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Abstract

Emerging contaminants (ECs) in drinking water pose threats to public health due to their
environmental prevalence and potential toxicity. The occurrence of ECs in our drinking water
supplies depends on their physicochemical properties, discharging rate, and susceptibility to
removal by water treatment processes. Uncertain health effects of long-term exposure to ECs
justify their regular monitoring in drinking water supplies. In this review article, we will
summarize the current status and future opportunities of surface-enhanced Raman spectroscopy
(SERS) for EC analysis in drinking water. Working principles of SERS are first introduced and a
comparison of SERS and liquid chromatography-tandem mass spectrometry in terms of cost, time,
sensitivity, and availability is made. Subsequently, we discuss the strategies for designing effective
SERS sensors for EC analysis based on four categories — per- and polyfluoroalkyl substances,
novel pesticides, pharmaceuticals, and endocrine-disrupting chemicals. In addition to maximizing
the intrinsic enhancement factors of SERS substrates, strategies to improve hot spot accessibilities
to the targeting ECs is equally important. This is the first review article focusing on SERS analysis
of ECs in drinking water. The discussions are not only guided by numerous endeavors to advance

SERS technology but also by the drinking water regulatory policy.

Keywords: Emerging contaminant, Surface-enhanced Raman spectroscopy, Drinking water

monitoring, Sensor, Regulatory policy
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1. Introduction

Definition of emerging contaminants. Emerging contaminants (ECs), or contaminants of
emerging concern (CECs), have frequently appeared in scientific literature, governmental reports,
newspapers, and so on, but a unified and clear definition of ECs by the authorities for
environmental protection and management is still missing. The United States Environmental
Protection Agency (US EPA) describes ECs as “chemicals that are increasingly detected at low
levels in surface water and may have an impact on aquatic life” (EPA, 2022a). The United States
Geological Survey describes ECs as “chemicals making it into our lakes and rivers and having a
detrimental effect on aquatic species or non-aquatic species via food web accumulation” (USGS,
2019). A recent review article describes ECs as “new contaminants with uncertain effects but the
potential for significant harm” (Khan et al., 2022). These descriptions from different perspectives,
such as occurrence, impact on natural waters, and toxicity, provide the readers a general impression
rather than a strict definition on what emerging contaminants are. Accordingly, whether a chemical
can be considered as an EC might be subjective and strongly depends on public perception, so the
list of ECs will also change as time evolves. At the beginning of this review article, we will first
set up the boundary for our following discussions by proposing a more specific definition of ECs
in terms of drinking water safety.

In the perspective of drinking water safety, ECs refer to any potentially hazardous matter,
including organic chemicals, inorganic ions, and pathogens, that are detectable in drinking water
supplies and pose potential risks to human health. Therefore, the frequent occurrence of a pollutant
in drinking water is the first criterion that qualifies it as an emerging contaminant. In this situation,
a large population may be subject to chronic exposure of such pollutants via drinking water. The

second criterion that qualifies a pollutant as an EC is its potential adverse effects on human health.
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ECs usually occur in drinking water at very low concentrations (<1 part per billion) that will not
elicit any acute toxicities to humans. However, their long-term effects on human health remain
largely uncertain. From the perspective of risk assessment, risk equals to exposure multiplied by
toxicity. For a specific EC, the product of its certain exposure (ubiquitous occurrence) and
uncertain toxicity (unknown long-term effect) gives an uncertain but potentially high risk to
humans (Fig. 1).

Emerging contaminants
in drinking water

Exposure (!) Toxicity (?) _ Risk (?)
(ubiquitous occurrence X (Uncertain long-term — (Uncertain but
and chronic exposure) health effect) potentially high risk)

Figure 1. Schematic illustrating the definition of emerging contaminants in drinking water.

Occurrence of ECs in drinking water. The prevalence of emerging contaminants in
drinking water sources, including both surface water and groundwater, has raised increasing
concerns of drinking water safety (Houtman, 2010; Schriks et al., 2010). ECs enter freshwater
systems primarily via treated municipal/industrial wastewater effluents and urban/agricultural
runoffs (Fawell and Ong, 2012). The occurrence and fate of ECs in drinking water sources are
determined by their physicochemical properties. Higher water solubility, stronger polarity, and
lower octanol-water partition coefficient (Kow) endow the contaminants with higher mobility in
the water stream and thus a higher chance to reach the tap water (Jones-Lepp et al., 2012). On the
contrary, hydrophobic contaminants are more likely to be sequestered by activated sludge,

sediments, and soils, and thus are much less frequently detected in drinking water supplies
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(Petrovi¢ et al., 2003). The pervasive use of emerging contaminants also affects their fate in
drinking water sources. For example, azithromycin, a widely used macrolide antibiotic, is
considered pseudo-persistent in the Colorado River and its tributaries because of its heavy use in
the US and high tendency to be discharged into natural streams (Jones-Lepp et al., 2012; Bu et al.,
2016).

