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Abstract
We consider the subgradient method with constant step size for minimizing locally
Lipschitz semi-algebraic functions. In order to analyze the behavior of its iterates in
the vicinity of a local minimum, we introduce a notion of discrete Lyapunov stability
and propose necessary and sufficient conditions for stability.
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1 Introduction

The subgradient method with constant step size for minimizing a locally Lipschitz
function f : Rn → R consists in choosing an initial point x0 ∈ R

n and generating
a sequence of iterates according to the update rule xk+1 ∈ xk − α∂ f (xk), ∀k ∈
N := {0, 1, 2, . . .}, where α > 0 is the step size and ∂ f is the Clarke subdifferential
[14, Chapter 2]. While this method is often used in practice to solve nonconvex and
nonsmooth problems, there is little theoretical understanding of the behavior of its
iterates. To the best of our knowledge, the only known results are in the convex setting,
as we next describe.
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If f is convex and the Euclidean norm of its subgradients is bounded above by a
constant c, then lim inf f (xk)−inf f ≤ c2α/2 provided that the infimum is reached [6,
Proposition 3.2.3]. In order to get within ε accuracy of that bound, �d(x0, X)2/(αε)�
iterations suffice where �·� denotes the floor of a real number and d(x0, X) is the
distance between the initial iterate x0 and the set ofminimizers X ⊂ R

n [6, Proposition
3.2.4]. If the objective function grows quadratically (at least as fast as t ∈ R 	→ βt2 for
some β > 0) around the set of minimizers, then the iterates asymptotically get within
c
√

α/
√
2β distance to the set of minimizers if α ∈ (0, 1/(2β)] [6, Proposition 3.2.5].

If we relax the boundedness assumption on the subgradients to ‖s‖ ≤ c
√
1 + d(x, X)2

for all (x, s) in the graph of ∂ f , then we get the slightly weaker bound lim inf f (xk)−
inf f ≤ c2α/2(1 + d(x0, X)) [6, Exercise 3.6].

Given the absence of theoretical results in the nonconvex setting, in this note we
take a first step by investigating the behavior of the subgradient method in the vicinity
of a local minimum of f . In order to do so, we propose a notion of stability akin to
Lyapunov stability in dynamical systems [21] [26, Equation (5.6)]. Informally, a point
is stable if all of the iterates of the subgradient method remain in any neighborhood
of it, provided that the initial point is close enough to it and that the step size is small
enough.

Without any further assumptions on f , the notions of stability and local optimality
are decorrelated. Indeed, the classical counterexample f (x) = x2 sin(1/x) admits a
stable point which is not a local minimum, while the Rockafellar function [25, p. 5]
(see also [20, Proposition (1.9)]) admits a local minimum that is not stable. Assuming
sharpness [16, Assumption A 2] and weak convexity [16, Assumption A 1], it can
easily be shown that strict local minima are stable. These assumptions may not hold in
practice however [15, p. 121] [14, 2.3.6 Proposition], and can be difficult to check [13,
Conjecture 8.7]. We thus confine our investigation to locally Lipschitz semi-algebraic
functions [9, 24]. The tame generalization [28] is immediate and captures seemingly
all applications of interest nowadays.

When f is locally Lipschitz and semi-algebraic, the set of stable points and local
minima coincide in two cases. The first is when f is continuously differentiable with
a locally Lipschitz gradient. The fact that local minima are stable in this regime can be
deduced using arguments from [2, Proposition 3.3]. The converse is a consequence of
one of our results (Theorem 1). The second case is that of continuous-time subgradient
dynamics, where instead of iterates one considers absolutely continuous solutions to
the differential inclusion x ′ ∈ −∂ f (x). This is a simple generalization of [1, Theorem
3] which holds for real analytic functions. Much of modern numerical optimization
however falls outside the scope of these two cases, namely that of smooth objective
functions and continuous-time dynamics. It is thus important to determine in the
discrete case and when f is merely locally Lipschitz and semi-algebraic, whether
local minima are stable, and conversely, whether stable points are local minima. In
this note, we show that for a point to be stable, it is necessary for it to be a local
minimum and it suffices for it to be a strict local minimum.
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2 Characterizing stability

Let ‖ · ‖ be the induced norm of an inner product 〈·, ·〉 on Rn . Let B(a, r) and B̊(a, r)
respectively denote the closed ball and the open ball of center a ∈ R

n and radius
r > 0. We next define the notion of discrete Lyupanov stability.

