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CERTIFYING THE ABSENCE OF SPURIOUS LOCAL MINIMA AT
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Abstract. When searching for global optima of nonconvex unconstrained optimization problems,
it is desirable that every local minimum be a global minimum. This property of having no spurious
local minima is true in various problems of interest nowadays, including principal component analysis,
matrix sensing, and linear neural networks. However, since these problems are noncoercive, they
may yet have spurious local minima at infinity. The classical tools used to analyze the optimization
landscape, namely the gradient and the Hessian, are incapable of detecting spurious local minima
at infinity. In this paper, we identify conditions that certify the absence of spurious local minima at
infinity, one of which is having bounded subgradient trajectories. We check that they hold in several
applications of interest.
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1. Introduction. The idea that the absence of spurious local minima alone does
not guarantee the success of first-order methods was first expressed in the context of
binary classification in the mid-nineties. It was shown that gradient trajectories are
bounded if the objective function satisfies several technical conditions tailored to the
problem at hand [4, Theorems 3.6--3.8]. This property was referred to as having
no attractors at infinity. More recently, it was proved that adding an exponential
neuron to a wide class of neural networks eliminates all spurious local minima [33],
but it was soon realized that this procedure simply sends them to infinity [42]. These
results suggest that besides spurious local minima, a certain notion of spurious local
minima at infinity also affects the convergence of first-order methods to global optima.
However, the current optimization literature lacks a precise definition of local minima
at infinity, and, accordingly, there is little theoretical understanding of them. Worse
still, classical tools for landscape analysis, such as the gradient and the Hessian, cannot
detect spurious local minima at infinity even in simple scenarios (see Example 1.1),
let alone handle nonsmooth functions without a gradient.

Example 1.1. Consider an instance of matrix completion problem, i.e., minimize

f(x1, x2, y1, y2) := (x1y1  - 1)2 + (x2y1  - 1)2 + (x2y2  - 1)2.

By solving \nabla f(x1, x2, y1, y2) = 0, the set of critical points of f can be decomposed
into four connected components:

C1 = \{ (x1, x2, y1, y2) = (t, t,1/t,1/t) | t\in \BbbR \setminus \{ 0\} \} ,
C2 = \{ (x1, x2, y1, y2) = (t,0,1/t, - 1/t) | t\in \BbbR \setminus \{ 0\} \} ,
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SPURIOUS LOCAL MINIMA AT INFINITY 1417

Fig. 1. Gradient method initialized uniformly at random in [ - 1,1]4 with constant step size 0.01
sometimes gets stuck at a spurious local minimum at infinity (3 among 10 trails in the experiment).

C3 = \{ (x1, x2, y1, y2) = (t, - t,0, - 1/t) | t\in \BbbR \setminus \{ 0\} \} ,
C4 = \{ (x1, x2, y1, y2) = (0,0,0,0)\} .

The critical values are f(C1) = \{ 0\} , f(C2) = f(C3) = \{ 2\} , and f(C4) = \{ 3\} . Fur-
thermore, C1 is the set of global minima, and by computing the Hessian \nabla 2f , we
find that it has positive and negative eigenvalues at all points in C2, C3, and C4.
Therefore, f has no spurious local minima and all saddle points are strict [30, Defini-
tion 2]. One would expect first-order methods like gradient descent to converge to a
global minimum for almost all initial points [30, Theorem 11]. However, the numerical
experiments in Figure 1 show otherwise. This is because the function is not coercive.

Two newly proposed concepts related to spurious local minima at infinity are
setwise local minima [27] and spurious valleys [44]. Setwise local minima [27, Defini-
tion 2.5] generalize the notion of local minima from points to compact sets. The first
author and co-authors recently established that the uniform limit (on all compact
subsets) of a sequence of continuous functions which are devoid of spurious setwise
local minima is itself devoid of spurious strict setwise local minima [27, Proposition
2.7]. However, due to the boundedness assumption, setwise local minima cannot be
directly used to study spurious local minima at infinity. Spurious valleys [44, Defi-
nition 1] do have the potential to handle spurious local minima at infinity but they
fail to detect them when there are flat regions, such as in the ReLU network with
one-hidden layer (x1, x2) \mapsto \rightarrow (x2max\{ x1,0\}  - 1)2 (see Figure 2). Spurious valleys also
rely on the notion of path-connectedness, which is actually not necessary for defining
spurious local minimum at infinity. In this paper, we extend the concept of setwise
local minima by relaxing the boundedness assumption. This enables us to define
spurious local minima at infinity as unbounded setwise local minima over which the
infimum of the objective function is greater than the global infimum. It also allows
us to handle classical spurious local minima and flat regions in a unified way.

An existing strategy to analyze the landscape of noncoercive functions is to con-
struct a strictly decreasing path to a global minimum from any initial point. Such a
path was shown to exist in half-rectified neural network [22]. This strategy is used
to prove the existence of spurious local minima in neural networks with almost all
nonlinear activations [15]. It also explains the phase transition from the existence of
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1418 C\'EDRIC JOSZ AND XIAOPENG LI

Fig. 2. Function devoid of spurious valleys containing a spurious local minimum at infinity.

suboptimal basins in narrow networks to their disappearance in wide networks [31].
Finally, it is used to prove the absence of spurious valleys for over-parametrized one-
hidden layer neural network [44]. However, such a strategy needs to be tailored to each
application since one needs to select a particular path for each specific loss function.
In this paper, we instead develop a theory allowing one to use a common decreasing
path--- subgradient trajectory---to analyze the landscape in various different contexts.
We can then rule out spurious setwise local minima (and thus those at infinity) for a
general class of functions. Our main result is as follows.

Theorem 1.2. Suppose a locally Lipschitz function is bounded below, admits a
chain rule, has finitely many critical values, and has bounded subgradient trajectories.
Then it has no spurious local minima if and only if it has no spurious setwise local
minima.

The above statement is meant to help readers get a first taste of our main result
in this paper. Precise definitions and a detailed mathematical background will be
given in the main body,1 along with a discussion on the role of its assumptions. Let
us mention already that two of its assumptions, namely those regarding the chain
rule and critical values, automatically hold for functions definable in an o-minimal
expansion of the real field [43] (by [6, Proposition 2 (iv)] and the definable Morse--
Sard theorem [5, Corollary 9 (ii)]). This includes semialgebraic, globally subanalytic,
and log-exp functions, and, importantly, many applications of interest nowadays [6,
section 4.1]. The locally Lipschitz and lower bounded assumptions usually come for
free in applications, so that in practice the sole assumption that one needs to check
for is that subgradient trajectories are bounded. Theorem 1.2 thus serves as a handy
device to conclude that there are no spurious setwise local minima for a family of
functions that are widely used in machine learning, especially in deep neural networks
and matrix sensing. We summarize the problems that we are going to consider in the
following corollary.

1The terminology in the theorem will be given in Definition 2.8 (locally Lipschitz), Definition
2.13 (chain rule), Definition 2.12 (bounded subgradient trajectories), and Definition 2.2 (setwise local
minimum).
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SPURIOUS LOCAL MINIMA AT INFINITY 1419

Corollary 1.3. The following problems have no spurious local minima at in-
finity:

1. deep linear neural network

inf
W1,...,WL

\| WL \cdot \cdot \cdot W1X  - Y \| 2F ;

2. one dimensional deep neural network with sigmoid activation function \sigma 

inf
w1,...,wL

(wL\sigma (wL - 1 \cdot \cdot \cdot \sigma (w1x)) - y)2;

3. matrix recovery with restricted isometry property (RIP)

inf
X,Y

1

2m

m\sum 

i=1

(\langle Ai,XY T\rangle F  - bi)
2;

4. nonsmooth matrix factorization where rank(M) = 1 and Mij \not = 0

inf
x,y

m\sum 

i=1

n\sum 

j=1

| xiyj  - Mij | .

Again, the statement above aims at giving readers some feeling on what type of
functions we are considering. More rigorous descriptions of the applications will be
given in the main body.

The paper is organized as follows. Section 2 contains background material on
setwise local minima, the Clarke subdifferential, and subgradient trajectories. Section
3 contains the proof of our main result, namely Theorem 1.2. Finally, section 4
contains applications of our main result as delineated in Corollary 1.3.

2. Background. This section contains prerequisites for the proof of Theorem 1.2
in the next section. Throughout this paper, unless otherwise specified, we always equip
the Euclidean space \BbbR n with an inner product \langle \cdot , \cdot \rangle and its induced norm \| \cdot \| :=

\sqrt{} 
\langle \cdot , \cdot \rangle .

2.1. Setwise local minimum. In this subsection, we present the formal defi-
nitions and some useful properties of setwise local minimum and local minimum at
infinity mentioned in section 1. We first review the classical definition of local and
global minima. Throughout this paper, B(x, \epsilon ) denotes the open ball centered at
x\in \BbbR 

n with radius \epsilon > 0.

Definition 2.1. A point x \in \BbbR 
n is a local minimum (respectively, global min-

imum) of a function f : \BbbR n \rightarrow \BbbR if f(x) \leqslant f(y) for all y \in B(x, \epsilon ) for some \epsilon > 0
(respectively, y \in \BbbR 

n). A local minimum is spurious if it is not a global minimum.

From Definition 2.1, one can see the definition of a local minimum only considers
the landscape of a function at any finite point. To discuss the function landscape
at infinity, we generalize the notion of setwise local minimum first proposed in [27,
Definition 2.5].