Surface-enhanced Raman spectroscopy. SERS is an emerging and ultrasensitive
analytical tool that has been widely used for chemical analysis (Langer et al., 2019; Wei and Cho,
2021; Wang and Wei, 2022). SERS originates from a unique optical phenomenon called localized
surface plasmon resonance (LSPR), where the conduction electrons of a metal nanoparticle
collectively oscillate induced by an impinging electromagnetic wave with a specific frequency
(Haynes et al., 2005; Schliicker, 2014). As a result of LSPR, the electric field within nanoscale
proximity of the metal nanoparticle surfaces is significantly enhanced, which in turn will enhance
the Raman scattering of a molecule that locates within this enhanced electric field. The
enhancement of Raman cross section of a molecule can be over 10'° when the molecular electronic
levels match the incident photon energy or there is charge transfer between the molecule and the
metal nanoparticle. In this situation, single molecular detection has been regularly achieved
(Kneipp et al., 1997; Camden et al., 2008; Le Ru and Etchegoin, 2012). Because of their unique
dielectric function, gold or silver nanoparticles (AuNPs or AgNPs) hold LSPR at visible light
wavelengths, and are thus amenable to the 532-, 633-., and 785-nm lasers commonly equipped in
commercial Raman spectrometers. When AuNPs or AgNPs are very close to each other, further
enhancement of the electric field will occur within the gaps between the nanoparticles, which are

called SERS “hot spots” (Moskovits, 2005; Ou et al., 2011). Hot spots are essential for
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ultrasensitive SERS analysis, but their heterogeneous distribution across a SERS substrate is also
the primary cause of irreproducible SERS signals (Wei et al., 2018a).

Similar to infrared spectroscopy (IR), SERS also provides abundant information on the
relative motions of atoms within a molecule, which are fingerprinting characteristics of a molecule
and thus can be used for pollutant identification (Mulvaney and Keating, 2000). Unlike IR that is
sensitive to chemical bonds with large dipole moment change, SERS has a different selection rule
that offers complementary vibrational information on primarily symmetric bonds, such as benzene
rings and C=C bonds (Long, 1977). As a result, SERS does not produce high intensities for the
vibrational modes of water molecules and thus can be directly used for pollutant analysis in
aqueous phase. Compared with fluorescence spectroscopy, SERS exhibits higher photostability
and much more information (usually tens of vibrational modes) about the target molecule (Han et
al., 2009). Owing to the narrow full width at half maximum (FWHM) of a Raman band, SERS can
differentiate similar chemicals even in a complex mixture based on the unique patterns of their
Raman bands (Zavaleta et al., 2009; Dougan and Faulds, 2012). Despite the above-mentioned
unique advantages, SERS also share some common advantages with other optical spectroscopy.
First, SERS spectra are almost instantly collected, thus enabling rapid and even real-time analysis.
Second, technologies for Raman spectrometer miniaturization have been evolving fast, which
pushes many handheld Raman spectrometers into the market and drives down the price
significantly. The availability of the portable Raman spectrometers paves the way for field-
deployable SERS analysis of water pollutants.

This review paper, for the first time, summarizes the recent progress on SERS analysis of
typical ECs in drinking water supplies. It serves the researchers in environmental science and

engineering communities who are looking for rapid and inexpensive methods for emerging
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contaminant quantification. It also provides insights in the design, optimization, and
implementation of SERS-based sensors based on the unique physicochemical properties of
different emerging contaminants. This paper will be exclusively focused on drinking water
matrices because 1) the regulations on emerging contaminants are the most common and stringent
in drinking water supplies, making it easy to place the discussions on SERS sensors in the context
of EC regulation policies; 2) drinking water is relatively clean compared to other water matrices
(e.g., landfill leachate), which provides opportunities for the development of in-line SERS sensors
without water sample pretreatment. In the following sections, we will first compare SERS and
traditional analytical methods in the perspective of EC analysis. Subsequently, we will elaborate
the technological advances of SERS sensors for the detection of PFAS, novel pesticides,
pharmaceuticals, EDCs, and microplastics, respectively. Finally, we will discuss future research
opportunities and challenges that need to be overcome in order to be in compliance with the EC

regulations in drinking water supplies.