Definition 1 We say that x∗ ∈ R
n is a stable point of a locally Lipschitz function

f : Rn → R if for all ε > 0, there exist δ > 0 and ᾱ > 0 such that for all α ∈ (0, ᾱ],
the subgradient method with constant step size α initialized in B(x∗, δ) has all its
iterates in B(x∗, ε).

In order to characterize stability, we rely on the theory of differential inclusions
[4]. However, existing results cannot directly be applied, mainly because the locally
Lipschitz assumption is too weak. We thus adapt them to our setting via Lemma 1.
Note that the analysis of the stochastic subgradient method also involves differential
inclusions [5, 7, 8, 11, 15].

Lemma 1 Let F : Rn ⇒ R
n be an upper semicontinuous mapping with nonempty,

compact, and convex values. Let X0 be a compact subset ofRn and let T > 0. Assume
that there exist ᾱ, r > 0 such that for all α ∈ (0, ᾱ] and for all sequence (xk)k∈N such
that

xk+1 ∈ xk + αF(xk), ∀k ∈ N, x0 ∈ X0, (1)

we have that x0, . . . , x�T /α�+1 ∈ B(0, r). For all ε > 0, there exists α̂ ∈ (0, ᾱ] such
that for all α ∈ (0, α̂] and for all sequence (xk)k∈N satisfying (1), there exists an
absolutely continuous function x : [0, T ] → R

n such that

x ′(t) ∈ F(x(t)), for a.e. t ∈ (0, T ), x(0) ∈ X0, (2)

for which ‖x̄(t) − x(t)‖ ≤ ε for all t ∈ [0, T ], where x̄ : [0, T ] → R
n is defined

by x̄(t) := xk + (t − αk)/α(xk+1 − xk) for all t ∈ [αk,min{α(k + 1), T }] and
k ∈ {0, . . . , �T /α�}.
Proof Let (αm)m∈N denote a sequence of positive numbers that converges to zero.
Without loss of generality, we may assume that the sequence is bounded above by
ᾱ. To each term in the sequence, we attribute a sequence (xmk )k∈N generated by the
Euler method with step size αm and initialized in X0, that is to say, which satisfies
(1) with α := αm . By assumption, xm0 , . . . , xm�T /αm�+1 ∈ B(0, r). Consider the linear
interpolation of those iterates, that is to say, the function x̄m : [0, T ] → R

n defined
by x̄m(t) := xmk + (t − αmk)(xmk+1 − xmk )/αm for all t ∈ [αmk,min{αm(k + 1), T }]
and k ∈ {0, . . . , �T /αm�}. Since B(0, r) is convex, it holds that ‖x̄m(t)‖ ≤ r for all
t ∈ [0, T ]. In addition, since F is upper semicontinuous and compact valued, by [4,
Proposition 3 p. 42] there exists r ′ > 0 such that F(B(0, r)) ⊂ B(0, r ′). Observe that
(x̄m)′(t) = (xmk+1 − xmk )/αm ∈ F(xmk ) for all t ∈ (αmk,min{αm(k + 1), T }) and k ∈
{0, . . . , �T /αm�}. Hence, we have that ‖(x̄m)′(t)‖ ≤ r ′ for almost every t ∈ (0, T ).
By successively applying the Arzelà-Ascoli and the Banach-Alaoglu theorems (see
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[4, Theorem 4 p. 13]), there exists a subsequence (again denoted (αm)m∈N) and an
absolutely continuous function x : [0, T ] → R

n such that x̄m(·) converges uniformly
to x(·) and (x̄m)′(·) converges weakly to x ′(·) in L1([0, T ],Rn). Furthermore, for all
t ∈ (αmk,min{αm(k + 1), T }) and k ∈ {0, . . . , �T /αm�}, observe that

(x̄m(t), (x̄m)′(t)) =
(
xmk + (t − αmk)

xmk+1 − xmk
αm

,
xmk+1 − xmk

αm

)

∈ ({xmk } + (t − αmk)F(xmk )
) × F(xmk )

= {xmk } × F(xmk ) + (t − αmk)F(xmk ) × {0}
⊂ graph(F) + B(0, r ′αm) × {0}.