Definition 2.2 (setwise local minimum). A nonempty closed subset S \subset \BbbR 
n is

a setwise local minimum of a continuous function f : \BbbR n \rightarrow \BbbR if there exists an open
set U \subset \BbbR 

n such that S \subset U and f(x)\leqslant f(y) for all x\in S, y \in U \setminus S.
It is easy to see that a local minimum is a setwise local minimum by taking S to

be a singleton. We also define a strict setwise local minimum by replacing f(x)\leqslant f(y)
with f(x)< f(y) in Definition 2.2.
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1420 C\'EDRIC JOSZ AND XIAOPENG LI

Fig. 3. Local minimum at infinity of f(w1,w2) =
1
2
[(w2\sigma (w1) - 1)2 + (w2\sigma ( - w1) + 3)2].

Definition 2.3 (setwise global minimum). A subset S of \BbbR n is a setwise global
minimum of a function f :\BbbR n \rightarrow \BbbR if S is a setwise local minimum of f and infS f =
inf\BbbR n f .

Note that infS f is a shorthand for infx\in S f(x), and similar for supS f and maxS f .
Setwise local minima include setwise global minima as a special case, and we say a
setwise local minimum is spurious if it is not a setwise global minimum. Note that
Definition 2.2 is not exactly the same as [27, Definition 2.5] because we do not require
a setwise local minimum to be a compact set. In other words, a setwise local minimum
can be either bounded or unbounded, and we say a (spurious) setwise local minimum
is a (spurious) local minimum at infinity if it is unbounded. For example, consider
the loss function of a one-hidden layer neural network with sigmoid activation \sigma and
two data points (1,1) and ( - 1, - 3) in Figure 3. One can see that S is a setwise local
minimum (in particular, a local minimum at infinity) and U is the corresponding open
set in Definition 2.2. Finally, observe that \BbbR 

n is a strict setwise local minimum at
infinity of any function.

Now we introduce one of the most useful properties of setwise local minima in
Lemma 2.4. This property is intuitive and will be used in different scenarios through-
out this paper. Let \=S, S\circ , and \partial S := \=S\setminus S\circ respectively denote the closure, interior,
and boundary of a subset S of \BbbR n.

Lemma 2.4. If S is a setwise local minimum of a continuous function f :\BbbR n \rightarrow \BbbR ,
then f(x) = supS f for all x\in \partial S.

Proof. See Appendix A for the proof.

It is worth relating our notion of setwise local minimum to the concept of valley
proposed in [44, Definition 1]. A valley of a function f : \BbbR n \rightarrow \BbbR is defined as a
path-connected component2 of a sublevel set of f . These two definitions are distinct
in general. The interval [ - 1,1] is a setwise local minimum of f : \BbbR \rightarrow \BbbR defined
by f(x) := 0 for all x \in \BbbR yet it is not a valley. Conversely, X := \{ (x1, x2) \in 
(\BbbR \setminus \{ 0\} ) \times \BbbR | x2 = sin(1/x1)\} is a valley of f : \BbbR 2 \rightarrow \BbbR , where f is defined as
the distance between x and X, yet it is not a setwise local minimum since it is not

2A subset S of \BbbR 
n is path-connected if for all x, y \in S, there exists a continuous function

\gamma : [0,1] \rightarrow S such that \gamma (0) = x and \gamma (1) = y. A maximal path-connected connected set is called a
path-connected component. Path-connected components can be viewed as equivalence classes over a
set.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.
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SPURIOUS LOCAL MINIMA AT INFINITY 1421

closed. (The sublevel set of f corresponding to the value zero is composed of two
path-connected components, namely X and \{ 0\} \times [ - 1,1], whose union is X.) Under
some mild conditions, their relation can be summarized in Proposition 2.5.

Proposition 2.5. For a continuous function from \BbbR 
n to \BbbR ,

(a) a path-connected component of a strict setwise local minimum (respectively,
setwise local minimum) is a valley (respectively, subset of a valley);

(b) a connected component3 of a sublevel set which has finitely many connected
components is a strict setwise local minimum.

Proof. See Appendix B for the proof.

Remark 2.6. The assumption on finiteness of connected components is necessary,
or else counterexample may occur when the function is oscillatory. For example,

f(x) :=

\Biggl\{ 
0 if x\leqslant 0,

x2 sin 1
x if x> 0.

The function f is continuous on \BbbR , but the sublevel set \{ x\in \BbbR | f(x)\leqslant 0\} has infinitely
many connected components. Take a connected component C1 = ( - \infty ,0] (also path-
connected, thus a valley), and it is not a setwise local minimum because for any open
set U containing C1, there exists some x0 \in N such that f(x0)< 0.

Finally, we discuss the case of coercive functions. Recall that a function f :\BbbR n \rightarrow 
\BbbR is coercive if f(x)\rightarrow \infty as \| x\| \rightarrow \infty .

Proposition 2.7. If a continuous function from \BbbR 
n to \BbbR is coercive, then it has

no spurious local minima at infinity.

Proof. See Appendix C for the proof.

In many statistical learning problems, the loss functions without regularizer are
usually not coercive, so spurious local minima at infinity may exist. Therefore, it is
important to develop some device to check whether or not spurious local minima exist
so that optimization algorithms can be designed to avoid getting trapped in them.

2.2. Clarke subdifferential. In this subsection, we will review some concepts
and results on generalized derivative in the sense of Clarke [11, p. 27], since Theorem
1.2 also considers nonsmooth functions.

Definition 2.8. A function f : \BbbR n \rightarrow \BbbR 
m is locally Lipschitz if for all a \in \BbbR 

n,
there exist positive constants r and L such that

\forall x, y \in B(a, r), \| f(x) - f(y)\| \leqslant L\| x - y\| .

Notice that for a locally Lipschitz function, by [20, Theorem 3.2], the derivative
exists almost everywhere. Without any assumption on convexity, in order to ensure
the existence of a subdifferential, we adopt the notion of Clarke subdifferential.

Definition 2.9 (see [11, p. 27]). Let f :\BbbR n \rightarrow \BbbR be a locally Lipschitz function.
The Clarke subdifferential is the set-valued mapping \partial f from \BbbR 

n to the subsets of \BbbR n

defined for all x\in \BbbR 
n by

3A subset S of \BbbR 
n is disconnected if there exist nonempty disjoint open (in S) sets A and B

such that S = A \cup B. It is connected if it is not disconnected. A maximal connected set is called a
connected component.
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1422 C\'EDRIC JOSZ AND XIAOPENG LI

\partial f(x) := \{ s\in \BbbR 
n | f\circ (x,d)\geqslant \langle s, d\rangle for all d\in \BbbR 

n\} ,

where

f\circ (x,d) := limsup
y \rightarrow x
t\searrow 0

f(y+ td) - f(y)

t
.

It is well known that for any locally Lipschitz function f and any x \in \BbbR 
n, the

Clarke subdifferential \partial f(x) is a nonempty, convex, and compact set [11, Proposition
2.1.2(a)]. Similar to differentiable functions, a point x\in \BbbR 

n is called a (Clarke) critical
point if 0 \in \partial f(x). A real number y is called a (Clarke) critical value of f if there
exists a (Clarke) critical point x\in \BbbR 

n of f such that f(x) = y.

2.3. Subgradient trajectory. In this subsection, we will introduce some basic
concepts and fundamental properties related to subgradient trajectories.

Definition 2.10 (see [2, Definition 1, p. 12]). Given two real numbers a < b, a
function x : [a, b]\rightarrow \BbbR 

n is absolutely continuous if for all \epsilon > 0, there exists \delta > 0 such
that, for any finite collection of disjoint subintervals [a1, b1], . . . , [am, bm] of [a, b] such
that

\sum m
i=1 bi  - ai \leqslant \delta , we have

\sum m
i=1 \| x(bi) - x(ai)\| \leqslant \epsilon .

By virtue of [36, Theorem 20.8], x : [a, b] \rightarrow \BbbR 
n is absolutely continuous if and

only if it is differentiable almost everywhere on (a, b), its derivative x\prime is Lebesgue
integrable, and x(t) - x(a) =

\int t

a
x\prime (\tau )d\tau for all t\in [a, b]. Given a noncompact interval

I of \BbbR , x : I \rightarrow \BbbR 
n is absolutely continuous if it is absolutely continuous on all compact

subintervals of I.
An absolutely continuous function x : [0,\infty )\rightarrow \BbbR 

n is called a subgradient trajectory
of f :\BbbR n \rightarrow \BbbR starting at x0 \in \BbbR 

n if it satisfies the following differential inclusion with
initial condition:

(2.1) x\prime (t)\in  - \partial f(x(t)) for almost every t\geqslant 0, x(0) = x0,

where ``almost every"" means all elements except for those in a set of zero measure.
However, a subgradient trajectory may not always exist for arbitrary f , even if f

is a smooth function. Let f(x) = - 1
3x

3 and x0 = 1, then it is easy to see x(t) = 1
1 - t is

the unique solution for t\in [0,1) and it cannot be extended to an absolutely continuous
function on [0,\infty ) due to the singularity at t= 1. In this case, one would seek a family
of functions including many loss functions arising in applications that guarantee the
existence of a subgradient trajectory. We say a function f :\BbbR n \rightarrow \BbbR is bounded below
if inf\BbbR n f = c >  - \infty . It was shown in [34, Theorem 3.2] that a primal lower nice
function bounded below by a linear function suffices. However, in general it is not
easy to check whether those nonconvex functions in statistical learning problems are
primal lower nice. For easily checkable conditions, the following result generalized
from [41, Proposition 2.3] for differentiable functions tells us that a locally Lipschitz
function bounded below also suffices.

