partial ordering on R
|S|; x ≤ y, x = {x1, x2 . . . x|S|}, y =

{y1, y2 . . . y|S|} ∈ R
|S| if and only if xi ≤ yi for i ∈

{1, 2, . . . |S|}. If z is the maximizer of Λ, then for any

x ∈ Π, Λz(s) ≥ Λx(s) for every s ∈ S . Suppose Λ admits a

maximizer and suppose further that this maximizer happens

to be deterministic, then we will call this policy the optimal

deterministic joint policy.

Corollary 1. An optimal deterministic joint policy π∗ =
(π∗

1 , . . . , π
∗
I ) implies that π∗ is a Nash equilibrium of Markov

potential game Γ.

Corollary 2. An ε-optimal deterministic joint policy πε =
(πε

1, . . . , π
ε
I) implies that πε is an ε-Nash equilibrium of

Markov potential game Γ.

The next lemma from [5] provides us with a characteriza-

tion of value functions and serves as an equivalent definition

of MPG.

Lemma 1. If V
πi,π−i

i (s) is the pay-off to go for agent i at

state s under policy π = {πi, π−i} and Λπi,π−i(s) is the

Auxiliary Potential function for the MPG, then

V
πi,π−i

i (s) = Λπi,π−i(s) + U
π−i

i (s) (3)

In words, the lemma states that any value function in

an MPG can be decomposed into a “Potential component”

where the players essentially collaborate to improve the joint

value and a second component which is both implicitly and

explicitly independent of the player’s actions. We present the

proof in the supplementary material [24].

Corollary 3. Suppose each stage is a potential game, (we

will call them stage potential games), then

ri(s, ai, a−i) = φ(ai,a−i)(s) + ui(s, a−i)

We will define the potential value function, Φ : S×Π → R

by

Φπ(s) = Ea∼π

[ ∞
∑

t=0

γtφst,(a)|s0 = s

]

(4)

We wish to find sufficient conditions under which, Φ given

by (4) is a potential function for the Markov game Γ =<
S,A, {ri}i∈[I], P, γ >. In other words, we are looking for

sufficient conditions under which Φ = Λ.

When Φ is a potential function we know a deterministic

Nash equilibrium exists. Moreover, maximizing Φ, is equiva-

lent to maximizing a Markov Decision Process, here it is well

known that MDPs have a deterministic solution that yields

a global maxima for Φ. Such a solution can be obtained

from value or policy iterations, thus, greatly simplifying

the computation of Nash equilibria. We will call the class

of Markov Potential games for whom the Potential value

function is an auxiliary potential function, Strong Markov

Potential games (S-MPG).

A. Sufficiency conditions for Strong Markov Potential Games

As discussed in the previous section, we are interested in

the conditions under which our game is a S-MPG. We will

begin by examining the conditions outlined in [7].

6352

Authorized licensed use limited to: Texas A M University. Downloaded on September 02,2023 at 01:05:47 UTC from IEEE Xplore.  Restrictions apply. 



SER-SIT condition:

Following [7], [26] and [27], we consider Separable Re-

ward - State independent transition games with the following

additional conditions.

Condition 1. The rewards are separable in the following

sense,

ri(s, ai, a−i) = r0i (s) + r1i (ai, a−i)

and the probability transition matrix is state independent,

P(s, ai, a−i) = P(ai, a−i)

1) The partial reward, r1i (ai, a−i) is a potential game. 2) The

pay-off, 〈P(.|ai, a−i), r
0
i (.)〉 for each i follows a potential

game.

The following theorem from [7] gives sufficient conditions

under which a game with the SER-SIT structure is a potential

game.

Proposition 1. Under Condition 1, the SER-SIT game is a

S-MPG.

The proof can be found in the supplementary material [24].

As a consequence of the SERSIT conditions we now have

at least one verifiable condition under which an S-MPG exist.

Action Independent Transitions:

We call games where the probability transition kernel does

not depend on the action set of the players state-based games

[20] and the probability kernels, action independent transition

kernels.

Condition 2. The rewards at each stage follow a stage

potential game and the transition probabilities are action

independent.

Proposition 2. Under Condition 2, the reward at each stage

can be written as:

ri(s, ai, a−i) = φ(s, ai, a−i) + ui(a−i, s)

and the state-based game is an S-MPG.

