
IEEE TRANSACTIONS ON ROBOTICS 1

Integrated Task and Motion Planning for Safe Legged
Navigation in Partially Observable Environments

Abdulaziz Shamsah , Student Member, IEEE, Zhaoyuan Gu , Student Member, IEEE,
Jonas Warnke , Student Member, IEEE, Seth Hutchinson , Fellow, IEEE, and Ye Zhao , Senior Member, IEEE

Abstract—This study proposes a hierarchically integrated
framework for safe task and motion planning (TAMP) of bipedal
locomotion in a partially observable environment with dynamic
obstacles and uneven terrain. The high-level task planner employs
linear temporal logic for a reactive game synthesis between the
robot and its environment and provides a formal guarantee on
navigation safety and task completion. To address environmental
partial observability, a belief abstraction model is designed by
partitioning the environment into multiple belief regions and em-
ployed at the high-level navigation planner to estimate the dynamic
obstacles’ location. This additional location information of dynamic
obstacles offered by belief abstraction enables less conservative
long-horizon navigation actions beyond guaranteeing immediate
collision avoidance. Accordingly, a synthesized action planner
sends a set of locomotion actions to the middle-level motion planner
while incorporating safe locomotion specifications extracted from
safety theorems based on a reduced-order model (ROM) of the lo-
comotion process. The motion planner employs the ROM to design
safety criteria and a sampling algorithm to generate nonperiodic
motion plans that accurately track high-level actions. At the low
level, a foot placement controller based on an angular-momentum
linear inverted pendulum model is implemented and integrated
with an ankle-actuated passivity-based controller for full-body
trajectory tracking. To address external perturbations, this study
also investigates the safe sequential composition of the keyframe
locomotion state and achieves robust transitions against external
perturbations through reachability analysis. The overall TAMP
framework is validated with extensive simulations and hardware
experiments on bipedal walking robots Cassie and Digit designed
by Agility Robotics.

Manuscript received 4 February 2023; revised 21 June 2023; accepted 12 July
2023. This work was supported in part by the NSF under Grant IIS-1924978
and Grant CMMI-2144309, in part by the ONR under Grant N00014-23-1-2223,
in part by the Georgia Tech Research Institute IRAD Grant, and in part by the
Georgia Tech Institute for Robotics and Intelligent Machines (IRIM) Seed Grant.
This paper was recommended for publication by Associate Editor O. Stasse and
Editor E. Yoshida upon evaluation of the reviewers’ comments. (Corresponding
author: Ye Zhao.)

Abdulaziz Shamsah is with the Laboratory for Intelligent Decision and
Autonomous Robots, Woodruff School of Mechanical Engineering, Georgia
Institute of Technology, Atlanta, GA 30313 USA, and also with the Mechan-
ical Engineering Department, College of Engineering and Petroleum, Kuwait
University, Safat 13060, Kuwait (e-mail: ashamsah3@gatech.edu).

Zhaoyuan Gu, Jonas Warnke, and Ye Zhao are with the Laboratory for
Intelligent Decision and Autonomous Robots, Woodruff School of Mechanical
Engineering, Georgia Institute of Technology, Atlanta, GA 30313 USA (e-mail:
zgu78@gatech.edu; jwarnke@gatech.edu; yezhao@gatech.edu).

Seth Hutchinson is with the School of Interactive Computing and Institute for
Robotics and Intelligent Machines, Georgia Institute of Technology, Atlanta,
GA 30313 USA (e-mail: seth@gatech.edu).

Color versions of one or more figures in this article are available at
https://doi.org/10.1109/TRO.2023.3299524.

Digital Object Identifier 10.1109/TRO.2023.3299524

Index Terms—Formal methods in robotics and automation,
humanoid and bipedal locomotion, motion and path planning, task
planning.

I. INTRODUCTION

ROBOTS are increasingly being deployed in real-world
environments, with legged robots presenting superior ver-

satility in complex workspaces. However, safe legged naviga-
tion in real-life workspaces still poses a challenge, particularly
in a partially observable environment comprised of dynamic
and possibly adversarial obstacles, as shown in Fig. 1. While
motion planning for bipedal systems in dynamic environments
has been widely studied [1], [2], [3], the proposed solutions
often lack formal guarantees on simultaneous locomotion and
navigation safety, with the exception of a recent work in [3].
Formal guarantees on safety and task completion in a complex
environment have been gaining interest in recent years [4], [5],
[6], [7], [8], [9]; however, hierarchical planning frameworks with
multilevel safety guarantees for underactuated legged robots
remain lacking. An intrinsic challenge of such multilevel for-
mal guarantees is how to guarantee viable execution of high-
level (HL) commands for low-level (LL), full-body control that
involves inherently complex bipedal dynamics.

This study proposes a hierarchically integrated task and mo-
tion planning (TAMP) framework, as shown in Fig. 2, and
works toward providing multilevel formal safety guarantees on
dynamic locomotion and navigation in dynamic and partially
observable environments, as shown in Fig. 1. Guaranteeing safe
navigation of legged robots in the presence of possibly adver-
sarial obstacles becomes particularly challenging in partially
observable environments. The range of a robot’s sensor and
occlusion caused by static obstacles give the adversarial agent
a strategic advantage when trying to falsify the bipedal robot’s
safety guarantees by moving through nonvisible regions of the
environment. Our work is motivated by the surveillance game
literature [10] to track possible nonvisible dynamic obstacle
locations via belief space planning. Belief space planning allows
us to model the set of possible obstacle locations and track how
this set evolves, guaranteeing collision avoidance in a larger set
of environments.

Our framework takes safety into account in each layer of the
hierarchical structure and in how these layers are interconnected
to achieve simultaneous safe locomotion and navigation. The
HL linear-temporal-logic (LTL)-based task planner incorporates
reduced-order-model (ROM)-based dynamics constraints into

1552-3098 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 02,2023 at 13:31:34 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-4656-5587
https://orcid.org/0000-0003-0371-9005
https://orcid.org/0000-0002-1760-4455
https://orcid.org/0000-0002-3949-6061
https://orcid.org/0000-0001-6402-5416
mailto:ashamsah3@gatech.edu
mailto:zgu78@gatech.edu
mailto:jwarnke@gatech.edu
mailto:yezhao@gatech.edu
mailto:seth@gatech.edu
https://doi.org/10.1109/TRO.2023.3299524

2 IEEE TRANSACTIONS ON ROBOTICS

Fig. 1. Snapshot of the simulation environment (top figure) and real-world
experiment environment (bottom figure) for the proposed TAMP framework. The
walking robot is deployed to accomplish safe navigation tasks. The environment
contains static and dynamic obstacles and uneven terrains.

the safety specifications, thus guaranteeing safe execution of
the HL actions in the underlying motion planners under certain
assumptions. The middle-level motion planner also employs a
ROM-based planner called phase-space planning (PSP). This
PSP can be seamlessly integrated with the abstracted HL sym-
bolic planner due to its hybrid planning nature. We integrate
the task and the motion planners for online execution, even in
the presence of external perturbations, such as center-of-mass
(CoM) velocity jumps caused by external forces. At the LL,
we build a foot placement controller based on the angular-
momentum linear inverted pendulum model (ALIP) [11], with
a few critical modifications for phase-space plans. Geometric-
based inverse kinematics functions design full-body reference
trajectories using hyperparameters from the middle-level phase-
space plan. An ankle-actuated passivity-based controller [12]
tracks the full-body reference trajectory. We are able to regulate
the full-body motion to emulate the ROM and minimize tracking
errors in foot placements and CoM velocities on a bipedal robot
Digit [13].

Robustness at the motion planning layer is of key importance,
as continuous perturbations (e.g., CoM perturbations) can be
naturally handled at this layer [14], unlike in the discretized HL
task planner which is unaware of locomotion dynamics. To this
end, we formulate the locomotion gait in the lens of control-
lable regions [15] and sequential composition [16] where we
sequentially compose controllable regions to robustly complete
a walking step. We employ ROM-based backward reachability

analysis to compute robust controllable regions and synthesize
appropriate controllers to safely reach the targeted state.

The main contributions of this study are as follows.
1) Design a hierarchically integrated planning framework

that provides formal safety guarantees for the HL task
planner and empirical guarantees for middle-level ROM-
based motion planners, which enables safe locomotion and
navigation involving steering walking.

2) Design safe sequential composition of controllable re-
gions for ROM-based robust locomotion in the presence
of perturbations, and sampling-based keyframe decision
maker for accurate waypoint tracking to facilitate middle-
level navigation safety.

3) Synthesize an LTL-based reactive navigation game for
safe legged navigation and employ a belief abstraction
method to expand navigation decisions in partially ob-
servable environments.

4) Experimental evaluation of the proposed framework on
a bipedal robot Digit to navigate safely in a complex
environment with dynamic obstacles.

A conference version of the work presented in this article was
published in [17]. The work presented here extends the middle-
level motion planner’s safety and robustness against external
CoM perturbations by formulating our previously introduced
keyframe PSP scheme through the lens of controllable regions,
safe sequential composition, and reachability analysis. We also
introduce a sampling-based keyframe decision maker to replace
the heuristic-based keyframe decision maker in the conference
version for accurate HL waypoint tracking. From the HL task
planner, we present nondeterministic LTL transitions to facilitate
the online replanning capability of the HL waypoint, as well
as joint belief abstractions for efficient estimation of multiple
dynamic obstacles’ locations. Finally, we validate the feasibility
of ROM-based locomotion models on a bipedal robot Digit1 [13]
with 28 degrees of freedom (DoFs). This article is outlined as fol-
lows. Section II is a literature review of related work. Section III
introduces the ROM-based locomotion planning and keyframe
definitions. Then, safety theorems for locomotion planning and
reachability-based analysis for robustness against perturbations
are in Section IV. Section V introduces our sampling-based
keyframe decision-maker algorithm. Section VI outlines our
LTL-based HL task planner, which guarantees safe navigation in
a partially observable environment. In Section VII, we evaluate
the performance of the proposed recoverability strategy. LL con-
trollers and hardware implementation details are in Section VIII.
The results of our integrated framework are shown in Section IX.
We discuss the limitations in Section X, Finally, Section XI
concludes this article.

II. RELATED WORK

Motion planning in complex environments has been exten-
sively studied, with a spectrum of approaches in the litera-
ture [18], [19], [20], [21], [22], [23], [24]. Reactive methods for

1In this article, we use Cassie and Digit interchangeably given their similar
leg kinematics and dynamics, and we do not consider the upper body dynamics
of the Digit robot.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 02,2023 at 13:31:34 UTC from IEEE Xplore. Restrictions apply.

SHAMSAH et al.: INTEGRATED TAMP FOR SAFE LEGGED NAVIGATION IN PARTIALLY OBSERVABLE ENVIRONMENTS 3

Fig. 2. Block diagram of the proposed TAMP framework. The HL task planner employs an LTL approach to synthesize locomotion actions for navigation tasks.
The middle-level motion planner generates a safe motion plan based on a ROM. Safe motion plan’s hyperparameters are sent to the modified ALIP controller
to generate a stepping location that tracks the desired motion plan, based on the measured robot state. The desired foot placement is then achieved through a
passivity-based controller on Digit. The HL task planner and the middle-level motion planner are integrated in an online fashion as shown by the solid black arrows.
The dashed arrows represent offline computations.

motion planning with formal guarantees are widely studied with
the methods of safety barrier certificates [25], artificial potential
functions [26], and more recent extensions [8], [27]. While the
work in [8] provides convergence guarantees and obstacle avoid-
ance in geometrically complicated unknown environments, it is
restricted to static obstacles and has only been demonstrated on
a fully actuated particle, or a unicycle model for a quadruped.
Whereas the framework we present here is able to generate
safe locomotion plans reacting to environmental events that
include multiple, possibly adversarial, dynamic obstacles with
empirical guarantees on task completion and safety. Moreover,
our framework is validated on a bipedal robot Digit [13].

Numerous bipedal motion planning works are based on
pendulum models. Classic approaches—such as zero mo-
ment point [28], divergent component of motion [29], capture
point [15], [30]—have been extensively studied. The work
in [15] is closely related to our work, as we use controllable
regions and viability theory [31] to guarantee safety and achieve
nonperiodic walking gaits. A majority of existing works have
focused on locomotion safety [1], [2], [27], [32], [33] but HL task
planning has been largely ignored. The work in [27] introduces a
variation on the nonholonomic differential-drive wheeled robot
model to include the capabilities and limitations of bipedal
robots. This study demonstrates safe navigation and locomotion
in a variety of static environments with uneven terrains; however,
the navigation safety relies solely on the ability of the periodic-
gait controller [11] to track the velocity commands outputted
from the proposed omnidirectional control Lyapunov function
(CLF) based on a wheeled robot model. Similarly, the work
in [32] relies on a gait library to generate foot placements, which
are constrained based on the robot dynamics and kinematics
limits. Li et al. [32] ensure navigation safety by generating a
path that maintains a safe distance from static obstacles.

In our work, we aim to distinguish between navigation and
locomotion safety. Navigation safety involves designing robot

paths to avoid collisions with obstacles while locomotion safety
pertains to ensuring balance during individual walking steps. We
argue that, particularly for locomotion, proper foot placement
design is crucial to achieving both navigation and locomotion
safety. Relying solely on a ROM-based planner for selecting
foot placements based on desired CoM velocity can only ensure
locomotion safety. To emphasize navigation safety, we leverage
the task planner to guide the foot placement design at a higher
level, which is followed by the underlying ROM-based planner
for further adjustment.

Model predictive control (MPC), as a well-studied on-
line method for locomotion motion planning, uses models
with different complexities—such as linear inverted pendulum
model [34], single rigid body model [35], centroidal model [36],
and whole body dynamics model [37]—to promptly update
motions for a certain time horizon. Recent works utilize MPC
for terrain adaption, employing ROM [38], single rigid body
model with elevation maps [39], and full-body dynamics [40].
MPC is also used for obstacle avoidance through control barrier
functions (CBFs) [18], [41]. These works, in a sense, separate
navigation and balancing safety, similar to the principles we
target here. However, the ROM-based MPC methods [38], [41]
lack the integration of a HL task planner. Our task planner
runs in an MPC fashion; it interacts with the environment as a
one-step-horizon MPC and provides safety for both navigation
and locomotion tasks.

Formal synthesis methods have been well established to guar-
antee HL robot behaviors in dynamic environments [42], [43].
Collision-free navigation in the presence of dynamic obstacles
has been achieved via multiple approaches, such as local col-
lision avoidance controllers in [44], incrementally expanding
a motion tree in sampling-based approaches [45]. Collision
avoidance and task completion become more challenging to
formally guarantee when the environment is only partially ob-
servable as such an environment has a strategic advantage in

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 02,2023 at 13:31:34 UTC from IEEE Xplore. Restrictions apply.

