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Spectra and images derived from the Fourier transformation of time-domain signals can often exhibit overshoots and/or

“ringing” near sharp features. Such artifacts are due to the slow convergence of the Fourier series near such features,

an effect referred to as the Gibbs phenomenon. While usually viewed as being purely mathematical in origin, the

Gibbs phenomenon can often be found in a variety of physical situations, such as in imaging and spectroscopy. In

this work, a physical description of the Gibbs phenomenon is presented where it is interpreted as an interference effect

whereby slower destructive interference or “Fourier dephasing” occurs near sharp spectral features compared with the

Fourier dephasing observed away from such features. Such differences in Fourier dephasing can be exploited to localize

magnetization near physical boundaries on timescales about an order of magnitude faster than can be achieved using

conventional frequency or spatially selective pulses. This localization, which is reversible, also occurs on much faster

timescales than can be attributed to irreversible sources such as restricted diffusion or spatial variations of the intrinsic

spin relaxation within the sample.

Ever since Joseph Fourier introduced the (then) revolution-

ary concept that functions could be represented by a series of

sines and cosines, applications of Fourier series by scientists

and engineers to transform experimental data into intepretable

forms, such as spectra or images, have become common-

place. While most applications require finding Fourier series

representing smooth or infinitely differentiable functions, the

Fourier series of non-smooth functions can often exhibit os-

cillations and/or overshoots at frequencies where the function

is not infinitely differentiable. This effect, which is referred

to as the Gibbs phenomenon1,2, is the result of representing a

function that is not smooth at a finite number of frequencies in

terms of basis functions that are themselves smooth over the

entire frequency range, e.g., the sine and cosine basis func-

tions of a Fourier series. The Gibbs phenomenon can often be

observed in signal processing applications when sharp filters

are applied to time-domain signals, and it was also recently

observed in numerical studies of electron transport due to fil-

tering the calculated current over a finite bandwidth3. In imag-

ing and spectroscopic applications, the Gibbs phenomenon of-

ten arises as a result of truncating signal acquisition in time4.

A Gibbs overshoot and/or “ringing“ artifact often occurs near

such sharp spectral features, which need higher frequencies

in order to accurately depict them, due to insufficient signal

acquisition times.

Recently, spectral localization near boundaries observed in

nuclear magnetic resonance (NMR) delayed-acquisition ex-

periments [pulse sequence in Fig. 1(A)] was also attributed to

the Gibbs phenomenon6. As illustrated in Fig. 1(B), a mag-

netic field gradient of strength g applied along the length of a

Shigemi tube, which has a flat bottom, causes each “XY-slice”

within the sample to resonate at a slightly different frequency

along the ẑ-direction, ω(z) = γgz, where γ is the gyromag-

netic ratio, and z = |z| is the z-coordinate along the axis of

the tube. In Fig. 1(B), the Gibbs phenomenon was observed

for signals near the bottom edge of the Shigemi tube (taken

to be at z = 0 mm) due to insufficient signal acquisition in

time. When an acquisition delay of TDelay = 1 was applied,

signal was localized near the bottom edge of the Shigemi tube

as shown in Fig. 1(C). In an NMR context, it is known7

that an acquisition delay results in larger signal attenuation

for spins with short transverse relaxation or T ∗
2 times, leaving

only long-lived signals that result in narrower spectra. From

the delayed-acquisition spectra in Fig. 1(C), the magnetiza-

tion near the bottom edge has a longer effective T ∗
2 time com-

pared to the magnetization within bulk.

Why signals near edges have longer apparent T ∗
2 times

can be partially understood within a magnetic resonance

imaging (MRI) context. In MRI, it is known that delayed-

acquisition simply filters out low spatial frequencies, i.e., low

values in k-space, leaving only higher k-space values. Since

edges/boundaries are characterized by higher spatial frequen-

cies, an image reconstructed with only high k-space values

will highlight the edges/boundaries8, which is generally inter-

preted as being an image processing effect and not a physi-

cal effect due to magnetization actually being localized near

physical edges/boundaries. To reconcile both the NMR and

MRI pictures of signal localization near edges under delayed-

acquisition, it was argued6 that the slow signal decay near

edges was due to the slow convergence of the Fourier series

needed to describe a system with a magnetization density hav-

ing sharp edges, i.e, signal localization was due to the Gibbs

phenomenon.