We now have two independent verifiable conditions under

which a Strong Markov Potential Game may exist.

B. Examples:

While there are many practical examples of state based

games, see for example [20] there are relatively few examples

of SER-SIT games. We provide two important examples, as

mentioned in the introduction.

Demand Response Marketplace: We consider a market-

place with N demand response providers who can choose to

contribute ai ∈ {0, 1, . . . |A|} levels of energy reduction to

the grid. The state of the system reflects the demand for that

time period. We denote the states by S = {0, 1, . . . |S|}, with

0 indicating that the grid is in dire need of demand reduc-

tions, to |S| indicating that the current supply is sufficient

to meet the current demand. In return for producing a level

of output (demand reduction) ai, the DR provider receives

reward ri(s, ai, a−i) := ai(f(ai, a−i)− δs) for an appropri-

ate function f . The states of this system evolve according

to s′ = g(
∑N

i=1 ai) + w where w is a common discrete

noise term that models uncertainty due to a variety of factors

including weather events. Such a game can be modeled as a

SER-SIT game when f and g are chosen appropriately. The

system simulation is presented in Section VII.

Pollution Tax Model: The environment has two states,

pollution free and polluted, and we use s0 and s1 to denote

these states. There are two generating firms that have two

actions available to them, clean, C and dirty, D. If either

one of the firms takes the dirty action, the environment in

the next time slot goes to state, s1. If both firms choose

the clean action, the firm goes to, s0. The firms are taxed

equally in the polluted state by T . The firms earn reward

g1 and g2 per unit produced, action C produces one unit

while D produces two units. The payoff function is therefore

given by ri(s, a1, a2) = gi + 1{ai=D}gi − 1{s=s1}T where

1{E} is the indicator function of E. The transition kernel,

P(s0|s, a1, a2) = P(s0|a1, a2) = 1 only when a1 = C and

a2 = C. Clearly, the reward obeys a SER structure while

the transitions are state independent and it is easy to check

that the reward at each stage obeys a potential structure. The

system simulation is presented in Section VII.

V. COMPUTATION OF NE IN STRONG MARKOV

POTENTIAL GAMES

Throughout this section, we assume that the reward at

each stage follows a stage potential game. Further we assume

that either Assumption (1) or (2) hold. Hence, our potential

value function, (4) is an auxiliary potential function. We now

have a Strong Markov Potential Game denoted by, Γ =<
S,A, {Ri}i∈[I], P,Φ, γ >. We will present computational

methods for convergence of Markov potential games and

prove that these methods identify an ε-Nash equilibrium.

Note that we use ‖ · ‖ to refer to the ‖ · ‖∞ norm.

A. Centralized Computation

Centralized Value Iteration:

Our first setting can be thought of as the case when a

central administrator wants to ensure the optimal outcome

for all the agents and maximizes the potential value function

in order to obtain this outcome.

Since our potential value function, Φ is the value of an

MDP, we may use value or policy iteration to find the joint

ε−optimal policy. We know by Corollary 2 that it suffices to

find an ε-optimal joint policy, πε with respect to Φ when

finding an ε-Nash equilibrium. To this end we use value

iteration over the joint actions of all the agents.

Let Φ(s) = Φπ(s) be the potential value function under

some fixed policy π. Define a mapping H by,

(HΦ)(s) = max
a∈A

(φ(s, a) + γ
∑

s′∈S

P(s′|s, a)Φ(s′))

for all s ∈ S . Readers will note that this is the familiar

Bellman optimality operator on Φ.

Let us begin with some initialization for Φ0(s) for all

s ∈ S for some initial policy π0. At any time t > 0, let

Φt = HtΦ0 i.e, the optimality operator applied to our initial
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point t times. It is well known that the optimality operator

is monotonic and a contraction map in the ‖ · ‖ norm.

Algorithm 1 Centralized Computation

1: Input: A Markov potential game (Γ and φ) and ε
2: Let Φ0(s) = 0 for all s ∈ S , t = 0, c := ‖HΦ0 − Φ0‖
3: repeat

4: Φt+1(s) ← HΦt(s) for all s ∈ S
5: Increment t by 1

6: until max(‖Φt+1(s)− Φt(s)‖,
γt

1−γ
c) < 1

2ε
7: return πε ← argmaxa∈A φ(s, a) +

γ
∑

s′∈S P (s′|s, a)Φt(s
′)

Theorem 2. For any ε > 0, Algorithm 1 generates an ε-Nash

equilibrium πε.