According to [4, Convergence Theorem p. 60], it follows that x ′(t) ∈ F(x(t)) for
almost every t ∈ (0, T ). The sequence of initial points (xm(0))m∈N lies in the closed
set X0, hence its limit x(0) lies in X0 as well. As a result, x(·) is a solution to the
differential inclusion (2).

To sum up, we have shown that for every sequence (αm)m∈N of positive numbers
converging to zero, there exists a subsequence for which the corresponding linear
interpolations uniformly converge towards a solution of the differential inclusion (2).
The conclusion of the theorem now easily follows. To see why, one can reason by
contradiction and assume that there exists ε > 0 such that for all α̂ ∈ (0, ᾱ], there
exist α ∈ (0, α̂] and a sequence (xk)k∈N generated by the Euler method with step size
α and initialized in X0 such that, for any solution x(·) to the differential inclusion (2),
it holds that ‖x̄(t) − x(t)‖ > ε for some t ∈ [0, T ]. We can then generate a sequence
(αm)m∈N of positive numbers converging to zero such that, for any solution x(·) to
the differential inclusion (2), it holds that ‖x̄m(t) − x(t)‖ > ε for some t ∈ [0, T ].
Since there exists a subsequence (αϕ(m))m∈N such that x̄ϕ(m) uniformly converges to
a solution to the differential inclusion (2), we obtain a contradiction. ��

Wewill apply Lemma 1 to the case where the set-valued mapping F is the opposite
of the Clarke subdifferential of a locally Lipschitz function f : R

n → R. Recall
that a point x∗ ∈ R

n is a local minimum (respectively strict local minimum) of a
function f : Rn → R if there exists a positive constant ε such that f (x∗) ≤ f (x) for
all x ∈ B(x∗, ε)\{x∗} (respectively f (x∗) < f (x)). Using Lemma 1, we obtain the
following necessary condition for stability.

Theorem 1 Stable points of locally Lipschitz semi-algebraic functions are local
minima.

Proof Let x∗ ∈ R
n denote a stable point of a locally Lipschitz semi-algebraic function

f : Rn → R. We reason by contradiction and assume that x∗ is not a local minimum
of f . Given x ∈ R

n and S ⊂ R
n , let d(x, S) := inf{‖x−y‖ : y ∈ S}. According to the

Kurdyka-Łojasiewicz inequality [10, Theorem 14] (see also [3, Theorem 4.1]), there
exist r , ρ > 0 and a strictly increasing concave continuous semi-algebraic function
ψ : [0, ρ) → [0,∞) that is continuously differentiable on (0, ρ) with ψ(0) = 0
such that d(0, ∂ f (x)) ≥ 1/ψ ′(| f (x) − f (x∗)|) for all x ∈ B(x∗, r) whenever 0 <
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| f (x)− f (x∗)| < ρ.After possibly reducing r , the inequality holds for all x ∈ B(x∗, r)
such that f (x) �= f (x∗).

Let ε ∈ (0, r/2). By the definition of stability (Definition 1), there exist δ > 0 and
ᾱ > 0 such that for all α ∈ (0, ᾱ], the subgradient method with constant step size α

initialized in B(x∗, δ) has all its iterates in B(x∗, ε). Since x∗ is not a local minimum,
we can take an initial iterate x0 in B(x∗, δ) such that f (x0) < f (x∗). Let L > 0 denote
a Lipschitz constant of f on B(x∗, r) and let T := (2ε+δ)Lψ ′( f (x∗)− f (x0))2 > 0.
Consider the differential inclusion

x ′(t) ∈ −∂ f (x(t)), for a.e. t ∈ (0, T ), x(0) = x0. (4)

