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AbstractÐ Model predictive control (MPC) provides a useful
means for controlling systems with constraints, but suffers from
the computational burden of repeatedly solving an optimization
problem in real time. Offline (explicit) solutions for MPC
attempt to alleviate real time computational challenges using
either multiparametric programming or machine learning. The
multiparametric approaches are typically applied to linear or
quadratic MPC problems, while learning-based approaches
can be more flexible and are less memory-intensive. Exist-
ing learning-based approaches offer significant speedups, but
the challenge becomes ensuring constraint satisfaction while
maintaining good performance. In this paper, we provide a
neural network parameterization of MPC policies that explicitly
encodes the constraints of the problem. By exploring the interior
of the MPC feasible set in an unsupervised learning paradigm,
the neural network finds better policies faster than projection-
based methods and exhibits substantially shorter solve times.
We use the proposed policy to solve a robust MPC problem,
and demonstrate the performance and computational gains on
a standard test system.

I. INTRODUCTION

Model predictive control (MPC) [1] is a powerful tech-

nique for controlling systems that are subject to state and

input constraints, such as agricultural [2], automotive [3],

and energy systems [4]. However, many applications require

fast decision-making which may preclude the possibility of

repeatedly solving an optimization problem online [5].

A popular approach for accelerating MPC is to move

as much computation offline as possible [5], [6]. These

techniques, known as explicit MPC, involve precomputing

the solution to the MPC problem over a range of parameters

or initial conditions. Most of the research effort has focused

on problems with linear dynamics and constraints, and linear

or quadratic cost functions. In this case, the explicit MPC

solution is a piecewise affine (PWA) function defined over a

polyhedral partition of the state constraints. However, many

of the applications of interest have cost functions that are not

necessarily linear or quadratic, or even convex. Further, the

memory required to store the partition and affine functions

can be prohibitive even for modestly-sized problems.

In order to reduce the complexity of explicit MPC, the op-

timal offline solution can be approximated. Approximations
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generally fall into two categories: partition-based solutions

[7]±[9] that generate piecewise control laws over coarser

state space partitions, and learning-based solutions [10]±[13]

that use function approximation to compactly represent the

optimal MPC policy. In this paper, we focus on the latter

with the key contribution of ensuring constraint satisfaction

while exploring all feasible policies.

Constraint satisfaction is crucial in many engineering

applications, and the ability of MPC to enforce constraints is

a major factor in its popularity. However, it is not straightfor-

ward to guarantee that a learning-based solution will satisfy

constraints. The main challenge arises from the fact that

while neural networks can limit their outputs to be in simple

regions, there is no obvious way of forcing complex con-

straint satisfaction at the output. In [10], [14], supervised and

unsupervised learning were used to approximate the solution

of MPCs, but did not provide any feasibility guarantees. By

contrast, [11] trains an NN using a policy gradient approach,

and guarantees feasibility by projecting the NN output into

the feasible action set. However, this extra optimization step

slows down the speed of online implementation, making it

difficult to use in applications that require high-frequency

solutions [15]. Supervised learning approaches that provide

safety guarantees [12], [13] rely on a choice of MPC oracle

that is not obvious when persistent disturbances are present.

In this paper, we propose an NN architecture for approx-

imating explicit solutions to finite-horizon MPC problems

with linear dynamics, linear constraints, and arbitrary differ-

entiable cost functions. The proposed architecture guarantees

constraint satisfaction without relying on projections or MPC

oracles. By exploring the interior of the feasible set, we

demonstrate faster training and evaluation, and comparable

closed-loop performance relative to other NN architectures.

The proposed approach has parallels in interior point

methods for convex optimization [16]. Interior point methods

first solve a Phase I problem to find a strictly feasible

starting point. This solution is used to initialize the Phase II

algorithm for optimizing the original problem. Our approach

accelerates both phases. The Phase I solution is given by a

simple function (e.g., affine map) and the Phase II problem

is solved using an NN architecture that can encode arbitrary

polytopic constraints (Fig. 1).

The Phase II solution builds on a technique first proposed

in [17], which uses a gauge map to establish equivalence

between compact, convex sets. With respect to [17], the

current work has three novel aspects. First, the reinforcement

learning (RL) algorithm in [17] only uses information about

the constraints, and does not use information about the cost
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function or dynamics. The resulting policy is safe, but can

exhibit suboptimal performance. The MPC formulation in

the current paper gives rise to a training algorithm that can

exploit knowledge about the system, improving performance.