The proof for this theorem may be found in the supple-

mentary material [24].

Component-wise Value Iteration:

Suppose an administrator wishes to maximize his cost but

may only improve a single component at a time. Under such

a setting we are interested in the existence of critical points

i.e, points where there can be no improvement by changing

a single component of the value function. In this setting, we

consider an MDP with value function

Φπ(s) := E

[ ∞
∑

t=0

γtφ(st, at)|s0 = s, at ∼ π(st)

]

.

The state space of our MDP is S; the action set A can

be broken into I independent components such that A =
∏I

i=1 Ai. Formally, our objective is to find policies π∗ :=
{π∗

1 , π
∗
2 , . . . π

∗
I} such that Φπ∗

(s) ≥ Φπi,π
∗

−i(s) for any s ∈
S , of our function Φ. Here, we show a possible decentralized

component-wise iteration procedure to find critical points in

our problem.

Define Cπ
i Φ as,

Cπ
i Φ(s) = max

bi∈Ai

φ(s, bi, π−1(s))+

γ
∑

s′∈S

P(s′|s, bi, π−1(s))Φ(s
′).

(5)

πbr
i (π,Φ) =arg max

bi∈Ai

φ(s, bi, π−1(s))+

γ
∑

s′∈S

P(s′|s, b1, π−1(s))Φ(s
′).

(6)

In words, we begin with some estimate of our value

function Φ and a policy π. We select a component in a round

robin fashion and improve its value using the operator Cπ
i

for the value and πbr
i . Note, during regular value iteration it

is unnecessary to maintain the policy at time t, however, in

the component-wise case this becomes necessary since our

next value not only depends on the one-step improvement of

the ith component but also the policy π−i.

Lemma 2. Suppose we begin with a deterministic policy

π and a corresponding potential value function for this

Algorithm 2 Component-wise Value Iteration

1: Input: An MDP M := 〈S,
∏I

i=1 Ai, φ, P, γ〉,
2: Initialize : Φ0(s) for all s ∈ S , t = 1 and π0 = π
3: repeat

4: i ← t modulo I
5: Φt+1(s) ← Cπt

i Φt for all s ∈ S
6: πt+1 ← πbr

i (πt,Φt)
7: Increment t by 1

8: until max(‖Φt+1(s)− Φt(s)‖,
γt

1−γ
c) < ε

9: return Φt, πt

policy given by Φπ . Then Algorithm 2 converges to a Nash

equilibrium asymptotically.

The previous lemma showed us that the component-wise

value iteration converges asymptotically to a Nash equilib-

rium but did not give us a rate of convergence. The next

lemma shows that the rate is in fact geometric.

Lemma 3. Cπ
i is a contraction with Lipschitz constant γ

in the infinity norm when π is fixed; as a result, different

trajectories of value functions will converge to a common

trajectory at a geometric rate.

The proofs for both Lemma 2 and 3 may be found in the

supplementary material [24].

B. Decentralized Computation

The following section consists of the more realistic setting

where the agents have different utility functions but are

playing a Markov potential game.

Asynchronous Computation:

We begin by using a natural extension of the concept

of finite improvement paths from [8]. Define the Bell-

man optimality operator in one component by: T iVi(s) :=
maxai∈Ai

Ri(s, ai, π−i) + γ
∑

s′∈S P (s′|s, ai, π−i)Vi(s
′)).

Denote the Q-function Q
π∗

i ,π−i

i (s, ai) = Ri(s, ai, π−i) +

γ
∑

s′∈S P(s′|s, ai, π−i)V
π∗

i ,π−i

i (s′) for all s ∈ S , ai ∈ Ai,

i ∈ [I] and π−i ∈ Π−i where π∗
i is an optimal policy with

respect to π−i. Let ε̄ denote the minimum separation between

agents’ optimal Q-functions with respect to π−i, defined as

ε̄ = min
Q

π∗

i
,π

−i

i
�=Q

π∗

i
,π

−i

i

|Q
π∗

i ,π−i

i (s, ai)−Q
π∗

i ,π−i

i (s, bi)| (7)

minimized over all s, ai, bi.
Suppose we choose ε such that 0 < ε < 1

2 ε̄ and if

computation and learning (such as VI, PI or Q-learning) of

asynchronous play is within the tolerance level of ε, then it

characterizes an ε-improvement path (defined analogously to

an improvement path) because ε is smaller than the minimum

separation ε̄ which distinguishes optimal and sub-optimal

actions.