Since f is locally Lipschitz, the set-valued function −∂ f is upper semicontinuous
[14, 2.1.5 Proposition (d)] with nonempty, compact and convex values [14, 2.1.2
Proposition (a)]. By Lemma 1, there exists α̂ ∈ (0, ᾱ] such that, for all α ∈ (0, α̂]
and for all sequence (xk)k∈N generated by the subgradient method with constant step
size α and initialized at x0, there exists a solution x(·) to the differential inclusion
(4) for which ‖x̄(t) − x(t)‖ ≤ ε/2 for all t ∈ [0, T ], where x̄ : [0, T ] → R

n is
the piecewise linear function defined by x̄(t) := xk + (t − αk)/α(xk+1 − xk) for all
t ∈ [αk,min{α(k + 1), T }] and k ∈ {0, . . . , �T /α�}.

Let us fix some α ∈ (0,min{α̂, T /10}] from now on. Consider a sequence (xk)k∈N
generated by the subgradient method with constant step size α and initialized at x0.
Consider also the linear interpolation x̄(·) of those iterates up to iteration K +1 where
K := �T /α�, as well as a solution x(·) to the differential inclusion (4) such that
‖x̄(t)− x(t)‖ ≤ ε/2 for all t ∈ [0, T ]. Since f is semi-algebraic, by [15, Lemma 5.2]
(see also [17]) it holds that

f (x(t)) − f (x(0)) = −
∫ t

0
d(0, ∂ f (x(τ )))2dτ, ∀t ∈ [0, T ]. (5)

As a result, f (x(t)) ≤ f (x(0)) = f (x0) for all t ∈ [0, T ].Also,‖x(t)−x∗‖ ≤ ‖x(t)−
x̄(t)‖ + ‖x̄(t) − x∗‖ ≤ ε/2 + ε = 3ε/2 ≤ r , where the inequality ‖x̄(t) − x∗‖ ≤ ε

follows from the convexity of B(x∗, ε). Hence 0 < f (x∗) − f (x0) ≤ f (x∗) −
f (x(t)) and d(0, ∂ f (x(t))) ≥ 1/ψ ′( f (x∗) − f (x(t))) ≥ 1/ψ ′( f (x∗) − f (x0)) for
all t ∈ [0, T ] by concavity of ψ . Together with (5), it follows that f (x(Kα)) −
f (x0) ≤ −KαM2 where K := �T /α� and M := 1/ψ ′( f (x∗) − f (x0)). Recall that
L is a Lipschitz constant of f on B(x∗, r), so that we have | f (x(Kα)) − f (x0)| ≤
L‖x(Kα) − x0‖. We thus obtain the lower bound ‖x(Kα) − x0‖ ≥ KαM2/L =
�T /α�αM2/L ≥ (T − α)M2/L ≥ (T − T /10)M2/L = 9/10(2ε + δ) (recall that
T = (2ε + δ)L/M2). Hence ‖x(Kα) − x∗‖ ≥ ‖x(Kα) − x0‖ − ‖x0 − x∗‖ ≥
9/10(2ε + δ) − δ = 9ε/5− δ/10 ≥ 9ε/5− ε/10 = 17ε/10 and finally ‖xK − x∗‖ ≥
‖x(Kα) − x∗‖ − ‖xK − x(Kα)‖ ≥ 17ε/10 − ε/2 = 6ε/5 > ε. However, since
0 < α ≤ α̂ ≤ ᾱ and x0 ∈ B(x∗, δ), by stability of x∗ we have xK ∈ B(x∗, ε). We
have reached a contradiction. ��

By appealing to Lemma 1 again, we obtain the following sufficient condition for
stability.
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Theorem 2 Strict local minima of locally Lipschitz semi-algebraic functions are
stable.

Proof Let x∗ denote a strict local minimum of locally Lipschitz semi-algebraic func-
tion f : Rn → R. Since x∗ is a strict local minimum, by the Łojasiewicz inequality
[19, Theorem 0] (see also [22, §2], [23, §17], [18, (2.1)]) and the Kurdyka-Łojasiewicz
inequality [10, Theorem 14], there exist r , ρ > 0 and strictly increasing continuous
semi-algebraic functions σ,ψ : [0, ρ) → [0,∞) that are continuously differen-
tiable on (0, ρ) with σ(0) = ψ(0) = 0 such that ψ is concave, f (x) − f (x∗) ≥
σ(‖x − x∗‖), and d(0, ∂ f (x)) ≥ 1/ψ ′( f (x)− f (x∗)) for all x ∈ B(x∗, r) whenever
0 < f (x) − f (x∗) < ρ. After possibly reducing r , the two inequalities above hold
for all x ∈ B(x∗, r)\ {x∗}. In order to prove stability, it suffices to prove the statement
in Definition 1 for all ε > 0 sufficiently small. We may thus restrict ourselves to the
case where 0 < ε < r . Given such a fixed ε, we next describe a possible choice for δ.

