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Abstract— Much change is happening in electricity markets
due to the entrance of small-scale prosumers that both generate
and consume electricity. Both large and small consumers can
also be incentivized to reduce their demand during peak load
periods, referred to as demand-response. The net effect of
such distributed energy resources (DERs) on the grid can be
quite substantial, and designing secondary markets wherein
such DERs can participate repeatedly over time has become
important. Many such marketplaces have a so-called potential
game structure, in that a unilateral change in the strategy of
an agent causes equivalent changes in both its own reward
and a global potential function. We consider a dynamic setting
in which each stage is a potential game, but is accompanied
by Markovian state transitions, which we call Markov Potential
Games (MPG). It is well known that it is formidably challenging
to compute or learn Nash Equilibria (NE) in Markov Games.
We develop a key concept that we term as the potential value
function that ties together the potential function in the stage
game with the value function in a Markov Decision Process. We
first show that an NE can be computed in a centralized manner
by maximizing the potential value function. We also show NE
can also be obtained in a multi-agent manner via asynchronous
better (not necessarily best) response updates that are consistent
with a simple multi-agent reinforcement learning algorithm.
Finally, we show several examples wherein the MPG framework
applies to DER dynamics in an electricity marketplace, and
numerically study the efficiency of the equilibria attained.

I. INTRODUCTION

With increasing adoption of photo-voltaic cells in homes
the number of individuals who are both producers and con-
sumers within electric grids have greatly increased recently.
We call these types of individuals prosumers who wish to
engage with the electricity marketplace [1]. Other entrants
into the marketplace are small and large consumers that
can modify their consumption based on the peaks in power
consumption by the rest of the grid or during emergency
events. Demand Response (DR) programs seek to engage
such consumers by incentivizing such demand shaping [2],
[3]. The aggregate effect of including these distributed energy
resources (DERs) can be substantial in lowering the variabil-
ity of demand, thereby stabilizing prices and making the grid
more reliable, and potentially also reducing carbon emissions
through inclusion of cleaner energy sources. Indeed, the
Electric Reliability Council of Texas (ERCOT) organizes
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a variety of programs to engage with DERs, including
demand response approaches for flexible loads arising from
emerging applications such as Bitcoin mining. Given their
increasing importance, modeling and analyzing marketplaces
for DER participation presents an interesting problem space.
For example, we can consider a demand-response market-
place as a Cournot competition, where the price per unit-
reduction depends on the offers for reduction made by all
the participating individuals. The equilibrium price in such
cases dictates the level of reduction for the agents taking
part in these markets. It is well known that in these kinds
of Cournot games, there is a special function called the
potential function such that a unilateral change in reward by
any player is aligned across all players through the potential
function. The game is then referred to as potential game
(PG), and the game’s Nash Equilibrium (NE) is associated
with the maximizing strategy of the potential function. Finite
PG can attain such a NE point with a simple class of
dynamics, namely, asynchronous best response dynamics,
under which the agents asynchronously take best responses
until no further better response is possible. However, while
these games can model the demand as a function of prosumer
participation, they are poor at modeling external states and
their evolution. For instance, it is insufficient to model the
demand-response marketplace as a stateless Cournot game,
since the reduction in demand might not necessarily lower
the price due to a high baseline demand in a particular time
period. We are therefore interested in the setting where the
states themselves follow a Markovian structure. Specifically,
if we consider the state of the system as the current demand,
a demand reduction made in a particular time period could
result in a net demand increase in the next time period.
Thus, the demand at any time period could depend both on
exogenous factors such as the weather, as well the previous
demand reduction actions.

In this Markov marketplace setting, each agent essentially
solves a Markov Decision process (MDP) to identify its best
response to the other agents’ strategies, with the fixed point
being an NE. Thus, we are interested in Markov potential
games (MPG), which appear in a variety of resource sharing
problems. These are Markov games in which the difference
in utility (over the time horizon) induced by a change in
strategy for any player is exactly equal to the difference
in the value of an auxiliary potential function. Note, in
our case each state induces its own potential game with a
corresponding potential function, thus, we refer to the value
(over the time horizon) engendered by the stage potential
functions in this case as the potential value function (PVF).
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Concretely, we focus on an attractive structure where the
auxiliary potential function is identical to the potential value
function—a condition that we call Strong Markov Potential
Games (S-MPG). The goal of this work is first to establish
conditions for existence of S-MPGs, and then to propose
approaches for computing and learning an associated NE.