2. Surface-enhanced Raman spectroscopy

Direct vs Indirect SERS. Based on the source of the SERS signal, SERS can be categorized into
direct and indirect SERS. While direct SERS directly measure analytes in proximity with the SERS
substrates, indirect SERS estimate analytes based on the SERS signal of Raman reporter attached
to SERS tag. SERS tag is engineered to trap target analytes onto substrates, which would then be
conjugated to both SERS substrates and SERS tags with recognition elements. Subsequently, the
unattached tags would be washed away, and the target sandwiched between the substrates and tags
can be indirectly quantified from the Raman reporter signal. The relatively large Raman cross-
section of Raman reporter dye allows detection of target with small Raman cross-section, such as
biomolecules and hydrogen ions with high sensitivity (Wei et al., 2018b; Pilot et al., 2019). Despite

8
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this advantage, indirect SERS protocols have limited selectivity since recognition element in SERS
tags attracts false positives. On the contrary, the fingerprinting ability of direct SERS allows
selective target analysis as well as multi-target analysis (Wei and Cho, 2022). We will thus focus
the scope of this review to direct SERS analysis of water pollutants but will not limit it to direct
SERS since PFAS can only be analyzed using indirect SERS with the current technology (Fang et
al., 2016; Bai et al., 2022).

SERS vs. LC-MS/MS. In order to justify the use of SERS for water pollutant analysis, it
is imperative to elaborate on its advantages and disadvantages over the standard analytical methods.
For ECs with high water solubility (the primary targets of this study), the standard methods
established by US EPA are predominantly based on liquid chromatography-tandem mass
spectrometry (LC-MS/MS), e.g., Method 537.1 for PFAS analysis in drinking water (Shoemaker
and Tettenhorst, 2020). Despite the high sensitivity and precision of these standard methods, they
are also very expensive and time-consuming (Ferrer and Thurman, 2003; Richardson, 2009). First,
the collected water samples will be transported back to a specialized laboratory, prefiltered, and
preconcentrated by solid phase extraction and organic solvent elution. Subsequently, isotopic
internal/surrogate standards will be added to the pretreated water samples before they are injected
into the LC-MS/MS for analysis. In addition, the operation of LC-MS/MS requires well-trained
personnel and highly specialized laboratories, which restrains its accessibility to ordinary people

(Jansen et al., 2005).
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Figure 2. Schematic of the working principle of a typical SERS sensor for EC analysis.

As mentioned above, SERS provides an alternative option for emerging contaminant
analysis that can potentially overcome the disadvantages of LC-MS/MS (Fang et al., 2016; Gao et
al., 2021). SERS is a simple, rapid, and nondestructive technique that allows pollutant analysis
both in laboratory and field settings (Halvorson and Vikesland, 2010; Zhou et al., 2020; Wang et
al., 2021b). The schematic for conducting a typical SERS analysis is shown in Fig. 2. First, water
samples containing ECs will be deposited onto a SERS substrate to ensure the contact of pollutants
with plasmonic nanoparticles (Cho et al., 2012; Ouyang et al., 2017). Subsequently, a laser is
irradiated on the SERS substrate and then the Raman scatterings will be collected, dispersed, and
detected. This “light in and light out” paradigm significantly reduces the complexity of water
sample pretreatment and time for the analysis (Halvorson and Vikesland, 2010; Hakonen et al.,

2018). The cost for SERS analysis is also substantially lower than that for LC-MS/MS because it

10
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does not need organic solvents and isotopic internal standards. The small size of a Raman
spectrometer also makes it possible to conduct SERS analysis in field (Gahlaut et al., 2020).
However, the limit of detection (LOD) of ECs that SERS can achieve is usually higher than LC-
MS/MS. For example, the LOD of perfluorooctanoic acid (PFOA) is 11 ppb, while that of the LC-
MS/MS can go as low as sub-ppt level (Bai et al., 2022; Lin et al., 2023). In addition, the surface
affinity between SERS substrates and analytes (Wei and Vikesland, 2015; Fang et al., 2016) and
the complex water sample matrices (Pérez-Jiménez et al., 2020) sometimes compromise the
sensitivity and selectivity of SERS for EC analysis, although many research effort has been
devoted to overcoming these disadvantages (Oakley et al., 2012; Yaseen et al., 2018). The

comparisons between SERS and LC-MS/MS are summarized in Table 1.