Given Δ ≥ f (x∗), let Lx∗( f ,Δ) denote the connected component of the sub-
level set L( f ,Δ) := {x ∈ R

n : f (x) ≤ Δ} containing x∗. By taking Δε :=
f (x∗)+ σ(ε/2), we find that Lx∗( f ,Δε) is contained in B(x∗, ε/2). Indeed, one can
reason by contradiction and assume that there exists x ∈ Lx∗( f ,Δε) \ B(x∗, ε/2).
Then x /∈ B(x∗, r), otherwise σ(‖x − x∗‖) ≤ f (x) − f (x∗) ≤ σ(ε/2) and thus
‖x− x∗‖ ≤ ε/2. Therefore Lx∗( f ,Δε) is the disjoint union of Lx∗( f ,Δε)∩ B̊(x∗, r)
and Lx∗( f ,Δε)\B(x∗, r), both of which are nonempty and open in Lx∗( f ,Δε).
This contradicts the connectedness of Lx∗( f ,Δε), which yields that Lx∗( f ,Δε) ⊂
B(x∗, ε/2). By continuity of f we may choose δ > 0 such that

B(x∗, δ) ⊂ Lx∗( f ,Δε) ⊂ B(x∗, ε/2). (6)

We next describe a possible choice for ᾱ. Let L > sup{‖s‖ : s ∈ ∂ f (x), x ∈
B(x∗, ε)} be a Lipschitz constant of f on B(x∗, ε) and let T := ε/(3 L), where the
supremum is finite due to [4, Proposition 3 p. 42]. Consider the differential inclusion

x ′(t) ∈ −∂ f (x(t)), for a.e. t ∈ (0, T ), x(0) ∈ Lx∗( f ,Δε). (7)

Since f is continuous, the set of initial values Lx∗( f ,Δε) is closed. By virtue of the
second inclusion in (6), Lx∗( f ,Δε) is in fact a compact set. Let α ∈ (0, T /2] and
consider a sequence (xk)k∈N generated by the subgradient method with constant step
size α and initialized in Lx∗( f ,Δε). According to the second inclusion in (6), the
initial iterate x0 lies in B(x∗, ε/2). Hence ‖x1 − x∗‖ = ‖x0 − αs0 − x∗‖ ≤ ‖x0 −
x∗‖+‖αs0‖ ≤ ε/2+ Lα for some s0 ∈ ∂ f (x0). Repeating this process until iteration
K +1where K := �T /α�, we find that ‖xk−x∗‖ ≤ ε/2+kLα ≤ ε/2+(K +1)Lα ≤
ε/2 + (T /α + 1)Lα = ε/2 + (ε/(3 Lα) + 1)Lα = 5ε/6 + Lα ≤ 5ε/6 + LT /2 =
5ε/6+ Lε/(3 L)/2 = ε. In other words, the iterates x0, . . . , xK+1 lie in B(x∗, ε). Let
ε′ := min{εL, σ (ε/2), ξ2T }/(2L) > 0 where ξ := 1/ψ ′(σ (ε/2)/2) > 0. All of the
conditions of Lemma 1 are met, hence there exists ᾱ ∈ (0, T /2] such that, for all α ∈
(0, ᾱ] and for all sequence (xk)k∈N generated by the subgradient method with constant
step size α and initialized in Lx∗( f ,Δε), there exists a solution to the differential
inclusion (7) for which ‖x̄(t) − x(t)‖ ≤ ε′ for all t ∈ [0, T ] where x̄ : [0, T ] → R

n
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Fig. 1 Induction step

is the piecewise linear function defined by x̄(t) := xk + (t − αk)/α(xk+1 − xk) for
all t ∈ [αk,min{α(k + 1), T }] and k ∈ {0, . . . , �T /α�}. In particular, it holds that