4 IEEE TRANSACTIONS ON ROBOTICS

being adversarial. Navigating through partially known maps
with performance guarantees has been achieved through explor-
ing [46], updating the discrete abstraction, and resynthesizing a
controller at runtime in [47]. To avoid the computational costs
of online resynthesis, others have proposed patching a modified
local controller into an existing global controller when unmod-
eled nonreachable cells, i.e., static obstacles, are discovered at
runtime [48].

Partial observability and hierarchical planning are addressed
recently in [49], where the authors demonstrate safe navigation
and task planning using HL LTL task planning, two MPC
problems at the middle level, and CBF-CLF tracking controller
at the LL. The work in [49] leverages mixed observable Markov
decision processes to model the system-environment interaction
in a partially-observable environment, i.e., some discrete regions
in the environment are not known a priori to be traversable.
This approach above is better suited for guaranteeing successful
navigation and collision avoidance in environments with only
static obstacles as they cannot reason about when and where a
dynamic obstacle may appear. In our work, the environment is
partially observable when static obstacles occlude the robot’s
view of certain regions in the environment, thus guaranteeing
collision avoidance with dynamic obstacles becomes a challeng-
ing problem.

Collision avoidance with dynamic obstacles in partially
observable environments has been achieved through ap-
proaches such as partially observable Markov decision processes
(POMDPs) [50], probabilistic velocity obstacle modeling [51],
and object occlusion cost metrics [52]. While these solutions
provide collision avoidance guarantees, they assume dynamic
obstacles could appear at any time and result in an overly conser-
vative strategy. Our method investigates belief-space planning
to provide the controller with additional information on when
and where dynamic obstacles may appear in the robot’s visible
range to inform the synthesized strategy if navigation actions
are guaranteed to be safe, even when static obstacles occlude the
robot’s view of adjacent environment locations. We have devised
a variant of the approach in [10] to explicitly track a belief
of which nonvisible environment locations are obstacle free,
reducing the conservativeness of a guaranteed collision-free
strategy.

For whole-body joint trajectory design and LL control, many
approaches have been put forward in recent years: Bayesian opti-
mization [53], contact cone convex optimization [54], [55], sum-
of-squares optimization [56], multilayered CBFs and MPC [57],
CBF with CLF [58], data-driven step planner [59], and rein-
forcement learning [60], [61] to name a few. Recently, Grizzle’s
group at Michigan proposed an ALIP model [11], which uses
the angular momentum around the contact point in the robot’s
state. This state incorporates both linear momentum and angular
momentum about the CoM, forming a more comprehensive
representation that is less sensitive to internal joint-level noise
and external contact impact. Hence, controlling foot placements
with the ALIP model yields better velocity tracking accuracy.
Our approach in this article leverages this ALIP model with a few
critical modifications to achieve high-performance, nonperiodic
locomotion control on our bipedal robot Digit hardware.

Fig. 3. Reduced-order modeling of our Digit robot as a 3-D PIMP with all of
its mass concentrated on its CoM and a telescopic leg to comply with the varying
CoM height. The CoM motion follows a parameterized CoM path depending on
keyframe states.

III. PRELIMINARIES

This section will introduce a PSP approach [62], [63] for
CoM trajectory generation based on a ROM. Our framework is
based on inverted pendulum models except for the LL controller.
Starting with a derivation of the dynamics of a prismatic in-
verted pendulum model (PIPM), we then define the locomotion
keyframe state (a discretized feature state of our PSP approach)
used as a connection between the HL planner and the middle-
level motion planner. Consequently, we define keyframe-based
transitions to achieve safe locomotion. This section builds
the basis for the safe locomotion planning proposed in later
sections.

A. Reduced-Order Locomotion Planning

This section introduces a mathematical formulation of our
ROM. As shown in Fig. 3, the CoM position pcom = (x, y, z)T

is composed of the sagittal, lateral, and vertical positions. We de-
note the apex CoM position as papex = (xapex, yapex, zapex)T ,
the foot placement as pfoot = (xfoot, yfoot, zfoot)T , and hapex

is the relative apex CoM height with respect to the stance
foot height. vapex denotes the CoM velocity at papex. ∆y1 is
the lateral distance between CoM and the HL waypoint w2

at apex. ∆y2 := yapex − yfoot denotes the lateral CoM-to-foot
distance at apex. PIPM has been proposed for agile, nonpe-
riodic locomotion over rough terrain [63]. Here, we reiterate
for completeness the derivation of the centroidal momentum
dynamics of this model. The single contact case using the
moment balance equation along with linear force equilibrium is
expressed as

(pcom − pfoot)× (f com +mg) = −τ com (1)

where τ com is the angular moments of the torso exerted on the
CoM, and g is the gravitational vector. For nominal planning we

2The HL discrete representation of the robot location.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 02,2023 at 13:31:34 UTC from IEEE Xplore. Restrictions apply.

SHAMSAH et al.: INTEGRATED TAMP FOR SAFE LEGGED NAVIGATION IN PARTIALLY OBSERVABLE ENVIRONMENTS 5

set τ com = 0. Formulating the dynamics in (1) for jth walking
step as a hybrid control system

p̈com,j = Φ(pcom,j ,uj) =




ω2
j (x− xfoot,j)

ω2
j (y − yfoot,j)

aω2
j (x− xfoot,j)



 (2)

where the asymptote slope ωj =
√

g/hapex,j . The hybrid con-
trol input is uj = (ωj ,pfoot,j), with pfoot,j being the discrete
input.3 The CoM motion is constrained within a piecewise linear
surface parameterized by h = a(x− xfoot) + hapex, where h
denotes the CoM height from the stance foot height, the ROM
becomes linear and an analytical solution exists. Detailed deriva-
tions are elaborated in [64, Appendix A].

Summary of PSP: In PSP, the sagittal planning takes prece-
dence over the lateral planning. The decisions for the planning
algorithm are primarily made in the sagittal phase-space, such
as step length and CoM apex velocity, where we propagate the
dynamics forward from the current apex state and backward
from the next apex state until the two phase-space trajectories
intersect. The intersection state defines the foot stance switching
instant. On the other hand, the lateral phase-space parameters
are searched for to adhere to the sagittal phase-space plan and
have consistent timings between the sagittal and lateral plans.
In this article, we build on our previous PSP work [17], [63]
to derive safety criteria for sagittal planning in order to achieve
successful transitions between keyframe states in the presence
of perturbations in Section IV. Moreover, we employ a sampling
algorithm based on the lateral apex states to select the next
sagittal apex velocity that allows the lateral dynamics to comply
with HL waypoint tracking in Section V.

B. Locomotion Keyframe for 3-D Navigation

PSP uses keyframe states for nonperiodic dynamic locomo-
tion planning [63]. Our study generalizes the keyframe definition
in our previous work by introducing diverse navigation actions
in 3-D environments.

Definition III.1 (Locomotion keyframe state for 3D environ-
ment navigation): A keyframe state of our ROM is defined as
k = (d,∆θ,∆zfoot, vapex, zapex) ∈ K, where

1) d := xapex,n − xapex,c is the walking step length;4

2) ∆θ := θapex,n − θapex,c is the heading angle change at
two consecutive CoM apex states;

3) ∆zfoot := zfoot,n − zfoot,c is the height change for suc-
cessive foot placements;

4) vapex is the CoM sagittal apex velocity;
5) zapex is the global CoM height at apex.
The keyframe state above can be divided into two action

sets: 1) an HL action (aHL) and 2) a LL action (aLL). The
HL action includes aHL = (d,∆θ,∆zfoot) ∈ AHL, which is
determined by the navigation policy to be designed in the task
planner. The parameters d, ∆θ, and ∆zfoot are expressed in the

3Hereafter, we will ignore the subscript q for notation simplicity. We will
instead use ·c and ·n denoting the current and next apex, respectively.

4In straight walking d represents the step length. However, during steering
walking d is adjusted to reach the next waypoint on the new local coordinate.

Fig. 4. Sagittal system state transition for OWS without heading angle change.
OWS is shown as the transition between two consecutive apex states, ξc and
ξn. The system state transition in Definition III.4 is shown as the projection of
keyframe state onto the system state ξc, and d and ∆zfoot are used to select
the next foot placement pfoot,n in the hybrid control input u. In the discrete
keyframe state space, we show the transition between two consecutive keyframe
states, where ROWS,c is the set of current viable keyframe states that allows a
successful system state transition to the next viable keyframe state setROWS,n.

Cartesian space as the HL waypoints w. On the other hand, the
LL action is aLL = (vapex, zapex) ∈ ALL, which is determined
in the middle-level motion planner. The keyframe parameters
are sent from the HL task planner to the middle-level motion
planner online, as shown in Fig. 2.

C. Keyframe Transition

We now aim to formulate locomotion transition definitions
in terms of the locomotion keyframe state k and describe the
connection between the discretized keyframe state and the con-
tinuous dynamics of our reduced-order system introduced in
Section III-A. We will first define locomotion safety.

Definition III.2 (Locomotion safety): Safety for a locomotion
process is defined as a formal guarantee that the robot maintains
balance dynamically, i.e., the CoM state in phase-space staying
within the desired quadrant5 while transitioning between con-
secutive locomotion keyframe states k ∈ K.

Note that, the keyframe state k includes HL actions aHL so
the control is implicit in the Locomotion Safety. Based on our
keyframe definition in Definition III.1, we define one walking
step (OWS) as the transition between two consecutive keyframe
states, as shown in Fig. 4. Therefore, we define the set of viable
keyframe states for OWS as follows.

Definition III.3 (Viable keyframe set for OWS): ROWS is the
set of keyframe states K that results in a viable transition to
the next desired keyframe state through the continuous PIPM
dynamics in (2), thus achieving locomotion safety for OWS.

The transition between keyframes is hybrid since it includes
a continuous progression of the system states under the PIPM

5The safe regions are shown in Fig. 6 and further explained in Section IV-A.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 02,2023 at 13:31:34 UTC from IEEE Xplore. Restrictions apply.

6 IEEE TRANSACTIONS ON ROBOTICS

dynamics in (2), followed by a discrete foot contact switch. In
this study, we aim to provide formal guarantees that the selected
keyframe states are within ROWS. Since quantifying ROWS is
computationally intractable due to its high dimensionality, we
propose a set of safety theorems to quantify the viable region
when ROWS is projected onto a reduced dimensional parameter
space, which is selected as

Sagittal CoM system state: ξ = (x, ẋ) ∈ Ξ.

The current discrete keyframe state kc ∈ K corresponds to
1) the continuous system state at apex (ξc) and 2) the PSP
hybrid control input u at the CoM apex in both straight and
steering walking scenarios, where the apex state in the keyframe
Definition III.1 is the system state at the CoM apex,6 and the step
length and step height are used to calculate pfoot in the hybrid
control input u. An illustration of these variables is shown in
Fig. 4. The desired next system state is always selected to be
an apex state ξn = (d, vapex,n), where d ∈ aHL is determined
by the HL planner and vapex,n is determined by the keyframe
decision maker as detailed in Section V. Therefore, we can define
a system state transition.

Definition III.4 (System state transition ξn = Tr(kc)): Tr is
a system state transition that takes the projection of the current
keyframe state onto the continuous system state at apex and
hybrid control input (ξc.u), to the desired next system state ξn
through PSP of the centroidal dynamics Φ in (2).

In Fig. 4, we illustrate the system state transition for OWS.
By projecting kc state onto ξc, the centroidal dynamics in (2)
allows the system state to reach ξn based on u.

IV. SAFE LOCOMOTION PLANNING

This section will propose a set of safety theorems based on
PSP for the ROM that allows us to select a safe next keyframe
state under nominal conditions. Then, in Section IV-B, we define
and compute controllable regions under bounded state distur-
bance by reachability analysis for a set of keyframe transitions.
Within this controllable region, any state is guaranteed to reach
a target set (T) in finite time given a feasible control sequence,
as shown in Fig. 5.

A. Locomotion Safety Criteria

In this section, we propose safe locomotion criteria based
on the PIPM introduced in Section III-A and provide safety
constraints for the locomotion keyframe state.

As a general principle of balancing safety, the sagittal CoM
position should be able to cross the sagittal apex with a positive
CoM velocity while the lateral CoM velocity should be able to
reach zero lateral velocity at the next apex. Ruling out the fall
situations provides us the bounds of balancing safety regions.
First, we study the constraints between the apex velocities of two

6ξc = ξapex,c only when ∆θ = 0, otherwise ξc is a nonapex state as can be
seen in Fig. 6(a).

Fig. 5. Viable sets and controllable regions for the set of system states Ξ. Any
state within the Viable set V (dark gray region), is guaranteed to remain inside
V in a finite time, thus avoiding a fall. While any state within the controllable
region set C (green region) is guaranteed to reach the target set T (red region)
in finite time given an appropriate control input. The red trajectory indicates an
initial state that results in a fall.

consecutive walking steps and propose the following theorems
and corollaries.

Theorem IV.1: For safety-guaranteed straight walking, given
d and ω, the apex velocity for two consecutive walking steps
ought to satisfy the following velocity constraint:

−ω2d2 ≤ v2apex,n − v2apex,c︸ ︷︷ ︸
apex velocity square difference
for two consecutive steps

≤ ω2d2 (3)

where d2 = (xapex,n − xapex,c)(xapex,c + xapex,n − 2xfoot,c).
Notably, d is equal to the step length in Definition III.1, i.e.,
d = xapex,n − xapex,c, during a straight walking where
xapex,c = xfoot,c. The proof can be seen in [64, Appendix B].

Another consideration for safety is to limit the maximum
allowable velocity of the CoM. Since the maximum velocity
occurs at the foot switching instant, we explicitly enforce an
upper velocity bound to this switching velocity vswitch to avoid
overaccelerated motions, which can be further magnified by
the ground impact dynamics in the real system. Through the
analytical solution of the ROM in [64, Appendix A], we solve
for vswitch = Ψ(vapex,c, vapex,n, d). Therefore, we set an upper
bound on vswitch, i.e., vswitch ≤ vmax.

Similar to Theorem IV.1, vswitch provides a nonlinear relation-
ship between sagittal apex velocities for two consecutive apex
states. Combining the boundary conditions in Theorem IV.1 and
the limit of vswitch allows us to quantify the viable region of
vapex,n given vapex,c, d, and ω.

The steering case requires a more restrictive criterion. A fall
will occur when the turning angle ∆θ is too large such that
vapex,c in the new local coordinate after the turn is out of a
safety range such that either the lateral CoM velocity cannot
reach zero at the next apex or the sagittal CoM cannot climb
over the next apex.

