Check for
Updates

Real-Time Packet-Based Intrusion Detection on Edge Devices

Niccolo Borgioli
Scuola Superiore Sant’Anna
Pisa, Italy

Alessandro Biondi
Scuola Superiore Sant’Anna
Pisa, Italy

ABSTRACT

Recently, the number of security threats targeting cyber-physical
systems has continued to increase, both in quantity and in sophisti-
cation. Modern signature-based Intrusion Detection Systems (IDSs)
are no longer able to keep up to date with the most recent attack
techniques. This gives rise to the need for an intelligent system
that is able to learn the expected network traffic and to detect not
only known but also novel attacks. This paper introduces a novel
autoencoder-based IDS that can detect new malicious packets with
high precision. The proposed technique is general and can be used
to detect a wide range of attacks, including unseen ones. Extensive
experiments in simulation and on real hardware show that our tech-
nique substantially outperforms state-of-the-art solutions in terms
of detection accuracy and generality. An analysis of the inference
times is presented to show the predictability of the detection mech-
anism, as well as its practical applicability in resource-constrained
edge devices.

KEYWORDS

real-time, anomaly detection, unsupervised learning, autoencoder,
network traffic

ACM Reference Format:

Niccolo Borgioli, Linh Thi Xuan Phan, Federico Aromolo, Alessandro Biondi,
and Giorgio C. Buttazzo. 2023. Real-Time Packet-Based Intrusion Detection
on Edge Devices. In Cyber-Physical Systems and Internet of Things Week
2023 (CPS-IoT Week Workshops °23), May 09-12, 2023, San Antonio, TX, USA.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3576914.3587551

1 INTRODUCTION

As the reliance on networked systems in cyber-physical systems
(CPS) continues to increase, so does the number of cyberattacks
targeting these systems. One of the most critical issues faced by
network security is the ability to detect and respond to these attacks
in real time. Intrusion detection systems (IDSs) play a crucial role
in identifying network anomalies that may indicate the presence of
an attack. However, traditional IDS methods that rely on predefined

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CPS-IoT Week Workshops °23, May 09-12, 2023, San Antonio, TX, USA

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0049-1/23/05...$15.00
https://doi.org/10.1145/3576914.3587551

Linh Thi Xuan Phan
University of Pennsylvania
Philadelphia, Pennsylvania, USA

234

Federico Aromolo
Scuola Superiore Sant’Anna
Pisa, Italy

Giorgio C. Buttazzo
Scuola Superiore Sant’Anna
Pisa, Italy

rules or signatures can be bypassed by attackers who use new or
modified attack methods.

The state of the art in network anomaly detection mainly relies
on supervised learning, where a classifier is trained to detect a pre-
defined set of known attacks. However, similar to traditional IDSs,
supervised learning requires a continuous retraining of such classi-
fiers as new attack methods are discovered. One effective solution
to this issue is to use unsupervised learning, which can learn the
expected behavior and thus recognize any kind of anomalies. This
approach has shown its potential in the predictive maintenance
field, where it is able to identify sub-system failures based solely on
the learned knowledge of the normal operation of a system. Recent
research has also begun to investigate unsupervised learning tech-
niques for detecting anomalous network flows based on manually
extracted features [3, 12], with promising results.

In this paper, we exploit unsupervised learning to develop a new
generation of IDSs that are capable of detecting general and new
kinds of network attacks. The idea is to utilize modern autoencoder
techniques to reconstruct the received packets and detect anomalies
and attack packets based on the reconstruction error. Towards this,
we first present two solutions based on state-of-art autoencoder
(AE) architectures widely used with sequences. Based on the results,
we then introduce Multi-State Memory AE (MSM AE), a novel AE
architecture that exploits multiple parallel LSTM autoencoders,
each with a different embedding size, to increase detection accuracy.

To evaluate the effectiveness of the proposed architectures, an ex-
tensive experimental evaluation was conducted on a dataset of real-
world network traffic. The results demonstrate that the proposed
architectures outperform existing methods in terms of detecting a
variety of common attack types. The proposed architecture’s ability
to detect network attacks in an unsupervised manner, without the
need for labeled data, makes it a valuable tool for safeguarding
against cyber threats. We further present an experimental study
of the inference time of the proposed solutions on real hardware;
this serves as a foundation for worst-case execution time (WCET)
analysis, which is crucial to providing predictable timing on re-
source constrained real-time systems. The proposed approach aims
at substituting modern firewalls, while providing predictable timing
guarantees on the delay introduced in the communication.