‖xk − x(kα)‖ ≤ ε′, k = 0, . . . , �T /α�. (8)

Having chosen δ and ᾱ, let us fix someα ∈ (0, ᾱ] fromnowon. Consider a sequence
(xk)k∈N generated by the subgradient method with constant step size α and initialized
in B(x∗, δ). Our goal is to show that all the iterates lie in B(x∗, ε). According to
the first inclusion in (6), the initial iterate x0 lies in Lx∗( f ,Δε). A previous argument
shows that the iterates x0, . . . , xK lie in B(x∗, ε)where K := �T /α�. In order to show
that the ensuing iterates also lie in B(x∗, ε), we will show that xK ∈ Lx∗( f ,Δε). The
same argument used previously then yields that xK+1, . . . , x2K ∈ B(x∗, ε). Since
K = �T /α� ≥ �T /ᾱ� ≥ 2, we may conclude by induction that all the iterates belong
to B(x∗, ε). This is illustrated in Fig. 1.

For the remainder of the proof, we seek to show that xK ∈ Lx∗( f ,Δε). In order
to do so, we prove that B(x(Kα), ε′) is a connected subset of L( f ,Δε) that has
nonempty intersection with Lx∗( f ,Δε). Since Lx∗( f ,Δε) is a connected component
of L( f ,Δε), by maximality and (8) we then have xK ∈ B(x(Kα), ε′) ⊂ Lx∗( f ,Δε).

We begin by showing that x(Kα) ∈ B(x(Kα), ε′) ∩ Lx∗( f ,Δε). Since f is semi-
algebraic, by [15, Lemma 5.2] (see also [17]) it holds that

f (x(t)) − f (x(0)) = −
∫ t

0
d(0, ∂ f (x(τ )))2dτ, ∀t ∈ [0, T ]. (9)

As a result, f (x(t)) ≤ f (x(0)) ≤ Δε for all t ∈ [0, T ]. We thus have that
x(0) ∈ Lx∗( f ,Δε) ∩ x([0, T ]), both of which are connected subsets of the sublevel
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(a) Stable local minimum. (b) Unstable local minimum.

Fig. 2 Continuous and discrete subgradient trajectories in magenta and yellow respectively

set L( f ,Δε). By maximality of Lx∗( f ,Δε), it follows that x(Kα) ∈ x([0, T ]) ⊂
Lx∗( f ,Δε).

We next show that B(x(Kα), ε′) ⊂ L( f ,Δε). For all x̃ ∈ B(x(Kα), ε′), we have

f (x̃) − f (x∗) = f (x̃) − f (x(Kα)) + f (x(Kα)) − f (x∗) (10a)

≤ L‖x̃ − x(Kα)‖ + max{σ(ε/2)/2, σ (ε/2) − ξ2T /2} (10b)

≤ Lε′ + σ(ε/2) − min{σ(ε/2)/2, ξ2T /2} (10c)

≤ σ(ε/2). (10d)

Indeed, x̃ and x(Kα) belong to B(x∗, ε) so we may invoke the Lipschitz constant L
of f on B(x∗, ε) in order to bound the first term in (10a). Recall from the previous
paragraph that x(Kα) ∈ Lx∗( f ,Δε) ⊂ B(x∗, ε/2) and, since ε′ ≤ ε/2, we have
x̃ ∈ B(x(Kα), ε′) ⊂ B(x∗, ε). As for the second term in (10a), if it is greater than
or equal to σ(ε/2)/2, then for all t ∈ [0, Kα], we have σ(ε/2)/2 ≤ f (x(Kα)) −
f (x∗) ≤ f (x(t)) − f (x∗) and thus d(0, ∂ f (x(t))) ≥ 1/ψ ′( f (x(t)) − f (x∗)) ≥
1/ψ ′(σ (ε/2)/2) = ξ . By (9), it follows that f (x(Kα))− f (x∗) ≤ f (x(0))− f (x∗)−∫ Kα