Main Contributions

Our main contributions are as follows:
(1) Our first result is on identifying criteria for the existence
of S-MPGs. There has been recent work in the area of MPGs
under variants of the notion of what makes a strong MPG.
However, work such as [4] present incorrect criteria for their
existence, [5] has an inherently unverifiable condition on the
structure that allows an S-MPG to exist, while work such as
[6] simply assume their existence. Thus, following the work
of [7] we collect criteria for the existence of an auxiliary
potential function and we show verifiable sufficiency condi-
tions for S-MPGs.
(i) We present three computation algorithms for identifying
a e-Nash equilibrium. First, following the seminal work of
[8], it is natural to think of a finite improvement path as a
sequence of best response policies. We extend this notion to
the case of S-MPG and show how the PVF can be obtained
by standard techniques such as policy or value iteration.
Second, we propose a centralized approach to maximizing
the PVF using value iteration. Third, we design a sequence
of asynchronous one step better responses by each agent,
forming a convergent decentralized value iteration process.
(iii)) We present a model-free learning algorithm for learn-
ing an e-Nash equilibrium under an unknown model. The
algorithm follows a structure of asynchronous play which
reduces learning in a possibly non-stationary environment of
MPG to learning in a sequence of stationary environments
of Markov Decision Processes.
(iv) Finally, we show under several settings on demand
response, pollution management, and a generic stage-by-
stage S-MPG the nature of what an S-MPG looks like in
practice, and illustrate the performance of our computation
and learning algorithms in discovering NE.

II. RELATED WORK

Potential games were introduced in seminal work [8].
Learning in single stage potential games has a rich history
with the works of [9], [10] and [11] being notable examples.

An extension of the one-shot strategic game is the multi-
stage dynamic game, where agents have an underlying state
and the problem faced by each agent can be modeled as a
Markov decision process, first studied in [12]. Examples of
such games can be found in [13], [14], and [15]. The natural
question of multi-agent reinforcement learning (MARL) is
considered in well-known work such as [16], [17] and [18],
which all assume that the other agents’ strategies are known
well enough to determine a best response in the manner of
a min-max strategy. A survey of MARL is available in [19].
However, the results are quite limited without introducing
additional structure on the nature of the game.

Under the structural assumption of a potential game,
one train of work considers the state-based game approach,
wherein agent actions do not impact transitions, enabling
them to take myopic actions to maximize their immediate re-
ward [20], [21]. Similarly, [22] considers the specific case of
deterministic transitions for greater tractability. Other work
assumes that a condition similar to S-MPG holds, without
attempting to determine if it does so for any game, and
shows that gradient play converges under this setting [6]. [23]
describes a solution to the Markov potential game without
any requirement of the “strong” property, however they are
unable to characterize the rate of convergence. Further, they
provide no sufficiency condition for the structure either.

Closest to our work are approaches that determine struc-
tural properties on the rewards and transitions that enable
tractability of a Markov potential game. Unfortunately, some
work such as [7] and [4] have analytical errors (that we de-
tailed in the supplementary material [24]), while [5] utilizes
a strong condition on the nature of the value function that
cannot realistically be verified for a given game. Thus, the
question of sufficient structure that enables provable con-
vergence of multi-agent computation or learning in dynamic
potential games is still unaddressed.

III. PRELIMINARIES

We consider a Markov dynamic game where each agent
interacts with others by taking actions in a dynamic envi-
ronment over an infinite horizon with discrete time steps.
The agents collect a stage payoff depending on their actions
and the current state of the environment, and which also
together determine the next state. A Markov dynamic game
is a tuple I' =< S, A, {7 }ie[r], P,y > defined as follows:
(1) agents are denoted by i € [I| := {1,2,...,1}, (2) the
globally observed state space denoted as S is a set of finitely
many states, (3) the action space for agent ¢ € [I] denoted
as A; is a set of finitely many actions and the set of joint
actions is denoted as A := Ay x --- X Ay, (4) the transition
probability is denoted as P(s’|s,a) from state s to state s’
given a joint action a = (a1,...,a7) € A, (5) the stage
payoff function of agent 4 is denoted as 7; : S x A — R
for all ¢ € [I]. We focus on stationary policies, i.e., for each
agent ¢, denote by m;(s, a;) € [0, 1] the probability that agent
i takes action a; € A; at state s € S. We denote a joint
policy by m = (m1,...,7), and the set of joint policies
by IT := II; x --- x II; where II; := ] .5 A(A;) for all
i € [I] where A(X) is a distribution over X. We also denote
a joint policy of all agents other than agent ¢ by 7_;, (by
abuse of notation) denote m = (m;,7—_;) and also denote
In_; =1] ;i 1Lj. Moreover, we denote a joint policy in step
k € Nby 7% = (nf,..., %) when necessary. Define a value
function V" as

V7 (s) =BT [ Y A'risi, ar)] )

forallie[I], se S, m eIl

6351

Authorized licensed use limited to: Texas A M University. Downloaded on September 02,2023 at 01:05:47 UTC from IEEE Xplore. Restrictions apply.