In summary, the paper makes the following contributions:

e anovel method to detect network attacks based on unsuper-
vised learning;

e a novel autoencoder architecture for IDSs based on parallel
autoencoders to improve attack detection accuracy;

e an analysis of the classification results in terms of true posi-
tives and false negatives;

https://orcid.org/0000-0003-2246-5186
https://orcid.org/1234-5678-9012
https://orcid.org/1234-5678-9012
https://orcid.org/1234-5678-9012
https://doi.org/10.1145/3576914.3587551
https://doi.org/10.1145/3576914.3587551
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3576914.3587551&domain=pdf&date_stamp=2023-05-09

CPS-loT Week Workshops ’23, May 09-12, 2023, San Antonio, TX, USA

e an implementation of the proposed techniques on a real edge
platform; and

e an evaluation of the accuracy and inference time on our ex-
perimental platform under different realistic configurations.

2 RELATED WORK

There exist several techniques for network anomaly detection; how-
ever, the majority of existing work focuses on packet flow analysis
rather than per-packet analysis. Andreas et al. [2] presented a gen-
eral comparison between packet-based and flow-based anomaly
detection. The authors used a Bidirectional LSTM (BLSTM) classi-
fier for both per-packet extracted features and flow-based features.
Their experiments showed that the proposed architecture achieved
76% of accuracy with the per-packet features and 96% with flow-
based features. Dromard et al. [5] proposed a custom algorithm to
extract features from flows to recognize different anomaly classes
based on some signatures, and obtained a classification accuracy of
93%. These techniques only target known attacks which the method
learned to detect.

Considering the ability to detect new (and zero-day) attacks,
Tram et al. [12] used Generative Adversarial Networks (GANs) to
generate a reconstruction of the input traffic flows and used the re-
construction error to discriminate between normal and anomalous
traffic. Although the approach only reached 82% accuracy, thanks
to the unsupervised approach, it is also capable of detecting un-
known attacks and thus greatly improve the portability of the IDS
without the need for periodic retraining. These existing techniques,
however, focus only on the detection accuracy, while ignoring the
inference time of the detection.

Some recent solutions have begun to investigate the relevance
of inference time in anomaly detection. For example, Kathareios et
al. [7] developed a multi-stage solution for anomaly detection that
considers inference time in their evaluation. They first extracted
statistical features about flow and global traffic to be used as input
to an autoencoder. The features reconstruction error is then used to
detect anomalous flows. To reduce the percentage of false positives,
the authors introduced a second stage classifier which analyzes the
detected anomalous flows. The proposed method achieved a true
positive rate between 90% and 98%, with a 2% rate of false posi-
tives. In their work, the authors also reported the inference time of
their method, which requires at least 1 second for each prediction.
Alam et al [1] proposed a memristor-based autoencoder to perform
anomaly detection in low-power devices. They first trained the
autoencoder offline and reached a detection accuracy of 95%. Then,
they converted it for execution in the memristor on the low-power
platform reducing the accuracy to 92%. They also analyzed the
impact of the proposed solution in terms of power consumption
and inference time under different working configurations. Finally,
Carrera et al. [3] proposed to combine multiple unsupervised ap-
proaches to perform anomaly detection. The authors performed an
extensive evaluation of their proposed solutions, which achieve an
accuracy ranging from 80% to 90% depending on the different model
combinations. Their solutions have an inference time of up to 1.18
seconds on a desktop PC with an Intel Core i7-8665U processor, 16
GB of RAM, and the Microsoft Windows 10 Pro operating system.

235

Niccolo Borgioli, Linh Thi Xuan Phan, Federico Aromolo, Alessandro Biondi, and Giorgio C. Buttazzo

Such inference time is too large to be acceptable for most real-time
systems on edge devices.

Overall, to the best of our knowledge, no previous work provided
a per-packet anomaly detection method together with an inference
time analysis performed on or suitable for a real edge device.

3 PROPOSED REAL-TIME IDS METHOD

This section provides an overview of the dataset, an exploratory
data analysis, the data preprocessing, the model architectures, and
the training of the models in our detection method.