Theorem IV.2: For safety-guaranteed steering walking, the
current sagittal CoM apex velocity vapex,c in the original local
coordinate should be bounded by

∆y2,c · ω · tan∆θ ≤ vapex,c ≤
∆y2,c · ω
tan∆θ

. (4)

The proof of this theorem is shown in [64, Appendix C].
This theorem provides a bound on the heading angle change
∆θ given the current apex velocity vapex,c. Fig. 6 shows a

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 02,2023 at 13:31:34 UTC from IEEE Xplore. Restrictions apply.

SHAMSAH et al.: INTEGRATED TAMP FOR SAFE LEGGED NAVIGATION IN PARTIALLY OBSERVABLE ENVIRONMENTS 7

Fig. 6. Phase-space safety region for steering walking. (a) Three consecutive keyframes with a heading angle change (∆θ). The CoM trajectory and its projection
on the sagittal-lateral plane are represented by the blue surface. The direction change introduces a new local coordinate, where the dashed black line is the sagittal
coordinate before the turn, and the dashed red line is the sagittal coordinate after the turn. (b) and (c) Sagittal and lateral phase-space plots, respectively, both
satisfying the safety criteria proposed in Theorem IV.2. The CoM apex state in the original coordinate becomes nonapex in the new coordinate (due to the coordinate
change). The subscripts p, c, and n denote the previous, current, and next walking steps, respectively.

steering walking trajectory and phase-space plot that satisfy
Theorem IV.2. Namely, the CoM location in the sagittal and
lateral phase-space in the new local coordinate after the turn
should not cross the asymptote line of the shaded safety region
in Fig. 6. This criterion is specific to steering walking, as the
heading change (∆θ) introduces a new local frame and yields
the current state ξc to no longer be an apex in the new coordinate.
As such, it has nonapex sagittal and lateral components, i.e.,
vy,c %= 0, and xapex,c %= xfoot,c.7

Corollary IV.3: For steering walking in Theorem IV.2, given
d, ∆θ, ∆y2,c and ω, two consecutive apex velocities ought to
satisfy the following velocity constraint:

−ω2d2 ≤ v2apex,n − (vapex,c cos∆θ)
2 ≤ ω2d2+ (5)

where d2+ = d2 + 2∆y2,cd sin∆θ.
Corollary IV.4: For steering walking in Theorem IV.2, simi-

larly, given d,∆θ,∆y2,c, andω, two consecutive apex velocities
ought to satisfy the following velocity constraints:

−ω2d2 ≤ v2apex,n − (vapex,c cos∆θ)
2 ≤ ω2d2− (6)

where d2− = d2 − 2∆y2,cd sin∆θ. Note that, parameters
vapex,n, d, and ∆θ in (3)–(6) are the keyframe states.

The aforementioned safety theorems provide quantifiable
bounds on the next keyframe selection that leads to viable
transitions under the governance of nominal disturbance-free
PIPM dynamics. The next section will focus on definitions
based on controllable regions and sequential composition to
provide guarantees on the safe progression of the continuous
system states ξ adhering to Theorems IV.1–IV.2 under bounded
disturbances Ξ̃.

B. Controllable Regions and Sequential Composition

First, let us decompose OWS into two half-steps at the instant
when the hybrid control input u switches. Therefore, the first

7In this study, we use ẋ and v exchangeably to represent the CoM velocity.

half walking step (FHWS) starts from ξc until the foot contact
switching state ξswitch, the second half walking step (SHWS)
starts with ξswitch until ξn. Note that tFHWS and tSHWS are
not always equal in nonperiodic walking. We start by defining
controllable regions of FHWS and SHWS.

Definition IV.1 (Controllable region of FHWS): Given
Ξ̃synthesis, U and Tswitch, a controllable region of FHWS is
defined as CFHWS := {ξ|ξ̇(t) = Φ(ξ(t) + ξ̃(t),u(t)), ∃u(t) ∈
U , such that ∃ξ(tFHWS) ∈ Tswitch, tFHWS is finite}, where
ξ̃(t) ∈ Ξ̃synthesis represents a bounded state disturbance.

Definition IV.2 (Controllable region of SHWS): Given
Ξ̃synthesis, U and TOWS, a controllable region of SHWS is
defined as CSHWS := {ξ|ξ̇(t) = Φ(ξ(t) + ξ̃(t),u(t)), ∃u(t) ∈
U , such that ∃ξ(tSHWS) ∈ TOWS, tSHWS is finite}, where
ξ̃(t) ∈ Ξ̃synthesis represents a bounded state disturbance.

Numerical computation of the controllable region for OWS
is achievable given Ξc, TOWS, U , and a bounded disturbance Ξ̃
through backward dynamic propagation using robustly complete
control synthesis (ROCS) [65]. Unlike other reachability analy-
sis tools [66], [67], ROCS is a partition-based control synthesis
tool for nonlinear systems. Overapproximation of the control-
lable region is computed through interval-valued functions of
the PIPM dynamics. All reachable states after a predefined
time step from any state in Ξc are captured in the output. For
more details, please refer to the work in [68], [69], and [70].
Given the backward propagation nature of ROCS, CSHWS is
computed first starting from TOWS, which is selected to be the
set of desired ξn at the next apex. Then, we set Tswitch to be
all the states of CSHWS that are within the tangent manifolds
of FHWS, where the tangent manifolds represent the nominal
phase-space trajectory given vapex,min, vapex,max, and xfoot,c

(see Fig. 7) [63], [70]. Then, we compute CFHWS with Tswitch

being the target set. Note that Tswitch represents the set of system
states that a foot contact transition can occur at. Moreover, ROCS
also allows us to synthesize a controlleru(t) ∈ U that guarantees
that the system state ξ reaches the target set TOWS as long as the

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 02,2023 at 13:31:34 UTC from IEEE Xplore. Restrictions apply.

8 IEEE TRANSACTIONS ON ROBOTICS

Fig. 7. Projection of the controllable regions for OWS on the sagittal phase-
space based on Definitions IV.1–IV.2. Given ξc (green circle) ∈ Ξc (green
dashed region) ⊂ CFHWS (green region), the continuous system state is guar-
anteed to reach Tswitch (blue region). Tswitch is bounded by pink tangent
manifolds and CSHWS. Switching from the current foot stance to the next
foot stance (green and yellow stars respectively) at Tswitch guarantees that the
continuous system state will reach ξn (yellow circle) ∈ TOWS (red region). The
red dashed arrow shows a system state outside of CFHWS and results in a fall.

system state remains within the controllable region. The details
of the controllable regions in Definitions IV.1–IV.2 are shown
in Fig. 7.

Sequentially composing the controllable regions defined in
Definitions IV.1–IV.2, i.e., Tswitch %= ∅, affords a guarantee on
safe task completion for OWS. Controllable regions have a
“funnel”-type geometry that is guaranteed to reach a target set,
and correct switching between such funnels ultimately leads to
the target set TOWS, as shown in Fig. 8. A projection of the
composition of the controllable regions on the sagittal phase-
space satisfying Theorem IV.5 can be seen in Fig. 7.

The controllable regions in Definitions IV.1–IV.2 depend on
not only the state of the system but also the HL keyframe state k
as it determines the target set T as well as the foot placement in
the hybrid control input pfoot ∈ u. This further provides safety
guarantees within our layered framework.

Theorem IV.5: The controllable regions for OWS are sequen-
tially and safely composable, i.e.,CFHWS ∩ CSHWS = Tswitch %=
∅, if the locomotion safety defined in Definition III.2 is satisfied,
i.e., the PSP obeying (i) Theorem IV.1, (ii) vswitch ≤ vmax, and
(iii) Theorem IV.2 generates a feasible CoM trajectory.

Proof: To guarantee the feasibility of a nominal phase-space
plan generated through forward and backward propagation of
the PIPM dynamics, the following two conditions on vapex,n
need to be satisfied: 1) ∃xswitch such that xapex,c ≤ xswitch ≤
xapex,n, which is guaranteed by designing vapex,n that obeys
Theorem IV.1 given a feasible d and current keyframe state
ξc ∈ Ξc; 2) given a maximum CoM velocity threshold vmax,
vapex,n is chosen such that vswitch ≤ vmax through the forward
and backward propagation. The designed vapex,n meeting the
two conditions above will guarantee feasible phase-space tra-
jectories that safely compose the controllable regions of the
two half-walking steps, i.e., CFHWS ∩ CSHWS = Tswitch %= ∅.

Fig. 8. Conceptual illustration of the keyframe transition between two con-
secutive keyframes, where starting from the current viable keyframe state set
ROWS,c, can be projected to the continuous state space and the dynamics
are then modeled as the hybrid control system in (2). The evolvement of the
continuous state is formulated as a sequential composition of controllable regions
for OWS as in Definitions IV.1–IV.2. The state of the system starts from Ξc in
CFHWS (green funnel). After a finite time, the state reachesTswitch (dashed blue
region), where the dynamics of the system switch from CFHWS to CSHWS (the
yellow funnel). Finally, the state of the system reaches TOWS (red region). The
switch between CFHWS and CSHWS can occur at any instant within Tswitch
and the state would still be guaranteed to reach TOWS. Any kc ∈ ROWS is
guaranteed to reach TOWS based on Definition III.3 while the states outside
ROWS are failed states shown in red.

As for the turning case, given the designed vapex,n, condition
(iii) constrains the maximally allowable heading angle change
∆θ for the next walking step. This condition guarantees that
the CoM state in the sagittal and lateral phase-space in the new
local coordinate after the turn will not cross the asymptote line
of the shaded safety region (see Fig. 6). As such, the controllable
region CFHWS centering around the nominal PSP trajectory will
exist (in the space between the nominal PSP and the asymptote
line) and interact with CSHWS such that Tswitch %= ∅.

According to Theorem IV.5, we can determine a set of vapex,n,
∆θ, and d parameters8 that satisfy conditions (i)–(iii), thus
guaranteeing that the system state can reach the desired target
set TOWS. The selected set is included as safe locomotion
specifications in the HL planner as shown in Fig. 2 and detailed
in Section VI-C.

Corollary IV.6: To realize safe walking for an arbitrary num-
ber of steps, (i) the target set of the current step is required to
be a subset of the controllable region of the FHWS for the next
step, i.e., TOWS,c ⊂ CFHWS,n, and (ii) the applied perturbation
during execution does not push the system state outside of the
controllable regions.

Fig. 8 conceptually shows how after a system state transition
ξn = Tr(kc), ξn can be projected onto the viable keyframe set
for the next OWS ROWS,n to guarantee the viability of the next
walking step.

8Specific values of d, vapex, and ∆θ are included in Table III.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 02,2023 at 13:31:34 UTC from IEEE Xplore. Restrictions apply.

SHAMSAH et al.: INTEGRATED TAMP FOR SAFE LEGGED NAVIGATION IN PARTIALLY OBSERVABLE ENVIRONMENTS 9

V. KEYFRAME DECISION-MAKING FOR NAVIGATION

WAYPOINT TRACKING

In the previous section, we proposed safety theorems that
guarantee locomotion safety at the ROM level. Now we shift our
focus to another consideration for safe locomotion by ensuring
tracking of the HL waypoints. The lateral phase-space plan
is determined based on the sagittal phase-space plan, as the
contact switch timing in the lateral dynamics needs to obey
that of the sagittal dynamics. Therefore, the lateral dynamics
depends on sagittal apex velocities and sagittal step length. In
our previous work [63], the lateral foot placement is solved
through a Newton–Raphson search method, such that the lateral
CoM velocity is equal to zero at the next CoM apex. While our
previous method achieved stable walking and turning, it lacks the
guarantee of accomplishing HL navigation through tracking of
the waypoints. In [17], we propose a heuristic-based policy that
restricts the allowable keyframe transitions to achieve waypoint
tracking for specific locomotion plans. In this study, we extend
our previous work [17] by designing an algorithm that formally
manipulates the sagittal phase-space plan to take into account
HL waypoint tracking. Particularly, we use ∆y1 and ∆y2 to
track the lateral distance between the CoM at the apex and the
HL waypoint as seen in Fig. 3. First, let us define viable ranges
for ∆y1 and ∆y2.

Definition V.1 (Viable range for lateral-apex-CoM-to-way-
point distance ∆y1): R∆y1 := {∆y1|∆y1 +∆y2 ≤ bsafety},
where bsafety denotes the safety boundary around the
waypoint.

Definition V.2 (Viable range for lateral-apex-CoM-to-foot
distance ∆y2): Given the safety criterion for steering walking
defined in Theorem IV.2, the viable range for lateral CoM-to-
foot distance at apex is defined as R∆y2 := {∆y2|vapex,max ·
tan∆θ/ω ≤ ∆y2 ≤ (vapex,min)/(ω · tan∆θ)}.

R∆y1 and R∆y2 are defined as such to avoid the lateral drift
of the robot’s CoM and foot location from the HL waypoint, and
further avoid collisions with obstacles. Given Definitions V.1–
V.2, we can track the HL waypoint as follows.

Proposition V.1: Viable lateral tracking of the HL waypoint is
guaranteed only if (i) ∆y2 and ∆y1 are bounded within their re-
spective viable ranges, i.e., ∆y1 ∈ R∆y1 and ∆y2 ∈ R∆y2 , and
(ii) the sign of (∆y1 +∆y2) alternates between two consecutive
keyframes.

Proposition V.1 requires that 1) the distance sign of the lateral
foot stance position relative to the waypoint alternates between
consecutive keyframes and 2) the waypoints and CoM trajectory
are bounded within the lateral foot placement width. An example
of this trajectory is shown in Fig. 15.

The analytical solutions of ∆y1,n and ∆y2,n are highly
nonlinear functions of multiple parameters including the step
length d, heading angle change ∆θ, current and next apex
velocities vapex,c, vapex,n, and the current lateral state of the
system ∆y1,c and ∆y2,c. Thus, it is difficult to quantitatively
analyze the relationship between ∆y1, ∆y2, and other parame-
ters aforementioned. Since (d,∆θ) ∈ aHL are determined by the
navigation policy designed in the HL task planner, and vapex,c,
∆y1,c, and∆y2,c are fixed from the previous step, we manipulate

Algorithm 1: Optimal Next Apex Velocity Design for Lat-
eral Waypoint Tracking.

vapex,n to adjust the sagittal phase-space plan and subsequently
the lateral phase-space plan through the updated walking step
timing. To this end, we sample a set of equidistant values
vapex,n ∈ [vapex,min, vapex,max] and calculate a cost λ, which
penalizes deviation of ∆y1,n and ∆y2,n from their respective
desired values ∆y1,d ∈ R∆y1 and ∆y2,d ∈ R∆y2 .9 After the
sampling, we set vapex,n to the optimal next apex velocity
vapex,opt that results in the minimum cost. This procedure is
presented in Algorithm 1.