Definition 1. A joint policy m* = (nf,...,n7) € Il is
called a Nash equilibrium (NE) if V™ (s) > Vim’w*’i (s)Vs €
S, i € [I], m; € I1;. We also say that ¢ := (n§,...,75) €
IT is an e-NE if V7 (s) + ¢ > Vim’ﬂi”(s) Vs € S, i €
[I], m; € 11,

It is well-known that there exists a Nash equilibrium in
discounted stochastic games [25]. A static game can be
considered as a simplified type of stochastic game that has a
single state and no state transitions. Hence, a reward function
r; reduces to depend only on actions, i.e., r; : A — R for
all ¢ € [I]. We introduce a (static) potential game, which we
extend to a dynamic setting in the next section.

Definition 2. A (static) game is called a potential game (PG)
if there exists a function ¢ : A — R, called potential, that
satisfies the following condition: ;(a;,a_;) —ri(a,,a_;) =
d(ai,a—;) — ¢(al,a_;) for all a;,a, € Ajya—; € A_; and
i e [).

In words, in a potential game, a unilateral change of action
by agent ¢ gives him the same reward with r; as a unilateral
change in ¢. Since, ¢ is agent independent, one can view this
as all the agents cooperating to maximize a joint potential
function ¢.

IV. MARKOV POTENTIAL GAMES

Consider the Markov dynamic game from the previous
section, I' =< S, A, {ri }ic[r), P,y >, with finite action sets
and state spaces played over an infinite horizon with discount
factor . We call this game a Markov Potential Game
(MPG) if there exists a function A = S x A — R, we
will call it the Auxiliary Potential Function such that

AT (s) = AT (s) = VT (s) = VTN (s) ()

(2

for every 7 in each state s. We denote the MPG by I' =<
S, Aa {Ri}ie[l} , P, Aa v >

The following definition of a path will be useful to prove
optimality results in MPGs.

Definition 3. A path is a sequence of joint policies p =
(nb, 72,73, ...) such that for every k € N, wktl =
{Wg(k), W’ii(k,)} obtained from 7 by allowing a single agent
i(k) (single deviator in step k) to change its policy of agent
We can then make an assertion on the existence of a
deterministic NE in the potential game setting.

Theorem 1. Every MPG, I has a deterministic Nash policy.

While this result seems intuitive, the fact that we have
state as well as action means that we cannot directly use the
argument of finite improvements from [8], but need a slightly
more nuanced extension to the Markov game setting. The
proof is presented in supplementary material [24].

The next result tells us that if we can find a maximizer for
the auxiliary potential function, then we have found a Nash
equilibrium. Since A maps from S x II — R!S!, we define
a partial ordering on R!Sl; z <y, z = {1, 22 119}y =

{y1,y2...y5;} € RISIif and only if 2; < y; for i €
{1,2,...]S|}. If z is the maximizer of A, then for any
x € II, A*(s) > A*(s) for every s € S. Suppose A admits a
maximizer and suppose further that this maximizer happens
to be deterministic, then we will call this policy the optimal
deterministic joint policy.

Corollary 1. An optimal deterministic joint policy 7 =
(¥, ..., m}) implies that m is a Nash equilibrium of Markov
potential game T.

Corollary 2. An e-optimal deterministic joint policy w¢ =
(m§,...,m%) implies that ©° is an e-Nash equilibrium of
Markov potential game 1.

The next lemma from [5] provides us with a characteriza-
tion of value functions and serves as an equivalent definition
of MPG.

Lemma 1. If V"""~ (s) is the pay-off to go for agent i at
state s under policy m = {m;,m_;} and A™™=i(s) is the
Auxiliary Potential function for the MPG, then

o (S) — AT (S) + UZ"*l (S) 3)

K2

In words, the lemma states that any value function in
an MPG can be decomposed into a “Potential component”
where the players essentially collaborate to improve the joint
value and a second component which is both implicitly and
explicitly independent of the player’s actions. We present the
proof in the supplementary material [24].

Corollary 3. Suppose each stage is a potential game, (we
will call them stage potential games), then

ri(s, aia_;) = ¢ (s) + (s, a_y)

We will define the potential value function, ® : SxII — R
by

(Pﬂ—(s) =Eqor |:Zﬂyt¢st,(a)|80 = S:| 4)
t=0

We wish to find sufficient conditions under which, ® given
by (4) is a potential function for the Markov game I' =<
S, A {ri}iein, P,y >. In other words, we are looking for
sufficient conditions under which & = A.