Proposition 2.11. If f : \BbbR n \rightarrow \BbbR is locally Lipschitz and bounded below, then
there exists a subgradient trajectory of f starting at arbitrary x0 \in \BbbR 

n.

Proof. See Appendix D for the proof.

We remark here that with Proposition 2.11, one can recover Ekeland's variational
principle [19, Corollary 2.3] [25, Corollary] for locally Lipschitz lower bounded func-
tions with a chain rule (see [24, Theorem 3.1] for an extension to lower semicontinuous
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SPURIOUS LOCAL MINIMA AT INFINITY 1423

lower bounded functions). Indeed, Proposition 2.11 implies that for all \epsilon > 0, there
exists (x, s)\in graph \partial f such that f(x)\leqslant inf f + \epsilon and \| s\| \leqslant \epsilon .4 Note that Proposition
2.11 only guarantees the existence of a solution to (2.1) for all t\geqslant 0, but the solution
x(t) could go to infinity as t\rightarrow \infty . This motivates the following definition.

Definition 2.12. A locally Lipschitz lower bounded function f : \BbbR n \rightarrow \BbbR has
bounded subgradient trajectories if for any x0 \in \BbbR 

n, there exists a subgradient trajec-
tory x of f starting at x0 and a constant r > 0, such that \| x(t)\| \leqslant r for all t\geqslant 0.

Finally, notice that when f is continuously differentiable, by [11, Proposition
2.2.4], (2.1) reduces to the classical Cauchy problem of differential equation

x\prime (t) = - \nabla f(x(t)) for all t\geqslant 0, x(0) = x0

and subgradient trajectory reduces to gradient trajectory by imposing x to be contin-
uously differentiable. Recall the descent property of gradient trajectories [1, Proposi-
tion 17.1.1], i.e., f \circ x is a decreasing function for any gradient trajectory x of f . We
want this nice property to hold even in the general case when f is only locally Lip-
schitz. We adopt the notion of chain rule in [14, Definition 5.1]. Note that functions
admitting a chain rule are also referred to as path differentiable [6, Definition 3].

Definition 2.13. Let f :\BbbR n \rightarrow \BbbR be locally Lipschitz. We say f admits a chain
rule if for any absolutely continuous function x : [0,\infty )\rightarrow \BbbR 

n, we have

(f \circ x)\prime (t) = \langle v,x\prime (t)\rangle for all v \in \partial f(x(t)),

for almost every t\in [0,\infty ).

Thus, for any locally Lipschitz function that admits a chain rule, by [14, Lemma
5.2], the function value is always decreasing in time along the subgradient trajectory.
A detailed discussion on what class of functions admits a chain rule can be found in
[6]. Note that general Lipschitz functions are far from admitting a chain rule since
they generically have a maximal Clarke subdifferential [7, 12, 13].

3. Proof of Theorem 1.2. This section contains the proof of the main result,
i.e., Theorem 1.2. After the proof, we will explain the necessity of the assumptions
in Theorem 1.2 by raising some counterexamples. For emphasis, we summarize all
assumptions in Theorem 1.2 below.

Assumption 3.1. Let f :\BbbR n \rightarrow \BbbR be a function such that it
(a) is bounded below, namely, inf\BbbR n f > - \infty ;
(b) is locally Lipschitz continuous on \BbbR 

n; see Definition 2.8;
(c) admits a chain rule; see Definition 2.13;
(d) has finitely many critical values; see subsection 2.2;
(e) has bounded subgradient trajectories; see Definition 2.12.

Proof of Theorem 1.2. Let f :\BbbR n \rightarrow \BbbR be a function satisfying Assumption 3.1 If
f has no spurious setwise local minima, then f has no spurious local minima. We next
prove the converse. Let S \subset \BbbR 

n be a setwise local minimum of f . We seek to show
that S is a setwise global minimum of f . If S\circ = \emptyset , then by Lemma 2.4 f(x) = supS f
for all x \in \partial S = \=S\setminus S\circ = S since S is closed by Definition 2.2. Thus f is constant on
S. By definition of setwise local minima (Definition 2.2), there exists an open subset

4This follows from the formula f(x(t))  - inf f \geqslant 
\int \infty 

t
d(0, \partial f(x(\tau )))2d\tau , where d(x,X) :=

infy\in X \| x - y\| (see [14, Lemma 5.2] and [16, Proposition 4.10]).
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1424 C\'EDRIC JOSZ AND XIAOPENG LI

U of \BbbR n containing S such that the constant value of f on S is less than or equal to
f(y) for all y \in U \setminus S. Thus every point in S is a local minimum of f . Since every
local minimum of f is a global minimum, infS f = inf\BbbR n f and S is a setwise global
minimum according to Definition 2.3. The rest of the proof deals with the case when
S\circ \not = \emptyset . Let C be the set of all critical points of f in S and consider the following
optimization problem:

(3.1) inf
x\in C

f(x).

We claim that the set of (global) solutions to (3.1) is nonempty, and that any solution
is a local minimum of f belonging to the setwise local minimum S. We first show
that the feasible set of (3.1) is nonempty.

Since S\circ \not = \emptyset , let x0 \in S\circ . If x0 \in C, then the feasible set C is nonempty.
We thus assume that x0 /\in C. Since f is locally Lipschitz and bounded below, by
Proposition 2.11 there exists a subgradient trajectory x : [0,\infty ) \rightarrow \BbbR 

n starting at
x0. We next show that x([0,\infty )) \subset S. We reason by contradiction and assume that
Sc \cap x([0,\infty )) \not = \emptyset , where Sc is the complement of S in \BbbR 

n. Then S\circ and Sc are
disjoint open subsets of \BbbR n such that S\circ \cap x([0,\infty )) \not = \emptyset (the intersection contains
x0), S

c \cap x([0,\infty )) \not = \emptyset , and x([0,\infty )) = (x([0,\infty )) \cap S\circ ) \cup (x([0,\infty )) \cap Sc) \subset \BbbR 
n\setminus \partial S

(since5 f(x(t)) < f(x(0)) = f(x0) \leqslant f(x) for all t > 0 and x \in \partial S, where the last
inequality follows from Lemma 2.4). Thus the connected set x([0,\infty )) is the union of
two relatively open disjoint nonempty sets, which is a contradiction.

Since f has bounded subgradient trajectories and x(\cdot ) is an arbitrary subgradient
trajectory starting at x0, by Definition 2.12 and without loss of generality there exists
r > 0 such that \| x(t)\| \leqslant r for all t \geqslant 0. We next show that there exists a critical
point of f in B(0, r) \cap S. Suppose that there exist two constants T, \epsilon > 0 for which
\| x\prime (t)\| \geqslant \epsilon for all t \geqslant T such that x\prime (t) \in  - \partial f(x(t)). By [14, Lemma 5.2], we
have (f \circ x)\prime (t) =  - \| x\prime (t)\| 2 \leqslant  - \epsilon 2 for almost every t \geqslant T . By integrating, we
get f(x(t))  - f(x(T )) \leqslant  - \epsilon 2t and thus f(x(t)) converges to  - \infty as t \rightarrow \infty . This
is impossible since x(t) \in B(0, r) and f is continuous. Hence there exists a time
sequence tk \rightarrow \infty such that \| x\prime (tk)\| \rightarrow 0 as k \rightarrow \infty and x\prime (tk) \in  - \partial f(x(tk)) for all
k \in \BbbN := \{ 0,1,2, . . .\} . By the Bolzano--Weierstrass theorem, there exists a subsequence
x(tkj

) of x(tk) such that x(tkj
)\rightarrow \~x \in \BbbR 

n as j \rightarrow \infty . Since x\prime (tkj
) \in  - \partial f(x(tkj

)), by
[11, Proposition 2.1.5(b), p. 29] we have 0\in  - \partial f(\~x). Finally, since x([0,\infty ))\subset S and
S is closed, we have \~x\in C. We obtain that C \not = \emptyset as desired.

Since f has finitely many critical values and C \not = \emptyset , the set of solutions to (3.1)
is nonempty. Let x\ast \in C be a solution, that is, f(x\ast ) = minC f . Recall that C is a
subset of the setwise local minimum S. If x\ast is a local minimum of f , then it is a
global minimum of f in S since every local minimum of f is a global minimum. Thus
infS f = inf\BbbR n f and S is a setwise global minimum. For the remainder of the proof,
we consider the case where x\ast is not a local minimum and show that this leads to a
contradiction. We first show that there exists s0 \in S\circ such that f(s0)< f(x\ast ). This
is clearly true if x\ast \in S\circ since one can then find a ball centered at x\ast inside S\circ . If
x\ast \in S\setminus S\circ = \partial S, then we reason by contradiction and assume that f(x) \geqslant f(x\ast ) for
all x \in S\circ . By Lemma 2.4, we have f(x) = f(x\ast ) = supS f \geqslant f(y) \geqslant f(x\ast ) for all
(x, y) \in (S \setminus S\circ ) \times S\circ . Hence f(x\ast ) = f(x) for all x \in S. Since S is a setwise local
minimum, there exists an open set U such that f(x) \geqslant f(x\ast ) holds for all x \in U \setminus S.