Algorithm 1 also includes two regularization costs on step
duration tFHWS + tSHWS and step width |yfoot,n − yfoot,c|,
respectively, where Td and Wd are empirically selected to in-
crease the feasibility of hardware implementation on the Digit
robot (e.g., constraints from robot leg dynamics and kinemat-
ics).10 Algorithm 1 is robust to different step lengths during
straight walking; however, waypoint tracking during a turning
sequence is more complex. In turning cases where Algorithm 1
fails to find an apex velocity that yields viable waypoint track-
ing in Proposition V.1, we will propose an online replanning
mechanism to adjust the waypoint in Section VI-B.

VI. TASK PLANNING VIA BELIEF ABSTRACTION

This section will expound the HL task planning structure,
consisting of global navigation and local action planners that
employ LTL to achieve safe locomotion navigation in a partially
observable environment with dynamic obstacles. LL locomotion
dynamics constraints are encoded into LTL specifications to

9∆y1,d and ∆y2,d are heuristically selected according to our bipedal robot’s
leg kinematics. Exact values of ∆y1,d and ∆y2,d are shown in Table III in
Section IX-B.

10Long step duration > 0.7 s and large step width > 0.55 m are impractical
for maintaining Digit’s locomotion safety.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 02,2023 at 13:31:34 UTC from IEEE Xplore. Restrictions apply.

10 IEEE TRANSACTIONS ON ROBOTICS

ensure that HL actions can be successfully executed by the
middle-level motion planner to maintain balancing safety.

Definition VI.1 (Navigation Safety): Navigation safety is de-
fined as safe maneuvering in partially observable environments
with uneven terrain while avoiding collisions with static and
dynamic obstacles.

To achieve safe navigation, the task planner evaluates ob-
served environmental events at each walking step and commands
a safe action set to the middle-level motion planner, as shown in
Fig. 2, while guaranteeing goal positions to be visited in order
and infinitely often. We study a pick-up and drop-off navigation
task while guaranteeing static and dynamic obstacle collision
avoidance, where the granularity of the collision avoidance is
based on the size of one coarse cell. We design our task planner
using formal synthesis methods to ensure locomotion actions
guarantee navigation safety and liveness; specifically, we use
General Reactivity of Rank 1 (GR(1)), a fragment of LTL.
GR(1) allows us to design temporal logic formulas (ϕ) with
atomic propositions (AP (ϕ)) that can either be True (ϕ ∨ ¬ϕ)
or False (¬True). With negation (¬) and disjunction (∨),
one can also define the following operators: conjunction (∧),
implication (⇒), and equivalence (⇔). Other temporal opera-
tors include “next” (©), “eventually” (♦), and “always” (").
Safety specifications capture how the system and environment
may transition during one step of the synthesized controller’s
execution while liveness specifications capture that transitions
must happen infinitely often. Further details of GR(1) can be
found in [71]. Our implementation uses the SLUGS reactive
synthesis tool [72] to design specifications with APs, natural
numbers, and infix notation, which are automatically converted
to ones using only APs.

Remark 1: The discrete abstraction granularity required to
plan walking actions for each keyframe is too fine to synthesize
plans for large environment navigation. Therefore, we have split
the task planner into two layers: An HL navigation planner
that plays a navigation and collision avoidance game against
the environment on a global coarse discrete abstraction, and
an action planner that plays a local game on a fine abstraction
of the local environment (corresponding to one coarse cell).
The action planner generates action sets at each keyframe to
progress through the local environment and achieve the desired
coarse-cell transition.

A. Navigation Planner Design

A top-down projection of the navigation environment is dis-
cretized into a coarse 2-D grid, as shown in Fig. 16. Each time
the robot enters a new cell, the navigation planner evaluates the
robot’s discrete location (lr,c ∈ Lr,c) and heading (hr,c ∈ Hr,c)
on the coarse grid, as well as the dynamic obstacle’s location
(lo ∈ Lo), and determines a desired navigation action (na ∈
Na). The planner can choose for the robot to stop or to transition
to any reachable safe adjacent cell.Lr,c and Lo denote sets of all
coarse cells the robot and dynamic obstacle can occupy while
Hr,c represents the four cardinal directions in which the robot

can travel on the coarse abstraction. The dynamic obstacle moves
under the following assumptions.

1) It will not attempt to collide with the robot when the robot
is standing still.

2) Its maximum speed only allows it to transition to an
adjacent coarse cell during one turn of the navigation
game.

3) It will eventually move out of the way to allow the robot
to pass.

Assumption (c) prevents a deadlock [73]. Static obstacle
locations are encoded as safety specifications. Given these as-
sumptions, the task planner in Section VI-D will guarantee that
the abstracted robot can achieve a specific navigation goal.

B. Action Planner Design

The local environment, i.e., one coarse cell, is further ab-
stracted into a fine discretization. At each walking step, the
action planner evaluates the robot’s state in the environment
(eHL)11 consisting of the discrete waypoint location (lr,f ∈
Lr,f) and heading (hr,f ∈ Hr,f) on the fine grid, as well as
the robots current stance foot index (ist), and determines an
appropriate action set (aHL) defined in Definition III.1. The
action planner generates a sequence of locomotion actions guar-
anteeing that the robot eventually transitions to the next desired
coarse cell while ensuring all action sets are safe and achievable
based on eHL and aHL. Note that, the fine abstraction also
models the terrain height for each fine-level cell, allowing the
action planner to choose the correct step height ∆zfoot for each
keyframe transition.

During locomotion, the nominal robot state transitions are
deterministically modeled within the action planner based on the
current game state and system action, but the nominal transition
is not guaranteed. To account for this, we add nondeterministic
transitions for these cases: 1) Not all the robot states can be
captured in the discrete abstraction, such as the robot CoM
velocity, which, however, may still affect transitions, i.e., the
robot’s CoM deviates from the desired HL waypoint, and 2) the
robot may be perturbed while walking, altering the foot location
at the next walking step.

We have encoded nondeterministic transitions, and associated
transition flags (tnd), to capture these cases into the action
planner’s environment assumptions.

An example of modeled nondeterministic transitions is shown
in Fig. 9. The CoM trajectory sometimes imperfectly tracks the
waypoints due to accumulated differences in the continuous
keyframe state represented by the same discrete state eHL.
The reduced-order motion planner identifies when the waypoint
needs to be shifted from the lateral case and informs the action
planner, which verifies the updated waypoint is allowed by the
nondeterministic transition model and continues planning from
the new waypoint.

11We use the symbol eHL to represent the robot state, since this symbol
represents the second player in the game, i.e., the environment player.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 02,2023 at 13:31:34 UTC from IEEE Xplore. Restrictions apply.

SHAMSAH et al.: INTEGRATED TAMP FOR SAFE LEGGED NAVIGATION IN PARTIALLY OBSERVABLE ENVIRONMENTS 11

Fig. 9. Illustration of fine-level steering walking within one coarse cell. Dis-
crete actions are planned at each keyframe allowing the robot to traverse the fine
grid toward the next coarse cell. The waypoint transitions nondeterministically
following the turn. A set of locomotion keyframe decisions are also annotated.

C. Encoding LL Dynamics Constraints Into HL Planner
Specifications

To ensure the action planner only commands safe and feasible
actions, we must take into account the underlying Locomo-
tion Safety. This is achieved by capturing LL constraints in
the HL planner specifications. Action planner state transition
limitations based on straight walking step length constraints
in Theorem IV.1, and kinematic constraints from the bipedal
robot leg are directly encoded in the action planner specifica-
tions. Locomotion safety is guaranteed when the combination
of apex velocity, heading angle change, and foot placement
meet Theorems IV.1–IV.2. These constraints are not able to be
directly captured as the action planner does not reason about
CoM velocity and the dynamic equations of motion cannot be
encoded in symbolic specifications. Instead, they are captured by
generating a library of permissible turning sequences based on
discrete robot states that are known to meet the above constraints
(see Table III). For example, givenω = 3.15 rad/s,∆y2,c = 0.14
m (equals to ∆y2,d in Algorithm 1), and an allowable vapex
range [0.2, 0.7] m/s, Theorem IV.2 results in ∆θ ≤ 24.40◦. Any
turning angle larger than this value will result in an HL action
that is not executable by the middle-level motion planner. Thus,
we choose ∆θ = 22.5◦ such that we can complete a 90◦ turn in
four consecutive walking steps (shown in Fig. 9).

To ensure that collision avoidance in the abstract game trans-
lates to collision-free locomotion in the continuous domain, we
guarantee the location lr,f stays far enough away from any obsta-
cles. Algorithm 1 ensures that the distance between lr,f and the
robot’s desired foot placement does not exceed bsafety as detailed
in Section V. The action planner guarantees lr,f is never in a cell
that is less than a distance bsafety away from the neighboring
coarse cell that may contain static or dynamic obstacles via
safety specifications. The planner guarantees this distance even
after nondeterministic sagittal and lateral transitions, ensuring
collision avoidance.

Remark 2: The navigation planner cell cannot be an arbitrary
size because, in a locomotion setting, the underlying dynamics

of the bipedal system and multiple walking steps need to be
considered to ensure the safe and correct transition between
adjacent coarse cells.

D. Task Planner Synthesis

The task planner models the robot and environment interplay
as a two-player game. The robot action is Player 1 while the pos-
sible adversarial obstacle is Player 2. The synthesized strategy
guarantees that the robot will always win the game by solving
the following reactive problem.

Reactive Synthesis Problem: Given a transition system TN
and LTL specifications ψ synthesize a winning strategy for the
robot such that only correct decisions are generated in the sense
that the executions satisfy ψ.

A winning strategy is generated by using the LTL synthesis
tool SLUGS on the following transition systems.

1) Navigation Planner Transition System TN : A navigation
game structure is proposed by including robot actions in the
tuple G := (S, sinit, TN) with the following:

1) S = Lr,c × Lo ×Hr,c ×Na is the augmented state;
2) sinit = (linitr,c , l

init
o , hinit

r,c , n
init
a) is the initial state;

3) TN ⊆ S × S is a transition relation describing the possible
moves of the robot and the obstacle.

To synthesize the transition system TN , we define the rules
for the possible successor state locations, which will be further
expressed in the form of LTL specifications ψ. The successor
functions are defined such that the augmented state and successor
state are (s, s′) ∈ TN , which are given as follows.

1) Robot successor location l′r,c

succr(lr,c, hr,c, na)={l′r,c ∈ Lr,c|∃l′o, h′
r,c(s, s

′) ∈ TN}.

2) The set of possible successor robot actions n′
a

succna(na, lr,c, l
′
r,c, lo, l

′
o, hr,c, h

′
r,c) =

{n′
a ∈ Na|(s, s′) ∈ TN}.

3) The set of successor locations of the obstacle l′o
succo(lr,c, lo, na) = {l′o ∈ Lo|∃l′r,c, h′

r,c.(s, s
′) ∈ TN}.

Later, we will use a belief abstraction inspired by Bharad-
waj et al. [10] to solve our synthesis in a partially observable
environment.

2) Action Planner Transition System TA: The action planner
is synthesized using the same game structure as the navigation
planner, with possible states and actions corresponding to Sec-
tion VI-B. Nondeterministic robot location transitions are cap-
tured in the robot successor function succr,f (lr,f , hr,f ,aHL) =
{l′r,f ∈ Lr,f , h′

r,f ∈ Hr,f |((lr,f , hr,f ,aHL), (l′r,f , h
′
r,f ,a

′
HL)) ∈

TA}, where TA is the transition relation in the action planner.
Compared to the transition relation TN , TA does not have
the obstacle location lo but includes locomotion actions aHL.
Given the current robot state and action, succr,f provides a
set of possible locations at the next turn in the game. Obstacle
avoidance is taken care of in the navigation game the obstacle
location Lo and successor function succo are not needed for
action planner synthesis. Since reactive synthesis is used for
both navigation and action planners, and the action planner

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 02,2023 at 13:31:34 UTC from IEEE Xplore. Restrictions apply.

12 IEEE TRANSACTIONS ON ROBOTICS

Fig. 10. Simulation showing how the navigation planner’s belief evolves when
the dynamic obstacle leaves the visible range for several turns. Six colored belief
regions are shown, as well as the robot (blue circle), the dynamic obstacle (orange
circle), and the static obstacles (red cells). Black cells represent nonvisible
cells believed to be obstacle-free while white cells are visible. The planner
believes the obstacle could be in any colored cell depicted and can, therefore,
reason where the obstacle could and could not reappear, allowing the planner to
determine which navigation actions are safe. (a) Env divided into belief regions.
(b) Obstacle before leaving visible range. (c) Obstacle not visible to robot.
(d) Obstacle not visible to robot. (e) Obstacle not visible to robot. (f) Obstacle
reappears in visible range.

guarantees the robot transition in the navigation game, the
correctness of this hierarchical task planner is guaranteed.

E. Belief Space Planning in a Partially Observable
Environment

The navigation planner synthesizes a safe game strategy that
is always winning but only in a fully observable environment.
We relax this assumption by assigning the robot a visible range
only within which the robot can accurately identify a dynamic
obstacle’s location. To reason about where an out-of-sight ob-
stacle could be, we devise an abstract belief set construction
method based on the work in [10]. Using this belief abstraction,
we explicitly track the possible discrete locations of a dynamic
obstacle, rather than assuming it could be in any nonvisible
cell. The abstraction is designed by partitioning regions of
the environment into sets of discrete belief regions (Rb) and
constructing a powerset of these regions (P(Rb)). We heuristi-
cally choose smaller partitions around static obstacles that may
block the robot’s view as this allows the planner to guarantee
collision-free navigation for a longer horizon like the scenario
depicted in Fig. 10. We index each set in P(Rb) to represent a

belief state bo ∈ Bo that captures nonvisible regions potentially
with a dynamic obstacle.

The fully observable navigation game structure is modified
to generate a partially observable belief-based navigation game
with an updated state Sbelief and transition system Tbelief . In
addition to the obstacle location lo ∈ Lo, Sbelief captures the
robot’s belief of the obstacle bo ∈ Bo. A visibility function
vis : Sbelief → B is added such that it maps the state (lr,c, lo)
to the Boolean B as True if and only if lo is a location in
the visible range of lr,c. We do not need to modify succna

since the dynamic obstacle only affects the possible one-step
robot action if it is in the visible range. succr also remains
the same as the relationship between the robot’s actions and its
state is not changed by the belief. The set of possible successor
beliefs of the obstacle location, b′o, is defined as succbo = {b′o ∈
Bo|((lr,c, bo, lo), (l′r,c, b′o, lo)) ∈ Tbelief} where b′o indexes ∅
when vis(lr,c, l′o) = True and b′o indexes a nonempty set in
P(Rb) when vis(lr,c, l′o) = False. By correctly specifying the
possible successor location of the obstacle based on the current
state, the planner is able to reason about how the belief region
will evolve and where the obstacle can enter the visible range.