When @ is a potential function we know a deterministic
Nash equilibrium exists. Moreover, maximizing ®, is equiva-
lent to maximizing a Markov Decision Process, here it is well
known that MDPs have a deterministic solution that yields
a global maxima for ®. Such a solution can be obtained
from value or policy iterations, thus, greatly simplifying
the computation of Nash equilibria. We will call the class
of Markov Potential games for whom the Potential value
function is an auxiliary potential function, Strong Markov
Potential games (S-MPG).

A. Sufficiency conditions for Strong Markov Potential Games

As discussed in the previous section, we are interested in
the conditions under which our game is a S-MPG. We will
begin by examining the conditions outlined in [7].
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SER-SIT condition:

Following [7], [26] and [27], we consider Separable Re-
ward - State independent transition games with the following
additional conditions.

Condition 1. The rewards are separable in the following
sense,
ri(s,ai,as) = r(s) + i (ai, a_;)

and the probability transition matrix is state independent,
P(S, Qg a—’i) = P(aia a—i)

1) The partial reward, r}(a;,a_;) is a potential game. 2) The
pay-off, (P(.|a;,a_;),r0(.)) for each i follows a potential
game.

The following theorem from [7] gives sufficient conditions
under which a game with the SER-SIT structure is a potential
game.

Proposition 1. Under Condition I, the SER-SIT game is a
S-MPG.

The proof can be found in the supplementary material [24].
As a consequence of the SERSIT conditions we now have
at least one verifiable condition under which an S-MPG exist.

Action Independent Transitions:

We call games where the probability transition kernel does
not depend on the action set of the players state-based games
[20] and the probability kernels, action independent transition
kernels.

Condition 2. The rewards at each stage follow a stage
potential game and the transition probabilities are action
independent.

Proposition 2. Under Condition 2, the reward at each stage
can be written as:

ri(sv Qg a—i) = ¢)(Sa Qg a—i) + ui(a—iv S)
and the state-based game is an S-MPG.

We now have two independent verifiable conditions under
which a Strong Markov Potential Game may exist.

B. Examples:

While there are many practical examples of state based
games, see for example [20] there are relatively few examples
of SER-SIT games. We provide two important examples, as
mentioned in the introduction.

Demand Response Marketplace: We consider a market-
place with N demand response providers who can choose to
contribute a; € {0,1,...|A|} levels of energy reduction to
the grid. The state of the system reflects the demand for that
time period. We denote the states by S = {0, 1, ...|S|}, with
0 indicating that the grid is in dire need of demand reduc-
tions, to |S| indicating that the current supply is sufficient
to meet the current demand. In return for producing a level
of output (demand reduction) a;, the DR provider receives
reward 7;(s,a;,a—;) := a;(f(a;,a—;) — §°) for an appropri-
ate function f. The states of this system evolve according

to s = g(zi]il a;) + w where w is a common discrete
noise term that models uncertainty due to a variety of factors
including weather events. Such a game can be modeled as a
SER-SIT game when f and g are chosen appropriately. The
system simulation is presented in Section VIIL.

Pollution Tax Model: The environment has two states,
pollution free and polluted, and we use sy and s; to denote
these states. There are two generating firms that have two
actions available to them, clean, C and dirty, D. If either
one of the firms takes the dirty action, the environment in
the next time slot goes to state, sj. If both firms choose
the clean action, the firm goes to, sg. The firms are taxed
equally in the polluted state by 7. The firms earn reward
g1 and go per unit produced, action C' produces one unit
while D produces two units. The payoff function is therefore
given by 7;(s,a1,a2) = g; + 1{q,=p19i — 1{s=s,} T where
1im is the indicator function of E. The transition kernel,
P(sols, a1,a2) = P(solai,az) = 1 only when a; = C and
ag = C. Clearly, the reward obeys a SER structure while
the transitions are state independent and it is easy to check
that the reward at each stage obeys a potential structure. The
system simulation is presented in Section VIIL.

V. COMPUTATION OF NE IN STRONG MARKOV
POTENTIAL GAMES

Throughout this section, we assume that the reward at
each stage follows a stage potential game. Further we assume
that either Assumption (1) or (2) hold. Hence, our potential
value function, (4) is an auxiliary potential function. We now
have a Strong Markov Potential Game denoted by, I' =<
S, A {Ri}icin, P, ®,v >. We will present computational
methods for convergence of Markov potential games and
prove that these methods identify an e-Nash equilibrium.
Note that we use | - || to refer to the || - ||oc norm.

