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Spectra and images derived from the Fourier transformation of time-domain signals can often exhibit overshoots and/or
“ringing” near sharp features. Such artifacts are due to the slow convergence of the Fourier series near such features,
an effect referred to as the Gibbs phenomenon. While usually viewed as being purely mathematical in origin, the
Gibbs phenomenon can often be found in a variety of physical situations, such as in imaging and spectroscopy. In
this work, a physical description of the Gibbs phenomenon is presented where it is interpreted as an interference effect
whereby slower destructive interference or “Fourier dephasing” occurs near sharp spectral features compared with the
Fourier dephasing observed away from such features. Such differences in Fourier dephasing can be exploited to localize
magnetization near physical boundaries on timescales about an order of magnitude faster than can be achieved using
conventional frequency or spatially selective pulses. This localization, which is reversible, also occurs on much faster
timescales than can be attributed to irreversible sources such as restricted diffusion or spatial variations of the intrinsic

spin relaxation within the sample.

Ever since Joseph Fourier introduced the (then) revolution-
ary concept that functions could be represented by a series of
sines and cosines, applications of Fourier series by scientists
and engineers to transform experimental data into intepretable
forms, such as spectra or images, have become common-
place. While most applications require finding Fourier series
representing smooth or infinitely differentiable functions, the
Fourier series of non-smooth functions can often exhibit os-
cillations and/or overshoots at frequencies where the function
is not infinitely differentiable. This effect, which is referred
to as the Gibbs phenomenon'?, is the result of representing a
function that is not smooth at a finite number of frequencies in
terms of basis functions that are themselves smooth over the
entire frequency range, e.g., the sine and cosine basis func-
tions of a Fourier series. The Gibbs phenomenon can often be
observed in signal processing applications when sharp filters
are applied to time-domain signals, and it was also recently
observed in numerical studies of electron transport due to fil-
tering the calculated current over a finite bandwidth®. In imag-
ing and spectroscopic applications, the Gibbs phenomenon of-
ten arises as a result of truncating signal acquisition in time®*.
A Gibbs overshoot and/or “ringing* artifact often occurs near
such sharp spectral features, which need higher frequencies
in order to accurately depict them, due to insufficient signal
acquisition times.

Recently, spectral localization near boundaries observed in
nuclear magnetic resonance (NMR) delayed-acquisition ex-
periments [pulse sequence in Fig. 1(A)] was also attributed to
the Gibbs phenomenon®. As illustrated in Fig. 1(B), a mag-
netic field gradient of strength g applied along the length of a
Shigemi tube, which has a flat bottom, causes each “XY-slice”
within the sample to resonate at a slightly different frequency
along the Z-direction, @(z) = ygz, where ¥ is the gyromag-
netic ratio, and z = |z| is the z-coordinate along the axis of
the tube. In Fig. 1(B), the Gibbs phenomenon was observed
for signals near the bottom edge of the Shigemi tube (taken
to be at z =0 mm) due to insufficient signal acquisition in
time. When an acquisition delay of Tpey = 1 was applied,

signal was localized near the bottom edge of the Shigemi tube
as shown in Fig. 1(C). In an NMR context, it is known’
that an acquisition delay results in larger signal attenuation
for spins with short transverse relaxation or 75 times, leaving
only long-lived signals that result in narrower spectra. From
the delayed-acquisition spectra in Fig. 1(C), the magnetiza-
tion near the bottom edge has a longer effective 7, time com-
pared to the magnetization within bulk.

Why signals near edges have longer apparent T, times
can be partially understood within a magnetic resonance
imaging (MRI) context. In MRI, it is known that delayed-
acquisition simply filters out low spatial frequencies, i.e., low
values in k-space, leaving only higher k-space values. Since
edges/boundaries are characterized by higher spatial frequen-
cies, an image reconstructed with only high k-space values
will highlight the edges/boundaries®, which is generally inter-
preted as being an image processing effect and not a physi-
cal effect due to magnetization actually being localized near
physical edges/boundaries. To reconcile both the NMR and
MRI pictures of signal localization near edges under delayed-
acquisition, it was argued® that the slow signal decay near
edges was due to the slow convergence of the Fourier series
needed to describe a system with a magnetization density hav-
ing sharp edges, i.e, signal localization was due to the Gibbs
phenomenon.