Table 1. A summary of the pros and cons of SERS and LC-MS/MS

Analytical

method Advantages Disadvantages
e  Simple sample pretreatment e Higher LOD
° i?gdsiasnd non-destructive sample e Limited to analytes with high affinity to
Y . . plasmonic nanoparticles
SERS e On-site contaminant analysis . -
o Lower measurement cost ($7/h) *  Mediocre reproducibility
wert | e Interference by complex water matrices
e  Lower instrumental cost (~10 — 30
k)
e Lower LOD J ;Frll;r;;-;;msummg sample pretreatment &
High precision . .
LC-MS/MS * R II-trained 1
e Standard methods published by the * SAUITINE We™-irained persvie

e  Higher measurement cost ($X)

environmental authorities . .
e  Higher instrumental cost (~1,000 k)

3. SERS analysis of emerging contaminants

In this section, we will summarize the recent progress on SERS analysis of typical emerging
contaminants in drinking water, including PFAS, novel pesticides, pharmaceuticals, and

endocrine-disrupting chemicals (Fig. 2). We will focus on the peer-reviewed publications after

11
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2015 and frame our discussions on the sensitivity, reproducibility, and selectivity of SERS and if
they can meet EC regulations or health advisories in drinking water.

PFAS. Per- and polyfluoroalkyl substances are one type of emerging contaminants that
have received the most public awareness due to their ubiquity, persistency, and toxicity (Cousins
et al., 2020; Zhao et al., 2020a; Fenton et al., 2021). The unique hydrophobicity and lipophobicity
make PFAS popular ingredients in industrial and consumer products such as food packaging, non-
stick cookware, waterproof apparel, lubricants, and firefighting foams. Known as the “forever
chemicals”, PFAS can remain in natural environments for many years due to their extremely strong
carbon-fluorine backbone and a lack of microbial metabolic pathways to efficiently decompose
these man-made chemicals (Fang et al., 2016; Cousins et al., 2020; Evich et al., 2022). After being
used for over 70 years, PFAS have reached every corner of the world and raised enormous public
health concerns, e.g., deleterious immune, metabolic, and reproductive effects and increased risks
of cancer (Blake and Fenton, 2020). US EPA Method 537.1 describes the standard steps that need
to be adopted to detect 18 PFAS in potable water based on solid phase extraction plus LC-MS/MS
(Shoemaker and Tettenhorst, 2020). Despite its high sensitivity and reliability, the standard method
has limitations in high cost, time-consuming pretreatment steps, and inaptness for onsite
measurement (Bai et al., 2022).

SERS were recently employed in order to overcome these limitations (Fang et al., 2016;
Bai et al.,, 2022). Among myriads of PFAS congeners, perfluorooctanoic acid (PFOA),
perfluorooctanesulfonic acid (PFOS), and 6:2 fluorotelomer sulfonate (6:2 FTS) were selected for
SERS analysis (Fang et al., 2016). Individual PFAS was first conjugated with a cationic dye (i.e.,
ethyl violet, EV) to form an ion pair, which was subsequently deposited onto Ag nanoparticle-

graphene oxide (AgNP-GO) nanocomposites. Both the reduced aqueous solubility of the ion pair

12
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and the hydrophobicity of the GO enhanced the loading amount of EV to AgNPs. Therefore, the

concentrations of PFAS were quantified based on the induced enhancement of SERS intensities of
EV. This method achieved the best LOD, 50 parts per billion (ppb), for PFOA. A similar method

achieved a LOD of 11 ppb for PFOA using crystal violet (CV) as the cationic dye and a Ag

superstructure array as the SERS substrate (Bai et al., 2022). Both methods can only detect PFOA

at a low-ppb level, which is still 6-7 orders of magnitude higher than its health advisory level (HAL)
recently issued by the US EPA (i.e., 0.004 parts per trillion, ppt) (EPA, 2022b). In addition, these

indirect SERS methods measured the Raman signals from the dyes instead of PFAS, so the co-

existing non-fluorinated surfactants can produce significant interferences to PFAS quantification.

Therefore, a label-free and ultrasensitive method is highly desired to advance SERS analysis of
PFAS in drinking water (Ong et al., 2020).