Note that the following theorem holds true for any Markov

potential game and not just S-MPGs.

Theorem 3. Algorithm 3 generates an ε-Nash equilibrium

πε for all 0 < ε < 1
2 ε̄.
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Algorithm 3 Asynchronous Computation

1: Input : A Markov potential game (Γ and φ) and ε
2: Initialize : A joint policy π0 and k = 0
3: repeat

4: Choose an agent i = i(k) ∈ [I] and fix π−i(k)

5: Initialize : Vi,0(s) ← 0 for all s ∈ S , c ← ‖T iVi,0 −
Vi,0‖, t ← 0

6: repeat

7: Vi,t+1(s) ← T iVi,t(s) for all s ∈ S
8: Increment t by 1

9: until max(‖Vi,t+1(s)− Vi,t(s)‖,
γt

1−γ
c) < 1

8ε
10: πi,k+1 ← argmaxai∈Ai

Ri(s, ai, π−i(k)) +
γ
∑

s′∈S P (s′|s, ai, π−i(k))Vi,t(s
′)

11: πk+1 ← (πi,k+1, π−i,k+1) := (πi,k+1, π−i(k))

12: V̂
πk+1

i ← Vi,t

13: Increment k by 1
14: until V̂

πk+1

i(k) (s) ≤ V̂ πk

i(k)(s) + ε ∀s ∈ S and i(k) ∈ [I]

15: return πε = πK = (π1,K , . . . , πI,K)

Distributed Better Response:

Algorithm 2 was a central algorithm to compute critical

points on our MDP. Here, we present a way to perform an

equivalent operation in the decentralized case where each

agent will try to perform a one-step maximization of their

value function analogously to the one-step component-wise

update. As before, we will need to define a few operators

for our algorithm Dπ
i Φ as,

Dπ
i Vi(s) = max

bi∈Ai

ri(s, bi, π−1(s))+

γ
∑

s′∈S

P(s′|s, bi, π−1(s))Vi(s
′)

πD-br
i (π, Vi) = arg max

bi∈Ai

ri(s, bi, π−1(s))+

γ
∑

s′∈S

P(s′|s, b1, π−1(s))Vi(s
′).

And let,

D̄π
i Vi(s) =ri(s, π(s))+

γ
∑

s′∈S

P(s′|s, π(s))Vi(s
′).

Algorithm 4 describes one way to asynchronously perform

value iteration in order to obtain a Nash equilibrium. In

words, at each time step t, an agent is chosen in a round

robin fashion. At time 1, agent 1 is chosen and performs

a one-step update of its own utility function V π
1 using

Dπ
1 . Agent 1 can simultaneously compute, πbr

1 (π, V
π
1 ) and

broadcast this update to every other agent. Next, every agent,

j updates its value using a one step evaluation D̄π1

j V π
j , where

π1 := {πbr
1 , π−1}. At any time step t > 1, this process

repeats until convergence.

Theorem 4. Algorithm 4 converges to an ε Nash equilibrium.

The proof (please refer [24]), proceeds by establishing the

equivalence between centralized component-wise operators

Algorithm 4 Distributed Better Response

1: Input: An MPG M := 〈S,
∏I

i=1 Ai,Φ, {ri}i∈[I], P, γ〉,
2: Initialize : Vi(s) for all s ∈ S , t = 1 and π0 = π
3: repeat

4: i ← t modulo I
5: Vi,t+1(s) ← Dπt

i Vi,t(s) for all s ∈ S
6: πt+1 ← (πD−br

i (πt, Vi,t), π−i)
7: for j = {1, 2, . . . i− 1, i+ 1, . . . I} do

8: Vj,t+1(s) ← D̄πt+1

j Vj,t

9: Increment t by 1

10: until max(maxi ‖Vi,t+1(s)− Vi,t(s)‖,
γt

1−γ
c) < ε

11: return {Vi,t}i∈{0,1,...I−1}, π
t

and the distributed agent-wise operators, Cπ
i and Dπ

i respec-

tively.