A. Centralized Computation

Centralized Value Iteration:

Our first setting can be thought of as the case when a
central administrator wants to ensure the optimal outcome
for all the agents and maximizes the potential value function
in order to obtain this outcome.

Since our potential value function, ® is the value of an
MDP, we may use value or policy iteration to find the joint
e—optimal policy. We know by Corollary 2 that it suffices to
find an e-optimal joint policy, 7¢ with respect to & when
finding an e-Nash equilibrium. To this end we use value
iteration over the joint actions of all the agents.

Let ®(s) = ®™(s) be the potential value function under
some fixed policy 7. Define a mapping H by,

(H®)(s) = max(¢(s,a) + Z P(s|s,a)®(s"))
acA
s'eS

for all s € S. Readers will note that this is the familiar
Bellman optimality operator on ®.

Let us begin with some initialization for ®¢(s) for all
s € S for some initial policy 7°. At any time ¢ > 0, let
&, = H'® i.e, the optimality operator applied to our initial
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point ¢ times. It is well known that the optimality operator
is monotonic and a contraction map in the || - || norm.

Algorithm 1 Centralized Computation

Input: A Markov potential game (I" and ¢) and €
Let ®o(s) =0forall s€ S, t =0, c:= ||[HPy — Dy||
repeat

Dyy1(s) « HDy(s) forall s e S

Increment ¢ by 1
until max(||®;41(s) — P4(s)]], %c) < ie
return e — argmaxge4 ¢(s,a) +
7Y ves P(]s, a) ()

A A

Theorem 2. For any € > 0, Algorithm 1 generates an e-Nash
equilibrium €.

The proof for this theorem may be found in the supple-
mentary material [24].

Component-wise Value Iteration:

Suppose an administrator wishes to maximize his cost but
may only improve a single component at a time. Under such
a setting we are interested in the existence of critical points
i.e, points where there can be no improvement by changing
a single component of the value function. In this setting, we
consider an MDP with value function

O™ (s) := ]E{nytgb(st, ai)|so = s,a; ~ w(sy)|.
t=0
The state space of our MDP is S; the action set 4 can
be broken into I independent components such that A =
Hle A;. Formally, our objective is to find policies 7* :=
{m}, 75, ... 7} such that ®7 (s) > ®™™~i(s) for any s €
S, of our function ®. Here, we show a possible decentralized
component-wise iteration procedure to find critical points in
our problem.
Define C7T as,
CIrd(s) = Jbi, T
T(s) = max o(s,biy 71 (s)) +
7 YR b)), O
s'eS

?r(ﬂ', ?) =arg bngi( d(s,bi,m—1(8))+

v P(s]s, by, m_1(s)D(s).

s'eS

T

(6)

In words, we begin with some estimate of our value
function ® and a policy 7. We select a component in a round
robin fashion and improve its value using the operator C7
for the value and 771-“. Note, during regular value iteration it
is unnecessary to maintain the policy at time ¢, however, in
the component-wise case this becomes necessary since our
next value not only depends on the one-step improvement of
the ™ component but also the policy 7_;.

Lemma 2. Suppose we begin with a deterministic policy
m and a corresponding potential value function for this

Algorithm 2 Component-wise Value Iteration

Input: An MDP M := (S, Hi]:l A, ¢, P,7),
Initialize : ®g(s) forall s€ S, t=1and 7 =7
repeat

1 <=t modulo [

Diiq(s) C,Z‘tq)t forall se S

it wbr(xt, @)

Increment ¢ by 1
until max(||e41(s) — @4(s)], L) < e
return &!, 7t

W N =

D P AN U

policy given by ®™. Then Algorithm 2 converges to a Nash
equilibrium asymptotically.

The previous lemma showed us that the component-wise
value iteration converges asymptotically to a Nash equilib-
rium but did not give us a rate of convergence. The next
lemma shows that the rate is in fact geometric.

Lemma 3. C7 is a contraction with Lipschitz constant vy
in the infinity norm when w is fixed; as a result, different
trajectories of value functions will converge to a common
trajectory at a geometric rate.

The proofs for both Lemma 2 and 3 may be found in the
supplementary material [24].

B. Decentralized Computation

The following section consists of the more realistic setting
where the agents have different utility functions but are
playing a Markov potential game.

Asynchronous Computation:

We begin by using a natural extension of the concept
of finite improvement paths from [8]. Define the Bell-
man optimality operator in one component by: T'V;(s) :=
maxg, e, Ri(s,a:,m—;) + 'V*Zs/es P(s'|s,a;,m—;)Vi(s).