Novel pesticides. Pesticides play an important role in optimizing landscape configuration
and promoting agricultural production. While the legacy pesticides, such as DDT and atrazine,
have either been banned or limited for use, many novel pesticides have been increasingly used and
detected in drinking water. These novel pesticides have not been regulated yet, but their long-term
influence on human health should not be overlooked. In this section, we will primarily focus on
neonicotinoids to illustrate how SERS advances pesticide analysis in drinking water.
Neonicotinoids were introduced into the market in 1991 and now are one of the most widely used
classes of insecticides (Bass et al., 2015). Chemically resembling nicotine, neonicotinoids bind
with nicotinic acetylcholine receptors in the central nervous system of insects, which makes them
active against a wide range of insects and selectively toxic to the pests (Bass et al., 2015; Hladik
et al., 2018). The high water solubility of neonicotinoids makes them easily be taken up by plant

roots and distributed throughout the stem, leaves, flowers, and fruits of the plants (Wood and
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Goulson, 2017). The systemic nature of neonicotinoids allows the versatile use in the form of seed
coatings, soil drench, and foliar sprays (Goulson, 2013). Despite the advantages, their potentially
high toxicities to non-targeted organisms, such as honeybees and bumblebees, pose a significant
risk to our ecosystem (Blacquicre et al., 2012).

Conventionally, neonicotinoid detection consists of two steps: sample pretreatment and
analysis. Liquid-liquid extraction, solid-phase extraction, and their derivatives have been used for
neonicotinoid preconcentration followed by gas chromatography and liquid chromatography-
based analysis (Selahle et al., 2021). As elaborated previously, SERS is much faster and cheaper
than these standard methods (Selahle et al., 2021; Yang et al., 2021). Among different types of
neonicotinoids, N-nitroguanidines (imidacloprid, thiamethoxam, and clothianidin), N-
cyanoamidines (acetamiprid and thiacloprid), and nitromethylene (nitenpyram) were used for
SERS analysis (Dowgiallo and Guenther, 2019; Creedon et al., 2020; Gao et al., 2021; Puente et
al., 2022). These studies predominantly targeted to analyze neonicotinoid residues on fruits (apples
and peaches), vegetables (cabbage, spinach, and corn), tea leaves (green tea), and grains (wheat)
using a variety of SERS substrates listed in Table 2. We believe that the strategies that were used
for SERS analysis of neonicotinoids in the extracts of agricultural products will provide useful

guidance for their analysis in drinking water.
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Figure 3. SERS spectra of clothianidin and imidacloprid that were collected after deposition of
their methanol-water solutions (1 ppb) onto the Ag film@PVDF SERS substrate. Reprinted
(adapted) with permission from Creedon N, Lovera P, Moreno J G, Nolan M, O’riordan A (2020).
Highly sensitive SERS detection of neonicotinoid pesticides. Complete Raman spectral
assignment of clothianidin and imidacloprid. The Journal of Physical Chemistry A, 124(36): 7238-

7247. Copyright 2020 American Chemical Society.

Citrate-coated AuNP colloidal SERS substrates were used for the analysis of 21 pesticides,
including neonicotinoids, organothiophosphates, fungicides, insect repellents, and so on
(Dowgiallo and Guenther, 2019). A large range of LOD from 0.001 — 10 ppm was achieved, which
can be attributed to the different Raman cross sections of the pesticides and their different affinities
toward AuNP surfaces. However, many of the measurements were conducted in the presence of
organic solvents (acetone for acetamiprid, imidacloprid, and thiamethoxam; methanol for
clothianidin), which generated strong interferences that can limit the further LOD reduction.
Creedon et al. developed a SERS substrate by depositing a silver film onto a nanostructured
polyvinylidene fluoride (PVDF) film and applied it for imidacloprid and clothianidin analysis
(Creedon et al., 2020). Raman spectra were acquired following drop coating the methanol-DI water
(1:1) solutions of imidacloprid and clothianidin onto the SERS substrate. As shown in Fig. 3, low-
concentration imidacloprid and clothianidin (1 ppb) solutions both exhibited well-resolved
features in their Raman spectra, indicating that SERS is extremely sensitive for neonicotinoid
analysis. However, apparent discrepancies between Raman spectra of low-concentration samples
and those of high-concentration or bulk samples were observed, which was attributed to the
different orientations of the molecules adsorbed onto silver surfaces. Further improvement of

analysis sensitivity can be achieved by water sample preconcentration. For example, Gao et al.
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concentrated the analytes in a water sample droplet into a tiny spot by photothermally heating the
droplet on a superhydrophobic surface and achieved a LOD of femtomolar level for clothianidin,
thiamethoxam, imidacloprid, and acetamiprid.(Gao et al., 2021) The significantly lower detection
limits of pesticides compared to the US EPA drinking water levels of comparison (DWLOC) and
the health guidance in Minnesota suggest that SERS is a sensitive tool for monitoring pesticides
in drinking water (Table 2).