VI. LEARNING IN MPGS

Our learning algorithm follows directly from our asyn-

chronous computation algorithm. We will use an off-policy

Q-learning method,i.e., at round k, an agent, i(k) is chosen

at random. All other agents are assumed to keep their policy

constant while the agent learns her (near) best response

through Q-learning. Then we proceed to the next agent.

Agent i at time t observes the tuple 〈st, at, ri, st+1〉 and

updates her Q-table as follows,

Qi(st, at, t+ 1) =Qj(st, at, t)+

αt

[

rj(st, at) + γmax
a′

Qj(st+1, a
′, t)

]

(8)

The behavior policy π ∈ Δ(A)|S| (note this is a joint

policy on all the agents) is ergodic in the Markov chain

(s, a) with stationary distribution μ. Define, μmin :=
min(s,a) μ(s, a) > 0 and mixing time tmix. We let τ be

the time at which total variation distance from the stationary

distribution is 1
4 , τ = tmix log

2
μmin

. The step size, αt :=
h

t+t0
and h ≥ 4

μmin(1−γ) , t0 ≥ max(4h, τ).

Lemma 4 (Theorem 7 in [28]). Let M(π−j) be the MDP

for agent j and let ε and δ be two positive constants. If the

Q-table for j is updated using (8), then: ‖Q(T )−Q∗‖ < ε
with probability at least 1 − δ whenever, T ≥ T0. Where

T0 = Õ

(

tmix

ε2(1−γ)5μ2
min

)

, Õ suppresses logarithmic factors

of 1/ε, 1/(1− γ), 1/μmin and tmix.

Here, note, tmix will scale as log |S||A| and 1
μmin

scales

as O(|S||A|). The learning algorithm extended from asyn-

chronous computation Algorithm 3 that under the framework

of asynchronous play is:

Theorem 5. For 0 < ε < 1
2 ε̄, 0 < δ < 1, suppose

each agent, chosen in a round robin schedule, updates their

Q−table according to (8) for an order Õ

(

tmix

ε2(1−γ)5μ2
min

)

at

each step k. Algorithm 5 generates an ε-Nash equilibrium

πε with probability at least 1− δ.
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Algorithm 5 Asynchronous Learning

1: Input : ε, δ
2: Initialize : A joint policy π0, k ← 0, Rmax ←

maxi,s,a Ri(s, a), K ← εRmax

1−γ
I , δ0 ← 1

K
δ

3: repeat

4: Choose an agent i = i(k) ∈ [I] and fix π−i(k)

5: Execute update (8) in MDP M(π−i(k)) with input

ε, δ0, π−i(k)

6: Obtain ε-optimal policy πi(k),k+1 ← πi and ε-optimal

value function Vi(k) ← Vi

7: πk+1 ← (πi,k+1, π−i,k+1) := (πi(k),k+1, π−i(k))

8: V̂
πk+1

i(k) ← Vi(k)

9: Increment k by 1.

10: until V̂
πk+1

i(k) (s) ≤ V̂ πk

i(k)(s) + ε ∀s ∈ S and i(k) ∈ [I]

11: return πε = πK = (π1,K , . . . , πI,K)

Note that since each agent needs to update their policy

using Q-learning, the total number of iterations required to

reach Nash equilibrium will be multiplied by the number of

agents.

VII. NUMERICAL STUDIES

SER-SIT game (Demand Response Marketplace): Our

first case is DR Market described in Section IV-B. Suppose

there are N grid assets such as demand response aggregators.

Each grid asset can produce ai ∈ {0, 1, . . . , 4} amount of

products, for example, load reduction from demand response

aggregators. State space S = {0, 1, . . . , 4} represents levels

of emergency where state 0 represents that the system is

most strained and that state 4 represents that the system is

least stressed. Reward for each asset (agent) i is given by

ri(s, ai, a−i) = ai(f(ai, a−i) − cs) where f(ai, a−i) is a

function of every asset’s action and c is a constant. It immedi-

ately follows that φ(ai, a−i) = (
∏N

i=1 ai)(f(ai, a−i)−cs) is

an ordinal potential function for each s ∈ S . If f(ai, a−i) =
ai(α − β

∑N

i=1 ai) with constants α = 2, β = 0.25 and

c = 1.25, then φ is an exact potential function where

φ is defined as φ(ai, a−i) = α
∑N

i=1 ai − β
∑N

i=1 a
2
i −

β
∑N

1≤i<j<N aiaj −
∑N

i=1 c
s. Suppose that next state s′ is

given by s′ = a1+a2−w where w ∼ uniform{0, 1, 2, 3, 4}
with probability 0.9 and s′ ∼ uniform{0, 1, 2, 3, 4} with