5If there exists t > 0 such that f(x(t)) = f(x(0)), then f(x(t))  - f(x(0)) =
\int t

0
\| x\prime (s)\| 2ds = 0

and x\prime (s) = 0 for almost every s \in (0, t). Since x\prime (s) \in  - \partial f(x(s)) for almost every s > 0, by [11,
Proposition 2.1.5(b), p. 29] we have 0\in \partial f(x(0)).
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SPURIOUS LOCAL MINIMA AT INFINITY 1425

Fig. 4. An example of function with infinitely many critical values.

Thus f(x)\geqslant f(x\ast ) for all x\in U and x\ast is a local minimum. This yields a contradiction.
Hence let s0 \in S\circ be such that f(s0)< f(x\ast ). The nonempty closed set S\prime := S \cap [f \leqslant 

(f(s0)+f(x\ast ))/2] is a setwise local minimum of f where [f \leqslant \alpha ] := \{ x\in \BbbR 
n | f(x)\leqslant \alpha \} .

Indeed, for all x\in S\prime and y \in U \setminus S\prime = (U \setminus S)\cup (U \setminus [f \leqslant (f(s0) + f(x\ast ))/2]), we have6

f(x)\leqslant (f(s0)+f(x\ast ))/2\leqslant f(y). Since s0 \in S\circ and f(s0)< (f(s0)+f(x\ast ))/2, we have
s0 \in S\circ \cap [f \leqslant (f(s0)+f(x\ast ))/2]\circ = (S\cap [f \leqslant (f(s0)+f(x\ast ))/2]))\circ = (S\prime )\circ . Hence the
setwise local minimum S\prime has nonempty interior. Also, S\prime \subset S and supS\prime f < f(x\ast ) =
minC f , where we remind the reader that C is the set of critical points in S. Thus S\prime is
devoid of critical points. However, by the previous paragraph, setwise local minima of
f with nonempty interior must contain a critical point. This yields a contradiction.

Remark 3.2 (finitely many critical values). This assumption is not intuitive and
we explain why it is necessary by the following example. Define f :\BbbR \rightarrow \BbbR as

f(x) :=

\left\{ 
    
    

(x+ 4)2  - 8 if x\leqslant  - 2;

 - x2 if x\in [ - 2,0];

 - 2 - k(x - 2k)2
k+1  - 3(1 - 2 - k) if x\in [2k,2k+ 1], k \in \BbbN ;

2 - k(x - 2k)2
k+1  - 3(1 - 2 - k) if x\in [2k - 1,2k], k \in \BbbN 

+,

where \BbbN 
+ is the set of all positive integers. To be more intuitive, we give the plot of

f on [ - 7,7] in Figure 4.

By standard calculus, one can see f is continuously differentiable, f(x)\rightarrow  - 3 as
x\rightarrow \infty , and f(x)\geqslant  - 8 over \BbbR . Furthermore, \{  - 4\} \cup \{ 2k\} k\in \BbbN are all critical points of
f , with critical values \{  - 8\} \cup \{  - 3(1 - 2 - k)\} k\in \BbbN , respectively. Finally, the subgradient
trajectory of f starting at x0 < 0 will converge to the critical point x =  - 4; the one
starting at x0 = 0 will stay at the critical point x= 0; and the one starting at x0 > 0
such that 2k < x0 \leqslant 2k + 2 will converge to x = 2k + 2 for all k \in \BbbN . This shows f
has bounded subgradient trajectories. Thus, f satisfies all conditions in Assumption
3.1 except the finiteness of critical values. It is also easy to see f has no spurious
local minima because all of its critical points are either global minimum (x= - 4), or
local maximum (x = 0), or saddle points. However, for any a > 0, the set [a,\infty ) is

6Indeed, for any sets A,B, and C it holds that A\setminus (B \cap C) = (A\setminus B)\cup (A\setminus C).
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1426 C\'EDRIC JOSZ AND XIAOPENG LI

a spurious local minima at infinity. This shows that Theorem 1.2 may not hold for
functions with infinitely many critical values.

Remark 3.3 (bounded subgradient trajectories). This is the main assumption of
Theorem 1.2. Without it, one could easily think of a smooth function without any
spurious local minimum, yet has spurious local minimum at infinity. This is the case
of the function in Figure 3 in which the yellow curve corresponds to an unbounded
gradient trajectory. In order to prove the necessity of the boundedness assumption,
it suffices to consider the univariate function f defined in [27, Figure 4(a)] defined by

f(x) :=
x2(1 + x2)

1 + x4
, f \prime (x) = - 2x(x4  - 2x2  - 1)

(x4 + 1)2
.

By solving f \prime (x) = 0, we know that f has three critical points, among which x = 0
is the global minimum and x = \pm (

\surd 
2  - 1) - 1/2 are two global maxima. Thus, f

is bounded below, continuously differentiable (hence locally Lipschitz and admits a
chain rule), has finitely many critical values, and has no spurious local minima. Since
f is strictly decreasing for all x\geqslant (

\surd 
2 - 1) - 1/2 \approx 1.55 and f(x)\rightarrow 1 as x\rightarrow \infty , one can

easily see [2,\infty ) is a spurious local minimum at infinity. This shows that Theorem 1.2
does not hold and the reason is that f does not have bounded subgradient trajectories.
To see this explicitly, consider the Cauchy problem

\.x=
2x(x4  - 2x2  - 1)

(x4 + 1)2
, x(0) = 2.

By using separation of variables, the unique solution x(t) is given by

c+ 2t=
1

4
x4 + x2 + (2+

\surd 
2) log(x2  - 

\surd 
2 - 1)

+ (2 - 
\surd 
2) log(x2 +

\surd 
2 - 1) - logx=: g(x),

where c is a constant determined by x(0) = 2. It is easy to see that x is strictly
increasing so x(t)\geqslant 2 for all t\in [0,\infty ). Note that g is continuous on [2,\infty ), so if x is
bounded, then g \circ x is bounded. This contradicts the fact that g(x(t)) = 2t+ c\rightarrow \infty 
as t\rightarrow \infty , and thus f has an unbounded subgradient trajectory.

4. Applications. In this section, we use Theorem 1.2 to analyze the landscape of
some widely used loss functions in unconstrained optimization. To be more specific,
we will consider deep linear neural network, one dimensional deep sigmoid neural
network, matrix sensing, and nonsmooth matrix factorization in the following four
subsections, respectively.

4.1. Deep linear neural network. As a prototypical example in deep learning,
the landscape of deep linear neural network has been widely studied; see, for example,
[28, 29, 44]. Consider minimizing the loss function of linear neural network without
bias term

(4.1) f(W1, . . . ,WL) :=
1

2
\| WL \cdot \cdot \cdot W1X  - Y \| 2F ,

where X \in \BbbR 
d0\times dx , Y \in \BbbR 

dL\times dx , and Wi \in \BbbR 
di\times di - 1 for i= 1, . . . ,L. Here \| \cdot \| F denotes

the Frobenius norm. It was recently established that f has no spurious valleys [44,
Theorem 11]; however, this fact alone does not imply the absence of spurious local
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SPURIOUS LOCAL MINIMA AT INFINITY 1427

minima at infinity (recall Figure 2). Together with the fact that f has no spurious
local minima [46, Corollary 1] and that f is semialgebraic, it can be deduced that f
has no spurious setwise local minima (and thus no spurious local minima at infinity).

The proof of the absence of spurious valleys [44, Theorem 11] is tailored to the
problem at hand. Using linear algebra, it argues that from any initial point one can
construct a piecewise linear path to a global minimum along which the objective func-
tion is nonincreasing. The proof spans multiple pages and requires several technical
lemmas. The proof that we propose is shorter and follows a general principle, namely
Theorem 1.2, that applies to various problems as the next subsections will show. The
first four assumptions of Theorem 1.2 are easy to verify: f is nonnegative, hence
bounded below; f is continuously differentiable, hence locally Lipschitz and admits
a chain rule; f is semialgebraic, by [38, Corollary 1.1], it has finitely many critical
values. Thus, it suffices to show f has bounded gradient trajectories.

Proposition 4.1. Linear neural network with loss function (4.1) has bounded
gradient trajectories.

An existing proof of Proposition 4.1 under additional assumptions on network
structure, initialization, input data, or target data can be found, for instance, in [3, 9,
18]. To the best of our knowledge, the closest result to Proposition 4.1 is [3, Theorem
3.2], which shows that gradient trajectories are bounded if XXT is of full rank. In
the proof of Proposition 4.1, we show that this rank assumption on X can be removed
and hence Proposition 4.1 applies to any linear neural network.

Proof of Proposition 4.1. Since f is locally Lipschitz and lower bounded, by
Proposition 2.11 there exists a gradient trajectory for any initial point. By [3, Lemma
2.1], the gradient trajectories of f satisfy the initial value problem

\.Wi = - (WL \cdot \cdot \cdot Wi+1)
T(WL \cdot \cdot \cdot W1X  - Y )(Wi - 1 \cdot \cdot \cdot W1X)T,(4.2a)

Wi(0) =W 0
i , W 0

i \in \BbbR 
di\times di - 1 is a given constant matrix(4.2b)

for all i= 1, . . . ,L. Note that if i=L, (4.2a) reduces to

\.WL = - (WL \cdot \cdot \cdot W1X  - Y )(WL - 1 \cdot \cdot \cdot W1X)T,

and if i= 1, (4.2a) reduces to

\.W1 = - (WL \cdot \cdot \cdot W2)
T(WL \cdot \cdot \cdot W1X  - Y )XT.