Pharmaceuticals. A survey from a Gemany’s research project on pharmaceutical residue
in drinking water reported that 23% of the liquid pharmaceuticals and 7% of tablets are discarded
by the consumers as household garbage or flushed away via toilets (Organization, 2012). As
indicated, a tremendous amount of pharmaceuticals ends up in landfill leachate and sewage, which
eventually gather in wastewater treatment plants. Both wastewater treatment and drinking water
treatment plants are not designed to remove these pharmaceuticals, so they are ubiquitously
detected in drinking water sources and finished drinking waters (Jeli¢ et al., 2012; Simazaki et al.,
2015; Sun et al., 2015; Aus der Beek et al., 2016). In this section, we select three of the most

frequently detected pharmaceuticals in various natural and engineered water systems, i.e.,
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sulfamethoxazole, carbamazepine, and diclofenac, as examples to elucidate the strategies that have

been adopted to advance their SERS analysis (Alula et al., 2018).

Carbamazepine (pK,=2.3)
1222
R pH=2.0
>
L
.é.. 1371
(72}
@ ‘
5 |
£ pH=3.0
pH=6.0

500 750 1000 12510 1500

Raman shift (cm ')
Figure 4. Raman spectra of carbamazepine collected from a AuNP/bacterial cellulose SERS
substrate under pH of 2.0, 3.0, and 6.0 (Wei and Vikesland, 2015). This is an open access article

distributed under the terms of the Creative Commons CC BY license, which permits unrestricted

use, distribution, and reproduction in any medium, provided the original work is properly cited.

Sulfamethoxazole at a 20-ppb level was detected by filtering a 2-mL solution (pH=1.8)
through a AgNP-decorated membrane (Hu et al., 2022). The membrane skeleton consisting of
sepiolite and chitosan efficiently concentrated sulfamethoxazole and improved the sensitivity of
SERS analysis. Patze et al. integrated a microfluidic device with a silver-coated nanostructured
quartz wafer and achieved a LOD of 0.05 and 0.6 ppb for DI water and lake/river/tap water
matrices, respectively (Patze et al., 2017). Sulfamethoxazole solution was continuously fed to the
SERS substrate, thus avoiding the overheating of the SERS substrate, and ensuring a highly

reproducible environment for Raman spectrum collection. Sulfamethoxazole has two pKa values
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of 1.6 and 5.7 for its amine groups, indicating that it exhibits relatively low affinity to mostly
negatively charged plasmonic nanoparticles under circumneutral pH (Boreen et al., 2004).

This situation aggravates for molecules with even lower pKa values. Carbamazepine has a
very low pKa (2.3), making it a neutral molecule that weakly associates with citrate-coated AuNPs.
Therefore, the SERS intensities of carbamazepine bands were very low under circumneutral pH.
To circumvent this issue, Wei et al. adjusted the pH of the carbamazepine solution to 2.0 before
mixing it with AuNP colloid (Wei and Vikesland, 2015). The electrostatic attraction between the
positively charged carbamazepine and negatively charged citrate significantly enhanced the
affinity between them and achieved a LOD of 2 ppb (Fig. 4). In addition to adjusting pH,
electrostatic forces can be regulated by surface functionalization of the plasmonic nanoparticles.
Citrate- and hydroxylamine-coated AgNPs were functionalized with thiocholine, whose
quaternary amine groups provided strong positive charges even under alkaline solutions (Stewart
et al., 2015). In this way, the anionic pharmaceutical — diclofenac was detected using SERS with
a LOD of 6,000 ppb. This much higher LOD than carbamazepine and sulfamethoxazole can be
attributed to the competitive adsorption of co-existing anions with diclofenac. The use of
recognition elements can also enhance the affinity of diclofenac to SERS substrates. As shown in
Fig. 5a, Cho et al. recently developed a monolithic gold nanogrid SERS substrate consisting of
crossed gold nanowires (Cho et al., 2020). After functionalization of the gold nanogrid with a
diclofenac-targeting aptamer, this substrate can capture diclofenac to its surface and detect it down
to 3x10 ppb. Numerous attempts to enhance the sensitivity of SERS sensors for pharmaceutical
analysis have lowered the LOD below the Minnesota Department of Health guidance by up to

three orders of magnitude (Table 2).
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Endocrine-disrupting chemicals. Many synthetic chemicals can disrupt the endocrine
system of humans via mimicking, stimulating, or inhibiting natural hormones. EDCs have been
frequently detected in drinking water and its chronic exposure could be linked to developmental
and reproductive anomalies (Benotti et al., 2009; Wee and Aris, 2017; Liu et al., 2021). Many
synthetic chemicals demonstrate endocrine-disrupting effects, such as atrazine, bisphenol A,
nonylphenol, and 17B-estradiol (E2). The strategies to detect triazine-containing or aromatic EDCs
are similar to what were discussed before, so we will only focus on 17f-estradiol in this section