probability 0.1. Given the structures, it can be shown that the

grid asset management is a SER-SIT game and each state is

a potential game. For ease of presentation of the heat map

of actions we restrict the assets to 2. We show convergence

of Algorithms 4 and 5 in Figure 1 and 2 respectively and

heat map of action-value function for grid assets in Figure 3

(heat map for grid assets is identical due to identical reward

structure). It is observed that both grid assets take the largest

load reduction in state 0 (most stressed system state) while

they take the smallest load reduction in state 4 (least stressed

system state).

We further study this market over a synthetic Texas

transmission grid model [29]. Here, the state of the system

is mapped to the offered load (demand) at each of the nodes

Fig. 1: Distributed Better Re-

sponse

Fig. 2: Asynchronous Learn-

ing

Fig. 3: Heat map of action-

value
Fig. 4: LMP trajectories

Fig. 5: Note, the convergence of the L1 norm in the figure

above can happen if and only if the corresponding potential

function converges.

in the grid, and the market maker solves the DC Optimal

Power Flow (DC-OPF) problem to determine the location

marginal prices (LMP) as the (wholesale) electricity price

at each node. It is well known that large demand at certain

nodes can trigger very high LMPs [29]. We consider whether

the demand-response market will mitigate these high LMPs.

Thus, for each s ∈ S in our setup, there is a corresponding

nodal demand vector ds. If grid asset i takes an action ai = j,

it is equivalent to its commitment to reduce j% of its demand

in selected locations. We consider the impact on average

LMP (over the grid) according to (i) a do-nothing policy

denoted as π0, i.e., the two DR agents take action ai = 0
for all states, and (ii) the Nash equilibrium policy π∗ of the

grid asset market as shown in the heat map of Figure 3. The

trajectories of LMPs in the two cases are illustrated in Fig. 4,

where is clear that the learned strategy for DR significantly

reduces the average LMPs.

SER-SIT game (Pollution Tax Model): Our second case

is the pollution tax model from Section IV-B. We consider

g1 = g2 = 2 and the tax incurred as T = 4. As seen in

Figures 6 and 7, the system converges to a Nash equilibrium

where players choose to use the clean actions in both states.

State based game: We finally present an illustration of

0 2 4 6 8 10 12 14 16 18

Iterations (Asynchronous Plays)

0

10

20

30

40

||
Q
(s
,
a
)|
| 1

Distributed Better Response

Player 1

Player 2

Fig. 6: Distributed Better Re-

sponse (Algorithm 4)

Fig. 7: Asynchronous Learn-

ing (Algorithm 5)

6356

Authorized licensed use limited to: Texas A M University. Downloaded on September 02,2023 at 01:05:47 UTC from IEEE Xplore.  Restrictions apply. 



a state-based Markov Potential Game in which the state

transitions are due to an exogenous Markov chain that does

not depend on the player actions. A variety of energy markets

can be modelled in this manner, where the state (such as the

current weather) provides a context for player interaction.

For illustration, we consider a state-based MPG that is

composed of two canonical strategic games, with the state

being which game is currently being played. The games

chosen are Prisoner’s Dilemma and Bach or Stravinsky,

denoted as s0 and s1, respectively. The players actions and

rewards are shown in Tables I and II.

Actions C D

C -1, -1 -6, 0

D 0, -6 -4, -4

TABLE I: State s0

Actions C D

C 2,1 0,0

D 0,0 1,2

TABLE II: State s1
The transition probability matrix is given by P[s′ =

s0|s, a1, a2] = P[s′ = s0] = 0.6 and P[s′ = s1|s, a1, a2] =
P[s′ = s1] = 0.4. In figures 8 and 9 we plot Q-values with

respect to L1 norm over iterations to show the convergence

of Algorithms 4 and 5.