Note that [3, Theorem 3.2] proved the boundedness of gradient trajectories of
f when XXT is invertible. Thus, we need only show we can always reduce the
boundedness of gradient trajectories of f for general X to the boundedness of gradient
trajectories of another function g in the same form as f but with invertible XXT.
Let X =U\Sigma V T be a singular value decomposition, where U \in \BbbR 

d0\times d0 and V \in \BbbR 
dx\times dx

are orthogonal matrices, and \Sigma \in \BbbR 
d0\times dx is a rectangular matrix satisfying

\Sigma =

\biggl[ 
\Lambda 0
0 0

\biggr] 
, \Lambda = diag(\lambda 1, . . . , \lambda r)\succ 0,

where r\leqslant min\{ d0, dx\} . Eliminating X in (4.2a), it reduces to

\.Wi = - (WL \cdot \cdot \cdot Wi+1)
T(WL \cdot \cdot \cdot W1U\Sigma V T  - Y )(Wi - 1 \cdot \cdot \cdot W1U\Sigma V T)T

= - (WL \cdot \cdot \cdot Wi+1)
T(WL \cdot \cdot \cdot W1U\Sigma  - Y V )(Wi - 1 \cdot \cdot \cdot W1U\Sigma )T.
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1428 C\'EDRIC JOSZ AND XIAOPENG LI

Define Z := Y V \in \BbbR 
dL\times dx , and (4.2) reduces to

\.Wi = - (WL \cdot \cdot \cdot Wi+1)
T(WL \cdot \cdot \cdot W1U\Sigma  - Z)(Wi - 1 \cdot \cdot \cdot W1U\Sigma )T,(4.3a)

Wi(0) =W 0
i for all i= 1, . . .L.(4.3b)

Denote W 1 := W1U \in \BbbR 
d1\times d0 and W

0

1 := W 0
1U \in \BbbR 

d1\times d0 . To keep the notation

consistent, also let W i :=Wi and W
0

i :=W 0
i for i= 2, . . . ,L. Thus, (4.3) reduces to

\.W i = - (WL \cdot \cdot \cdot W i+1)
T(WL \cdot \cdot \cdot W 1\Sigma  - Z)(W i - 1 \cdot \cdot \cdot W 1\Sigma )

T,(4.4a)

W i(0) =W
0

i for all i= 1, . . .L.(4.4b)

Partition the matrices W 1, W
0

1, and Z into two column blocks:

W 1 =
\bigl[ 
W 11 W 12

\bigr] 
, W

0

1 =
\Bigl[ 
W

0

11 W
0

12

\Bigr] 
, Z =

\bigl[ 
Z1 Z2

\bigr] 
,

where W 11, W
0

11, and Z1 consist of the first r columns of W 1, W
0

1 and Z, respectively.
Thus, when i= 1, (4.4) can be reduced to

\.W 11 = - (WL \cdot \cdot \cdot W 2)
T(WL \cdot \cdot \cdot W 2W 11\Lambda  - Z1)\Lambda 

T, \.W 12 = 0,

W 11(0) =W
0

11, W 12(0) =W
0

12.

When i= 2, . . . ,L, (4.4) can be reduced to

\.W i = - (WL \cdot \cdot \cdot W i+1)
T(WL \cdot \cdot \cdot W 2W 11\Lambda  - Z1)(W i - 1 \cdot \cdot \cdot W 2W 11\Lambda )

T,

W i(0) =W
0

i .

It indicates that W 12(t) = W
0

12 for all t \geqslant 0. Denote \widetilde W1 := W 11 and \widetilde W 0
1 := W

0

11.

To keep the notation consistent, also let \widetilde Wi := W i and \widetilde W 0
i := W

0

i for i = 2, . . . ,L.
Therefore, (4.4) reduces to

\.\widetilde W i = - (\widetilde WL \cdot \cdot \cdot \widetilde Wi+1)
T(\widetilde WL \cdot \cdot \cdot \widetilde W1\Lambda  - Z1)(\widetilde Wi - 1 \cdot \cdot \cdot \widetilde W1\Lambda )

T,(4.5a)

\widetilde Wi(0) =\widetilde W 0
i for all i= 1, . . .L.(4.5b)

Define the new function g as

g(\widetilde W1, . . . ,\widetilde WL) :=
1

2
\| \widetilde WL \cdot \cdot \cdot \widetilde W1\Lambda  - Z1\| 2F .

Notice that the gradient trajectories of g satisfy (4.5). To prove f has bounded
gradient trajectories, it is equivalent to prove g has bounded gradient trajectories,

because \| W1\| F = \| W1U\| F = \| W 1\| F and \| W 1(t)\| 2F = \| \widetilde W1(t)\| 2F +\| W 0

12\| 2F for all t\geqslant 
0. Since \Lambda \Lambda T is invertible, by [3, Theorem 3.2], g has bounded gradient trajectories,
and so does f .

With Proposition 4.1, we verified that f satisfies Assumption 3.1. Thus, (4.1) has
no spurious setwise local minima if and only if it has no spurious local minima. Since
a local minimum at infinity is an unbounded setwise local minimum, and f has no
spurious local minima, we conclude that f has no spurious local minima at infinity.
This proves the first result in Corollary 1.3.
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SPURIOUS LOCAL MINIMA AT INFINITY 1429

4.2. One dimensional deep sigmoid neural network. Though famous for its
benign theoretical properties, linear neural network is rarely used in practice because
of its low representation power. We want to take a step further in the case of nonlinear
deep neural network. In this subsection, we focus on neural network with sigmoid
activation function in one dimensional case. Landscape analysis of one or two-hidden
layer sigmoid neural network can be found, for instance, in [15, 31, 44]. However,
none of the results above can be easily generalized to arbitrary many layers.

Consider minimizing the following loss function of sigmoid neural network:

(4.6) f(w1, . . . ,wL) :=
1

2
(wL\sigma (wL - 1 \cdot \cdot \cdot \sigma (w1x)) - y)2,

where \sigma (z) := (1 + e - z) - 1 is the sigmoid function and wi, x, y \in \BbbR for all i= 1, . . . ,L.
We want to apply Theorem 1.2 to conclude that (4.6) has no spurious setwise local
minimum, and hence no local minima at infinity. Again, the first three assumptions
in Assumption 3.1 are easy to verify: f is nonnegative, hence bounded below; f is
continuously differentiable, hence locally Lipschitz, and admits a chain rule. Note
that f is not semialgebraic, but it is definable in the real exponential field [45], [6,
section 6.2], so by Morse--Sard theorem for definable functions [5, Corollary 9(ii)], it
has finitely many critical values.

Again, it remains to show (4.6) has bounded gradient trajectories. However, the
techniques in the proof of Proposition 4.1 cannot be adapted to this case because the
auto-balancing property in [17, Theorem 2.1] does not hold. Surprisingly, it is still
true that (4.6) has bounded gradient trajectories.

Proposition 4.2. One dimensional sigmoid neural network with loss function
(4.6) has bounded gradient trajectories.

Proof. Since f is locally Lipschitz and lower bounded, by Proposition 2.11 there
exists a gradient trajectory for any initial point. For simplicity, define pi for i =
0, . . . ,L - 2 recursively by p0 := x, p1 := \sigma (w1x) and pi+1 := \sigma (wi+1pi). The gradient
trajectories of f satisfy

\.wL = - (wL\sigma (wL - 1pL - 2) - y)\sigma (wL - 1pL - 2),(4.7a)

\.wi =
pi - 1

1 + ewipi - 1
\.wi+1wi+1, i=L - 1, . . . ,1.(4.7b)

We will prove each wi is bounded inductively from the last layer to the first layer.
The relation between the last two layers wL and wL - 1, and the relation between the
first two layers can be regarded as the base cases.

We claim that there exists a time T such that \.wi and wi does not change sign for
all t \geqslant T and for all i. To verify this, first notice that the claim is true for the last
layer, i.e., \.wL and wL will not change sign for all t\geqslant T . Suppose \.wL changes sign, by
continuity and mean value theorem, there exists t\ast > 0 such that \.wL(t

\ast ) = 0. However,
\.wL(t

\ast ) = 0 implies \.wi(t
\ast ) = 0 for all i, meaning that a critical point is achieved and

the gradient trajectory is stopped for all t \geqslant t\ast . In this case, all wi's are trivially
bounded. Thus, we assume the trajectory will never stop at a finite time. In this
case, either \.wL(t)> 0 or \.wL(t)< 0 for all t\geqslant 0. Since wL is monotonic, it either keeps
the sign unchanged or changes the sign only once. Thus, there exists TL > 0 such that
wL does not change sign on [TL,\infty ). Notice that for all i \geqslant 2, pi - 1(t) \in (0,1) for all
t \geqslant 0. Since \.wLwL does not change sign on [TL,\infty ), (4.7b) implies that \.wL - 1 does
not change sign on [TL,\infty ) either. Therefore, we conclude that wL - 1 is monotonic.
Similarly, there exists TL - 1 > TL such that \.wL - 1 and wL - 1 does not change sign on
[TL - 1,\infty ). Recursively using the above argument, we can show the claim is true for
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1430 C\'EDRIC JOSZ AND XIAOPENG LI

all i \geqslant 2 on [T2,\infty ). For i = 1, although p0 = x may not be in (0,1), since x is a
constant, the fact that \.w2 and w2 do not change sign still implies that \.w1 does not
change sign and hence there exists T1 > T2 such that w1 does not change sign on
[T1,\infty ). Therefore, the claim holds for i= 1, . . . ,L by choosing T = T1.