because of its unique molecular structure.
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Figure 5. Schematics of (a) aptamer functionalization on a gold nanogrid SERS substrate and (b)
strategy for labeled SERS analysis of 17B-estradiol (Pu et al., 2019; Cho et al., 2020). Reprinted
with permission from Yeon Sik Jung, Hyungjoon Park, Minjoon Kim et al. (2020). Selective,
quantitative, and multiplexed surface-enhanced Raman spectroscopy using aptamer-functionalized
monolithic plasmonic nanogrids derived from cross-point nano-welding. Advanced Functional
Materials, 30: 2000612. Copyright 2020 John Wiley and Sons. Reprinted with permission from
Hongbin Pu, Xiaohui Xie, Dawen Sun et al. (2019). Double-strand DNA functionalized Au@Ag
NPs for ultrasensitive detection of 17f-estradiol using surface-enhanced Raman spectroscopy.

Talanta, 195: 419-425. Copyright 2019 Elsevier.

Given its low Raman cross section, 17p-estradiol was primarily detected by SERS with the
assistance of a highly Raman effective label. As shown in Fig. 5b, Au@Ag core-shell nanoparticles
were first functionalized with a single-stranded DNA that is complementary to the E2-targeting
aptamer (Pu et al., 2019). After adding the E2-targeting aptamer, the core-shell NPs aggregated as
a result of DNA hybridization while the Cy3 label that was pre-attached to the aptamer gave rise
to a strong SERS signal. However, when 173-estradiol was added, the strong interaction between
17B-estradiol and the aptamer removed the aptamer from NP surfaces, thus reducing the SERS
intensity of Cy3 substantially. This detection strategy achieved an extremely low LOD of 3x10*
ppb. A similar competition strategy achieved a LOD of 7x10 ppb for 17-estradiol analysis using
an antibody as the recognition element and malachite green-isothiocyanate (MGITC) as the SERS
label (Wang et al., 2016). Recently, a SERS strategy was reported to analyze the total steroid
estrogens (TE), including 17f-estradiol, estrone (TE1), and ethinyl estradiol (TEE2) (Liu et al.,
2019). The TE-targeting aptamer exhibited a similar binding affinity with the three individual

steroid estrogens. Two batches of Au@Ag core-shell nanoparticles were functionalized with the
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TE-targeting aptamer and the complementary DNA, respectively. Dimers were formed after
mixing them together because of DNA hybridization. Subsequently, the Raman label — 4-
mercaptobenzoic acid (4-MBA) was coated on the surfaces of both nanoparticles. Whenever any
of the three steroid estrogens were present either individually or as a mixture, the strong
interactions between the aptamer and the steroid estrogens reduced the distance between the
nanoparticles and created SERS hot spots. This strategy achieved a LOD down to 10~ ppb in
multiple environmental waters. As shown in Table 2, SERS can achieve LOD of steroid estrogens
that are well below the maximum recommended concentrations (MRCs) in drinking water in Japan

with the assistance of SERS labels and recognition elements.

Micro- and nanoplastics. Since their commercial production in 1950s, plastics have
penetrated in our lives not just in the form of daily products such as plastic water bottles and food
containers but also in the form of small plastic debris, i.e., micro- (<5 mm) and nanoplastics (<100
nm) (Thompson et al., 2004; Hale et al., 2020). Such small plastic particles are produced either
directly or indirectly from industrial plastic production. Primary microplastics are microscopic
plastics produced for daily products. Microbeads in cosmetics and personal care products are some
examples, however, the production of microbeads is now banned in the U.S. by Microbead-Free
Waters Act of 2015. (van Wezel et al., 2016). The major source of plastic particles are secondary
microplastics from the physiochemical degradation of plastic wastes and washing of synthetic
garments. Owing to their light weight, as produced plastic particles are transported by atmosphere
and water and enter our environment (Qiu et al., 2020).

The environmentally released microplastics pose direct threat to both humans and
ecosystems as well as indirect threat that is caused by the pollutants adsorbed to the microplastics.