3.1 Dataset

Towards a general IDS that is capable of detecting novel attacks
in real time, we have evaluated several existing datasets for both
training and testing our models. Since our goal is to develop a
packet-based IDS to be deployed on each edge device of a network,
we targeted a dataset that provides raw network packet captures
(pcap files) collected from different network nodes. In our proposed
approach, we use unsupervised learning to train the network using
benign packets only so that it can detect anomalies in the pres-
ence of malicious packets. We considered the following existing
datasets, which cover a range of representative use case scenarios
for different environments: NSL-KDD [8], UNSW-NB15 [9], CIC-
IDS2017 [10], and EDGE-IIOTSET [6].

NSL-KDD. This dataset is a rebalanced version of the widely
used KDDCUP’99 dataset (which presented some statistical issues).
However, this dataset still presents some limitations which pre-
vented its adoption in the present work: (i) provides only flow
features and not raw packets, (ii) the data contained in the dataset
were generated more than two decades ago and are no longer rep-
resentative of modern network traffic and attacks.

UNSW-NB15. This dataset contains about 100 GB of collected
raw benign and malicious packet data generated in a controlled
simulation environment. It provides both a labeled CSV file with
the extracted flow features and the raw pcap files. However, this
dataset provides only flow labels but not per-packet labels, making
it unsuitable for our purposes.

CIC-IDS2017. This dataset contains raw packet captures of both
benign and malicious packets collected in a controlled network over
5 days. The dataset is provided both in the form of a CSV file with
labeled flow information and both as raw pcap files with indications
of when attacks start and end for each day. However, this dataset
also does not provide per-packet labeling, making it unsuitable for
our purposes.

EDGE-IIOTSET. This dataset collects network traffic of a re-
alistic network composed of more than 10 different types of IoT
devices. The authors collected the traffic generated by each device
in a separate pcap file and performed 14 different types of attacks.
The dataset provides both the raw pcap files and the CSV files with
the extracted features from each packet, along with its label.

Based on the observed characteristics of each of the considered
datasets, we decided to adopt the EDGE-IIOTSET for the present
work, not only because it is the only one that provides labeled raw
packets, but also because it considers the widest range of device
types along with one of the most recent set of attacks.

Real-Time Packet-Based Intrusion Detection on Edge Devices

3.2 Exploratory data analysis

After selecting the dataset, we analyzed the dataset to understand
the composition of its samples. We focused on the packet length
distribution and the encryption protocol used because they affect
the capability of generalization and the learning features.

Packet length distribution. Analyzing the distribution of the
packet lengths we found that the maximum packet length is 1514
bytes (maximum size of traditional ethernet frames), but that most of
the packets exchanged by the devices are quite short (below 100 bytes).
Our analysis shows that there is a big imbalance in the dataset from
the packet length point of view, due to the non-uniform distribution
of packet lengths.

Encryption. To understand if the payload content of the packets
could be used for classification, we analyzed the dataset to check if
the exchanged packets used an encryption protocol (such as TLS or
IPsec). This is important because an encrypted payload will require
a dedicated feature extraction to gather significant information.
From our analysis, we discovered that all the traffic exchanged by
nodes is unencrypted (which is expected, since IoT devices typi-
cally do not provide support for encryption). This characteristic
enables us to exploit the plain text payload information to gather
information useful for classifying packets.

3.3 Data preprocessing

This section describes the preprocessing carried out on each data
sample before training our classifier.

The unbalanced distribution of packet lenghts can cause the
proposed model to overfit short (and most occurring) packets and
underfit the long ones, thus reducing its generalization capability.
To prevent this issue, we assign each packet a weight computed as
the inverse of the number of packets in the training set with the
same length as the considered packet, as follows:

1
num_pkts(len(packet))’)
With this technique, the data loader will even out the distribution
of packets used in the training phase based on their lengths.
Since Ethernet packets in the dataset are unencrypted we can
fully exploit the information contained in the payload. Packets
are provided as byte sequences, so, before feeding them to the
classifier, we must encode them in an interpretable format. Because
the packet length is highly variable and we want the model to learn
the important features of each packet, we encode each byte as a
floating-point value from 0 to 1, by dividing the 8-bit unsigned
integer representation of each byte by 255.

weight(packet) =

3.4 Model architectures

Autoencoders are a class of unsupervised neural networks which
are composed of two main components: an encoder and a decoder.
The encoder reduces the dimensionality of the incoming data and
produces a compressed representation (encoding). The decoder
performs the opposite operation by reconstructing the original data
with little or no error starting from the encoding. This way, the
autoencoder learns to automatically extract relevant features from
the input and how to use them to reconstruct the original input.