While the above argument provided a mathematical de-
scription behind the physical localization of transverse mag-
netization observed in Fig. 1, no physical mechanism was pre-
sented that described how the Gibbs phenomenon led to such
spectral localization. In this work, the Gibbs phenomenon is
physically interpreted as an interference effect. Magnetization
near sharp features, such as boundaries or edges, experience
slower destructive interference or “Fourier dephasing” rela-
tive to the magnetization found within the bulk. As a result of
this difference in Fourier dephasing, reversible spectral/spatial
localization of transverse magnetization in the presence of a
magnetic field gradient occurs near boundaries. Furthermore,
it is experimentally demonstrated that this localization occurs
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FIG. 1. (A) Basic delayed-acquisition NMR sequence. After an ini-
tial excitation pulse of flip-angle 6, a gradient of strength g is turned
on with a gradient stabilization delay of 7,y = 110 us. Following
an acquisition delay of Tpelay after an initial excitation pulse, the
FID is acquired at integer multiples of the dwell time, Az, for a time
Tacq = NpsAt. (B) Real part of the spectrum, Re[So(@)], for a 10:90
(v/v) HyO/D,0 solution in a DO susceptibility matched Shigemi
tube [the schematic of a Shigemi tube with a magnetic field and lin-
ear field gradient applied perpendicular to the Shigemi tube’s bottom
edge located at z = 0, B(z) = By + gz with g = 2.96 gauss/cm. The
main sample detection region was approximately 5 mm (shown in the
schematic) with signals attenuated outside this region (z > 5 mm)].
The FID was acquired using the sequence in (A) with Tpejay = 0 and
Tacq = 4096A¢, although only the first 96 complex points were trans-
formed using a discrete Fourier transform (DFT), which resulted in
a Gibbs overshoot and ringing artifact in the spectrum near the bot-
tom of the Shigemi tube (z ~ 0 mm). (C) With Tpejay = 1 ms, sig-
nal was predominantly localized near the bottom tube edge. The
delayed-acquisition spectrum was scaled by a factor of (x3.2) for
better comparison to the image in (B). It should also be noted that
the purpose of D,0O in the sample was simply to dilute the water
magnetization in order to reduce the effects of radiation damping’.
All experiments in this work were performed on a 400 MHz Bruker
AVANCE III HD spectrometer with a Micro5 microimaging probe
equipped with XYZ gradients and a 'H channel. The spectra in (B)
and (C) were acquired using Bruker TopSpin, a relaxation delay of
20 s, a dwell time of Ar = 25us, and Ng = 8 scans.

on a faster timescale than can be attributed to irreversible lo-
calization mechanisms such as restricted diffusion®!0.

For a system with a magnetization density p(r), the evo-
lution of the transverse magnetization generated by an initial
0-excitation and in the presence of an applied magnetic field
gradient [sequence in Fig. 1(A) with Tpelay = 0]. This signal,
which is referred to as the free induction decay (FID), is sam-
pled at integer multiples of the dwell time, nAt for n =0 to
n = Nps — 1, and can be calculated by (in the absence of T

relaxation and diffusion):

FID( = nAt) = (M..(1)) = sin(6) /dﬁp(r)e-%-”

=sin(0) /L 42 pz(2)e 18"
=sin(6 )(1+5,,0) ( +iBy) )

where pz(z) = [dx'dy'p(z,x',y’) and 2L = y are the effec-
tive one-dimensional magnetization density and field of view
(FOV), respectively, along the gradient direction (taken to be
the Z-direction), &; is the Kronecker delta function, and A,
and B, are the n'" coefficients in the Fourier series of pz(z):

pz(z) = A0+ZA,,cos< I

n=

) + By sin ( EZZ) 2)

Consider a pz(z) that is uniformly distributed between z =
£Lo, pz(z) = 5, for |z] < Ly and pz(z) = 0 for Ly < |z| < L.