Second, the MPC formulation permits explicit consideration

for future time steps. The RL formulation cannot optimize

entire trajectories due to the presence of constraints. This

inability to ªlook aheadº again limits the performance of

the RL algorithm. Finally, the previous work required a

Phase I that used a linear feedback to find a strictly feasible

point. A linear feedback, however, may not exist for some

problems. The current work proposes a more general class of

Phase I solutions (piecewise affine), while providing a way

to manage the complexity of the Phase I solution.

We demonstrate the effectiveness of the proposed tech-

nique on a 3-state test system, and compare to standard

projection- and penalty-based approaches for learning with

constraints. The results show that the proposed technique

achieves Pareto efficiency in terms of closed-loop perfor-

mance and online computation effort. All code is available

at github.com/dtabas/gauge networks.

Notation: The p-norm ball for p ≥ 1 is Bp = {z | ∥z∥p ≤
1}. A polytope P ⊂ R

n := {z ∈ R
n | Fz ≤ g} is

the (bounded) intersection of a finite number of halfspaces.

Scaling of polytopes by a factor λ > 0 is defined as

λP = {λz ∈ R
n | Fz ≤ g} = {z ∈ R

n | Fz ≤ λg}. Given

a matrix F and a vector g, the ith row of F is denoted

F (i)T and the ith component of g is g(i). The interior of

any set Q is denoted int Q. The value of a variable y at a

time interval t is denoted yt. A state or control trajectory of

length τ is written as the vector x =
[

xT1 , . . . , x
T
τ

]T
∈ R

nτ

or u =
[

uT0 , . . . , u
T
τ−1

]T
∈ R

mτ . The column vector of all

ones is 1. The symbol ◦ denotes function composition.

II. PROBLEM FORMULATION

In this paper, we consider the problem of regulating

discrete-time dynamical systems of the form

xt+1 = Axt +But + dt (1)

where xt ∈ R
n is the system state at time t, ut ∈ R

m is the

control input, and dt ∈ R
n is an uncertain input that captures

exogenous disturbances and/or linearization error (if the true

system dynamics are nonlinear) [18]. We assume the pair

Fig. 1. Illustration of the interior point approach to learning-based MPC.
The set F(x0) represents the MPC feasible set, while µ0(x0) and µθ(x0)
are control input sequences representing solutions to the Phase I and Phase
II problems, respectively. The neural network µθ moves the Phase I solution
to a more optimal solution.

(A,B) is stabilizable. The input constraints (actuation limits)

are U = {u ∈ R
m | Fuu ≤ gu} while the state constraints

arising from safety-critical engineering considerations are

X = {x ∈ R
n | Fxx ≤ gx}.

We consider the problem of operating the system (1)

using finite-horizon model predictive control. The goal is to

choose, given initial condition x0 ∈ X , a sequence of inputs

u of length τ that minimizes the cost of operating the system

while respecting the operational constraints.

However, since the disturbances dt are unknown ahead of

time, the designer must carefully consider how to achieve

both optimality and constraint satisfaction. Robust MPC

literature contains many ways to handle the presence of

disturbances in both the cost and constraints [19]. For exam-

ple, the certainty-equivalent approach [5] considers only the

nominal system trajectory, while the min-max approach [9]

considers the worst-case disturbance. Interpolating between

these two extremes, the tube-based approach [20] considers

the cost of a nominal trajectory while guaranteeing that the

true trajectory satisfies constraints. A stochastic point of view

in [21] considers the disturbance as a random variable and

minimizes the expected cost while providing probabilistic

guarantees for constraint satisfaction.

In most robust MPC formulations, the set of possible

disturbances is modeled as either a finite set, a bounded set,

or a probability distribution [22]. In this paper, we assume

the disturbances lie in a closed and bounded set D := {d ∈
R

n | Fdd ≤ gd}. In order to ensure constraint satisfaction,

we operate the system within a robust control invariant set

(RCI) S ⊆ X , defined as a set of initial conditions for

which there exists a feedback policy in U keeping all system

trajectories in S , under any disturbance sequence in D [23].

In our simulations, we used approximately-maximal RCIs

computed with the semidefinite program from [24].

With S := {x ∈ R
n | Fsx ≤ gs}, we define the target set

T as {x ∈ R
n | x+ d ∈ S, ∀ d ∈ D} = {x ∈ R

n | Fsx ≤

g̃s} where for each row i, g̃
(i)
s = g

(i)
s −maxd∈D F

(i)T
s d [23].