Denote the Q-function Qf T (s,a;) = Ri(s,ai, ;) +
Y ges P(s'|s,ap, m_i )V T (') for all s € S, a; € A;,
i € [I] and w_; € II_; where 7} is an optimal policy with
respect to m_;. Let € denote the minimum separation between
agents’ optimal Q-functions with respect to m_;, defined as

min Q7 (s,a0) — Q7T (s, bo)| (7

QY

g = *
Q"
minimized over all s, a;, b;.

Suppose we choose ¢ such that 0 < € < %é and if
computation and learning (such as VI, PI or Q-learning) of
asynchronous play is within the tolerance level of ¢, then it
characterizes an e-improvement path (defined analogously to
an improvement path) because ¢ is smaller than the minimum
separation € which distinguishes optimal and sub-optimal
actions.

Note that the following theorem holds true for any Markov
potential game and not just S-MPGs.

Theorem 3. Algorithm 3 generates an e-Nash equilibrium
€ for all 0 < e < %E.
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Algorithm 3 Asynchronous Computation

Algorithm 4 Distributed Better Response

1: Input : A Markov potential game (I' and ¢) and €

2: Initialize : A joint policy 7y and k = 0

3: repeat

4: Choose an agent i = i(k) € [I] and fix 7_;)

s Initialize : V;o(s) <~ 0 forall s € S, ¢ « ||[T"V; 0 —

Vi70||, t+0
6:  repeat _
7: Vitr1(s) <~ TV 4(s) forall s € S
8: Increment ¢ by 1
9 wntil max([|Vi,41(s) = Viu(s)l, 75¢) < ze

100 g4t — argmaxy, e A, Ri(s, ai, m_;y) +
V2 wes PS8, ai, mige)) Viie (')

1 g1 & (T kg1, Teih1) = (7Ti,/c+1,7ti(k))

12 VM Wy,

13:  Increment k by 1

14: until V??,’;;“l(s) < Vf(r,’;)(s) +e

15: return 7° =7 = (T K, .

Vs € S and i(k) € [I]
. 77TI,K)

Distributed Better Response:

Algorithm 2 was a central algorithm to compute critical
points on our MDP. Here, we present a way to perform an
equivalent operation in the decentralized case where each
agent will try to perform a one-step maximization of their
value function analogously to the one-step component-wise
update. As before, we will need to define a few operators
for our algorithm D] & as,

DIV(s) = max ri(s, by, m—1(8))+
¥ B |, biy w1 () Vils)
s’eS
(1, Vi) = arg jnax ri(s,b;, m—1(8))+

i

v Z P(s|s, b1, m_1(8))Vi(s).

s'eS
And let,

D Vi(s) =ri(s,m(s))+
¥ D ()5, m(s))Vils).

s'eS

Algorithm 4 describes one way to asynchronously perform
value iteration in order to obtain a Nash equilibrium. In
words, at each time step ¢, an agent is chosen in a round
robin fashion. At time 1, agent 1 is chosen and performs
a one-step update of its own utility function V|* using
DT. Agent 1 can simultaneously compute, 75 (7, V;*) and
broadcast this update to every other agent. Next, every agent,
J updates its value using a one step evaluation D7 V", where
ml = {n¥,7_1}. At any time step ¢t > 1, this process
repeats until convergence.

Theorem 4. Algorithm 4 converges to an € Nash equilibrium.

The proof (please refer [24]), proceeds by establishing the
equivalence between centralized component-wise operators

Input: An MPG M := (S, Hi]:l Ai, @, {7 Yiern), P y)s
Initialize : V;(s) forall s€ S, t=1and 7 =7
repeat

i < t modulo I

Viasi1(s) « th\/;’t(s) forall s€ S

7Tt+1 — (WiD_bT(Trt, ‘/i,t)aﬂ—i)

for j ={1,2,...i—1,i+1,...1} do

Vi (s) & DIV,

Increment ¢ by 1
until max(max; ||V;11(s) — Vi ()], %c) <e€
creturn {Vii}icon,..1-13, 7

R AN U o e

_..—
- e

and the distributed agent-wise operators, C7 and D] respec-
tively.

VI. LEARNING IN MPGs

Our learning algorithm follows directly from our asyn-
chronous computation algorithm. We will use an off-policy
Q-learning method,i.e., at round %, an agent, i(k) is chosen
at random. All other agents are assumed to keep their policy
constant while the agent learns her (near) best response
through Q-learning. Then we proceed to the next agent.