236

CPS-loT Week Workshops "23, May 09-12, 2023, San Antonio, TX, USA

Key idea. Traditional approaches make use of binary classifiers
trained with labeled benign and malicious packets; however, their
main drawback is the low accuracy in the classification of new
attacks, thus requiring continuous retraining of the network to
keep it up to date. Our approach aims at overcoming this limitation
by training the autoencoder with only benign packets. This way, the
autoencoder will have low reconstruction error on benign packets
and high error on malicious (anomalous) ones. Thus, by analyz-
ing the reconstruction loss of the packets, it is possible to detect
malicious ones (including zero-day attacks) without the need for
retraining. Specifically, if X is the input sequence of length N and
Y is the reconstructed one, the reconstruction loss is defined as:

N
loss(X,Y) = > |xi - yil,)
i=1

where x; and y; are the i-th elements of the X and Y sequences,
respectively. Since in the considered scenario packets are unen-
crypted, we fed the network the whole Ethernet frame (X).

In the following, we first explore two common autoencoder ar-
chitectures: 1D Convolutional Neural Network Autoencoder (1D
CNN AE), and Long Short Term Memory Autoencoder (LSTM AE).
We selected these architectures because both of them have shown
great performance when dealing with sequences in other fields. We
will then introduce an enhanced architecture that exploits paral-
lelization to further improve detection capability.

1D CNN AE. 1D CNNs are widely used when dealing with se-
quences and time series, due to their advantages over conventional
(2D) CNNGs. In this kind of network, the filter slides along a single
dimension to produce an output. Compared to traditional fully con-
nected autoencoders, a 1D CNN reduces the number of parameters
and thus the memory footprint and computational complexity of
the network while improving its accuracy. In this work, we used
this type of convolution networks to create an autoencoder.

LSTM AE. LSTM networks are a class of recurrent neural networks
(RNN) specifically designed to deal with sequences. LSTM cells can
be organized into an encoder-decoder architecture to support the
reconstruction of variable-length sequences. Unlike convolutional
networks, in this architecture, the encoder reads the input sequence
step by step. After reading the whole sequence, the hidden state of
the encoder represents the internal learned representation of the
entire sequence. The hidden state is a fixed-length vector, which is
then used as the initial hidden state of the decoder to reconstruct
the original sequence.

Observation. While training the LSTM AE, we observed that
choosing the proper hidden state size is crucial to allow the network
to learn how to properly extract features from the input sequence.
A larger hidden state helps the network when dealing with long
sequences because it can better remember long-term dependencies
between distant elements in the sequence. In contrast, a smaller
hidden state can better handle short-term dependencies. Thus, if
we can combine states of different sizes, we should be able to cover
both long-term and short-term dependencies. Based on this insight,
we introduce a novel architecture, called Multi-State Memory AE
(MSM AE), which leverages the advantage of having feature vectors

CPS-loT Week Workshops ’23, May 09-12, 2023, San Antonio, TX, USA

Original packet

/\

LSTM AE 1

LSTM AE 2

IIIIII~~~~I+IIII |_|_|_|_|i||_|_|_|_|_|

Reconstructed packet 1 \ / Reconstructed packet 2

Reconstructed packet

Figure 1: Architecture of the MSM AE packet flow

of different lengths to further improve the detection performance.

MSM AE. This new network combines the advantages of both a
big and a small hidden state using multiple parallel LSTMs with
different hidden sizes. Its design was inspired by the Inception [11]
network architecture, which introduces parallel convolutional fil-
ters acting on the same input. Similar to the original Inception
network, MSM AE contains multiple LSTM AE that receive as input
the same sequence, which is then encoded and decoded indepen-
dently by each autoencoder. The resulting reconstructions are then
combined using an element-wise average operation to determine
the final reconstructed sequence. In this work, we considered two
parallel LSTM AEs: although adding more would probably further
improve the detection accuracy thanks to a more granular anal-
ysis of the packets, this would also increase the computational
complexity. Since the proposed solution aims to be deployed on
resource-constrained edge devices, we decided to keep the smallest
architecture which achieved a reasonable detection performance.
Figure 1 illustrates the complete structure of the proposed MSM AE.
To the best of our knowledge, this is the first approach to integrate
parallel LSTM networks in the same network architecture, and it
represents a major contribution of this work.