Any policy that maps S to T under the nominal dynamics

will map S to itself under the true dynamics, rendering S
robustly invariant. By constraining the nominal state to the

target set, robust constraint satisfaction is guaranteed for the

first time step. Since S is RCI, this is sufficient for keeping

closed-loop trajectories inside S . Under this formulation, the

MPC problem is posed as follows, given initial state x0:

min
u

τ−1
∑

k=0

l(xk, uk) + lF (xτ ) (2a)

subject to ∀ k: xk+1 = Axk +Buk (2b)

xk+1 ∈ T (2c)

uk ∈ U (2d)

where l and lF are stage and terminal costs that are

differentiable but possibly nonlinear or even non-convex.

Although (2) differs from the standard tube-based approach,

the techniques introduced in this paper can be applied to a

variety of MPC formulations.
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In this paper, we seek to derive a safe feedback policy

πθ : R
n → R

m that approximates the explicit solution

to (2) by first approximating the optimal control sequence

with a function µθ : R
n → R

mτ and then implementing

the first action of the sequence in the closed loop. In

practice, any MPC policy implemented in closed loop must

be stabilizing and recursively feasible. Recursive feasibility

is the property that closed-loop trajectories generated by

the MPC controller will not lead to states in which the

MPC problem is infeasible. This property is guaranteed when

S is RCI [23]. If recursive feasibility is not guaranteed,

then a backup controller must be developed or a control

sequence that is feasible for the most immediate time steps

can be used. There is suggestion in the literature that the

latter approach performs quite well in practice [25], but

the theoretical aspects remain open. In terms of stability,

recursive feasibility guarantees that trajectories will remain

within a bounded set. Since this work focuses on constraint

satisfaction, we do not consider stricter notions of stability.

III. PHASE I: FINDING A FEASIBLE POINT

The feasible set of (2) is a polytope F(x0) ⊆ R
mτ , defined

by the following inequalities in u:

Hs(M0x0 +Muu) ≤ h̃s, (3a)

Huu ≤ hu (3b)

where Hs, Hu,M0,Mu, h̃s, and hu are block matrices and

vectors derived from the system dynamics and constraints. In

this paper, we assume that F(x0) has nonempty interior for

all x0 ∈ S . Since the state constraints S form an RCI, F(x0)
is already guaranteed to be nonempty, and the assumption of

nonempty interior is only marginally more restrictive.

The gauge map technique introduced in [17] provides a

way to constrain the outputs of a neural network µθ : Rn →
R

mτ to F(x0) without a projection or penalty function, but

F(x0) must contain the origin in its interior. If this is not the

case, then we must temporarily ªshiftº F(x0) by subtracting

any one of its interior points. In this section, we discuss

several ways to reduce the complexity of finding an interior

point.

We begin by considering the feasibility problem for the

one-step safe action set defined as V(x0) = {u ∈ R
m |

u ∈ U , Ax0 + Bu ∈ T }, which is guaranteed to have an

interior point by the assumption on F(x0). One way to

find an interior point of V(x0) is to minimize the maximum

constraint violation:

min
u,s

s (4a)

subject to: Fs(Ax0 +Bu) ≤ g̃s + s1 (4b)

Fuu ≤ gu + s1 (4c)

which has an optimal cost s∗ ≤ 0 if V(x0) is nonempty, and

s∗ < 0 if V(x0) has nonempty interior [16]. To avoid solving

a linear program online during closed-loop implementation,

the solution to (4) can be stored as a piecewise affine (PWA)

function π0(x0) : R
n → R

m [7]. Although solutions to mul-

tiparametric LPs can be demanding on computer memory,

we take advantage of the fact that feasibility problems have

low accuracy requirements: any suboptimal solution to (4)

that achieves a cost s < 0 for all x0 ∈ S is acceptable.

Definition 1: A function π0 : Rn → R
m is said to solve

(4) if, for all x0 ∈ S , the optimal cost of (4) is negative

when the decision variable u is fixed at π0(x0).
Existing techniques for approximate multiparametric lin-

ear programming [26], especially those that generate con-

tinuous solutions [27], can be used to reduce the memory

requirements of offline solutions to (4).