The following four classes of belief transitions, shown in
Fig. 10, are defined for accurate belief tracking.

1) Visible to Visible: The obstacle may transition to any
adjacent visible cell.

2) Visible to Belief: The belief state represents the set of re-
gions containing nonvisible cells adjacent to the obstacle’s
previous visible location.

3) Belief to Belief: The next belief state represents the current
belief plus the belief regions the dynamic obstacle could
have entered given its limited motion capability.

4) Belief to Visible: The obstacle may be in any nonvisible
and may move to any adjacent cell, which defines the
visible cells it could appear in at the next time step.

This method of belief tracking guarantees that all real transi-
tions the obstacle can make during its turn are captured in the
planner’s belief. When the obstacle enters cells in a new belief
region, the planner believes it could be anywhere in that region;
therefore, the belief is an overapproximation of possible obstacle
locations. Selecting a coarser belief region will overrestrict the
allowable navigation actions and end up with a more conserva-
tive winning strategy, i.e., there are fewer navigation paths that
guarantee collision avoidance. We guarantee that the obstacle
is within the regions captured by the belief state; therefore, we
can guarantee that the obstacle can only appear in a visible cell
when there is a modeled transition from the current belief state
to that cell.

Since both the action planner and the allowable navigation
actions remain the same for the partially observable game, the
game captures the same safety guarantees but allows for a larger
set of navigation options than would be possible without tracking
the belief of the dynamic obstacle’s location.

F. Belief Tracking of Multiple Obstacles

Our task planner is extensible to environments with multiple
dynamic obstacles. It is possible to directly add any number of

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 02,2023 at 13:31:34 UTC from IEEE Xplore. Restrictions apply.

SHAMSAH et al.: INTEGRATED TAMP FOR SAFE LEGGED NAVIGATION IN PARTIALLY OBSERVABLE ENVIRONMENTS 13

TABLE I
SUCCESS RATE OF PERTURBED OWS TRANSITIONS

obstacles and their associated beliefs to the navigation planning
game; however, the synthesis has polynomial time complexity.
To improve computational tractability, we merge all nonvisible
obstacles’ believed states into one combined belief region. Rea-
soning about a combined belief region still allows the planner
to guarantee collision-free navigation without the complexity of
tracking each obstacle individually.

To model a combined belief state we separate the obstacles’
state from its belief. Each obstacle’s state is either a visible
cell on the grid or an index representing the obstacle is not
visible (lo,i,c ∈ Lo,i,c|Lo,i,c = Lo + Inv). The joint belief state
consists of the powerset of belief regions, including the empty
set when all obstacles are visible. (boj ∈ B|B = P(Rb)).

We generate a new multiobstacle game structure
Gcombined−belief := (Sbelief , sinitbelief , Tbelief , vis) with the
following.

1) Sbelief = Lr,c × Lo,i,c × Bo ×Hr,c ×Na.
2) sinitbelief = (linitr,c , l

init
o,i,c, {binito }, hinit

r,c , n
init
a) is the initial lo-

cation of the obstacle known a priori.
3) Tbelief ⊆ Sbelief × Sbelief are possible transitions where

((lr,c, lo,i,c, bo, hr,c, na), (l′r,c, l
′
o,i,c, b

′
o, h

′
r,c, n

′
a)) ∈

Tbelief .
4) vis : Sbelief → B is a visibility function that maps the state

(lr,c, lo,i) to the Boolean B asTrue iff lo,i is a real location
in the visible range of lr,c.

This game requires new specifications that govern succo,i
(lr,c, lo,i,c, b) and succb(lr,c, lo,i,c, b), the allowable successor
obstacle state and joint belief state, all other successor functions
remain the same. Even though the belief can represent multiple
obstacles, the possible belief-to-belief transitions are the same
as when the belief state represents a single obstacle. The key
specifications to be changed are those governing succbo when
an obstacle enters or exits the visible range.

VII. SAFE RECOVERABILITY AND REPLANNING

The proposed sequential composition of controllable regions
and reachability analysis in Section IV-B allows our middle-level
motion planner to be robust against perturbations exerted on
the CoM in the sagittal space. Given a keyframe transition
for OWS, the synthesized controller is able to guarantee that
the CoM state reaches the targeted state within OWS, thus
successfully completing an OWS safely. In Fig. 11(b), we show
the composition of controllable regions for multiple walking
steps and demonstrate that the CoM trajectory is recoverable
when employing the synthesized controller. Table I shows the
success rate for randomly generated keyframe transitions, where
the step length isd1 = 0.312m,d2 = 0.416m, andd3 = 0.52m.
The data are generated using ROCS [65] with 1000 runs for
each desired keyframe transition, a randomly selected ξc ∈ Ξc

Fig. 11. Results of OWS robust PSP. (a) 15 random keyframe transitions with
bounded disturbances Ξ̃execution, whereTOWS = (0.416 m, [0.45, 0.7] m/s).
(b) Composition of controllable regions of OWS. Here, we demonstrate that the
synthesized controller is able to handle the perturbed CoM trajectory, shown as
a black solid line, inside the superimposed controllable regions and successfully
complete multiple steps when controllable regions are composed as proposed in
Corollary IV.6.

and the applied disturbance bound at execution Ξ̃execution
12

are uniformly distributed within [−2, 2] m for the CoM posi-
tion and [−5, 5] m/s for the CoM velocity. The controllable
regions are synthesized with state space granularity of (0.002 m,
0.004 m/s), a control input ω ∈ [2.8, 3.5] rad/s with a granu-
larity of 0.02 rad/s, and the added noise bound at synthesis
Ξ̃synthesis is uniformly distributed within [−0.01, 0.01] m for
the CoM position and [−0.02, 0.02] m/s for the CoM velocity. In
Fig. 11(a), we show 15 successful random keyframe transitions
where vapex,n = [0.45, 0.7] m/s and d = 0.415 m. The offline
synthesis of the controller and controllable regions of a single
transition as described in Table I takes on average 3.6 s.

Large perturbations can push the system state outside of the
controllable regions and the synthesized controller cannot re-
cover to Tswitch. To safely recover from such large perturbations,
we employ a variant of the capture point formulation [63], [74]
to redesign the next foot position xfoot,n while maintaining the
desired vapex,n via the following formula:

xfoot,n = xswitch +
1

ω
(ẋ2

switch,dist + v2apex,n)
1/2 (7)

where xswitch is determined analytically based on the nominal
transition, and ẋswitch,dist is the postdisturbance sagittal CoM
velocity at switch instant and computed through a position guard
x = xswitch shown as the vertical dashed line in Fig. 12(a). The
nominal foot position is determined by the HL waypoint. In case
that the new foot location lands in a different fine cell, the online
integration mechanism between the HL and middle level will
update the action planner for a new waypoint location, as shown
in Fig. 12(b) and (c). The action planner reacts to the perturbation
by replanning d and ∆θ in aHL, which further induces a way-
point change at the next walking step. In particular, the nondeter-
ministic transition flag tnd = {nominal, forward,backward}

12During online execution, the applied disturbance ξ̃execution is an instanta-
neous jump in the system states and is significantly larger than the considered
disturbance during synthesis Ξ̃synthesis of the controllable regions.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 02,2023 at 13:31:34 UTC from IEEE Xplore. Restrictions apply.

14 IEEE TRANSACTIONS ON ROBOTICS

Fig. 12. Safe recovery from a large perturbation. (a) Sagittal phase-space plan,
where a position guard is used to determine a safe replanned foot location
to recover from the perturbation. (b) CoM trajectory in Cartesian space and
the online integration of the HL action planner and the middle-level PSP
for a waypoint modification. (c) Fragment of the synthesized action planner
automaton capturing modeled nondeterministic transitions (with the associated
flag tnd). For each next state of the environment (eHL), there is a set of game
states corresponding to all possible tnd. Blue transitions capture the replanned
execution when the robot CoM is perturbed forward while red transitions depict
a nominal execution without any perturbation. Numerical values for eHL and
aHL index distinct environment state and robot action sets in the algorithm
implementation.

indicates the perturbation direction. The automata shown in
Fig. 12(c) is a fragment from the larger action planner con-
sisting of 21 447 nodes. The navigation planner automaton has
20 545 nodes. Online resynthesis of these planner automata
is computationally intractable, and thus, we incorporate the
nondeterministic transition flag tnd into the automaton offline
synthesis and employ them online for action replanning.

Remark 3: It is common sense that any robotic system cannot
handle arbitrary large perturbations (due to limited actuation,
control capability, kinematics limits, etc.). Here, we merely

demonstrate that our replanning strategy (i.e., the nondeter-
ministic transitions in the action planner in Section VI-B) has
the potential to handle certain large perturbations such that the
CoM state is pushed outside the controllable region. Certainly,
there is no formal guarantee of recovery from extremely large
perturbations. Note that, the recovery is formally guaranteed
when the perturbed CoM is within the controllable region.

VIII. LL CONTROL IMPLEMENTATION

In this section, we design an LL full-body-dynamics-based
controller to track the motion plan from the TAMP framework
on the Digit bipedal robot [13]. The LL controller incorporates
the angular-momentum-based foot placement controller13 [11]
and the passivity-based controller [12] with modifications to
handle nonperiodic motion plans.

A. Nonperiodic Angular-Momentum-Based Foot Placement
Controller

For LL online execution, we build a foot placement controller
based on the ALIP [11], with a few critical modifications to track
nonperiodic phase-space plans. The motion plans between the
ALIP controller [11] and our PSP differ in three folds: 1) state
discretization; 2) step duration; and 3) the coordinate reference
frame. Therefore, we adapt our phase-space plan and modify the
ALIP controller to bridge these gaps.

First, the ALIP controller discretizes the ROM motion plan at
ξswitch while our PSP uses ξapex as keyframes. The phase-space
plan between two consecutive keyframes is further transformed
into an equivalent switching state, so it can be used by the ALIP
controller. In the lateral plane, the ALIP controller takes a desired
lateral velocity based on a periodic gait with fixed desired step
width, whereas our phase-space plan has varying step widths
and lateral velocities. We extend the ALIP controller to take in
nonperiodic lateral target velocities from the phase-space plan.

Another assumption in [11] is that each step has a constant du-
ration TALIP between ξswitch,c and ξswitch,n. The steps in PSP,
however, are nonperiodic, and the step time TPSP is the duration
between ξapex,c and ξapex,n. To command nonperiodic phase-
space plans to the ALIP controller, we relax the ALIP controller
to take a varying step time TALIP,c = tSHWS,p + tFHWS,c, as
shown in Fig. 13. Note that two consecutive steps may have
the same step time, i.e., TALIP,c = TALIP,n can be true even in
nonperiodic walking.

In Section IV-A, we propose a set of ROM-based safety
theorems to generate safe turning behaviors (see Fig. 6). In these
turning cases, however, the torso’s heading direction is changing
constantly and cannot be used as the reference frame. We instead
adopt the PSP waypoint’s heading direction as the reference
frame and align the stance toe with that reference frame. As such,
the target velocity in the next step needs a proper transformation
to the reference frame of the current walking step. For example,
the next-step trajectory from PSP is originally represented in that
step’s reference frame shown in red in Fig. 13. To command

13This controller modifies the foot placement from the phase-space plan to
improve velocity tracking performance and achieve safer maneuvering.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 02,2023 at 13:31:34 UTC from IEEE Xplore. Restrictions apply.

SHAMSAH et al.: INTEGRATED TAMP FOR SAFE LEGGED NAVIGATION IN PARTIALLY OBSERVABLE ENVIRONMENTS 15

Fig. 13. Transforming PSP to ALIP controller trajectory for the turning sce-
nario. During the current walking step, the desired switching velocity needs to be
transformed from the PSP representation ẋswitch,n (in the next-step coordinate
frame) to the current coordinate frame ẋswitch,n. After contact at ẋswitch,c,
the coordinate reference is rotated according to the turn, and both the current
switching velocity ẋswitch,c+ and ẋswitch,n are represented in the next frame
(red). In PSP, the coordinate transformation is executed at the apex state as
explained in Section IV-A and not switching state.

safe turning, PSP hyperparameters (e.g., CoM velocities and
foot placements) need to be transformed to the current reference
frame shown in black in Fig. 13. Fig. 13 shows the sagittal CoM
phase-space trajectory for three consecutive keyframes, where
ẋswitch,n is transformed from the next step’s reference frame to
the current one, as shown in red and black, respectively.

B. Passivity-Based Controller

At the LL, we implement a passivity-based controller to exe-
cute the phase-space plan from the middle-level motion planner.
First, we design a full-body reference trajectory for control.
We have, from PSP, the foot placement location and the CoM
position trajectory that comprise the hyperparameters of the
reference trajectory for each step. A smooth curve constructed
with a half-period cosine function connects the measured state
at the beginning of a step and the desired state at the end. The
curve is defined in the task space, and the state incorporates the
relative transformation between the CoM and two feet. A set
of geometry-based inverse kinematics functions construct the
full-body reference trajectory online.

We adopt the passivity-based controller [12] to achieve an
accurate tracking performance at the joint level. The passivity-
based controller preserves the natural dynamics, which is
more appealing compared to the input–output linearization
technique [76] that cancels these dynamics. Our controller
takes in the target acceleration q̈target(t) = q̈d(t) + kpqe(t) +
kdq̇

e(t), where q̈d(t) is the desired joint acceleration from the
full-body reference trajectory, qe(t) and q̇e(t) are the joint-level
errors for position and velocity, and kp and kd are the joint-level
PD gains. For Digit, the dimension of q is 28, including the
6-DoFs world-to-torso floating joint, two 4-DoFs arms, and
two 7-DoFs legs. The actuator torque is calculated based on
the full-order dynamics of the Digit robot. The passivity-based
controller achieves asymptotical tracking performance, i.e., the
joint position error qe(t) = qd(t)− q(t) converges to zero
asymptotically.