3.5 Training and hyperparameters selection

As explained earlier, our approach trains the autoencoders with only
benign packets to enhance the generalization capability against
novel malicious attacks. To do so, we divide the available benign
packets into three groups: training set, validation set, and test set.
For our experiments, we used the same sets for all the proposed
architectures (1D CNN, LSTM AE, and MSM AE) to allow for a
consistent performance evaluation of their performances.

During the training phase of each autoencoder, a hyperparameter
exploration (kernel size, number of layers, hidden state size, ...) is
performed to optimize the reconstruction loss of the network on
the benign packets. Due to space limitations, we omit the details
on the selection of hyperparameters.

After the training phase, we analyze the reconstruction loss
distribution of each of the three proposed architectures for the
benign packets and a small training subset of malicious packets of
a specific category. Thanks to this analysis, it is possible to evaluate
how well each network can distinguish between malicious and
benign packets. Our approach detects an anomalous packet based on
a tunable threshold value, selected based on this analysis. Generally,
a small threshold value will make the detection more sensitive to
malicious packets, but it can also misclassify some sporadic benign

237

Niccolo Borgioli, Linh Thi Xuan Phan, Federico Aromolo, Alessandro Biondi, and Giorgio C. Buttazzo

packets. On the contrary, a higher threshold value will reduce the
misclassification of benign packets, but at the same time it will
reduce the sensitivity of the detection of malicious packets. In a
real-world deployment, the threshold should be tuned based on both
the analysis of the reconstruction loss distribution and the specific
application requirements. In this work, after training each network,
we selected a detection threshold based on the reconstruction loss
observed on a subset of benign and malicious (small portion of
backdoor samples) packets.

4 IMPLEMENTATION AND EVALUATION

Prototype. To evaluate our approach, we built an implementation
of our detection method based on the three architectures. For the
training phase, we implemented the three networks using the Py-
Torch machine learning framework, and we performed the training
using an Nvidia DGX server. To evaluate the performance in a real-
world setting, we implemented the models in C++ for testing on an
NVIDIA Jetson AGX Orin Developer Kit, using the libtorch library.
We initialized the networks with the weights obtained from the
training phase. Overall, our C++ implementation has approximately
200 LoCs, and our Python implementation has about 500 LoCs.
Evaluation. Our evaluation focuses on the two main objectives of
our IDS design: (i) high detection accuracy of malicious packets,
including novel unseen attacks; and (ii) predictable inference time
that is compatible with practical deployments on edge devices.
In the following, we report our experimental evaluation, which
aims at evaluating two metrics: (i) the detection accuracy of the
three proposed network architectures, and (ii) the inference timing
analysis of the most accurate architecture on a real platform.

4.1 Detection accuracy

Each of the trained networks was tested with the associated thresh-
old obtained at the end of the tuning phase. Tests were performed
using all malicious packets of each attack type to analyze the gen-
eralization capability of each architecture against new attack types.

To evaluate the performance of each network, we used the labels
of the samples to measure conventional performance metrics such
as the number of true positives (TP), true negatives (TN), false posi-
tives (FP), and false negatives (FN). Here, TP represents the number
of malicious packets that are correctly detected, and FP represents
the number of normal packets that are classified as malicious. TN
(FN) can be defined similarly, but for normal (malicious) packets
classified as normal packets.

Moreover, since the different classes of malicious packets and
the benign packets are unbalanced, we also computed the True
Positive Rate (TPR) and the False Positive Rate (FPR), as follows:

TP FPR = FP 5
TP +FN’ " TN +FP’ ®)

Table 1 reports the performance of the three proposed archi-
tectures in terms of TP (and TPR) and FP (and FPR), over all the
malicious packet classes. (The dataset contains 5,919,987 malicious
packets and 686,368 normal packets.)

The results in Table 1 demonstrate that the 1D CNN architecture
is not suitable for detecting unknown malicious packets, since it
is not capable of generalizing what was learned during training. It
achieved low error on benign packet reconstruction but high error

TPR =

Real-Time Packet-Based Intrusion Detection on Edge Devices

Architecture | TP TPR FP FPR
1D CNN 2,074,430 | 35.04% | 126,895 | 18.49%
LSTM 5,633,294 | 95.16% | 121,277 | 17.67%
MSM AE 5,909,716 | 99.83% | 1,233 0.18%

Table 1: Comparison between normal and malicious packet
classification for the three proposed architectures.