By the claim proved in the last paragraph, for i= 1, . . . ,L, either \.wiwi is nonnega-
tive or \.wiwi is negative on [T,\infty ). Now we are going to prove each wi is bounded. The
first step is to prove the last two layers wL and wL - 1 are bounded. Consider the case
where \.wLwL is nonnegative on [T,\infty ). Equation (4.7b) implies that \.wL - 1 \geqslant 0 and
wL - 1 is increasing over [T,\infty ), so there exists a constant cL - 1 such that wL - 1(t) \geqslant 
cL - 1 for all t\geqslant 0. Since pL - 2 \in (0,1), we have \sigma (wL - 1pL - 2)\geqslant \sigma ( - | cL - 1| )> 0. Again,
by [14, Lemma 5.2], d

dtf(w1, . . . ,wL) \leqslant 0 and f(w1, . . . ,wL) \leqslant C for some constant
C on [0,\infty ). Thus, it is easy to see | wL| \sigma (wL - 1pL - 2)\leqslant C1 for some constant C1 on
[0,\infty ). Since \sigma (wL - 1pL - 2) \in [\sigma ( - | cL - 1| ),1), we conclude | wL| is bounded. Suppose
wL - 1 is unbounded. Since it is increasing and does not change sign, wL - 1(t)> 0 for
all t\geqslant T and wL - 1(t)\rightarrow \infty as t\rightarrow \infty . By (4.7b),

(4.8) \.wL - 1 =
pL - 2

1 + ewL - 1pL - 2
\.wLwL \leqslant \.wLwL,

because pL - 2 \in (0,1) and 1 + ewLpL - 2 > 1. By (4.8), wL - 1  - 1
2w

2
L is a decreasing

function on [T,\infty ). Hence, wL - 1  - 1
2w

2
L \leqslant C2 for some constant C2. Notice that wL

is bounded but wL - 1(t)\rightarrow \infty as t\rightarrow \infty , so a contradiction occurs. Therefore, wL - 1

is bounded.
Now we consider the case where \.wLwL is negative on [T,\infty ). In this case, (4.7b)

implies \.wL - 1 \leqslant 0, so wL - 1 is decreasing on [T,\infty ) and there exists a constant dL - 1

such that wL - 1 \leqslant dL - 1. Since pL - 2/(1 + ewL - 1pL - 2) \in (0,1) and \.wLwL \leqslant 0 on
[T,\infty ), we have \.wL - 1 \geqslant \.wLwL. This shows wL - 1  - 1

2w
2
L is increasing on [T,\infty ),

and hence wL - 1 \geqslant \~dL - 1 for some constant \~dL - 1. Therefore, wL - 1 \in [ \~dL - 1, dL - 1] is
bounded. By exactly the same argument as in the case when \.wLwL is nonnegative,
we know \sigma (wL - 1pL - 2)\in [\sigma ( - | \~dL - 1| ),1) and wL is bounded by using the boundedness
of objective function f .

Up to now, we have proved boundedness for the last two layers wL and wL - 1.
For i= 2, . . . ,L - 2, by discussing two cases \.wi+1wi+1 \geqslant 0 and \.wi+1wi+1 \leqslant 0, together
with the boundedness of wi+1, we can prove that wi is bounded by exactly the same
argument as we did in the last two paragraphs. The induction starts with proving
wL - 2 is bounded and ends with proving w2 is bounded. Once we prove w2 is bounded,
consider the relation between w1 and w2,

(1 + ew1x) \.w1 = x \.w2w2.

If x = 0, then \.w1 = 0 implies w1 is a constant over [0,\infty ), so it must be bounded.
Suppose x \not = 0, by taking integration with respect to t and multiplying x on both
sides, we have

w1x+ ew1x =
x2

2
w2

2 +C3.

Let z = w1x, then z + ez \rightarrow \pm \infty as z \rightarrow \pm \infty . Thus, the boundedness of w2 implies
the boundedness of z =w1x. Since x \not = 0 is a constant, w1 is bounded. Therefore, we
proved that wi is bounded for all i= 1, . . . ,L.

With Proposition 4.2, we can conclude that f has no spurious setwise local min-
imum if and only if it has no spurious local minima. However, from the gradient of
f , we can easily see that any critical point of it will be a global minimum, so f has
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SPURIOUS LOCAL MINIMA AT INFINITY 1431

neither spurious local minimum nor spurious setwise local minimum. This verifies the
second result in Corollary 1.3.

Unfortunately, unlike linear neural networks, the result in Proposition 4.2 is not
true in general even in one-hidden layer case if more than one data point is given; see
Example 4.3. However, it is still an open question whether the gradient trajectories
will be bounded in the overparameterized case (in which case there exists at least one
achievable global minimum).

Example 4.3. Consider the following function:

(4.9) f(w1,w2) :=
1

2
[(w2\sigma (w1) - 1)2 + (w2\sigma ( - w1) + 1)2].

The above function represents a one-hidden layer sigmoid neural network with two
data (x1, y1) = (1,1) and (x2, y2) = ( - 1, - 1). By directly computing the gradient,
one can easily see that (4.9) has only one critical point (0,0) which is a strict saddle
with f(0,0) = 1. The global minimum is asymptotically attained as w1 \rightarrow \pm \infty and
w2 \rightarrow 1 - 2(1 + e2w1) - 1, and its corresponding objective value approaches to 1/2. In
this case, the gradient trajectory of (4.9) starting at any point x0 such that f(x0)< 1
must be unbounded.

4.3. Matrix sensing. Matrix sensing is a widely used model in computer vision
and statistics; see, for instance, [10, 39]. Given r \geqslant 1, the goal is to recover an
unknown target matrix M \in \BbbR 

n1\times n2 of rank less than or equal to r from a set of
linear measurements bi = \langle Ai,M\rangle F , where Ai \in \BbbR 

n1\times n2 for i = 1, . . . ,m are sensing
matrices and \langle \cdot , \cdot \rangle F is the Frobenius inner product. In order to do so, we minimize
the mean square loss

(4.10) f(X,Y ) :=
1

2m

m\sum 

i=1

(\langle Ai,XY T\rangle F  - bi)
2,

where X \in \BbbR 
n1\times r and Y \in \BbbR 

n2\times r. The landscape of (4.10) has been studied widely,
for example, in [32, 37, 47]. Most of those works are based on the RIP of sensing
matrices. A set of sensing matrices Ai for i= 1, . . . ,m are said to have (r, \delta r)-RIP [39]
if there exists \delta r \in (0,1) such that

(1 - \delta r)\| \widetilde M\| 2F \leqslant 
1

m

m\sum 

i=1

\langle Ai,\widetilde M\rangle 2F \leqslant (1 + \delta r)\| \widetilde M\| 2F

holds for any matrix \widetilde M with rank(\widetilde M) \leqslant r. To the best of our knowledge, the
minimal assumptions to guarantee no spurious local minima for (4.10) is for the
sensing matrices to satisfy (4r, \delta 4r)-RIP with \delta 4r \leqslant 1/5, as proposed in [32, Theorem
III.1].

However, Theorem 1.2 is applicable to matrix sensing under a weaker condition
than RIP. The first four assumptions in Assumption 3.1 hold because of exactly the
same reasons as in the linear neural network case. Thus, it suffices to show (4.10)
has bounded gradient trajectories. A sufficient condition is to require the sensing
matrices to be lower bounded , i.e., there exists a constant c > 0 such that for any
matrix \widetilde M \in \BbbR 

n1\times n2 with rank(\widetilde M)\leqslant r,

1

m

m\sum 

i=1

\langle Ai,\widetilde M\rangle 2F \geqslant c\| \widetilde M\| 2F .

It is easy to see any level of RIP will imply the existence of such a constant c.
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1432 C\'EDRIC JOSZ AND XIAOPENG LI

Proposition 4.4. Matrix sensing with loss function (4.10) and lower bounded
sensing matrices has bounded gradient trajectories.

Proof. Since f is locally Lipschitz and lower bounded, by Proposition 2.11 there
exists a gradient trajectory for any initial point. The gradient trajectories of f satisfy
the initial value problem

\.X = - 1

m

m\sum 

i=1

(\langle Ai,XY T\rangle F  - bi)AiY,

\.Y = - 1

m

m\sum 

i=1

(\langle Ai,XY T\rangle F  - bi)A
T
i X,

X(0) =X0, Y (0) = Y0.

Notice that \.XTX = Y T \.Y and XT \.X = \.Y TY , so

d

dt
(XTX  - Y TY ) = \.XTX +XT \.X  - \.Y TY  - Y T \.Y = 0.

This implies that XTX  - Y TY = C, where C \in \BbbR 
r\times r is a constant. Since the

function value is decreasing along gradient trajectories [14, Lemma 5.2], there exists a
constant c1 such that f(X(t), Y (t))\leqslant c1 for all t\geqslant 0. Combined with the assumption
that sensing matrices are lower bounded, there exist constants c and c2 such that

c\| XY T\| 2F \leqslant 
1

m

m\sum 

i=1

\langle Ai,XY T\rangle 2F \leqslant 
1

m

m\sum 

i=1

\bigl[ 
2(\langle Ai,XY T\rangle F  - bi)

2 + 2b2i
\bigr] 

= 2f(X,Y ) +
2

m

m\sum 

i=1

b2i \leqslant 2c1 +
2

m

m\sum 

i=1

b2i =: c2.

We have \| XY T\| 2F \leqslant c3 := c2/c. Notice that

\| XTX\| 2F + \| Y TY \| 2F = \| XTX  - Y TY \| 2F + 2\| XY T\| 2F \leqslant \| C\| 2F + 2c3.