Our passivity-based controller has several key modifications
including the actuation at the toe joints and an acceleration
reference design. One common feature of popular dynamic
controllers [77], [78] for bipedal locomotion is the zero actuation
of the ankle actuator (providing zero or a small damping torque
to the ankle pitch and roll joints). The zero actuation allows
the stance foot to quickly comply with the ground incline at
the foot landing instant and makes the biped robot equivalent
to a point-foot robot, consistent with the PIPM. These con-
trollers rely on accurate foot placement to reach the desired
CoM velocity. A mismatch, however, usually exists between
the PIPM and the full-order model. This mismatch can lead
to nontrivial tracking errors, since the desired CoM velocity
trajectory, analytically determined by the PIPM, is not an accu-
rate description of how the full-order nonlinear system evolves.
Therefore, a foot placement calculated by the PIPM, although
accurately executed, would not necessarily drive the CoM to
the desired velocity. To this end, we adopt ankle control to
compensate for this model mismatch. The desired acceleration
of the torso is constructed using the feedback on the CoM
state: q̈torso,xy = g/h((pcom − pfoot) + kp,torso,xyqe

torso,xy +
kd,torso,xyq̇

e
torso,xy), where q̈torso,xy is the desired acceleration

for the torso in the horizontal plane. q̈torso,xy is a 2-D subvector
of its full vector, same for qe

torso,xy and q̇e
torso,xy . kp,torso,xy and

kd,torso,xy are the task-level PD gains. The torso acceleration
q̈torso,xy results in additional control efforts for the stance leg
including the ankle joints to trend the CoM toward the desired
velocity.

IX. IMPLEMENTATION AND RESULTS

This result section evaluates the performance of 1) the HL task
planner by assessing its task completion, collision avoidance,
and safe action execution; 2) the middle-level motion planner
by employing our designed keyframe decision maker to choose
proper keyframe states and generating safe locomotion trajec-
tories; and 3) the LL controllers for hardware implementation.
The open-source code can be found here https://github.com/
GTLIDAR/safe-nav-locomotion.git. A video of the simulations
is https://youtu.be/4nejt0X897E.

A. LTL Task Planning Implementation

The task planner is evaluated in an environment with multiple
static and dynamic obstacles, and two rooms with different
ground heights connected by a set of stairs, as shown in Fig. 14.
To generate the navigation planning abstraction, the environment
is discretized into a 10× 5 coarse grid, with a 2.7× 2.7 m2

cell size. Lr,c is the set of all accessible discrete cells, Hr,c

is the set of cardinal directions, and Na is a set of navigation
actions in those cardinal directions (N, E, S, W). Each coarse
cell is further discretized into a finer 26× 26 grid for local
action planning. We model the possible actions as step length
d ∈ {tiny, small, compact,medium, large,huge}, heading
change ∆θ ∈ {left,none, right}), and step height ∆zfoot ∈
{zdown2, zdown1, zflat, zup1, zup2}. The possible heading chan-
ges ∆θ ∈ {−22.5◦, 0◦, 22.5◦}, are constrained by the minimum
number of steps needed to make a 90◦ turn, and the maximum

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 02,2023 at 13:31:34 UTC from IEEE Xplore. Restrictions apply.

https://github.com/GTLIDAR/safe-nav-locomotion.git
https://github.com/GTLIDAR/safe-nav-locomotion.git
https://youtu.be/4nejt0X897E

16 IEEE TRANSACTIONS ON ROBOTICS

Fig. 14. 3-D motion plans visualized using the Drake toolbox [75] on the Cassie robot navigating in the partially observable environment while avoiding collisions
with two mobile robots. Cassie’s task is to move between designated initial and goal locations for package delivery. Trajectories of Cassie CoM, foot placements
as well as environment coarse-level cell abstraction are shown in (a). (b) 3-D view of the tested environment.

allowable heading angle change that results in viable keyframe
transitions as defined in Theorem IV.2. We choose∆θ = ±22.5◦

so that a 90◦ turn can be completed in four steps, as shown in
Fig. 9. Completing the turn in fewer steps is not feasible as it
would overly constrain vapex, as shown in Fig. 6(b). Due to the
allowable heading change of ±22.5◦, Hr,f contains a discrete
representation of the 16 possible headings the robot could have.

A set of specifications is designed to describe the allowable
successor locations and actions in the transition system. Here,
we only show a few specifications as examples

"
(
(hr,f = Hr,c ∧ ((ist = left ∧∆θ = right)

∨ (ist = right ∧∆θ = left)) ⇒ ©(d = medium)
)

(8)

"
(
(hr,f = Hr,c ∧ ((ist = left ∧∆θ = left)

∨ (ist = right ∧∆θ = right)) ⇒ ©(d = tiny)
)

(9)

which govern the step length during a turning process.
In the navigation planner, to encode that the pick-up and drop-

off locations are visited infinitely often, we use two intermediate
goal tracking APs as such: ("♦GT1) ∧ ("♦GT2). GT1 repre-
sents the robot’s goal of reaching the pick-up location, which
becomes true after visiting the drop-off location. Similarly, GT2

signifies the robot’s objective to reach the drop-off location.
Collision avoidance specifications are also designed but omitted
due to space limitations.

Both navigation and action planners are constructed by com-
bining environment assumptions and system specifications gen-
erated by the successor functions described in Sections VI-D
and VI-F into a transition system and using the LTL synthesis
tool SLUGS to generate a winning strategy. Synthesis occurs
offline, and the winning strategy is efficiently encoded in a
binary decision diagram [79], which can be accessed online
by interfacing the controller directly with SLUGS. At each

TABLE II
SUCCESSFUL MOTION PLAN RESULTS FOR THE PICK AND PLACE TASK

turn of the game, the controller computes the new abstracted
environment state and passes it to SLUGS, which returns the
corresponding system action.

B. Nominal Online Planning for a Reach-Avoid Task

The middle-level motion planner is able to generate CoM
trajectories of the ROM for a reach-avoid task between two target
locations infinitely often that includes traversing stairs, steer-
ing, stopping, and avoiding dynamic obstacles. The keyframe
decision maker, detailed in Section V, selects the optimal next
keyframe for waypoint tracking. The average execution time for
OWS in the middle level is 0.5 ms. The action planner interfaces
with the middle-level motion planner online to pass the action set
for the next keyframe. In the case when the keyframe decision
maker cannot satisfy the lateral tracking of HL waypoints in
Proposition V.1, a new nondeterministic transition from the ac-
tion planner is selected based on the modified lateral phase-space
plan online. The action planner receives the updated waypoint,
which allows the planner to choose the correct transition to the
next game state. Our simulation shows that the robot successfully
traverses uneven terrain to complete its navigation goals while
steering away from dynamic obstacles when they appear in the
robot’s visible range. The robot’s navigation trajectory is shown
in Fig. 14. The tracking results for multiple plans with different
obstacle paths are detailed in Table II using PSP parameters
given in Table III. Waypoint correction only occurs in the last

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 02,2023 at 13:31:34 UTC from IEEE Xplore. Restrictions apply.

SHAMSAH et al.: INTEGRATED TAMP FOR SAFE LEGGED NAVIGATION IN PARTIALLY OBSERVABLE ENVIRONMENTS 17

TABLE III
NOMINAL PSP PARAMETERS VALUES

Fig. 15. Illustration of online updating the HL waypoint to maintain lateral
tracking at the middle-level motion planner. The HL waypoint is also required
to keep a safe distance away from the adjacent coarse cell to avoid collisions
with static or dynamic obstacles. In this run, we set the safety boundary to be
six fine cells as shown in light blue.

step of a turning sequence due to the complexity of lateral track-
ing during steering scenarios. Out of 260 steps,14 12 steps result
in alternative discrete state transitions in the lateral direction,
all of which were seamlessly handled by the action planner, as
shown in Fig. 15.

C. Belief Space Planning

The belief abstraction in the navigation planner is successful
in tracking and bounding nonvisible obstacles as can be seen
in Fig. 10. The tracked belief enables the robot to navigate
around static obstacles while guaranteeing that the dynamic
obstacles are not in the immediate nonvisible vicinity. Fig. 16
depicts a snapshot of a simulation where the robot must navigate
around such an obstacle to reach its goal states. The grid world
environment is abstracted into 6 distinct belief regions resulting
in 64 possible belief states. A less conservative strategy can be
synthesized when using a belief abstraction. Without explicitly
tracking possible nonvisible obstacle locations, the task planner
believes the obstacle could be in any nonvisible cell when it
is out of sight, including the adjacent visible cell in the next

14The step count refers to the number of HL actions received by the middle-
level motion planner, which includes stopping actions.

Fig. 16. Snapshot of the coarse-level navigation grid during a simulation where
the robot (blue circle) is going between the two goal states (green cells) while
avoiding a static obstacle (red cells) and a dynamic obstacle (orange circle).
White cells are visible while grey and black cells are nonvisible. Gray cells
represent the planner’s belief of potential obstacle locations. The closest distance
the obstacle could be to the robot, as believed by the planner, is depicted by the
pink circle. (a) With explicit belief tracking. (b) No explicit belief tracking.

turn of the game. That means the planner cannot guarantee
collision avoidance and is not able to synthesize a strategy that
would allow the robot to advance. As such, the planner needs
to find an alternative, potentially more conservative navigation
path to win the game. Essentially, the winning strategy with
belief abstraction can generate more collision-free navigation
paths than the one without belief abstraction, which we refer to
as “a less conservative strategy.” Fig. 16(b) depicts a potential
collision that could occur in pink. This comparison underlines
the significance of the belief abstraction approach.

The belief abstraction provides additional information for
deciding long-horizon navigation actions beyond guaranteeing
immediate collision avoidance. In the simulation shown in
Fig. 14, it is challenging to navigate around the vision-occluding
static obstacles. The synthesized strategy reacts to the additional
information about the dynamic obstacle provided by belief
tracking in three distinct ways. Based on the belief, the robot
either 1) continues on the most direct route to the goal location;
2) loops around to the right and positions itself to be able to
go around either side of the static obstacle; or 3) stops until
the dynamic obstacle disappears. The planner can choose any
of these three strategies as long as all safety specifications are
met. This nondeterministic mechanism offers the task planner
flexibility in choosing safe navigation actions.

Generating global navigation task planners for two dynamic
obstacles using a joint belief abstraction requires only 40% of
the synthesis time as that of independently tracking the belief
state of each obstacle. Specifically, synthesizing a strategy for the
scene in Fig. 14 with two dynamic obstacles took 34 min using
joint belief tracking and 85 min when individually tracking the
belief of each obstacle.

D. Hardware Experiment Setup and Results

For Digit hardware experiments, we first test our velocity
tracking performance in a straight walking setting. The achieved
velocity tracking on Digit hardware is shown in Fig. 17. Provided
with the same desired reference trajectory, the ankle-actuated
velocity (shown in blue) is much closer to the target and keeps
the tracking error consistently small, whereas the passive ankle
velocity (shown in red) has a larger offset. Fig. 18 provides the
tracking performance of the key joints on the left leg. The vertical
black lines indicate the contact events. The tracking of the swing

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 02,2023 at 13:31:34 UTC from IEEE Xplore. Restrictions apply.

18 IEEE TRANSACTIONS ON ROBOTICS

Fig. 17. Sagittal velocity tracking performance of Digit hardware experiments.
Given the same desired reference trajectory, the ankle-actuated velocity (shown
in blue) achieves consistently small tracking errors, whereas the passive ankle
velocity (shown in red) has a larger offset.

leg is important for achieving accurate foot placements. We
achieve a satisfying performance—an error of less than 1 cm in
the task space. Fig. 18 shows torso’s Euler angle during a90◦ turn
while walking forward. The roll and pitch angles are kept flat at
0◦, and the yaw angle tracks five consecutive18◦ step commands.
We demonstrate the efficacy of the entire framework through a
navigation task in an open-world setting. The environment (see
Fig. 18) is discretized into a 6× 6 coarse grid, with a cell size
scaled down to 1 m2,15 with flat ground, static obstacles, and
two dynamic obstacles. The dynamic obstacles are Unitree A1
quadruped robots that perform their own navigation tasks shar-
ing the same space. The Digit robot, as the protagonist, performs
a navigation task—locomoting through the environment to two
target coarse cells in sequence while avoiding all obstacles. The
Digit robot can localize its own location with respect to the floor
map known a priori.

Using a 16-core Intel Xeon W-2245 CPU and an RTX-5000
GPU with 64 GB of memory, the offline synthesis of the global
navigation task planner for the environment depicted in Fig. 18,
took approximately 10 h.16 The digit robot runs the online
LL controller at a frequency of 1 kHz to generate a stable
walking motion following the ROM motion plan.17 This walking
sequence needs to guarantee execution safety (i.e., obstacle
collision avoidance and locomotion safety) and task completion
(i.e., reaching the goal locations). The navigation result is shown
in Fig. 18, where the Digit robot starts from the cell labeled with a
Digit illustration and target coarse cells are shaded green. Along
the way, one A1 gets in the way. Digit stops to avoid the collision
and then proceeds to finish the task when the path is clear.

15The coarse cell size is scaled down for a compelling real-world implementa-
tion. Step length d is scaled down accordingly and heading change is constrained
to ∆θ = ±18◦ with five consecutive turning steps for 90◦ turns.

16The synthesis for this environment takes a significantly longer time than
that of the environments introduced in Sections IX-B and IX-E because this
space is more open and allows for multiple winning strategies.

17The parameters in Algorithm 1 are adjusted for hardware implementation,
where Td = 0.45 s, Wd = 0.45 m, c1 = c2 = 4, c3 = 6, and c4 = 2.

E. Pick-and-Place Task

The pick-and-place task environment is relatively confined,
featuring six stair steps that lead to a higher platform, as shown
in Fig. 19(a). The offline synthesis of the global navigation task
planner takes approximately 38 min.

The sequence of actions begins with Digit picking up a
package from the shelf, executing a 90◦ stepping-in-place turn,
navigating through the environment, ascending the stairs, and
finally squatting to stack the box.

During the stair-climbing process, the HL planner determines
the presence of a stair in the upcoming step and communi-
cates this to the middle-level planner. The middle-level planner
then adjusts Digit’s position by commanding a step-in-place
maneuver before directing the LL controller to execute the
stair-climbing motion.

This task showcases our framework’s nonperiodic motion
plans capability with variable step length, step height, and step
duration. Additionally, it demonstrates the framework’s versa-
tility in composing complex multiphase locomotions, including
pick-up, navigation, stair climbing, and drop-off. Fig. 19(b)
shows the desired foot stance location, the measured stance
position, and the torso position in the x− z plane.

X. DISCUSSION AND LIMITATIONS

Design and Computational Considerations of Bipedal Navi-
gation: Belief tracking expands the guaranteed safe navigation
actions available to the navigation planner. Merging the belief of
multiple dynamic obstacles into one abstract state captures less
information than individual obstacle tracking by design. This
reduces computational complexity while providing the same
guarantees of capturing dynamic obstacle locations. One path
to enhance the proposed framework in the future is to model
small obstacles in the action planner so that an entire coarse cell
containing such obstacles is still accessible to the robot in the
navigation game.