For such a pz( ) Ag = 3, B, =0, and A, = Lsinc (nnLU>

The spectrum with Tpelay = 0, So(®), is obtained by applying
a discrete Fourier transform (DFT) to the FID(7) in Eq. (1)
and is given by (for || < ygL):

. Npis—1
So(a)):%(f)<l+2 Z smc< ﬂLLO) ’”m’> 3)

Note that Re[So(®)] approximates pz(z) where the sum in
Eq. (2) only includes the first Ny Fourier coefficients. In
this case, Re[So(®)] will exhibit a Gibbs overshoot near
@ =+ YGLy. For an acquisition delay of Tpelay = NpAt, the cor-
responding spectrum®, STy (@), is given by:
wsin(6) . (NpwLy
STDshy((D) = sine <7L
. Nps—1

sin(9) " Np + k)L ;

7sin(6) y sinc<( p+k)m 0>ew)km(4)

NL &= L

In this case, |Sp,,,, (@) will be concentrated near ® ~
+7YGLy, similar to what was observed in Fig. 1(C); however,
it is not clear from Eq. (4) why that should be the case.

To gain some insight into the localization of magnetiza-
tion near @ = +yGLy, consider approximating pz(z) by the
smooth function:

1

1
m j 2n
() +1
for N > 1. In the limit N — oo, pz .,(z) approaches the uni-
form distribution described above. Using pz y(z), the FID(r)
in Eq. (1) is given by:

pz(z) = pzn(2) = (&)

FID(t) =

2N ~
2Ly J-L (%) 1 2

imsin(@) N=! )
,man( ) Y Ay (Tniamt

m=0

sin(@)/L & o161 __ sin(6) /""d , e~ GiLo?
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(©)



AlP

Publishing

where A, = exp (ﬂ'%
the 2N roots of “-1” (i.e., (lm)ZN = —1) in the lower half of

the complex plane, and I, = YGLysin (%) and @, =

)form:Otom:Nfl are

YGLycos (%) are the effective 7, and frequency of the

m' exponential in Eq. (6). Note that in the limit N — oo,
FID(¢) — sinc(yGLyt) as expected for transverse magnetiza-
tion uniformly distributed between —Ly < z < Ly (see Supple-
mentary Material (SM) for more details).

Since the FID(¢) in Eq. (6) is simply the sum of N
frequency-shifted, exponential decays in time, the resulting
spectrum will consist of N, frequency shifted lorentzians
with the k" lorentzian centered about @y with a linewidth of
AV%‘k = %‘ An example of this is given in Fig. 2 for pz.900(z)
in Eq. (5) and for Tyeq = %. In the absence of an acqui-
sition delay (Tpelay = 0), Real [So(®)] in Fig. 2(A) was uni-
formly distributed between @ = £yGLy. A small, Gibbs ring-
ing artifact observable at @ ~ +yGLy was due to the short
Tacq used in the calculation (for Toeq > %, no oscillations
were observed in the calculations since pzy(z) is a smooth
function for finite N). The contributions to Real [So(®)] for
a few lorentzians (m = 1, 25, 250 and 450) are also shown in
Fig. 2(A). As expected from Eq. (6), the individual spectra
near the edge (m =1 and m = 25) were narrower and anti-
phase (i.e., phase shifted by ~ —Z since 4 = Ap5 =~ e,
which contributed to the Gibbs ringing artifact at the edges
of Real [So(®)] in Fig. 2(A). The individual spectra near the
middle of the distribution (m = 250 and m = 450) were more
in-phase (A,; ~ 1) and were much broader due to larger I',.
With an acquisition delay, the lorentzians were weighted by
the factor S, = Ae™ (Tnti®) with |S,,| < 1. Since I, is much
larger for signals in the middle than for signals near the edges,
the magnetization in the middle was more severely attenu-
ated relative to the magnetization near the edges. For exam-
ple, the middle signals (m = 250 and m = 450) were expo-
nentially attenuated due to “Fourier dephasing” by a factor
of S| ~ 1075 — 1076 for a delay of Tpeay = %, while
the signals near the edges were only attenuated by a factor
of |Sy| ~ %, thereby resulting in spectral localization near
® ~ +YGLy as shown in Fig. 2(B). Unlike true 7>-weighting,
however, “Fourier-dephasing” is reversible, which can be ex-
ploited to improve the signal to noise (S/N) ratio of the edge
signal as demonstrated in SM.