Define the constant c4 := 2c3 + \| C\| 2F . By the Cauchy--Schwarz inequality,

\| X\| 4F + \| Y \| 4F \leqslant rank(X)\| XTX\| 2F + rank(Y )\| Y TY \| 2F \leqslant (n1 + n2 + r)c4.

Thus, X and Y are bounded.

Therefore, Theorem 1.2 says that matrix sensing has no spurious setwise local
minima if and only if it has no spurious local minima, given that the sensing matri-
ces are lower bounded. Equipped with (4r, \delta 4r)-RIP where \delta 4r \leqslant 1/5, we conclude
that matrix sensing has no spurious local minima at infinity, as shown in the third
statement in Corollary 1.3.

4.4. Nonsmooth matrix factorization. In this subsection, we consider the
application of Theorem 1.2 in a nonsmooth setting, namely, the nonsmooth matrix
factorization problem. We consider minimizing the loss function

(4.11) f(X,Y ) := \| XY T  - M\| 1,

where X \in \BbbR 
m\times r, Y \in \BbbR 

n\times r are decision variables and M \in \BbbR 
m\times n is the given data

matrix. Here \| A\| 1 :=
\sum m

i=1

\sum n
j=1 | Aij | for any A \in \BbbR 

m\times n. In the robust principal
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SPURIOUS LOCAL MINIMA AT INFINITY 1433

component analysis (PCA) problem with sparse noise, (4.11) is usually used as a
surrogate function for the original \ell 0-norm formulation; see [8, 23]. There are few
landscape results of (4.11) in the general rank case. However, if rank(M) = 1 = r,
(4.11) is shown to have no spurious local minima if every entry Mij of M is nonzero
[26].

It is hard to analyze (4.11) because it is nonsmooth, nonconvex, and noncoercive.
Despite all those ``non"" properties, we show that Theorem 1.2 is still applicable to
(4.11) without any rank assumption on M . As a corollary, when rank(M) = 1 and
every entry of M is nonzero, (4.11) has no spurious setwise local minimum, hence no
spurious local minima at infinity. Again, the first four assumptions in Assumption 3.1
are easy to check: f is bounded below because it is nonnegative; f is locally Lipschitz
because of [11, Theorem 2.3.10]; since f is semialgebraic, by [16, Corollary 5.4] and
[38, Corollary 1.1], it admits a chain rule and has finitely many critical values.

To verify (4.11) has bounded subgradient trajectories, we discover that the auto-
balancing property in [17, Theorem 2.2] also holds for nonsmooth matrix factorization.
The result can be summarized in the following proposition.

Proposition 4.5. Nonsmooth matrix factorization with loss function (4.11) has
bounded subgradient trajectories.

Proof. Since f is locally Lipschitz and lower bounded, by Proposition 2.11 there
exists a subgradient trajectory for any initial point. Let (X0, Y0) \in \BbbR 

m\times r \times \BbbR 
n\times r.

Consider an absolutely continuous function Z : [0,\infty )\rightarrow \BbbR 
m\times r \times \BbbR 

n\times r such that

Z \prime (t)\in  - \partial f(Z(t)) for almost every t\geqslant 0, andZ(0) = (X0, Y0).

By [11, Theorem 2.3.10],

\partial f(X,Y ) =

\biggl\{ \biggl( 
\Lambda Y
\Lambda TX

\biggr) \bigm| \bigm| \bigm| \bigm| \Lambda \in sign(XY T  - M)

\biggr\} 
,

where sign is an elementwise operation mapping each entry of a matrix to a real
number in [ - 1,1] such that

sign(x) :=

\left\{ 
 
 

 - 1 if x< 0,\bigl[ 
 - 1,1

\bigr] 
if x= 0,

1 if x> 0.

Hence, with Z =: (X,Y ), for almost every t\geqslant 0 we have

X \prime (t) = - \Lambda (t)Y (t), Y \prime (t) = - \Lambda (t)TX(t),(4.12a)

\Lambda (t)\in sign(X(t)Y (t)T  - M).(4.12b)

Consider \phi : [0,\infty ) \rightarrow \BbbR defined by \phi (t) := X(t)TX(t)  - Y (t)TY (t). By taking
derivative, we have

(4.13) \phi \prime (t) =X \prime (t)TX(t) +X(t)TX \prime (t) - Y \prime (t)TY (t) - Y (t)TY \prime (t).

Combining (4.12a) and (4.13), we have

\phi \prime (t) = - Y (t)T\Lambda (t)TX(t) - X(t)T\Lambda (t)Y (t)

+X(t)T\Lambda (t)Y (t) + Y (t)T\Lambda (t)TX(t) = 0.
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1434 C\'EDRIC JOSZ AND XIAOPENG LI

Hence the continuous function \phi is constant on [0,\infty ). Also, we have

\| XTX  - Y TY \| 2F = \| XTX\| 2F + \| Y TY \| 2F  - 2\langle XTX,Y TY \rangle F
= \| XTX\| 2F + \| Y TY \| 2F  - 2\| XY T \| 2F
\geqslant \| XTX\| 22 + \| Y TY \| 22  - 2\| XY T \| 2F
= \| X\| 42 + \| Y \| 42  - 2\| XY T \| 2F
\geqslant \| X\| 42 + \| Y \| 42  - 2mn\| XY T \| 21
\geqslant \| X\| 42 + \| Y \| 42  - 2mn(\| XY T  - M\| 1 + \| M\| 1)2.

Here \| \cdot \| 2 denotes the spectral norm. Therefore, for all t\geqslant 0, we have

\| X(t)\| 42 + \| Y (t)\| 42 \leqslant \| X(t)TX(t) - Y (t)TY (t)\| 2F
+ 2mn(\| X(t)Y (t)T  - M\| 1 + \| M\| 1)2

\leqslant \| XT
0 X0  - Y T

0 Y0\| 2F
+ 2mn(\| X0Y

T
0  - M\| 1 + \| M\| 1)2.

Combined with Proposition 4.5, Theorem 1.2 shows that (4.11) has no spurious
setwise local minimum if and only if it has no spurious local minima. Under the
condition in [26, Theorem 1], i.e., rank(M) = 1 = r and all the entries of M are
nonzero, (4.11) reduces to

(4.14) f(x, y) :=

m\sum 

i=1

n\sum 

j=1

| xiyj  - Mij | ,

where x \in \BbbR 
m and y \in \BbbR 

n. In this case, (4.14) has no spurious local minima, thus it
has no spurious local minima at infinity, and we obtain the last result in Corollary 1.3.

Appendix A. Proof of Lemma 2.4. Let S \subset \BbbR 
n be a setwise local minimum

of a continuous function f :\BbbR n \rightarrow \BbbR . Let U \supset S be an open set such that f(x)\leqslant f(y)
for all x \in S and y \in U \setminus S. Note that S is closed, so its boundary is defined by
\partial S := S\setminus S\circ . Let z \in \partial S and consider any real number \epsilon > 0. Since f(z) + ( - \epsilon , \epsilon ) is a
neighborhood of f(z), by continuity of f , there exists a neighborhood N(z) of z such
that f(N(z)) \subset f(z) + ( - \epsilon , \epsilon ). Since U is a neighborhood of z, N \prime (z) := U \cap N(z)
is also a neighborhood of z with f(N \prime (z)) \subset f(z) + ( - \epsilon , \epsilon ). The set N \prime (z) \cap S is
nonempty because z \in S and the set N \prime (z)\setminus S is nonempty because z \in \partial S. For any
x\in N \prime (z)\cap S and y \in N \prime (z)\setminus S, it follows that

inf
U\setminus S

f  - \epsilon \leqslant f(y) - \epsilon < f(z)< f(x) + \epsilon \leqslant sup
S

f + \epsilon \leqslant inf
U\setminus S

f + \epsilon .

The last inequality follows from the definition of setwise local minima. As \epsilon > 0 was
arbitrary, we deduce that

inf
U\setminus S

f = f(z) = sup
S

f.

Thus, f is a constant on the boundary of S and f attains its maximum over S on the
boundary of S.
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Appendix B. Proof of Proposition 2.5.

(a) Let S be a setwise local minimum. By Lemma 2.4, we know that c := supS f =
f(z) for all z \in \partial S. Take a path-connected component C of S. Then C \subset 
[f \leqslant c] := \{ x \in \BbbR 

n | f(x) \leqslant c\} . Since C is path-connected, there exists a
path-connected component V of [f \leqslant c] such that C \subset V . By definition, V
is a valley. This shows that a path-connected component of a setwise local
minimum is a subset of a valley.
If, in addition, S is a strict setwise local minimum, then we distinguish

two cases. If S = \BbbR 
n, then the path-connected component C of S is equal

to \BbbR 
n and is therefore a valley. Otherwise, it suffices to show that V \subset S.

Indeed, V is then a path-connected subset of S containing the path-connected
component C of S, so that by maximality, V =C. Therefore, C is valley.
Consider an open set U \supset S such that f(x) > f(y) for all x \in U \setminus S and

y \in S. In order to show that V \subset S, it suffices to show that V \cap (U\setminus S) = \emptyset and
V \cap U c = \emptyset because if so, then V = (V \cap S)\cup (V \cap (U\setminus S))\cup (V \cap U c) = V \cap S.
Since f(w) \leqslant c for all w \in V and f(w) > c for all w \in U \setminus S (the supremum
function value f(y) = c can be attained by some y \in \partial S \subset S), we know that
V \cap (U \setminus S) = \emptyset . Thus, V = (V \cap S)\cup (V \cap U c). Note that V \cap S is nonempty
and closed because C \subset V \cap S and V and S are both closed. Since V \cap U c is
also closed and V is connected, V \cap U c must be empty.