0.200
mm Normal

-_—
0175 Attack

0.1501

0.1254

0.1001

occurrence

0.075 4

0.050

0.0251 I
0.000 -
0

50 100 150 200 250 300 350
loss

Figure 2: Normalized reconstruction loss distribution of be-
nign and malicious training packets for the 1D CNN

Single LSTM AE MSM AE
Attack Norm. Mal. Prec. | Norm. Mal. Prec.
Backdoor 125 14823 99,16% 244 14704 98,37%

DDoS HTTP 596 136889 | 99,56% 449 137036 | 99,67%
DDoS ICMP | 69155 | 1679458 | 96,04% 78 1748536 | 99,99%

DDoS TCP 30 1212061 | 99,99% 41 1212050 | 99,99%
DDoS UDP 195196 | 1734243 | 89,90% 78 1929361 | 99,99%
MITM 14 723 98,10% 205 532 72,18%
OS Fing. 79 626 88,79% 97 608 86,24%
Password 6704 625631 | 98,93% | 1133 631202 | 99,82%
Port Scan 9628 4369 31,21% | 6207 7790 55,65%
Ransom 159 6459 97,60% 406 6212 93,86%
SQL Inject. 371 30365 98,79% 23 30713 | 99,93%
Uploading 1851 20735 91,80% 439 22147 | 98,06%
Vuln. Scan 2247 157249 | 98,59% 221 159275 | 99,86%
XSS 538 9191 94,47% 650 9079 93,32%
TOTAL 286693 | 5633294 | 95,16% | 10271 | 5909716 | 99,83%

Table 2: Detection performances of the LSTM AE and MSM
AE architectures on different attacks classes

on the malicious ones. This problem is even more prominent if we
look at the reconstruction loss distribution of benign and malicious
packets used for tuning the threshold of that network (shown in
Figure 2). Most of such malicious packets are reconstructed with a
loss similar to one of the benign ones, making it difficult to properly
select a suitable threshold to distinguish the two classes.

In contrast, the LSTM architecture achieved a good generaliza-
tion capability, as it learned the pattern of the benign packets much
better and was able to better distinguish such packets from the
malicious ones. In fact, after tuning the threshold, this network
was able to greatly increase the number of detected malicious pack-
ets. However, LSTM still has a relatively high FPR. This is mainly
due to the similarity of some kinds of malicious packets to benign
ones. From Table 2, we can see that when dealing with UDP DDOS,
Port Scanning and OS Fingerprinting attacks, this network can still
reconstruct the corresponding packets well. This is because such
packets are quite short and very similar to the benign ones.

238

CPS-loT Week Workshops °23, May 09-12, 2023, San Antonio, TX, USA

CPU GPU
30 W EDP 30 W EDP
Max 599 ms | 375ms | 242 ms | 78 ms
Median | 317 ms | 195ms | 125ms | 39 ms
Mean 314ms | 194ms | 135ms | 52 ms
Table 3: Inference time results of the LSTM architecture with
different platform configurations

CPU GPU
30 W EDP 30 W EDP
Max 769 ms | 490 ms | 322 ms | 121 ms
Median | 401 ms | 255ms | 170 ms | 63 ms
Mean 402 ms | 256 ms | 172 ms | 67 ms
Table 4: Inference time results of the MSM AE architecture
with different platform configurations

The MSM AE, thanks to the multiple hidden sizes, manages to
solve the limitations of the traditional LSTM AE by providing an
improved detection performance also on these kinds of attacks,
while greatly reducing the false positives. The results shown in Ta-
ble 1 demonstrate how this network reached a detection accuracy
close to 100%, with a very small number of misclassified normal
packets. We selected the threshold to both minimize the FPR and
FNR. Selecting a more stringent threshold could yield further im-
provements in the detection capabilities of such model and thus
improve attack detection, but at the same time also increase the
FPR. In a real environment, the designer should select the most
suitable threshold value depending on the specific application.

4.2 Inference time analysis

After assessing the accuracy performance of the proposed architec-
tures, we also assessed the inference time of the two LSTM models.
We did not perform this evaluation on the 1D CNN architecture
since its detection accuracy was unsuitable for our task.

To properly measure the inference time, we configured the test
program to run with a high priority to minimize the interference po-
tentially introduced by other services running on the same platform.
Each measure was repeated 1 million times, considering different
packet lengths taken from the dataset. Then, we evaluated such
measures using three aggregated metrics: maximum inference time,
median inference time (50th percentile), and mean inference time.
Inference times were measured both with and without GPU accel-
eration, and with two different levels of power of the platform: 30
W and EDP (full power) [4].