Agent i at time t observes the tuple (s, as,r;, S¢+1) and
updates her Q-table as follows,

Qi(sta ag,t + 1) :Qj(stv G, t)+
ay [rj(st, az) + VHE}XQj(stH, a’,t)]

®)

The behavior policy m € A(A)!S! (note this is a joint
policy on all the agents) is ergodic in the Markov chain
(s,a) with stationary distribution p. Define, ppin =
ming, q) p(s,a) > 0 and mixing time Z,,;,. We let 7 be
the time at which total variation distance from the stationary
distribution is {, T = tyis log #m% The step size, o; =

h 4
T+to and h Z m, to Z maX(4h,T).

Lemma 4 (Theorem 7 in [28]). Let M(w_;) be the MDP
for agent j and let € and § be two positive constants. If the
Q-table for j is updated using (8), then: ||Q(T) — Q*|| < e
with probability at least 1 — § whenever, T > Ty. Where

tmiz

To = O\ aa=5ym,
of 1/e,1/(1 — =), 1/ thmin and tpmiz.

Here, note, i, will scale as log|S||.A| and ﬁ scales
as O(|S]|A|). The learning algorithm extended from asyn-
chronous computation Algorithm 3 that under the framework
of asynchronous play is:

, 0 suppresses logarithmic factors

Theorem 5. For 0 < € < %E, 0 < § < 1, suppose
each agent, chosen in a round robin schedule, updates their

tmiz
=) at
62(1_7)0N?nin

each step k. Algorithm 5 generates an e-Nash equilibrium
¢ with probability at least 1 — 4.

Q—table according to (8) for an order O<
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Algorithm 5 Asynchronous Learning

1: Input : €,0
2: Initialize : A joint policy my, k& < 0, Rpax <
max; s o Ri(s,a), K < e%‘i;‘[, 0o %5

3. repeat

4: Choose an agent i = i(k) € [I] and fix 7_;)

s:  Execute update (8) in MDP M (7_;)) with input
€,00, T_i(k)

6:  Obtain e-optimal policy 7;(x) x41 ¢ 7 and e-optimal
value function V() < V;

7: 7Tk+1<—(7rik+1,7r,

8: VT(rk) N V(k)

9:  Increment k by 1.

10: until V.75 (s) < VT

(k) i(k)
11: return 7° =71 = (T K,. .-,

i,k+1) = (Wi(k),k-&-la 7T—1‘(1€))

(s)+e VseSandi(k) e [I]
1K)

Note that since each agent needs to update their policy
using Q-learning, the total number of iterations required to
reach Nash equilibrium will be multiplied by the number of
agents.

VII. NUMERICAL STUDIES

SER-SIT game (Demand Response Marketplace): Our
first case is DR Market described in Section IV-B. Suppose
there are NV grid assets such as demand response aggregators.
Each grid asset can produce a; € {0,1,...,4} amount of
products, for example, load reduction from demand response
aggregators. State space S = {0, 1,...,4} represents levels
of emergency where state 0 represents that the system is
most strained and that state 4 represents that the system is
least stressed. Reward for each asset (agent) ¢ is given by
ri(s,ai,a—;) = ai(f(ai,a—;) — ¢*) where f(a;,a—;) is a
function of every asset’s action and c is a constant. It immedi-
ately follows that ¢(a;,a—;) = (Hi\[=1 a;)(f(a;,a—;)—c®)is
an ordinal potential function for each s € S. If f(a;,a_;) =
a;(a — 52@1\;1 a;) with constants @ = 2,5 = 0.25 and
¢ = 1.25, then ¢ is an exact potential function where
¢ is defined as ¢(ai,a_;) = ad.r a;i — YN a2 —
5Ziv§¢<j<1v aa; — S | ¢*. Suppose that next state s’ is
given by s’ = aj +as—w where w ~ uniform{0,1,2,3,4}
with probability 0.9 and s’ ~ wuniform{0,1,2,3,4} with
probability 0.1. Given the structures, it can be shown that the
grid asset management is a SER-SIT game and each state is
a potential game. For ease of presentation of the heat map
of actions we restrict the assets to 2. We show convergence
of Algorithms 4 and 5 in Figure 1 and 2 respectively and
heat map of action-value function for grid assets in Figure 3
(heat map for grid assets is identical due to identical reward
structure). It is observed that both grid assets take the largest
load reduction in state 0 (most stressed system state) while
they take the smallest load reduction in state 4 (least stressed
system state).