While the above argument provided a mathematical de-

scription behind the physical localization of transverse mag-

netization observed in Fig. 1, no physical mechanism was pre-

sented that described how the Gibbs phenomenon led to such

spectral localization. In this work, the Gibbs phenomenon is

physically interpreted as an interference effect. Magnetization

near sharp features, such as boundaries or edges, experience

slower destructive interference or “Fourier dephasing” rela-

tive to the magnetization found within the bulk. As a result of

this difference in Fourier dephasing, reversible spectral/spatial

localization of transverse magnetization in the presence of a

magnetic field gradient occurs near boundaries. Furthermore,

it is experimentally demonstrated that this localization occurs
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FIG. 1. (A) Basic delayed-acquisition NMR sequence. After an ini-

tial excitation pulse of flip-angle θ , a gradient of strength g is turned

on with a gradient stabilization delay of τgsd = 110 µs. Following

an acquisition delay of TDelay after an initial excitation pulse, the

FID is acquired at integer multiples of the dwell time, ∆t, for a time

Tacq = Npts∆t. (B) Real part of the spectrum, Re[S0(ω)], for a 10:90

(v/v) H2O/D2O solution in a D2O susceptibility matched Shigemi

tube [the schematic of a Shigemi tube with a magnetic field and lin-

ear field gradient applied perpendicular to the Shigemi tube’s bottom

edge located at z = 0, B(z) = B0 +gz with g = 2.96 gauss/cm. The

main sample detection region was approximately 5 mm (shown in the

schematic) with signals attenuated outside this region (z ≥ 5 mm)].

The FID was acquired using the sequence in (A) with TDelay = 0 and

Tacq = 4096∆t, although only the first 96 complex points were trans-

formed using a discrete Fourier transform (DFT), which resulted in

a Gibbs overshoot and ringing artifact in the spectrum near the bot-

tom of the Shigemi tube (z ≈ 0 mm). (C) With TDelay = 1 ms, sig-

nal was predominantly localized near the bottom tube edge. The

delayed-acquisition spectrum was scaled by a factor of (×3.2) for

better comparison to the image in (B). It should also be noted that

the purpose of D2O in the sample was simply to dilute the water

magnetization in order to reduce the effects of radiation damping5.

All experiments in this work were performed on a 400 MHz Bruker

AVANCE III HD spectrometer with a Micro5 microimaging probe

equipped with XYZ gradients and a 1H channel. The spectra in (B)

and (C) were acquired using Bruker TopSpin, a relaxation delay of

20 s, a dwell time of ∆t = 25µs, and NS = 8 scans.

on a faster timescale than can be attributed to irreversible lo-

calization mechanisms such as restricted diffusion9,10.

For a system with a magnetization density ρ(r), the evo-

lution of the transverse magnetization generated by an initial

θ -excitation and in the presence of an applied magnetic field

gradient [sequence in Fig. 1(A) with TDelay = 0]. This signal,

which is referred to as the free induction decay (FID), is sam-

pled at integer multiples of the dwell time, n∆t for n = 0 to

n = Npts − 1, and can be calculated by (in the absence of T ∗
2

relaxation and diffusion):

FID(t = n∆t) = 〈M+(t)〉= sin(θ)
∫

dr3ρ(r)e−iγg·rt

= sin(θ)
∫ L

−L
dz′ρZ(z

′)e−iγgz′t

= sin(θ)(1+δn0)
π

∆t
(An + iBn) (1)

where ρZ(z) =
∫

dx′dy′ρ(z,x′,y′) and 2L = 2π
γg∆t

are the effec-

tive one-dimensional magnetization density and field of view

(FOV), respectively, along the gradient direction (taken to be

the ẑ-direction), δk j is the Kronecker delta function, and An

and Bn are the nth coefficients in the Fourier series of ρZ(z):

ρZ(z) = A0 +
∞

∑
n=1

An cos
(πnz

L

)
+Bn sin

(πnz

L

)
(2)

Consider a ρZ(z) that is uniformly distributed between z =
±L0, ρZ(z) =

1
2L0

for |z| ≤ L0 and ρZ(z) = 0 for L0 < |z|< L.

For such a ρZ(z), A0 = 1
2L

, Bn = 0, and An = 1
L

sinc
(

nπL0
L

)
.