Table 3 shows the inference time of the simple LSTM network
trained before. The results clearly show that by increasing the power
(and thus the core frequency), we can almost halve the inference
time. Accelerating the network using the available GPU reduced the
inference time by up to 80-90%. However, it is worth noting that
even in the low-power configuration and without GPU acceleration,
the proposed architecture can achieve an inference time comparable
to the latency typically experienced by network packets.

The results reported in Table 4 show that the MSM AF architec-
ture requires higher inference times. However, since the two LSTMs
in the architecture work in parallel, such time can be reduced by
means of proper code parallelization. Results of such profiling cam-
paign determine the maximum inference time required to analyze a

CPS-loT Week Workshops ’23, May 09-12, 2023, San Antonio, TX, USA

Niccolo Borgioli, Linh Thi Xuan Phan, Federico Aromolo, Alessandro Biondi, and Giorgio C. Buttazzo

Attack | Backdoor | MITM | OS Fing. | Pass. attack | Port Scanning

Ransomware | SQL Injection | Uploading | Vuln. Scan | XSS

TOTAL

Prec. 0,23% 66,21% | 23,45% 0,22% 0,23%

0,23% 0,23% 0,23% 0,23% 0,23% | 0,24%

Table 5: Detection performances of the previous work on attack classes not used for training

network packet. Thus, we are able to guarantee the maximum delay
introduced by the proposed system into a real-world scenario.

4.3 Comparing with existing work

Finally, we compared the performance achieved by the proposed so-
lutions with the one proposed by the authors of the EDGE-IIOTSET
dataset. In their work, Mohamed et al. [6] trained both a binary
and a multiclass classifier, using as input a set of features manually
extracted from the packet flow.

Due to the nature of the solution proposed in this paper, we
only compared the performance with the binary classifier. Based
on the information provided in [6], we recreated the same model
used by the authors and we trained it using the same hyperpa-
rameters. However, to compare the generalization capability of the
two approaches to new unseen attacks, we changed the training
dataset using only the set of benign samples and a subset of at-
tack classes for the training phase of their network. After training,
their network achieved excellent performance (99% accuracy) in
detecting the attacks it was trained on, but it was almost never
able to detect the unseen ones (close to 0% accuracy), classifying
them as normal packets. Table 5 reports the TPR achieved by the
reference architecture on attack flows not used for training. Since
the reference work uses per-flow instead of per-packet detection, it
is not possible to numerically compare the two detections, so we
compare the achieved rates.!

The experimental results presented above confirm that an unsu-
pervised approach like those proposed in this work is much more
robust than a supervised one, since it is able to correctly identify
new types of attacks as well as known attacks.

4.4 Discussion

Overall, the LSTM-based architectures achieved better accuracy
with respect to the 1D CNN architectures in terms of distinguishing
between normal and malicious packets. In particular, the proposed
MSM AE architecture exhibited the strongest detection perfor-
mance. Using multiple LSTM cells in parallel with different hidden
state sizes allows us to extract more features from the input se-
quence while preserving a small number of parameters. As a result,
the architecture is able to better learn the features of the benign
packets, minimizing the reconstruction error and enabling better
detection of malicious packets, including unseen ones.

When tested on known malicious attacks, the proposed LSTM-
based detection solutions provided an accuracy comparable to that
of existing work. However, when dealing with novel attacks, our
solutions were able to maintain the same accuracy as with known
attacks, whereas the existing approaches exhibited poor detection
performance. These results confirm the importance of unsuper-
vised learning for IDSs, given that it does not require continuous

The work by Mohamed et al. [6] performs per-flow analysis, while our proposed
solutions use a per-packet approach. Therefore, it is not meaningful to compare their
inference times.

239

retraining to detect novel threats, unless the network traffic pattern
changes significantly.

Finally, the inference time of the architectures was evaluated
on a real platform. Inference time analysis is crucial to correctly
deploy IDSs in a safety-critical practical setting, but was largely
ignored in prior IDS research. The experiments showed promis-
ing results towards the application of the proposed techniques on
resource-constrained devices. We note that these timing results
were achieved without network quantization or other optimization
techniques, which can bring substantial performance improvements.
We plan to investigate such optimizations in future work.