We further study this market over a synthetic Texas
transmission grid model [29]. Here, the state of the system
is mapped to the offered load (demand) at each of the nodes

—
o
S}

llots, a)lly
|1Q(s, @)l

w
)

—— Player1
—— Player 2

25 —— Player 1

—— Pl 2
layer 0

0 2 4 6 8 10 12 14 16 18
Iterations

0 2 4 6 8 10 12 14 16 18
Iterations

Fig. 1: Distributed Better Re- Fig. 2: Asynchronous Learn-

sponse ing
7 140
£
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&
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g = *
7] = 80 —
4 &
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@
----- T fw
Arnnnc 0 2 4 6 8 10 12 14 16 18

Iterations

Fig. 3: Heat map of action-

Fig. 4: LMP trajectories
value

Fig. 5: Note, the convergence of the L1 norm in the figure
above can happen if and only if the corresponding potential
function converges.

in the grid, and the market maker solves the DC Optimal
Power Flow (DC-OPF) problem to determine the location
marginal prices (LMP) as the (wholesale) electricity price
at each node. It is well known that large demand at certain
nodes can trigger very high LMPs [29]. We consider whether
the demand-response market will mitigate these high LMPs.

Thus, for each s € S in our setup, there is a corresponding
nodal demand vector d;. If grid asset ¢ takes an action a; = j,
it is equivalent to its commitment to reduce j% of its demand
in selected locations. We consider the impact on average
LMP (over the grid) according to (i) a do-nothing policy
denoted as 7, i.e., the two DR agents take action a; = 0
for all states, and (ii) the Nash equilibrium policy 7* of the
grid asset market as shown in the heat map of Figure 3. The
trajectories of LMPs in the two cases are illustrated in Fig. 4,
where is clear that the learned strategy for DR significantly
reduces the average LMPs.

SER-SIT game (Pollution Tax Model): Our second case
is the pollution tax model from Section IV-B. We consider
g1 = g2 = 2 and the tax incurred as 7" = 4. As seen in
Figures 6 and 7, the system converges to a Nash equilibrium
where players choose to use the clean actions in both states.
State based game: We finally present an illustration of

Distributed Better Response Asynchronous Q-learing

liats, allx

—— Player 1
—— Player2

—— Player 1
—— Player2

2 4 6 8 10 12 14 16 18 0 2 4 6 & 10 12 14 16 18
Iterations (Asynchronous Plays) terations

Fig. 6: Distributed Better Re- Fig. 7: Asynchronous Learn-
sponse (Algorithm 4) ing (Algorithm 5)
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a state-based Markov Potential Game in which the state
transitions are due to an exogenous Markov chain that does
not depend on the player actions. A variety of energy markets
can be modelled in this manner, where the state (such as the
current weather) provides a context for player interaction.

For illustration, we consider a state-based MPG that is
composed of two canonical strategic games, with the state
being which game is currently being played. The games
chosen are Prisoner’s Dilemma and Bach or Stravinsky,
denoted as sg and s;, respectively. The players actions and
rewards are shown in Tables I and II.

Actions C D Actions C D
C -1, -1 -6, 0 C 2,1 | 0,0
D 0,-6 | 4 4 D 00 | 1,2

TABLE I: State s TABLE II: State s;
The transition probability matrix is given by P[s’ =
Sols,a1,az] = P[s’ = sg] = 0.6 and P[s’ = s1]|s,a1,a2] =

[4]

[5]

[6]
[7]

[8]
[9]
[10]

(11]

P[s’ = s1] = 0.4. In figures 8 and 9 we plot Q-values with ~ [1?]
respect to L1 norm over iterations to show the convergence  [3)
of Algorithms 4 and 5.
[14]
Distributed Better Response Asynchronous Q-learning
o —— Player 1 10 —— Player 1
- —— Player2 o —— Player2 []5]
| i [16]
| . [17]
2 4 6 gue,;:?m,su 14 16 18 o 2 4 6 B\.E,;:D,,Qz 14 16 18 [18]
Fig. 8: Distributed Better Fig. 9:  Asynchronous
Response (Algorithm 4) Learning (Algorithm 5) [19]
[20]
VIII. CONCLUSION
. . . 21
We considered multi-agent marketplaces in the context 21
of DERs. We modeled the system as a Markov Potential
Game and characterized sufficiency conditions under which ~ [22]
an MPG can be treated as an MDP with multidimensional ac-
tions controlled by different agents. We constructed central-
ized and distributed algorithms to compute Nash equilibria, 23]
and developed an MARL variant based on these algorithms.
This enables the expansion of the problem space over which  [24]
we can determine Nash equilibria via MARL beyond simple
min-max approaches applicable to zero sum situations. We
used several games in the context of DER marketplaces as  [25]
examples to demonstrate the efficacy of our methods.
[26]
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