Locomotion Safety Consideration in Real-world Deployment:
Our proposed safe PSP demonstrates the successful execution
of HL actions under nominal conditions for a large number of
walking steps as detailed in Table II. While the framework still
lacks a formal guarantee on successful lateral tracking of the HL
waypoints for an infinite number of steps or under extremely
large perturbations, our results show empirical guarantees af-
forded by the integration of the formal navigation and obstacle
avoidance guarantees in the HL task planner in Section VI,
ROM locomotion safety guarantees in Section IV-A, and the
online replanning algorithm for waypoint tracking in Section V.
The success rate of completing OWS safely under perturbation
highly depends on various factors such as the state-space granu-
larity, robot actuation capability, environmental uncertainties,
and the locomotion phase when the perturbation is applied.
A comprehensive analysis of the success rate with respect to
these factors is beyond the scope of this study. Moreover, the
reachability analysis is based on the ROM dynamics; therefore,
a discrepancy will be induced when full-body dynamics is taken
into account.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 02,2023 at 13:31:34 UTC from IEEE Xplore. Restrictions apply.

SHAMSAH et al.: INTEGRATED TAMP FOR SAFE LEGGED NAVIGATION IN PARTIALLY OBSERVABLE ENVIRONMENTS 19

Fig. 18. Hardware experiment results for Digit navigation tasks. For straight walking (left), we show multiple leg joint angles tracking performance. For steering
walking (center), we show CoM sagittal and lateral velocity tracking performance in the top and the middle figures, respectively, and torso Euler angles are shown
in the bottom figure. The overall navigation task is shown in the right figure.

Fig. 19. (a) Pick-and-place task environment with six stair steps and the HL
discretization of the environment. (b) Desired foot stance location, measured
stance position, and the torso position in the x− z plane.

Moreover, in practice, locomotion safety is difficult to be guar-
anteed at the LL for the full-order-dynamics-based controller.
Although existing works on CBF [58] provided guarantees for
full-order bipedal locomotion models, these guarantees can be
easily violated due to various hardware implementation issues
such as unmodeled actuator dynamics, communication delay,
and imperfect state estimation. Given this fact, we have de-
signed a full-order-dynamics-based controller implementation
to maximize the success rate of task completion and safety from
a practical perspective. Practically critical modifications to the
controller, such as time-varying step length and toe actuation,
have been incorporated to enable safety, although a theoretical
guarantee cannot be provided.

Hardware Implementation Issues Induced by Robot Model
Discrepancy: Implementing such a planning framework on hard-
ware gives rise to two main challenges, one relating to the HL
planner and one to the middle-level phase-space planner.

First, the abstraction of the robot state, while giving rise
to task completion guarantees, also limits the actions that the

robot can take to a specific granularity. Although we empiri-
cally demonstrate safety guarantee that our chosen granularity
produces a safe motion plan for the reduce-order model, such
safety guarantees might be compromised at the hardware level.

The middle-level phase-space planner is computationally effi-
cient and allows for nonperiodic motion plans. When we use the
plan of a ROM to control a full-order system, it is inevitable that
discrepancy issues will emerge. These discrepancies become
particularly apparent when considering elements such as body
orientation, which are not explicitly accounted for in the ROM.
In turning cases, a LL full-body motion generator has to bridge
the gap and design trajectories for the body orientation. We
used task-space heuristics and inverse kinematics to generate
the full-body trajectory for both turning and nonturning walking
(see Section VIII-B). Another problem caused by the model
mismatch is CoM velocity tracking. The desired CoM velocity
trajectory, which is analytically determined by the PIPM, is not
an accurate description of how the full-order nonlinear system
evolves. Therefore, a foot placement calculated by the PIPM,
although accurately executed, would not necessarily drive the
CoM to the desired velocity. This requires either a foot placement
adjustment based on the full-order dynamics or additional regu-
lation. We chose the second option and actuated the ankle torque
in the LL controller to provide better CoM velocity tracking
performance, as shown in Fig. 17.

XI. CONCLUSION

Long-horizon and formally-guaranteed safe TAMP in com-
plex environments with dynamic obstacles has long been a
challenging problem, specifically for underactuated bipedal sys-
tems. On the other hand, symbolic planners are powerful in
providing formal guarantees on safety and task completion in
complex environments. For this reason, integrating HL formal
methods and LL safe motion planning ought to be explored by

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 02,2023 at 13:31:34 UTC from IEEE Xplore. Restrictions apply.

20 IEEE TRANSACTIONS ON ROBOTICS

the locomotion community to attain formally safe TAMP for
real-world applications. The way we address this problem is
through multilevel safety in a hierarchically integrated planning
framework.

Our proposed TAMP framework integrates LL locomotion
safety specifications into a formal HL LTL synthesis to aim
toward providing safety guarantees on the execution of HL com-
mands from an empirical perspective. The middle-level motion
planner generates ROM motion plans that accurately execute
safe HL actions. Our HL planner employs a belief abstraction
to address the partial observability of a large environment and
guarantees safe navigation for the abstracted robot state. We also
investigate robustness against external perturbation through a
safe sequential composition of keyframe states to achieve robust
locomotion transitions. By employing an online foot placement
controller and a full-body passivity-based controller, the overall
TAMP framework is also validated on a 28-DoFs Digit bipedal
robot.

ACKNOWLEDGMENT

The authors would like to express our gratitude to Suda
Bharadwaj and Ufuk Topcu for their discussions on belief
abstraction, Yinan Li and Jun Liu for their assistance in the
reachability controller implementation, and Jialin Li for his
early-stage help in setting up our Cassie robot visualization. Spe-
cial thanks to Zhigen Zhao, Victor Paredes, Guillermo Castillo,
and Ayonga Hereid for their support on Digit simulation and
hardware implementation.

REFERENCES

[1] N. Bohórquez, A. Sherikov, D. Dimitrov, and P.-B. Wieber, “Safe naviga-
tion strategies for a biped robot walking in a crowd,” in Proc. IEEE 16th
Int. Conf. Humanoid Robots, 2016, pp. 379–386.

[2] A. Pajon and P.-B. Wieber, “Safe 3D bipedal walking through linear MPC
with 3D capturability,” in Proc. IEEE Int. Conf. Robot. Automat., 2019,
pp. 1404–1409.

[3] N. Scianca, P. Ferrari, D. De Simone, L. Lanari, and G. Oriolo, “A
behavior-based framework for safe deployment of humanoid robots,”
Auton. Robots, vol. 45, no. 4, pp. 435–456, 2021.

[4] M. Srinivasan and S. Coogan, “Control of mobile robots using barrier func-
tions under temporal logic specifications,” IEEE Trans. Robot., vol. 37,
no. 2, pp. 363–374, Apr. 2021.

[5] H. Kress-Gazit, M. Lahijanian, and V. Raman, “Synthesis for robots:
Guarantees and feedback for robot behavior,” Annu. Rev. Control, Robot.,
Auton. Syst., vol. 1, pp. 211–236, 2018.

[6] J. Jiang, Y. Zhao, and S. Coogan, “Safe learning for uncertainty-aware
planning via interval MDP abstraction,” IEEE Contr. Syst. Lett., vol. 6,
pp. 2641–2646, Jan. 1, 2022.

[7] C.-I. Vasile, J. Tumova, S. Karaman, C. Belta, and D. Rus, “Minimum-
violation scLTL motion planning for mobility-on-demand,” in Proc. IEEE
Int. Conf. Robot. Automat., 2017, pp. 1481–1488.

[8] V. Vasilopoulos et al., “Reactive semantic planning in unexplored semantic
environments using deep perceptual feedback,” IEEE Robot. Autom. Lett.,
vol. 5, no. 3, pp. 4455–4462, Jul. 2020.

[9] S. Feng, Z. Zhou, J. S. Smith, M. Asselmeier, Y. Zhao, and P. A.
Vela, “GPF-BG: A hierarchical vision-based planning framework for safe
quadrupedal navigation,” in Proc. IEEE Int. Conf. Robot. Automat., 2023,
pp. 1968–1975.

[10] S. Bharadwaj, R. Dimitrova, and U. Topcu, “Synthesis of surveillance
strategies via belief abstraction,” in Proc. IEEE Conf. Decis. Control, 2018,
pp. 4159–4166.

[11] Y. Gong and J. W. Grizzle, “Zero dynamics, pendulum models, and angular
momentum in feedback control of bipedal locomotion,” J. Dyn. Syst.,
Meas., Control, vol. 144, no. 12, 2022, Art. no. 121006.

[12] H. Sadeghian, C. Ott, G. Garofalo, and G. Cheng, “Passivity-based control
of underactuated biped robots within hybrid zero dynamics approach,” in
Proc. IEEE Int. Conf. Robot. Automat., 2017, pp. 4096–4101.

[13] A. Robotics, “Digit robot,” 2023. [Online]. Available: https://
agilityrobotics.com/robots

[14] S. Heim and A. Spröwitz, “Beyond basins of attraction: Quantifying
robustness of natural dynamics,” IEEE Trans. Robot., vol. 35, no. 4,
pp. 939–952, Aug. 2019.

[15] P. Zaytsev, W. Wolfslag, and A. Ruina, “The boundaries of walking
stability: Viability and controllability of simple models,” IEEE Trans.
Robot., vol. 34, no. 2, pp. 336–352, Apr. 2018.

[16] R. R. Burridge, A. A. Rizzi, and D. E. Koditschek, “Sequential composition
of dynamically dexterous robot behaviors,” Int. J. Robot. Res., vol. 18,
no. 6, pp. 534–555, 1999.

[17] J. Warnke, A. Shamsah, Y. Li, and Y. Zhao, “Towards safe locomotion
navigation in partially observable environments with uneven terrain,” in
Proc. IEEE Conf. Decis. Control, 2020, pp. 958–965.

[18] S. Teng, Y. Gong, J. W. Grizzle, and M. Ghaffari, “Toward safety-aware
informative motion planning for legged robots,” 2021, arXiv:2103.14252.

[19] K. V. Alwala and M. Mukadam, “Joint sampling and trajectory optimiza-
tion over graphs for online motion planning,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst., 2021.

[20] S. Kulgod, W. Chen, J. Huang, Y. Zhao, and N. Atanasov, “Temporal
logic guided locomotion planning and control in cluttered environments,”
in Proc. IEEE Amer. Control Conf., 2020, pp. 5425–5432.

[21] M. E. Cao, X. Ni, J. Warnke, Y. Han, S. Coogan, and Y. Zhao, “Leverag-
ing heterogeneous capabilities in multi-agent systems for environmental
conflict resolution,” in Proc. IEEE Int. Symp. Saf., Secur., Rescue Robot,
2022, pp. 94–101.

[22] S. Tonneau, P. Fernbach, A. D. Prete, J. Pettré, and N. Mansard, “2PAC:
Two-point attractors for center of mass trajectories in multi-contact sce-
narios,” ACM Trans. Graph., vol. 37, no. 5, pp. 1–14, 2018.

[23] Z. Zhou, D. J. Lee, Y. Yoshinaga, S. Balakirsky, D. Guo, and Y. Zhao,
“Reactive task allocation and planning for quadrupedal and wheeled
robot teaming,” in Proc. IEEE Int. Conf. Automat. Sci. Eng., 2022,
pp. 2110–2117.

[24] J. Jiang, S. Coogan, and Y. Zhao, “Abstraction-based planning for
uncertainty-aware legged navigation,” IEEE Open J. Control Syst., to be
published, doi: 10.1109/OJCSYS.2023.3296000.

[25] L. Wang, A. D. Ames, and M. Egerstedt, “Safe certificate-based maneuvers
for teams of quadrotors using differential flatness,” in Proc. IEEE Int. Conf.
Robot. Automat., 2017, pp. 3293–3298.

[26] E. Rimon, “Exact robot navigation using artificial potential functions,”
Ph.D. dissertation, Dept. Elect. Eng., Yale Univ., New Haven, CT, USA,
1990.

[27] J.-K. Huang and J. W. Grizzle, “Efficient anytime CLF reactive planning
system for a bipedal robot on undulating terrain,” IEEE Trans. Robot.,
2023.

[28] S. Kajita et al., “Biped walking pattern generation by using preview control
of zero-moment point,” in Proc. IEEE Int. Conf. Robot. Automat., vol. 2,
2003, pp. 1620–1626.

[29] J. Englsberger, C. Ott, and A. Albu-Schäffer, “Three-dimensional bipedal
walking control based on divergent component of motion,” IEEE Trans.
Robot., vol. 31, no. 2, pp. 355–368, Apr. 2015.

[30] J. Pratt, J. Carff, S. Drakunov, and A. Goswami, “Capture point: A step
toward humanoid push recovery,” in Proc. Int. Conf. Humanoid Robots,
2006, pp. 200–207.

[31] J.-P. Aubin, A. M. Bayen, and P. Saint-Pierre, Viability Theory: New
Directions. Berlin, Germany: Springer, 2011.

[32] Z. Li, J. Zeng, S. Chen, and K. Sreenath, “Autonomous navigation of
underactuated bipedal robots in height-constrained environments,” Int. J.
Robot. Res., to be published, doi: 10.1177/02783649231187670.

[33] S. Kuindersma et al., “Optimization-based locomotion planning, estima-
tion, and control design for the atlas humanoid robot,” Auton. Robots,
vol. 40, no. 3, pp. 429–455, 2016.

[34] A. Herdt, H. Diedam, P.-B. Wieber, D. Dimitrov, K. Mombaur,
and M. Diehl, “Online walking motion generation with automatic
footstep placement,” Adv. Robot., vol. 24, no. 5/6, pp. 719–737,
2010.

[35] Y. Ding, C. Khazoom, M. Chignoli, and S. Kim, “Orientation-
aware model predictive control with footstep adaptation for dynamic
humanoid walking,” in Proc. Int. Conf. Humanoid Robots, 2022,
pp. 299–305.

[36] G. Romualdi, S. Dafarra, G. L’Erario, I. Sorrentino, S. Traversaro, and
D. Pucci, “Online non-linear centroidal MPC for humanoid robot loco-
motion with step adjustment,” in Proc. Int. Conf. Robot. Automat., 2022,
pp. 10412–10419, doi: 10.1109/ICRA46639.2022.9811670.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 02,2023 at 13:31:34 UTC from IEEE Xplore. Restrictions apply.

https://agilityrobotics.com/robots
https://agilityrobotics.com/robots
https://dx.doi.org/10.1109/OJCSYS.2023.3296000
https://dx.doi.org/10.1177/02783649231187670
https://dx.doi.org/10.1109/ICRA46639.2022.9811670

SHAMSAH et al.: INTEGRATED TAMP FOR SAFE LEGGED NAVIGATION IN PARTIALLY OBSERVABLE ENVIRONMENTS 21

[37] C. Brasseur, A. Sherikov, C. Collette, D. Dimitrov, and P.-B. Wieber, “A
robust linear MPC approach to online generation of 3D biped walking
motion,” in Proc. Int. Conf. Humanoid Robots, 2015, pp. 595–601.