To show just how far one can go with reducing complexity,

we will construct an affine (rather than PWA) function that

solves (4), for the system studied in Section V. Let π0(x0) =
Wx0 + w. If W ∈ R

m×n and w ∈ R
m satisfy

Fx(Ax0 +B(Wx0 + w)) < g̃x (5a)

Fu(Wx0 + w) < gu (5b)

for all x0 ∈ S , then π0(x0) = Wx0 + w solves (4). The

following optimization problem can be solved to find W

and w or certify that none exists. Let Y(s) = {x0 ∈ R
n |

Fs(Ax0+B(Wx0+w)) ≤ g̃s+s1, Fu(Wx0+w) ≤ gu+s1}.
If the optimal cost of

min
W,w,s

s subject to S ⊆ Y(s) (6)

is negative, then (5) holds for all x0 ∈ S , thus π0 solves

(4). This happens to be the case for the example in Section

V, taken from [6]. The constraint in (6) is a polytope

containment constraint in halfspace representation, thus (6)

can be solved as a linear program [28].

Now consider the feasibility problem for F(x0), which

is obtained by replacing (4b) and (4c) with (3a) and (3b),

and changing the optimization variable from u ∈ R
m to

u ∈ R
mτ . One would naturally expect the complexity of

the PWA solution to this feasibility problem to increase

rapidly with the time horizon τ , as more decision variables

and constraints are added. However, the next proposition

shows that the cardinality of the stored partition can be made

constant in τ .

Proposition 1 (Phase I solution): If π0 solves (4), then

the vector µ0(x0) :=
[

π0(x0)
T , . . . , π0(xτ−1)

T
]T

, where

xk+1 = Axk + Bπ0(xk), is an interior point of F(x0) for

any x0 ∈ S .

Proof: If π0 solves (4), then π0(x) ∈ int V(x) for all

x ∈ S . Applying the definition of V in an inductive argu-

ment, it is straightforward to show that the state trajectory

associated with µ0(x0) is entirely contained in S . Fix any

such trajectory {x1, . . . , xτ} ⊂ S originating from x0 ∈ S
under policy π0. For any k ∈ {1, . . . , τ}, xk ∈ S implies

π0(xk) ∈ int V(xk), which implies π0(xk) ∈ int U and

Axk + Bπ0(xk) ∈ int T . Since this holds for all k, the

constraints defining F(x0) hold strictly at µ0(x0).
In our simulations on the example from [6], (6) was feasi-

ble with negative optimal cost, meaning that a polyhedral

partition of the state space was not needed (see Section

V). This indicates that the minimum number of regions in

a polyhedral state space partition associated with a PWA
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Fig. 2. The proposed control policy uses a neural network combined with
the Phase I solution and a gauge map to constrain the decision u to the
MPC feasible set F(x0). The first action from the sequence u is extracted
and implemented. On the right, the action of the gauge map is illustrated.

solution to (4) is in general very small relative to the number

of regions in an explicit solution to (2).

IV. PHASE II: OPTIMIZING PERFORMANCE

In this section, we construct a class of policies from

x0 ∈ S to F(x0), that can be trained using standard machine

learning packages. Although it is difficult to constrain the

output of a neural network to an arbitrary polytope such as

F(x0), it is easy to constrain the output to the hypercube B∞

by applying a clamping function elementwise in the output

layer. We apply a mapping between polytopes that is closed-

form, differentiable, and bijective. This mapping establishes

an equivalence between B∞ and F(x0), allowing one to

constrain the outputs of the policy to F(x0). The mapping

from B∞ to F(x0) is called the gauge map. The concept is

illustrated in Figure 2.

We begin constructing the gauge map by introducing some

preliminary concepts. A C-set is a convex, compact set that

contains the origin as an interior point. The gauge function

with respect to C-set P ⊂ R
n, denoted γP : Rn → R+, is

the function whose sublevel sets are scaled versions of P .

Specifically, the gauge of a vector v with respect to P is

given by γP(v) = inf{λ ≥ 0 | v ∈ λP}. If P is a polytopic

C-set given by {v ∈ R
k | Fv ≤ g}, then γP is the pointwise

maximum over a finite set of affine functions [17]:

γP(v) = max
i

F (i)T v

g(i)
. (7)

Given two C-sets P and Q, the gauge map G : P → Q is

G(v | P,Q) =
γP(v)

γQ(v)
· v. (8)

This function maps level sets of γP to level sets of γQ.

Proposition 2: Given two polytopic C-sets P and Q, the

gauge map G : P → Q is subdifferentiable and bijective.

Further, given a function π0 from Proposition 1, the set

F̃(x) := [F(x)− π0(x)] is a C-set for all x ∈ S .