The spectrum with TDelay = 0, S0(ω), is obtained by applying

a discrete Fourier transform (DFT) to the FID(t) in Eq. (1)

and is given by (for |ω| ≤ γgL):

S0(ω) =
π sin(θ)

2∆tL

(
1+2

Npts−1

∑
n=1

sinc

(
nπL0

L

)
einω∆t

)
(3)

Note that Re [S0(ω)] approximates ρZ(z) where the sum in

Eq. (2) only includes the first Npts Fourier coefficients. In

this case, Re [S0(ω)] will exhibit a Gibbs overshoot near

ω ± γGL0. For an acquisition delay of TDelay = ND∆t, the cor-

responding spectrum6, STDelay
(ω), is given by:

STDelay
(ω) =

π sin(θ)

∆tL
sinc

(
NDπL0

L

)

+
π sin(θ)

∆tL

Npts−1

∑
k=1

sinc

(
(ND + k)πL0

L

)
eiωk∆t (4)

In this case, |STDelay
(ω)| will be concentrated near ω ≈

±γGL0, similar to what was observed in Fig. 1(C); however,

it is not clear from Eq. (4) why that should be the case.

To gain some insight into the localization of magnetiza-

tion near ω = ±γGL0, consider approximating ρZ(z) by the

smooth function:

ρZ(z)≈ ρZ,N(z) =
1

2L0




1
(

z
L0

)2n

+1


 (5)

for N ≫ 1. In the limit N → ∞, ρZ,∞(z) approaches the uni-

form distribution described above. Using ρZ,N(z), the FID(t)
in Eq. (1) is given by:

FID(t) =
sin(θ)

2L0

∫ L

−L
dz′

e−iγGtz′

(
z′

L0

)2N

+1

≈
sin(θ)

2

∫ ∞

−∞
dz′

e−iγGtL0z′

(z′)2N +1

=
iπ sin(θ)

N

N−1

∑
m=0

λme−(Γm+iωm)t (6)
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where λm = exp
(
−i

π(2m+1)
2N

)
for m = 0 to m = N − 1 are

the 2N roots of “-1” (i.e., (λm)
2N = −1) in the lower ha1f of

the complex plane, and Γm = γGL0 sin
(

π(2m+1)
2N

)
and ωm =

γGL0 cos
(

π(2m+1)
2N

)
are the effective T ∗

2 and frequency of the

mth exponential in Eq. (6). Note that in the limit N → ∞,

FID(t)→ sinc(γGL0t) as expected for transverse magnetiza-

tion uniformly distributed between −L0 ≤ z ≤ L0 (see Supple-

mentary Material (SM) for more details).

Since the FID(t) in Eq. (6) is simply the sum of N

frequency-shifted, exponential decays in time, the resulting

spectrum will consist of N, frequency shifted lorentzians

with the kth lorentzian centered about ωk with a linewidth of

∆ν 1
2 ,k

= Γk
π . An example of this is given in Fig. 2 for ρZ,900(z)

in Eq. (5) and for Tacq = 400π
γGL0

. In the absence of an acqui-

sition delay (TDelay = 0), Real [S0(ω)] in Fig. 2(A) was uni-

formly distributed between ω =±γGL0. A small, Gibbs ring-

ing artifact observable at ω ≈ ±γGL0 was due to the short

Tacq used in the calculation (for Tacq ≥ 900π
γGL0

, no oscillations

were observed in the calculations since ρZ,N(z) is a smooth

function for finite N). The contributions to Real [S0(ω)] for

a few lorentzians (m = 1, 25, 250 and 450) are also shown in

Fig. 2(A). As expected from Eq. (6), the individual spectra

near the edge (m = 1 and m = 25) were narrower and anti-

phase (i.e., phase shifted by ≈ −π
2

since λ1 ≈ λ25 ≈ e
−iπ

2 ),

which contributed to the Gibbs ringing artifact at the edges

of Real [S0(ω)] in Fig. 2(A). The individual spectra near the

middle of the distribution (m = 250 and m = 450) were more

in-phase (λm ≈ 1) and were much broader due to larger Γm.

With an acquisition delay, the lorentzians were weighted by

the factor Sn = λme−(Γn+iωn) with |Sm|< 1. Since Γm is much

larger for signals in the middle than for signals near the edges,

the magnetization in the middle was more severely attenu-

ated relative to the magnetization near the edges. For exam-

ple, the middle signals (m = 250 and m = 450) were expo-

nentially attenuated due to “Fourier dephasing” by a factor

of |Sm| ≈ 10−5 − 10−6 for a delay of TDelay = 4.5π
γGL0

, while

the signals near the edges were only attenuated by a factor

of |Sm| ≈
1
2
, thereby resulting in spectral localization near

ω ≈±γGL0 as shown in Fig. 2(B). Unlike true T2-weighting,

however, “Fourier-dephasing” is reversible, which can be ex-

ploited to improve the signal to noise (S/N) ratio of the edge

signal as demonstrated in SM.