(Wang et al., 2021a) Microplastics have a high adsorption capacity which makes them retain
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number of organic and inorganic pollutants and biofilms formed on microplastics further attracts
pathogenic microorganisms such as algae (He et al., 2022). The plastic particles in surface water
are consumed as food and drinking water and act as neurotoxins and exert oxidative stress to
humans, aquatic and soil organisms and cause developmental and reproductive problems (Lei et
al., 2018; Qin et al., 2021). In addition to the toxicity of microplastics, their bioaccumulative

properties makes them reside in the bodies of organisms for a prolonged period.
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Figure 6. Schematics of (a) Klarite and (b) a bifunctional silver nanowire membrane. Reprinted
(adapted) with permission from Yang Q, Zhang S, SuJ, Li S, Lv X, Chen J, Lai Y, Zhan J (2022).
Identification of Trace Polystyrene Nanoplastics Down to 50 nm by the Hyphenated Method of
Filtration and Surface-Enhanced Raman Spectroscopy Based on Silver Nanowire Membranes.
Environmental Science & Technology, 56(15): 10818-10828. Copyright 2022 American Chemical
Society. Reprinted (adapted) with permission from Xu G, Cheng H, Jones R, Feng Y, Gong K, Li
K, Fang X, Tahir M A, Valev V K, Zhang L (2020). Surface-Enhanced Raman Spectroscopy
Facilitates the Detection of Microplastics <1 pum in the Environment. Environmental Science &

Technology, 54(24): 15594-15603. Copyright 2020 American Chemical Society.

Numerous studies have been conducted in order to detect and quantify microplastics in
different environmental and drinking water matrices including tap water, rainwater, snow water,
river water, and sea water (Yin et al., 2021; Zhou et al., 2021; Yang et al., 2022). Different sizes
and types, i.e., polystyrene (PS), polymethyl methacrylate (PMMA), polyethylene (PE), Polyvinyl
chloride (PVC), polypropylene (PP), polycarbonates (PC), and Polyethylene terephthalate (PET),
of plastic particles have been analyzed using gold and silver SERS substrates. Xu et al. utilized
Klarite, a commercially produced inverted pyramid nanostructure coated with gold, as a SERS
substrate to detect a single PS and PMMA microplastic, sizes down to 360 nm (Xu et al., 2020).
The single particle detected is allowed due to the SERS mapping technique combined with the
strong hotspots generated from the pyramid pits of Klarite. Yang et al. on the other hand, used a
silver nanowire membrane as SERS substrates to both concentrate and detect PS nanoplastics
(Yang et al., 2022). The dual function allowed the detection of the nanoplastic sizes down to 50

nm.

Table 2. SERS-based sensors for emerging contaminant analysis
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4. Conclusions and Perspectives

This review article summarizes the latest progress on the development of SERS sensors targeting
four groups of emerging contaminants (ECs) — per- and polyfluoroalkyl substances (PFAS), novel
pesticides, pharmaceuticals, and endocrine-disrupting chemicals (EDCs). ECs in drinking water
are first defined based on their ubiquitous occurrence and uncertain health effects after long-term
human exposure. The routes of ECs to drinking water supplies are briefly summarized. Following
the introduction of advantages and disadvantages of SERS compared with standard EC analytical
tools, recent research progress on SERS sensor design for EC analysis is discussed in terms of both
technological advancements but also drinking water regulatory compliance.

While SERS allows inexpensive and rapid detection of ECs, most of the studies were
performed in DI water and the reported LOD values were based on the extrapolations from the
experimental data. Although the insights in sensor design provided by these studies can be easily
translated to other water matrices, further research is needed to evaluate the performance of these
SERS sensors in drinking water and validate the LOD values experimentally. There is no “one-fit-
for-all” strategy for EC analysis using SERS. SERS substrates should be tailored to accommodate
different targeting analytes based on their chemical structures. It is relatively easy to achieve a low
LOD for ECs with moieties that can either bind strongly with plasmonic nanoparticle surfaces or
exhibit high Raman cross sections. While for the ECs with either low Raman cross sections or low
affinity to sensor surfaces, i.e., PFAS and steroid estrogens, SERS labels are usually needed to

achieve a high detection sensitivity.
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In addition to the efforts to maximize SERS hot spot density, strategies to place the
targeting ECs into the hot spots are highly desired. The orientational variation of ECs on SERS
sensor surfaces as a function of their concentrations impedes the quantitative analysis. It is
important to further improve the reproducibility of SERS analysis, especially when the
concentrations of ECs are low. So far, the sensitivity and precision of SERS sensors for EC analysis
are still not on par with the standard analytical methods, such as GC-MS/MS and LC-MS/MS.
However, this can be potentially improved by integrating SERS with sample pretreatment steps,
e.g., liquid chromatography and microfluidic device, and advanced data analytics, e.g.,
multivariate statistics and machine learning. In summary, the low cost, (near) real-time data
collection, and potential for onsite analysis make SERS a promising tool for EC monitoring in

drinking water.
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