(b) Let f : \BbbR n \rightarrow \BbbR be a continuous function, and let a \in \BbbR be a nonempty
sublevel set of f . By continuity of f , [f \leqslant a] is closed in \BbbR 

n. Suppose [f \leqslant a]
has finitely many connected components C1, . . . ,Ck. Denote B as the closure
of any set B \subset \BbbR 

n. Since Ci's are connected, by [35, Theorem 23.4], Ci's are
also connected. Since Ci \subset [f \leqslant a], Ci \subset [f \leqslant a] = [f \leqslant a]. By [35, Theorem
25.1], Ci cannot intersect any other Cj for j \not = i. Together with the fact that

[f \leqslant a] =
\bigcup k

i=1Ci, we have Ci \subset Ci, and hence Ci = Ci. Thus, each Ci is
closed in \BbbR 

n.
For any fixed i, denote C - i := [f \leqslant a]\setminus Ci, then C - i =

\bigcup k
j=1,j \not =iCj is a

closed set disjoint with Ci. By [35, Theorem 32.2], there exist disjoint open
sets D,E \subset \BbbR 

n such that Ci \subset D and C - i \subset E. Take U = D in Definition
2.2, then f(x)\leqslant a for all x \in Ci because Ci \subset [f \leqslant a]. Furthermore, f(y)> a
for all y \in U\setminus Ci because (U\setminus Ci)\cap [f \leqslant a] = \emptyset . This verifies that Ci is a strict
setwise local minimum of f .

Appendix C. Proof of Proposition 2.7. Let S be a spurious setwise local
minimum at infinity. Since infS f > inf\BbbR n f , it must be that S \not = \BbbR 

n. By Definition
2.2, there exists y \in Sc such that S \subset \{ x \in \BbbR 

n | f(x) \leqslant f(y)\} . Since f is coercive, its
sublevels sets are bounded and hence S is bounded. S is thus not a spurious local
minimum at infinity.

Appendix D. Proof of Proposition 2.11. For a fixed real number \tau > 0,
define a sequence x\tau 

k recurrently by letting x\tau 
0 := x0 and

x\tau 
k+1 \in arg min

x\in \BbbR n

\biggl\{ 
f(x) +

\| x - x\tau 
k\| 2

2\tau 

\biggr\} 
for all k \in \BbbN .

A solution exists because f is bounded below and the objective function is coercive.
Any solution satisfies

v\tau k+1 :=
x\tau 
k+1  - x\tau 

k

\tau 
\in  - \partial f(x\tau 

k+1) for all k \in \BbbN .
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Define two functions x\tau , \~x\tau :\BbbR + \rightarrow \BbbR 
n, where \BbbR + := [0,\infty ) by

x\tau (t) := x\tau 
k+1, \~x\tau (t) := x\tau 

k + (t - k\tau )v\tau k+1 for all t\in (k\tau , (k+ 1)\tau ]

for all k \in \BbbN , with initial condition x\tau (0) = \~x\tau (0) = x0. Note that \~x\tau is absolutely
continuous because it is piecewise affine. On the contrary, x\tau is not continuous. Also,
define v\tau :\BbbR + \rightarrow \BbbR 

n by

v\tau (t) := v\tau k+1 for all t\in (k\tau , (k+ 1)\tau ], for all k \in \BbbN ,

and choose v\tau (0) \in  - \partial f(x0). Since (\~x\tau )\prime = v\tau on (k\tau , (k + 1)\tau ) for all k \in \BbbN , and
v\tau (t) \in  - \partial f(x\tau (t)) for all t \geqslant 0, we conclude that (\~x\tau )\prime (t) \in  - \partial f(x\tau (t)) for almost
every t\in \BbbR +. By optimality of x\tau 

k+1, we have

f(x\tau 
k+1) +

\| x\tau 
k+1  - x\tau 

k\| 2
2\tau 

\leqslant f(x\tau 
k) for all k \in \BbbN .

For any l \in \BbbN , we have

l\sum 

k=0

\| x\tau 
k+1  - x\tau 

k\| 2
2\tau 

\leqslant f(x\tau 
0) - f(x\tau 

l+1)\leqslant f(x0) - inf
\BbbR n

f =:C <\infty 

since f is bounded below. Observe that

l\sum 

k=0

\| x\tau 
k+1  - x\tau 

k\| 2
2\tau 

=

l\sum 

k=0

\tau 

2
\| v\tau k+1\| 2 =

1

2

l\sum 

k=0

\int (k+1)\tau 

k\tau 

\| (\~x\tau )\prime (t)\| 2 dt.

Fix T \geqslant 0 from now on. From the above, we have

(D.1)

\int T

0

\| (\~x\tau )\prime (t)\| 2 dt\leqslant 
\lfloor T/\tau \rfloor \sum 

k=0

\int (k+1)\tau 

k\tau 

\| (\~x\tau )\prime (t)\| 2 dt\leqslant 2C.

Since \~x\tau is absolutely continuous, for any s, t\in [0, T ] we have ,

\| \~x\tau (t) - \~x\tau (s)\| =
\bigm\| \bigm\| \bigm\| \bigm\| 
\int t

s

(\~x\tau )\prime (u) du

\bigm\| \bigm\| \bigm\| \bigm\| (D.2a)

\leqslant 

\Biggl( \int T

0

\| (\~x\tau )\prime (t)\| 2 dt
\Biggr) 1/2

| t - s| 1/2 \leqslant 
\surd 
2C| t - s| 1/2(D.2b)

where we use the Cauchy--Schwarz inequality. Now one can see (\~x\tau )\tau >0 is a family
of uniformly bounded and equicontinuous functions on the compact interval [0, T ].
Therefore, by the Arzel\`a--Ascoli theorem [40, Theorem 7.25], there exists a sequence
of positive reals (\tau k)k\in \BbbN such that \tau k \rightarrow 0 and \~x\tau k \rightarrow x\ast uniformly on [0, T ] as k\rightarrow \infty .
For all k \in \BbbN and t\in (k\tau , (k+1)\tau ], we have \~x\tau ((k+1)\tau ) = x\tau 

k + \tau v\tau k+1 = x\tau 
k+1 = x\tau (t).

Thus \| \~x\tau (t) - x\tau (t)\| = \| \~x\tau (t) - \~x\tau ((k+ 1)\tau )\| \leqslant 
\surd 
2C\tau 1/2 for all t \in [0, T ], where the

inequality is due to (D.2) (take s := (k+1)\tau ). Combined with the fact that \~x\tau k \rightarrow x\ast 

uniformly on [0, T ], one can see that x\tau k \rightarrow x\ast uniformly on [0, T ]. Since (D.1) implies
that ((\~x\tau k)\prime )k\in \BbbN is a bounded sequence in L2([0, T ],\BbbR n), there exists a subsequence
(\tau kj

)j\in \BbbN such that (\~x\tau kj )\prime \rightarrow v\ast weakly in L1([0, T ],\BbbR n) as j \rightarrow \infty by [21, Corollary
14, p. 413]. Since \~x\tau kj is absolutely continuous, for all t\in [0, T ], we have
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\~x\tau kj (t) - \~x\tau kj (0) =

\int t

0

(\~x\tau kj )\prime (u) du.

Take j \rightarrow \infty on both sides, we have

x\ast (t) - x\ast (0) =

\int t

0

v\ast (u) du,

where the convergence of the integral relies on the fact that the constant functions
equal to the canonical basis of \BbbR n lie in L\infty ([0, T ],\BbbR n). Thus, x\ast is absolutely contin-
uous and (x\ast )\prime (t) = v\ast (t) for almost every t\in [0, T ]. Recall that for all k \in \BbbN , it holds
for almost every t\in [0, T ] that

(\~x\tau k)\prime (t) = v\tau k(t)\in  - \partial f(x\tau k(t)).

Since f is locally Lipschitz, the set-valued function  - \partial f is upper semicontinuous [11,
Proposition 2.1.5(d), p. 29] with nonempty compact values [11, 2.1.2 Proposition (a),
p. 27], hence proper upper hemicontinuous [2, Proposition 1, p. 60]. In addition,
x\tau k \rightarrow x\ast uniformly on [0, T ] and (\~x\tau k)\prime \rightarrow (x\ast )\prime weakly in L1([0, T ],\BbbR n). Therefore,
(x\ast )\prime (t) \in  - \partial f(x\ast (t)) for almost all t \in [0, T ] by [2, Theorem 1, p. 60].7 The initial
condition also holds since \~x\tau (0) = x0 for all \tau > 0.

We have proved that for any initial point x0, there exists x\ast : [0, T ] \rightarrow \BbbR 
n such

that (x\ast )\prime (t) = - \partial f(x\ast (t)) holds for almost every t\in [0, T ] with any T > 0. Since T is
independent of x0, by setting T = 1, there exists a sequence of absolutely continuous
functions (xk)k\in \BbbN such that

x\prime 
k(t)\in  - \partial f(xk(t)) for a.e. t\in [0,1], xk(0) = xk - 1(1),

for all k \in \BbbN where x - 1(0) = x0. Therefore, the desired function x : [0,\infty )\rightarrow \BbbR 
n can

be defined in a piecewise fashion by

x(t) := xk(t - k), t\in [k, k+ 1) for all k \in \BbbN .

By construction, x is absolutely continuous on any compact interval [a, b]\subset [0,\infty ).
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