While Fig. 1 was consistent with reduced Fourier dephas-

ing at the bottom edge of the Shigemi tube, it has long been

appreciated in both classical and quantum systems that the

dynamics near boundaries can be markedly different from

that found within the bulk, and as such, alternative physi-

cal mechanisms behind the observed localization also need

to be addressed. One such physical mechanism is restricted

diffusion9. In the presence of a magnetic field gradient, mag-

netization is irreversibly attenuated due to diffusion11, de-

caying exponentially with increased mean square displace-

ment. Reflections from physical boundaries, such as a con-

tainer wall, however, can reduce the effective mean square

displacement normal to the boundary surface relative to the
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FIG. 2. (A) Numerical calculations of Real [S0(ω)] for a uniform dis-

tribution
[
ρZ,900(z) in Eq. (5)

]
in Eq. (5) along with the contributions

from four individual lorentzians (from left to right, m = 1, m = 25,

m = 250, and m = 450) for Tacq = 400π
γGL0

. (B) With TDelay = 4.5π
γGL0

,

Real
[
STDelay

(ω)
]

became localized near ω ≈ ±γGL0 due to slower

“Fourier dephasing” at the edges. Spectral scaling factors are given

in the figures and are denoted by (× number) so that the spectra are

all plotted on the scale as Real [S0(ω)] in (A).

mean-square displacement found within the bulk. Such a re-

duction in mean square displacement due to reflections from

boundaries is referred to as restricted diffusion9,10,12–15. Due

to restricted diffusion, magnetization appears to be localized

at boundaries perpendicular to the applied gradient.

To experimentally assess the effects of restricted diffusion

on the observed localization shown in Fig. 1, diffusion-

weighted, one-dimensional spectra were acquired and are

shown in Fig. 3(A). In the diffusion-weighted sequence, de-

phasing under an applied gradient is partially refocused at a

time τ∆ prior to acquisition due to the application of a π-pulse

while allowing for both diffusion and (to a lesser extent) T2-

relaxation to irreversibly attenuate the transverse magnetiza-

tion. In Fig. 3(A), signal near the bottom edge (z ≈ 0 mm)

became highlighted relative to the bulk signal for τ∆ > 60 ms,

which was over an order of magnitude longer than the TDelay

needed to achieve similar localization in the corresponding

delayed-acquisition experiment given in Fig. 3(B). Numerical

simulations of the Bloch-Torrey equations also suggest that

restricted diffusion is not necessary to explain the observed

localization [See SM]. Taken in total, the results in Fig. 3

suggest that restricted diffusion is not responsible for the ob-

served localization seen in Fig. 1. Furthermore, T2-maps indi-

cated that differences in T2 relaxation times within the sample

were also too small to account for the observed signal local-

ization on the millisecond timescale observed in Fig. 1 and

Fig. 3(B).

Differences in “Fourier dephasing” can be exploited to lo-

calize signals near boundaries by an order of magnitude faster

than can be achieved using conventional selective pulses19

that satisfy the usual Fourier inequality for selective pulses,

∆ν 1
2
Tp ≥ 1 where Tp is the selective pulse length20. In Fig. 4,

a comparison of the XZ and XY images obtained from [Fig.

4(C)] a delayed-acquisition experiment (TDelay = 1 ms) and

those obtained using [Fig. 4(D)] “slice” selective pulses are
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FIG. 3. Effects of restricted diffusion on signal localization. (A)

Diffusion-weighted sequence and experimental spectra for a 10:90

(v/v) H2O/D2O in a Shigemi tube (same parameters as used in Fig.

1 with the exception that all spectra were processed using all 4096

complex points). Diffusion delays, τ∆, b values
[
b = γ2G2 2

3

(
τ∆

2

)3
]
,

and the corresponding attenuation factors due to diffusion, e−bD,

were: (blue) τ∆ = 40 ms, b = 3.3× 104 s
cm2 and e−bD = 0.51, (red)

τ∆ = 60 ms, b = 1.1×105 s
cm2 and e−bD = 0.10, and (green) τ∆ = 80

ms, b = 2.7 × 105 s
cm2 and e−bD = 4.7 × 10−3. Attenuation fac-

tors due to T2 relaxation were negligible since e
−

τ∆
T2 = 0.95− 0.97.

Compared to the (black) π
2 −acquire spectrum, the edge signal was

only localized for τ∆ > 60 ms. (B) Delayed-acquisition experi-

ments exhibited edge localization within milliseconds, narrowing

with increasing TDelay. Spectral scaling factors relative to the (black)
π
2 −acquire spectra are provided in all cases.

shown. Using a Tp = 12 ms rectangular excitation pulse [Fig.