While Fig. 1 was consistent with reduced Fourier dephas-
ing at the bottom edge of the Shigemi tube, it has long been
appreciated in both classical and quantum systems that the
dynamics near boundaries can be markedly different from
that found within the bulk, and as such, alternative physi-
cal mechanisms behind the observed localization also need
to be addressed. One such physical mechanism is restricted
diffusion®. In the presence of a magnetic field gradient, mag-
netization is irreversibly attenuated due to diffusion!!, de-
caying exponentially with increased mean square displace-
ment. Reflections from physical boundaries, such as a con-
tainer wall, however, can reduce the effective mean square
displacement normal to the boundary surface relative to the

w
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FIG. 2. (A) Numerical calculations of Real [Sy ()] for a uniform dis-
tribution [pzv()oo (z)in Eq. (5)} in Eq. (5) along with the contributions
from four individual lorentzians (from left to right, m = 1, m = 25,
m =250, and m = 450) for Tyeq = % (B) With Thejay = %
Real [STD% (co)] became localized near @ ~ +yGL due to slower
“Fourier dephasing” at the edges. Spectral scaling factors are given
in the figures and are denoted by (x number) so that the spectra are
all plotted on the scale as Real [So(®)] in (A).

mean-square displacement found within the bulk. Such a re-
duction in mean square displacement due to reflections from
boundaries is referred to as restricted diffusion®!%12-15. Due
to restricted diffusion, magnetization appears to be localized
at boundaries perpendicular to the applied gradient.

To experimentally assess the effects of restricted diffusion
on the observed localization shown in Fig. 1, diffusion-
weighted, one-dimensional spectra were acquired and are
shown in Fig. 3(A). In the diffusion-weighted sequence, de-
phasing under an applied gradient is partially refocused at a
time T prior to acquisition due to the application of a -pulse
while allowing for both diffusion and (to a lesser extent) 75-
relaxation to irreversibly attenuate the transverse magnetiza-
tion. In Fig. 3(A), signal near the bottom edge (z ~ 0 mm)
became highlighted relative to the bulk signal for 7o > 60 ms,
which was over an order of magnitude longer than the Tpeay
needed to achieve similar localization in the corresponding
delayed-acquisition experiment given in Fig. 3(B). Numerical
simulations of the Bloch-Torrey equations also suggest that
restricted diffusion is not necessary to explain the observed
localization [See SM]. Taken in total, the results in Fig. 3
suggest that restricted diffusion is not responsible for the ob-
served localization seen in Fig. 1. Furthermore, 7>-maps indi-
cated that differences in 75 relaxation times within the sample
were also too small to account for the observed signal local-
ization on the millisecond timescale observed in Fig. 1 and
Fig. 3(B).

Differences in “Fourier dephasing” can be exploited to lo-
calize signals near boundaries by an order of magnitude faster
than can be achieved using conventional selective pulses'”
that satisfy the usual Fourier inequality for selective pulses,
AV% T, > 1 where T), is the selective pulse length?°. In Fig. 4,
a comparison of the XZ and XY images obtained from [Fig.
4(C)] a delayed-acquisition experiment (7pelay = 1 ms) and
those obtained using [Fig. 4(D)] “slice” selective pulses are
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FIG. 3. Effects of restricted diffusion on signal localization. (A)
Diffusion-weighted sequence and experimental spectra for a 10:90
(v/v) HO/D,0 in a Shigemi tube (same parameters as used in Fig.
1 with the exception that all spectra were processed using all 4096
complex points). Diffusion delays, 74, b values [b =7G*} (%)3},
and the corresponding attenuation factors due to diffusion, e %P,
were: (blue) T4 =40 ms, b =3.3 x 104ﬁ and e ?P = 0.51, (red)
Ta=60ms, b=1.1x10°_%; and ¢ P =0.10, and (green) 75 = 80

ms, b =2.7x10°2; and e PP = 47 x 1073, Attenuation fac-

tors due to 7> relaxation were negligible since eiTi =0.95-0.97.
Compared to the (black) %—acquire spectrum, the edge signal was
only localized for 74 > 60 ms. (B) Delayed-acquisition experi-
ments exhibited edge localization within milliseconds, narrowing
with increasing Tpelay- Spectral scaling factors relative to the (black)
& —acquire spectra are provided in all cases.