[38] G. Gibson, O. Dosunmu-Ogunbi, Y. Gong, and J. Grizzle, “Terrain-
adaptive, ALIP-based bipedal locomotion controller via model predictive
control and virtual constraints,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots.
Syst., 2022, pp. 6724–6731.

[39] R. Grandia, F. Jenelten, S. Yang, F. Farshidian, and M. Hutter, “Perceptive
locomotion through nonlinear model-predictive control,” IEEE Trans.
Robot., to be published, doi: 10.1109/TRO.2023.3275384.

[40] J. Shim, C. Mastalli, T. Corberes, S. Tonneau, V. Ivan, and S.
Vijayakumar, “Topology-based MPC for automatic footstep place-
ment and contact surface selection,” in Proc. IEEE Int. Conf.
Robot. Automat., London, United Kingdom, 2023, pp. 12226–12232,
doi: 10.1109/ICRA48891.2023.10160333.

[41] K. S. Narkhede, A. M. Kulkarni, D. A. Thanki, and I. Poulakakis, “A
sequential MPC approach to reactive planning for bipedal robots using
safe corridors in highly cluttered environments,” IEEE Robot. Autom. Lett.,
vol. 7, no. 4, pp. 11831–11838, Oct. 2022.

[42] L. P. Kaelbling and T. Lozano-Pérez, “Integrated task and motion planning
in belief space,” Int. J. Robot. Res., vol. 32, no. 9/10, pp. 1194–1227, 2013.

[43] H. Kress-Gazit, G. E. Fainekos, and G. J. Pappas, “Temporal-logic-based
reactive mission and motion planning,” IEEE Trans. Robot., vol. 25, no. 6,
pp. 1370–1381, Dec. 2009.

[44] J. A. DeCastro, J. Alonso-Mora, V. Raman, D. Rus, and H. Kress-
Gazit, “Collision-free reactive mission and motion planning for multi-
robot systems,” in Robotics Research. Berlin, Germany: Springer, 2018,
pp. 459–476.

[45] E. Plaku and S. Karaman, “Motion planning with temporal-logic specifica-
tions: Progress and challenges,” AI Commun., vol. 29, no. 1, pp. 151–162,
2016.

[46] S. Sarid, B. Xu, and H. Kress-Gazit, “Guaranteeing high-level behaviors
while exploring partially known maps,” Robot.: Sci. Syst. VIII, pp. 377–
384, 2013.

[47] M. R. Maly, M. Lahijanian, L. E. Kavraki, H. Kress-Gazit, and M. Y.
Vardi, “Iterative temporal motion planning for hybrid systems in partially
unknown environments,” in Proc. Int. Conf. Hybrid Syst.: Comput. Con-
trol, 2013, pp. 353–362.

[48] S. C. Livingston, R. M. Murray, and J. W. Burdick, “Backtracking temporal
logic synthesis for uncertain environments,” in Proc. IEEE Int. Conf.
Robot. Automat., 2012, pp. 5163–5170.

[49] U. Rosolia, A. Singletary, and A. D. Ames, “Unified multirate control:
From low-level actuation to high-level planning,” IEEE Trans. Autom.
Control, vol. 67, no. 12, pp. 6627–6640, Dec. 2022.

[50] S. Ragi and E. K. Chong, “UAV path planning in a dynamic environment
via partially observable Markov decision process,” IEEE Trans. Aerosp.
Electron. Syst., vol. 49, no. 4, pp. 2397–2412, Oct. 2013.

[51] C. Fulgenzi, A. Spalanzani, and C. Laugier, “Dynamic obstacle avoidance
in uncertain environment combining PVOs and occupancy grid,” in Proc.
IEEE Int. Conf. Robot. Automat., 2007, pp. 1610–1616.

[52] W. Chung et al., “Safe navigation of a mobile robot considering visibility of
environment,” IEEE Trans. Ind. Electron., vol. 56, no. 10, pp. 3941–3950,
Oct. 2009.

[53] L. Yang, Z. Li, J. Zeng, and K. Sreenath, “Bayesian optimization meets
hybrid zero dynamics: Safe parameter learning for bipedal locomotion
control,” in Proc. Int. Conf. Robot. Automat., Philadelphia, PA, USA, 2022,
pp. 10456–10462, doi: 10.1109/ICRA46639.2022.9812154.

[54] H. Dai and R. Tedrake, “Planning robust walking motion on uneven terrain
via convex optimization,” in Proc. Int. Conf. Humanoid Robots, 2016,
pp. 579–586.

[55] S. Caron, Q.-C. Pham, and Y. Nakamura, “Leveraging cone double descrip-
tion for multi-contact stability of humanoids with applications to statics
and dynamics,” in Proc. Robot., Sci. Syst., 2015, pp. 1–9.

[56] N. Smit-Anseeuw, C. D. Remy, and R. Vasudevan, “Walking with confi-
dence: Safety regulation for full order biped models,” IEEE Robot. Autom.
Lett., vol. 4, no. 4, pp. 4177–4184, Oct. 2019.

[57] R. Grandia, A. J. Taylor, A. D. Ames, and M. Hutter, “Multi-layered
safety for legged robots via control barrier functions and model predictive
control,” in Proc. IEEE Int. Conf. Robot. Automat., 2021, pp. 8352–8358.

[58] S.-C. Hsu, X. Xu, and A. D. Ames, “Control barrier function based
quadratic programs with application to bipedal robotic walking,” in Proc.
IEEE Amer. Control Conf., 2015, pp. 4542–4548.

[59] M. Dai, X. Xiong, and A. D. Ames, “Data-driven step-to-step dynamics
based adaptive control for robust and versatile underactuated bipedal
robotic walking,” 2022, doi: 10.48550/ARXIV.2209.08458.

[60] Z. Li et al., “Reinforcement learning for robust parameterized locomotion
control of bipedal robots,” in Proc. IEEE Int. Conf. Robot. Automat., 2021,
pp. 2811–2817.

[61] J. Siekmann, K. Green, J. Warila, A. Fern, and J. Hurst, “Blind bipedal stair
traversal via sim-to-real reinforcement learning,” 2021, arXiv:2105.08328.

[62] Y. Zhao and L. Sentis, “A three dimensional foot placement planner for
locomotion in very rough terrains,” in Proc. Int. Conf. Humanoid Robots,
2012, pp. 726–733.

[63] Y. Zhao, B. R. Fernandez, and L. Sentis, “Robust optimal planning and
control of non-periodic bipedal locomotion with a centroidal momentum
model,” Int. J. Robot. Res., vol. 36, no. 11, pp. 1211–1242, 2017.

[64] A. Shamsah, Z. Gu, J. Warnke, S. Hutchinson, and Y. Zhao, “Integrated
task and motion planning for safe legged navigation in partially observable
environments,” 2023, arXiv:2110.12097.

[65] Y. Li and J. Liu, “ROCS: A robustly complete control synthesis tool for
nonlinear dynamical systems,” in Proc. Int. Conf. Hybrid Syst.: Comput.
Control, 2018, pp. 130–135.

[66] P. Holmes et al., “Reachable sets for safe, real-time manipulator trajectory
design,” 2020, arXiv:2002.01591.

[67] S. Bansal, M. Chen, S. Herbert, and C. J. Tomlin, “Hamilton-Jacobi
reachability: A brief overview and recent advances,” in Proc. IEEE Conf.
Decis. Control, 2017, pp. 2242–2253.

[68] J. Liu, “Robust abstractions for control synthesis: Completeness via robust-
ness for linear-time properties,” in Proc. Int. Conf. Hybrid Syst.: Comput.
Control, 2017, pp. 101–110.

[69] L. Jaulin, M. Kieffer, O. Didrit, and E. Walter, Applied Interval Analysis
With Examples in Parameter and State Estimation, Robust Control and
Robotics. London, U.K.: Springer London Ltd., Aug. 2001.

[70] Y. Zhao, Y. Li, L. Sentis, U. Topcu, and J. Liu, “Reactive task and mo-
tion planning for robust whole-body dynamic locomotion in constrained
environments,” Int. J. Robot. Res., vol. 41, no. 8, pp. 812–847, 2022.

[71] N. Piterman, A. Pnueli, and Y. Sa’ar, “Synthesis of reactive(1) designs,”
in Verification, Model Checking, and Abstract Interpretation. Berlin, Ger-
many: Springer, 2006, pp. 364–380.

[72] R. Ehlers and V. Raman, “Slugs: Extensible GR (1) synthesis,” in Proc.
Int. Conf. Comput. Aided Verification, 2016, pp. 333–339.

[73] J. Alonso-Mora, J. A. DeCastro, V. Raman, D. Rus, and H. Kress-Gazit,
“Reactive mission and motion planning with deadlock resolution avoiding
dynamic obstacles,” Auton. Robots, vol. 42, no. 4, pp. 801–824, 2018.

[74] J. Englsberger, C. Ott, M. A. Roa, A. Albu-Schäffer, and G. Hirzinger,
“Bipedal walking control based on capture point dynamics,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots. Syst., 2011, pp. 4420–4427.

[75] R. Tedrake and the Drake Development Team, “Drake: Model-based
design and verification for robotics,” 2019. [Online]. Available: https:
//drake.mit.edu

[76] B. Morris and J. W. Grizzle, “Hybrid invariant manifolds in systems with
impulse effects with application to periodic locomotion in bipedal robots,”
IEEE Trans. Autom. Control, vol. 54, no. 8, pp. 1751–1764, Aug. 2009.

[77] Y. Gong et al., “Feedback control of a Cassie bipedal robot: Walking,
standing, and riding a Segway,” in Proc. IEEE Amer. Control Conf., 2019,
pp. 4559–4566.

[78] X. Xiong and A. Ames, “3-D underactuated bipedal walking via H-LIP
based gait synthesis and stepping stabilization,” IEEE Trans. Robot.,
vol. 38, no. 4, pp. 2405–2425, Aug. 2022.

[79] S. B. Akers, “Binary decision diagrams,” IEEE Trans. Comput, vol. TC-27,
no. 6, pp. 509–516, Jun. 1978.

Abdulaziz Shamsah (Student Member, IEEE) re-
ceived the B.S. degree in mechanical engineering
from Rensselaer Polytechnic Institute, Troy, NY,
USA, in 2016, and the M.S.E degree in mechanical
engineering and applied mechanics from the Univer-
sity of Pennsylvania, Philadelphia, PA, USA, in 2018.
He is currently working toward the Ph.D. degree in
mechanical engineering with the Georgia Institute of
Technology, Atlanta, GA, USA.

His research interest includes bipedal navigation in
real-world environments, formal methods, and safety

and robustness in locomotion.
Mr. Shamsah was awarded a fellowship from Kuwait University, Kuwait, in

2019.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 02,2023 at 13:31:34 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1109/TRO.2023.3275384
https://dx.doi.org/10.1109/ICRA48891.2023.10160333
https://dx.doi.org/10.1109/ICRA46639.2022.9812154
https://dx.doi.org/10.48550/ARXIV.2209.08458
https://drake.mit.edu
https://drake.mit.edu

22 IEEE TRANSACTIONS ON ROBOTICS

Zhaoyuan Gu (Student Member, IEEE) received the
B.S. degree in mechanical engineering from Tsinghua
University, Beijing, China, in 2018, and the M.S. de-
gree in mechanical engineering from Carnegie Mel-
lon University, Pittsburgh, PA, USA, in 2020. He is
currently working toward the Ph.D. degree in robotics
with the Georgia Institute of Technology, Atlanta,
GA, USA.

His research interest includes robust planning and
control for perturbed bipedal locomotion using for-
mal methods.

Jonas Warnke (Student Member, IEEE) received the
B.S. degree in mechanical engineering from the Uni-
versity of Illinois Urbana-Champaign. Champaign,
IL, USA, in 2017, and the M.S. degree in mechanical
engineering from the Georgia Institute of Technology,
Atlanta, GA, USA, in 2021.

Seth Hutchinson (Fellow, IEEE) received the Ph.D.
degree in electrical engineering from Purdue Univer-
sity, West Lafayette, IN, USA, in 1988.

He is currently the Executive Director of the Insti-
tute for Robotics and Intelligent Machines, Georgia
Institute of Technology, Atlanta, GA, USA, where
he is also a Professor and the KUKA Chair for
Robotics with the School of Interactive Computing.
In 1990, he joined the University of Illinois in Urbana-
Champaign (UIUC), where he was a Professor of
Electrical and Computer Engineering (ECE) until

2017, and the Associate Department Head of ECE from 2001 to 2007. He
is currently an Emeritus Professor of ECE with UIUC. He has served on the
organizing committees for more than 100 conferences, has more than 300
publications on the topics of robotics and computer vision, and is coauthor of the
books Robot Modeling and Control (Wiley), and Principles of Robot Motion:
Theory, Algorithms, and Implementations (MIT Press).

Dr. Hutchinson was the President of the IEEE Robotics and Automation
Society (RAS) during 2020–2021. He has previously served as a member of the
RAS Administrative Committee, as the Editor-in-Chief for IEEE TRANSACTIONS
ON ROBOTICS and as the founding Editor-in-Chief of the RAS Conference
Editorial Board.

Ye Zhao (Senior Member, IEEE) received the Ph.D.
degree in mechanical engineering from The Univer-
sity of Texas at Austin, Austin, TX, USA, in 2016.

He was a Postdoctoral Fellow with the John A.
Paulson School of Engineering and Applied Sciences,
Harvard University, Cambridge, MA, USA. He is
currently an Assistant Professor with the George W.
Woodruff School of Mechanical Engineering, Geor-
gia Institute of Technology, Atlanta, GA, USA. His
research interests include robust task and motion
planning, contact-rich trajectory optimization, formal

methods for legged locomotion and navigation.
Dr. Zhao is an Associate Editor for IEEE TRANSACTIONS ON ROBOTICS, IEEE

ROBOTICS AND AUTOMATION LETTERS, and IEEE CONTROL SYSTEMS LETTERS.
He is a Co-Chair of the IEEE Robotics and Automation Society (RAS) Technical
Committee on Whole-Body Control and was a Co-Chair of the IEEE RAS
Student Activities Committee. He is a recipient of a CAREER Award from
the National Science Foundation in 2022 and a Young Investigator Award from
the Office of Naval Research in 2023.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

Authorized licensed use limited to: Georgia Institute of Technology. Downloaded on September 02,2023 at 13:31:34 UTC from IEEE Xplore. Restrictions apply.