Proof: The properties of subdifferentiability and bi-

jectivity come from [17]. For the C-set property, fix x ∈ S .

Since S, U , and D are convex and compact, so is F(x). Since

µ0(x) is an interior point of F(x), the set F̃(x) contains the

origin as an interior point and is therefore a C-set.

We now use the gauge map in conjunction with the

Phase I solution to construct a neural network whose output

is confined to F(x0). Let ψθ : S → B∞ be a neural

network parameterized by θ. A safe policy is constructed

by composing the gauge map G : B∞ → F̃(x0) with ψθ,

then adding µ0(x0) to map the solution into F(x0):

µθ(x0) = G(· | B∞, F̃(x0)) ◦ ψθ(x0) + µ0(x0). (9)

Computing the gauge map online simply requires evaluating

HsM0x0 from (3a) as well as the operations in (7).

The function µθ has several important properties for

approximating the optimal solution to (2). First, it leverages

the universal function approximation properties of neural

networks [29] along with the bijectivity of the gauge map

(Proposition 2) to explore all interior points of F(x0). This is

an advantage over projection-based methods [11] which may

be biased towards the boundary of F(x0) when the optimal

solution may lie on the interior. Second, µθ is evaluated in

closed form, and its outputs are constrained to F(x0) without

the use of an optimization layer [14] that may have high

computational overhead. Finally, the subdifferentiability of

the gauge map (Proposition 2) enables selection of parameter

θ using standard automatic differentiation techniques.

Optimizing the parameter θ

Similar to the approach taken in [10], we optimize θ by

sampling x ∈ S and applying stochastic gradient descent. At

each iteration, a new batch of initial conditions {xj0}
M
j=1 is

sampled from S and the loss is computed as

J(θ) =
1

M

M
∑

j=1

τ−1
∑

k=0

l(xjk, u
j
k) + lF (x

j
τ ) (10)

with the control sequences uj given by µθ(x
j
0) and state

trajectories xj generated according to the nominal dynamics.

The parameters θ are updated in the direction of ∇θJ , which

is easily computed using automatic differentiation [30].

V. SIMULATIONS

A. Test systems

We simulate the proposed policy using a modified example

from [6] with n = 3, m = 2, and τ = 5. The system

matrices, constraints, costs, and Phase I solution (found

using (6)) are given below:

A =





−.5 .3 −1
.2 −.5 .6
1 .6 −.6



 , B =





−.601 −.890
.955 −.715
.246 −.184



 , (11)

∥x∥∞ ≤ 5, ∥u∥∞ ≤ 1, ∥d∥∞ ≤ 0.1, (12)

l(x, u) = ∥x∥22 + c1∥u∥
2
2, lF (x) = c2∥x∥

2
2 (13)

W =

[

0.116 0.210 −0.370
−0.320 −0.104 −0.122

]

, w =

[

−0.157
−0.0533

]

where c1 and c2 are positive constants. Although quadratic

costs are used in the simulations, the proposed method can

work with any differentiable cost.

We evaluate the performance of a given policy in both

open- and closed-loop experiments. In the open-loop experi-

ments, we evaluate the MPC cost (2a) and compare it to the
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optimal cost. The fraction suboptimality is

δ =
cnn − cmpc

cmpc

(14)

where cnn is the average cost (2a) incurred by the control

sequence µθ on a validation set {xj0}
Nval

j=1 ⊂ S and cmpc is

the optimal cost.

In the closed-loop experiments, we evaluate the perfor-

mance of a policy πθ(xt) : R
n → R

m, t ≥ 0 which

is derived from µθ(xt) by taking the first action in the

sequence. We simulate (1) for T ≫ τ time steps. The

trajectory cost in the closed-loop experiments is computed

as
∑T−1

t=0 l(xt, ut) + lF (xT ) and the disturbance is modeled

as an autoregressive sequence [31], dt+1 = αdt + (1− α)d̂
where α ∈ (0, 1) and d̂ is drawn uniformly over D.

B. Benchmarks

We compare the proposed method to two of the most

common approaches for learning a solution to (2). The first

benchmark is a penalty-based approach [32] which enforces

the constraints (2c) and (2d) by augmenting the cost (10)

with a linear penalty term on constraint violations given

by β · max{0, Fxxt − g̃x} where the max is evaluated

elementwise and β > 0. Since the penalty-based approach

does not encode state constraints in the policy, the policy is

constrained to the Cartesian product Uτ =
∏τ−1

k=0 U using

scaled tanh functions elementwise.