shown. Using a 7, = 12 ms rectangular excitation pulse [Fig.
4(D), bottom] provided around 50% more signal compared
to a delayed-acquisition experiment [Fig. 4(C)], while using a
T, = 40 ms Shinnar-Le-Roux (SLR) excitation pulse'”"'® gen-
erated a “cleaner” excitation slice near the bottom edge com-
pared to the rectangular selective pulse [Fig. 4(D), top] al-
though it also resulted in the worst S/N due to diffusion and 7>
spin relaxation that occurred due to the long pulse length. For
delayed-acquisition, the signal was localized along the bot-
tom edge of the Shigemi tube, with a maximum of Av 1= 75
Hz observed near the center of the bottom edge, whereas
Av 1~ 125 for both slice selective excitation pulses. Treat-
ing the initial excitation and delay as an effective pulse of
length 7, ~ Tpelay = 1 ms in Fig. 4(C), the correspond-
ing selective pulse Fourier inequality for delayed-acquisition
was Avi T, = 0.075, which was over an order of magnitude
smaller than Av 1 T, obtained for conventional selective pulses
(Av% T, ~ 1.5 and Av% T, = 5 for the rectangular and SLR ex-
citation pulses, respectively).

While differences in Fourier dephasing can be exploited to
localize signals, the question remains as to what is the min-
imum Av 1 that can be achieved due to Fourier dephasing?
For pz..(z), the ultimate resolution is determined by the total
acquisition time after the initial excitation pulse, T,cq, Which,
due to S/N considerations, is typically fixed to be a few multi-
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FIG. 4. Comparison of signal localization under delayed-acquisition
and slice selective pulses. (A) Modified FLASH!® sequences to mea-
sure the (top) XZ and (bottom) XY-slices under delayed-acquisition.
(B) XZ and XY images of a 10:90 (v/v) HyO/D,0 in a Shigemi tube
with Tpelay = 0, an echo time of TE = 3.2 ms, and a 10us 6 = % ex-
citation pulse. (C) XZ and XY images using TE = 3.2 ms, Tpejay = |
ms, and 6 = %, which exhibited signal localization at the bottom
edge of the Shigemi tube. (D) The hard 6 —pulse and Tpelay in the
imaging sequences in (A) were replaced by a slice selective pulse
(top: 40ms Shinnar-Le-Roux pulse!7'® with TE = 26.1 ms; bottom:
12ms rectangular pulse with TE = 12.6 ms). The images were ac-
quired using Paravision 6 with the following parameters: 250 ms
repetition time, Ng = 8, FOV = Smm x 20mm with a matrix size of
512 x 2048 for the XZ images and a FOV =5 mm x 5 mm with a
matrix size of 512 x 512 for the XY images.

ples of the intrinsic 73. So while increasing Tperay Will lead to
better signal localization at boundaries, increasing Tperay Will
also lead to a shorter, effective acquisition time, Tycq — Tpelays
which will lead to a “digital” broadening of the signal. As
such, there will be an optimal T[(;sl‘a"ym] for a given Tycq that
minimizes Av;. For pz.(z), it was found from numerical
2
simulations that the minimum Av; at the edges under delayed-
2

- . o .
acquisition and with Tpejay > 70Lo occurred at:

TSP 2 (0.093 £0.004) Tieq 0]

corresponding to a line width of:

Av?plimal _ 1.50£0.02 ®)

2 T;\cq
In conclusion, we have demonstrated that spectral localiza-
tion can occur near sharp edges on a faster timescale than can
be accounted for by physical mechanisms such as restricted
diffusion and/or differences in intrinsic spin relaxation within
a sample. The observed localization under an applied gradient
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was shown to be an interference effect related to the Gibbs
phenomenon whereby slower destructive interference or
Fourier dephasing occurred near edges/boundaries relative to
that found within the bulk. Such effects could possibly be
exploited in the development of new spatially selective pulses
that incorporate Fourier dephasing in their design in order to
achieve faster signal localization compared to conventional
spatially selective pulses. Since the interference effects
discussed in this work are general, its possible that they could
have an effect on electron interference phenomenon observed
in mesoscopic systems. For example, Fourier dephasing may
have some bearing on recent theoretical work on quantum
scarring®122,

SUPPLEMENTARY MATERIAL

Additional mathematical details and calculations of the
spectrum using pz,(z) in Eq. (5) are presented, numerical
studies of the effects of diffusion, and additional experimental
MRI results on signal localization.
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