0 ξ2dτ ≤ f (x(0))− f (x∗)−Kαξ2 ≤ σ(ε/2)− ξ2T /2. The last inequality is due
to the fact that x(0) ∈ Lx∗( f ,Δε) and Kα = �T /α�α ≥ T − α ≥ T − ᾱ ≥ T /2.
In (10c), we use the fact that x̃ ∈ B(x(Kα), ε′) and rewrite the maximum into a
minimum. Finally, (10d) holds because ε′ ≤ min{σ(ε/2), ξ2T }/(2L). ��

Observe that non-strict local minima need not be stable. While the strict local
minimum in Fig. 2a is stable by Theorem 2, the non-strict local minimum in Fig. 2b is
unstable. In the former, both continuous and discrete subgradient dynamics are stable,
with the continuous trajectory converging to the local minimum, while the discrete
trajectory hovers around it. In the latter, continuous and discrete trajectories become
decoupled as they approach the local minimum; the continuous dynamics are stable
but the discrete dynamics are not.

We conclude this note by proving that the local minimum in Fig. 2b is unstable
with respect to the Euclidean inner product. We show that there exists ε > 0 such that
for all but finitely many constant step sizes α > 0 and for almost every initial point
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in B(x∗, ε), at least one of the iterates of the subgradient method does not belong to
B(x∗, ε). Let ε ∈ (0, 1/2] and consider the set S := {(x1, x2) ∈ R

2 : x1x2 = 0}.
By the cell decomposition theorem [27, (2.11) p. 52] and [12, Claim 3], there exist
α1, . . . , αm > 0 such that for all constant step sizes α ∈ (0,∞)\{α1, . . . , αm}, there
exists a null subset Iα ⊂ R

2 such that, for every initial point (x01 , x
0
2 ) ∈ R

2 \ Iα , none
of the iterates (xk1 , x

k
2 )k∈N of the subgradient method belong to the semi-algebraic null

set S. In this case, the update rule of the subgradient method is given for all k ∈ N by

xk+1
1 = xk1 − 3

2
α|xk1 |1/2|xk2 |3/2sign(xk1 ),

xk+1
2 = xk2 − 3

2
α|xk1 |3/2|xk2 |1/2sign(xk2 ),

where sign(x) := −1 if x < 0 and sign(x) := 1 if x > 0. Assume that (xk1 , x
k
2 ) ∈

B((1, 0), ε) for all k ∈ N. Since ε ≤ 1/2, we have xk1 ≥ 1/2. If 0 < |xk2 | ≤ α2/32 for
some k ∈ N, then |xk+1

2 | = |xk2−3α/2|xk1 |3/2|xk2 |1/2sign(xk2 )| ≥ 3α/2|xk1 |3/2|xk2 |1/2−
|xk2 | ≥ (3α/

√
32|xk2 | − 1)|xk2 | ≥ 2|xk2 |. As a result, xk2 does not converge to zero. This

yields the following contradiction:

1

2
≤ xk+1

1 = x01 − 3α

2

k∑

i=0

|xi1|1/2|xi2|3/2 ≤ x01 − 3α

2
√
2

k∑

i=0

|xi2|3/2 → −∞.

Acknowledgements We are grateful to the reviewers and editors for their precious time and valuable
feedback. We thank Assen Dontchev for fruitful discussions, as well as Salar Fattahi and Richard Zhang
for their comments.

References

1. Absil, P.A., Kurdyka, K.: On the stable equilibrium points of gradient systems. Syst. Control Lett.
55(7), 573–577 (2006)

2. Absil, P.A., Mahony, R., Andrews, B.: Convergence of the iterates of descent methods for analytic cost
functions. SIAM J. Optim. 16(2), 531–547 (2005)

3. Attouch, H., Bolte, J., Redont, P., Soubeyran, A.: Proximal alternating minimization and projection
methods for nonconvex problems: an approach based on the Kurdyka–Łojasiewicz inequality. Math.
Oper. Res. 35, 438–457 (2010)

4. Aubin, J.P., Cellina, A.: Differential Inclusions: Set-Valued Maps and Viability Theory, vol. 264.
Springer, Berlin (1984)