4(D), bottom] provided around 50% more signal compared

to a delayed-acquisition experiment [Fig. 4(C)], while using a

Tp = 40 ms Shinnar-Le-Roux (SLR) excitation pulse17,18 gen-

erated a “cleaner” excitation slice near the bottom edge com-

pared to the rectangular selective pulse [Fig. 4(D), top] al-

though it also resulted in the worst S/N due to diffusion and T2

spin relaxation that occurred due to the long pulse length. For

delayed-acquisition, the signal was localized along the bot-

tom edge of the Shigemi tube, with a maximum of ∆ν 1
2
= 75

Hz observed near the center of the bottom edge, whereas

∆ν 1
2
≈ 125 for both slice selective excitation pulses. Treat-

ing the initial excitation and delay as an effective pulse of

length Tp ≈ TDelay = 1 ms in Fig. 4(C), the correspond-

ing selective pulse Fourier inequality for delayed-acquisition

was ∆ν 1
2
Tp = 0.075, which was over an order of magnitude

smaller than ∆ν 1
2
Tp obtained for conventional selective pulses

(∆ν 1
2
Tp ≈ 1.5 and ∆ν 1

2
Tp = 5 for the rectangular and SLR ex-

citation pulses, respectively).

While differences in Fourier dephasing can be exploited to

localize signals, the question remains as to what is the min-

imum ∆ν 1
2

that can be achieved due to Fourier dephasing?

For ρZ,∞(z), the ultimate resolution is determined by the total

acquisition time after the initial excitation pulse, Tacq, which,

due to S/N considerations, is typically fixed to be a few multi-
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FIG. 4. Comparison of signal localization under delayed-acquisition

and slice selective pulses. (A) Modified FLASH16 sequences to mea-

sure the (top) XZ and (bottom) XY-slices under delayed-acquisition.

(B) XZ and XY images of a 10:90 (v/v) H2O/D2O in a Shigemi tube

with TDelay = 0, an echo time of T E = 3.2 ms, and a 10µs θ = π
6 ex-

citation pulse. (C) XZ and XY images using T E = 3.2 ms, TDelay = 1

ms, and θ = π
6 , which exhibited signal localization at the bottom

edge of the Shigemi tube. (D) The hard θ−pulse and TDelay in the

imaging sequences in (A) were replaced by a slice selective pulse

(top: 40ms Shinnar-Le-Roux pulse17,18 with T E = 26.1 ms; bottom:

12ms rectangular pulse with T E = 12.6 ms). The images were ac-

quired using Paravision 6 with the following parameters: 250 ms

repetition time, NS = 8, FOV = 5mm × 20mm with a matrix size of

512 × 2048 for the XZ images and a FOV = 5 mm × 5 mm with a

matrix size of 512 × 512 for the XY images.

ples of the intrinsic T2. So while increasing TDelay will lead to

better signal localization at boundaries, increasing TDelay will

also lead to a shorter, effective acquisition time, Tacq −TDelay,

which will lead to a “digital” broadening of the signal. As

such, there will be an optimal T
optimal

Delay for a given Tacq that

minimizes ∆ν 1
2
. For ρZ,∞(z), it was found from numerical

simulations that the minimum ∆ν 1
2

at the edges under delayed-

acquisition and with TDelay >
2π

γGL0
occurred at:

T
optimal

Delay ≈ (0.093±0.004)Tacq (7)

corresponding to a line width of:

∆ν
optimal
1
2

=
1.50±0.02

Tacq
(8)

In conclusion, we have demonstrated that spectral localiza-

tion can occur near sharp edges on a faster timescale than can

be accounted for by physical mechanisms such as restricted

diffusion and/or differences in intrinsic spin relaxation within

a sample. The observed localization under an applied gradient
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5

was shown to be an interference effect related to the Gibbs

phenomenon whereby slower destructive interference or

Fourier dephasing occurred near edges/boundaries relative to

that found within the bulk. Such effects could possibly be

exploited in the development of new spatially selective pulses

that incorporate Fourier dephasing in their design in order to

achieve faster signal localization compared to conventional

spatially selective pulses. Since the interference effects

discussed in this work are general, its possible that they could

have an effect on electron interference phenomenon observed

in mesoscopic systems. For example, Fourier dephasing may

have some bearing on recent theoretical work on quantum

scarring21,22.

SUPPLEMENTARY MATERIAL

Additional mathematical details and calculations of the

spectrum using ρZ,n(z) in Eq. (5) are presented, numerical

studies of the effects of diffusion, and additional experimental

MRI results on signal localization.
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