5 CONCLUSIONS

We have presented a novel dual autoencoder architecture for real-
time intrusion detection based on anomalous packet identification
for networked edge devices. Our experimental study demonstrated
that unsupervised learning can greatly boost the performance of
an IDS, allowing it to reliably detect not only trained but also novel
attacks without the need to retrain the network. Although the
classification capability of the considered traditional autoencoders
was promising, the novel MSM AE architecture proposed in this
work was shown to substantially improve performance, minimiz-
ing the false positives while achieving very low false negatives.
Finally, the inference time analysis performed on a real edge device
setting serves as a foundation for achieving predictable inference
time, while also demonstrating the applicability of the proposed
architecture for real deployments on resource-constrained devices.

ACKNOWLEDGMENTS

This work was supported in part by Huawei and the Italian Ministry of
University and Research (MIUR), under the SPHERE project funded within
the PRIN-2017 framework (grant no. 20172NNB4T_001), and NSF grants
CNS-1750158, CNS-1955670, CNS-2111688 and CNS-1703936.

REFERENCES

[1] Md. Shahanur Alam, B. Rasitha Fernando, Yassine Jaoudi, Chris Yakopcic, Ragibul
Hasan, Tarek M. Taha, and Guru Subramanyam. 2019. Memristor Based Autoen-
coder for Unsupervised Real-Time Network Intrusion and Anomaly Detection.
In Proceedings of the ICONS.

[2] Brook Andreas, Jayaweera Dilruksha, and Eric McCandless. 2020. Flow-Based
and Packet-Based Intrusion Detection Using BLSTM. In SMU Data Science Review.

[3] Francesco Carrera, Vincenzo Dentamaro, Stefano Galantucci, Andrea Ianna-
cone, Donato Impedovo, and Giuseppe Pirlo. 2022. Combining Unsupervised
Approaches for Near Real-Time Network Traffic Anomaly Detection. Applied
Sciences 12, 3 (2022).

[4] NVIDIA Corporation. 2022. NVIDIA Jetson Orin - Tuning Power.

[5] Juliette Dromard, Gilles Roudiére, and Philippe Owezarski. 2017. Online and
Scalable Unsupervised Network Anomaly Detection Method. IEEE Transactions
on Network and Service Management 14, 1 (2017), 34-47.

[6] Mohamed Amine Ferrag, Othmane Friha, Djallel Hamouda, Leandros Maglaras,
and Helge Janicke. 2022. Edge-IloTset: A New Comprehensive Realistic Cyber
Security Dataset of IoT and IIoT Applications for Centralized and Federated
Learning. IEEE Access 10 (2022), 40281-40306.

[7] Georgios Kathareios, Andreea Anghel, Akos Mate, Rolf Clauberg, and Mitch
Gusat. 2017. Catch It If You Can: Real-Time Network Anomaly Detection with
Low False Alarm Rates. In ICMLA.

[8] Ghulam Mohi-ud din. 2018. NSL-KDD. https://doi.org/10.21227/425a-3e55

https://doi.org/10.21227/425a-3e55

Real-Time Packet-Based Intrusion Detection on Edge Devices CPS-loT Week Workshops "23, May 09-12, 2023, San Antonio, TX, USA

[9] Nour Moustafa and Jill Slay. 2015. UNSW-NB15: a comprehensive data set for Going Deeper with Convolutions. https://doi.org/10.48550/ARXIV.1409.4842
network intrusion detection systems (UNSW-NB15 network data set). In MilCIS. [12] Tram Truong-Huu, Nidhya Dheenadhayalan, Partha Pratim Kundu, Vasudha
[10] Iman Sharafaldin, Arash Habibi Lashkari, and Ali A. Ghorbani. 2018. Toward Gen- Ramnath, Jingyi Liao, Sin G. Teo, and Sai Praveen Kadiyala. 2020. An Empirical
erating a New Intrusion Detection Dataset and Intrusion Traffic Characterization. Study on Unsupervised Network Anomaly Detection Using Generative Adver-
In International Conference on Information Systems Security and Privacy. sarial Networks. In SPAL

[11] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. 2014.

240

https://doi.org/10.48550/ARXIV.1409.4842

	Abstract
	1 Introduction
	2 Related work
	3 Proposed real-time IDS method
	3.1 Dataset
	3.2 Exploratory data analysis
	3.3 Data preprocessing
	3.4 Model architectures
	3.5 Training and hyperparameters selection

	4 Implementation and Evaluation
	4.1 Detection accuracy
	4.2 Inference time analysis
	4.3 Comparing with existing work
	4.4 Discussion

	5 Conclusions
	Acknowledgments
	References