Fig. 8: Distributed Better

Response (Algorithm 4)

Fig. 9: Asynchronous

Learning (Algorithm 5)

VIII. CONCLUSION

We considered multi-agent marketplaces in the context

of DERs. We modeled the system as a Markov Potential

Game and characterized sufficiency conditions under which

an MPG can be treated as an MDP with multidimensional ac-

tions controlled by different agents. We constructed central-

ized and distributed algorithms to compute Nash equilibria,

and developed an MARL variant based on these algorithms.

This enables the expansion of the problem space over which

we can determine Nash equilibria via MARL beyond simple

min-max approaches applicable to zero sum situations. We

used several games in the context of DER marketplaces as

examples to demonstrate the efficacy of our methods.

REFERENCES

[1] B. Xia, S. Shakkottai, and V. Subramanian, “Small-scale markets for
a bilateral energy sharing economy,” IEEE Transactions on Control of

Network Systems, vol. 6, no. 3, pp. 1026–1037, 2019.

[2] J. Li, B. Xia, X. Geng, H. Ming, S. Shakkottai, V. Subramanian, and
L. Xie, “Energy coupon: A mean field game perspective on demand re-
sponse in smart grids,” in Proceedings of the 2015 ACM SIGMETRICS

International Conference on Measurement and Modeling of Computer

Systems, 2015, pp. 455–456.

[3] B. Xia, H. Ming, K.-Y. Lee, Y. Li, Y. Zhou, S. Bansal, S. Shakkottai,
and L. Xie, “Energycoupon: A case study on incentive-based demand
response in smart grid,” in Proceedings of the Eighth International

Conference on Future Energy Systems, 2017, pp. 80–90.

[4] D. H. Mguni, Y. Wu, Y. Du, Y. Yang, Z. Wang, M. Li, Y. Wen,
J. Jennings, and J. Wang, “Learning in nonzero-sum stochastic games
with potentials,” in Proceedings of the 38th International Conference

on Machine Learning. PMLR, 2021.
[5] S. Leonardos, W. Overman, I. Panageas, and G. Piliouras, “Global con-

vergence of multi-agent policy gradient in Markov potential games,”
in International Conference on Learning Representations, 2022.

[6] R. Zhang, Z. Ren, and N. Li, “Gradient play in multi-agent Markov
stochastic games: Stationary points and convergence,” 2021.

[7] J. A. Potters, T. Raghavan, and S. H. Tijs, “Pure equilibrium strategies
for stochastic games via potential functions,” in Advances in Dynamic

Games and Their Applications. Springer, 2009, pp. 1–12.
[8] D. Monderer and L. Shapley, “Potential games,” Games and Economic

Behavior, vol. 14, no. 1, pp. 124–143, 1996.
[9] D. Fudenberg, F. Drew, D. K. Levine, and D. K. Levine, The theory

of learning in games. MIT press, 1998, vol. 2.
[10] Y. Ermoliev and S. Flam, “Learning in potential games,” IIASA,

Laxenburg, Austria, IIASA Interim Report, June 1997.
[11] A. Heliou, J. Cohen, and P. Mertikopoulos, “Learning with bandit

feedback in potential games,” in Advances in Neural Information

Processing Systems, I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,
R. Fergus, S. Vishwanathan, and R. Garnett, Eds., vol. 30. Curran
Associates, Inc., 2017.

[12] L. S. Shapley, “Stochastic games,” Proceedings of the National

Academy of Sciences, vol. 39, no. 10, pp. 1095–1100, 1953.
[13] J. Filar and K. Vrieze, Competitive Markov decision processes.

Springer Science & Business Media, 2012.
[14] N. Hemachandra and K. S. M. Rao, “On pure Nash equilibria in

stochastic games,” https://www.ieor.iitb.ac.in/files/VVS TR Jan2011.
pdf, [Online].

[15] A. Das, S. N. Krishna, L. Manasa, A. Trivedi, and D. Wojtczak, “On
pure Nash equilibria in stochastic games,” in TAMC, 2015.

[16] J. Hu and M. P. Wellman, “Multiagent reinforcement learning: Theo-
retical framework and an algorithm,” in ICML, 1998.

[17] M. L. Littman, “Markov games as a framework for multi-agent
reinforcement learning,” in ICML, 1994.
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