5. Benaïm, M., Hofbauer, J., Sorin, S.: Stochastic approximations and differential inclusions. SIAM J.
Control Optim. 44(1), 328–348 (2005)

6. Bertsekas, D.: Convex Optimization Algorithms. Athena Scientific, Nashua (2015)
7. Bianchi, P., Hachem, W., Salim, A.: Constant step stochastic approximations involving differential

inclusions: stability, long-run convergence and applications. Stochastics 91(2), 288–320 (2019)
8. Bianchi, P., Hachem, W., Schechtman, S.: Convergence of constant step stochastic gradient descent

for non-smooth non-convex functions. Set-Valued Var. Anal. 30(3), 1117–1147 (2022)
9. Bochnak, J., Coste, M., Roy, M.F.: Real Algebraic Geometry, vol. 36. Springer, Berlin (2013)

10. Bolte, J., Daniilidis, A., Lewis, A., Shiota, M.: Clarke subgradients of stratifiable functions. SIAM J.
Optim. 18(2), 556–572 (2007)

11. Bolte, J., Pauwels, E.: Conservative set valued fields, automatic differentiation, stochastic gradient
methods and deep learning. Math. Program. 188, 19–51 (2020)

123



C. Josz, L. Lai

12. Bolte, J., Pauwels, E.:Amathematicalmodel for automatic differentiation inmachine learning.NeurIPS
33, 10809–10819 (2020)

13. Charisopoulos, V., Chen, Y., Davis, D., Díaz,M., Ding, L., Drusvyatskiy, D.: Low-rankmatrix recovery
with composite optimization: good conditioning and rapid convergence. Found. Comput. Math. 21(6),
1505–1593 (2021)

14. Clarke, F.H.: Optimization and non smooth analysis. In: SIAMClassics inAppliedMathematics (1990)
15. Davis, D., Drusvyatskiy, D., Kakade, S., Lee, J.D.: Stochastic subgradient method converges on tame

functions. Found. Comput. Math. 20(1), 119–154 (2020)
16. Davis, D., Drusvyatskiy, D., MacPhee, K.J., Paquette, C.: Subgradient methods for sharp weakly

convex functions. J. Optim. Theory Appl. 179(3), 962–982 (2018)
17. Drusvyatskiy, D., Ioffe, A.D., Lewis, A.S.: Curves of descent. SIAM J. Control Optim. 53(1), 114–138

(2015)
18. Hörmander, L.: On the division of distributions by polynomials. Arkiv för matematik 3(6), 555–568

(1958)
19. Kurdyka, K.: On gradients of functions definable in o-minimal structures. In: Annales de l’institut

Fourier, vol 48, pp 769–783 (1998)
20. Lebourg, G.: Generic differentiability of lipschitzian functions. Trans. Am. Math. Soc. 256, 125–144

(1979)
21. Liapounoff, A.: Problème général de la stabilité du mouvement. In: Annales de la Faculté des sciences

de Toulouse: Mathématiques, vol. 9, pp. 203–474 (1907)
22. Łojasiewicz, S.: Division d’une distribution par une fonction analytique de variables réelles. Comptes

rendus hebdomadaires des séances de l’Académie des sciences. Paris, pp. 683–686 (1958)
23. Łojasiewicz, S.: Sur le problème de la division. Studia Mathematica, pp. 87–136 (1959)
24. Pham, T.S., Vui, H.H.: Genericity in Polynomial Optimization, vol. 3. World Scientific, Singapore

(2016)
25. Rockafellar, R.T.: Favorable classes of Lipschitz continuous functions in subgradient optimization.

IIASA Working Paper (1981)
26. Sastry, S.: Nonlinear Systems: Analysis, Stability, and Control, vol. 10. Springer, Berlin (2013)
27. Van den Dries, L.: Tame Topology and O-Minimal Structures, vol. 248. Cambridge University Press,

Cambridge (1998)
28. Van den Dries, L., Miller, C.: Geometric categories and o-minimal structures. Duke Math. J. 84(2),

497–540 (1996)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123


	Lyapunov stability of the subgradient method  with constant step size
	Abstract
	1 Introduction
	2 Characterizing stability
	Acknowledgements
	References