The second benchmark is a projection-based approach [11]

which constrains the policy to the set F(x0) by solving a

convex quadratic program in the output layer of a neural

network [33]. The optimization layer v → u returns

argmin
u

∥v − u∥22 subject to u ∈ F(x0).

Another class of approaches to learning-based MPC seeks

to learn the optimal solution to (2) using regression [12]±

[14]. Specifically, data-label pairs (x0, u
∗
0) are generated

by sampling x0 from S , solving (2) for each sample, and

extracting u∗0 from the optimal solution u∗. Then, a neural

network or other function approximator is trained to learn the

relationship between x0 and u∗0. Performance and constraint

satisfaction are handled e.g. by bounding the approximation

error with respect to the MPC oracle. We do not compare

against this type of approach since it requires a large number

of trained samples, making it difficult to compare with our

and the other unsupervised examples.

C. Neural network design

The neural networks were designed with n inputs, mτ

outputs, and two hidden layers with rectified linear unit

(ReLU) activation functions. The width of the networks

was chosen during hyperparameter tuning. In particular, we

performed 30 iterations of random search over the width

of the network (number of neurons per hidden layer) ∈
{64, . . . , 1024}, the batch size (number of initial conditions,

M ) ∈ {100, . . . , 3000} and the learning rate (LR, the

step size for gradient descent) ∈ [10−5, 10−3]. For each

set of hyperparameters under consideration, we computed

TABLE I

HYPERPARAMETERS FOR THE THREE NEURAL NETWORKS.

Type Width LR M

Gauge 859 4.7× 10−4 1655
Penalty 318 8.7× 10−4 133

Projection 956 9.0× 10−5 813

TABLE II

OPEN-LOOP TEST RESULTS.

Type δ (14) Solve time (sec)

Gauge 0.007 .0015
Projection 0.010 .024

the validation score using (14) with Nval = 100. The

hyperparameters after tuning are reported in Table I.

D. Simulation results

Here we compare our proposed approach (Gauge NN), the

penalty-based approach (Penalty NN), the projection-based

approach (Projection NN) and the ªground truthº obtained

by solving (2) online in cvxpy. The results of the open-

loop experiments are shown in Table II, with performance

computed relative to the optimal MPC solution using (14)

with Nval = 100 trials. The proposed Gauge NN achieves

lower cost compared to the projection-based method, and

has a much lower computational complexity (solve time is

only 6% of projection). Table II only compares the NNs

with safety guarantees because constraint violations are not

accounted for in (14).

Figure 3 shows the training curves for each type of

network. The lower training cost achieved by the Gauge NN

illustrates that it can be more efficient to explore the interior

of the feasible set than the boundary. Since the MPC cost in

the simulations is strictly convex, solutions with lower cost

are closer to the optimal solution.

Figure 4 compares the policies in terms of computation

time and test performance. The box-and-whisker plots in-

dicate the range of performance over 100 test trajectories

of length T = 50, while the vertical position of each box

indicates the average time to compute a control action. Of the

policies with safety guarantees (Gauge NN, Projection NN,

and online MPC), the Gauge NN achieves Pareto efficiency

in terms of average solve time and median trajectory cost.

Fig. 3. Training trajectories for the three types of neural netwokrs. Our
proposed Gauge-based approach achieves lower cost at a much faster rate.

1146

Authorized licensed use limited to: University of Washington Libraries. Downloaded on September 02,2023 at 13:46:42 UTC from IEEE Xplore.  Restrictions apply. 



Fig. 4. Solve time vs. trajectory cost for the networks under consideration
applied to the 3-state system. The Gauge NN is Pareto-efficient in terms
of cost and computation time compared to the other techniques with safety
guarantees (Online MPC and Projection NN).

Our intuition behind the high performance of the neural

networks is that (2) is a heuristic and the unsupervised

learning approach can lead to better closed-loop policies.

VI. CONCLUSION

In this paper, we provided an efficient way of exploring the

interior of the MPC feasible set for learning-based approx-

imate explicit MPC, and demonstrated the performance and

computational gains that can be achieved by approaching the

problem from the interior. The paradigm relies on a Phase I

solution that exploits the structure of the MPC problem and

a Phase II solution that features a projection-free feasibility

guarantee. The results compare favorably against common

approaches that use unsupervised learning, as well as against

the oracle itself used in supervised approaches. Future work

includes applications to MPC problems with convex but non-

polytopic constraint sets, and to distributed settings.
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