
Learning to Solve the AC Optimal Power Flow via
a Lagrangian Approach

Ling Zhang
Department of Electrical and Computer Engineering

University of Washington, Seattle WA, USA

lzhang18@uw.edu

Baosen Zhang
Department of Electrical and Computer Engineering

University of Washington, Seattle WA, USA

zhangbao@uw.edu

AbstractÐUsing deep neural networks to predict the solutions
to AC optimal power flow (ACOPF) problems has been an active
direction of research. However, because the ACOPF is nonconvex,
it is difficult to construct a good data set that contains mostly
globally optimal solutions. To overcome the challenge that the
training data may contain suboptimal solutions, we propose a
Lagrangian-based approach. First, we use a neural network to
learn the dual variables of the ACOPF problem. Then, from
the predicted dual variables, we use a second neural network to
predict solutions of the partial Lagrangian and use the predicted
solutions as warm starts for the ACOPF problem. We test our
approach on standard and modified IEEE networks and show
that our approach can reach more globally optimal solutions with
significant computational speedup even when the training data
consists of mostly suboptimal solutions.

Index TermsÐAC optimal power flow, deep learning,
Lagrangian-based approach.

I. INTRODUCTION

The AC optimal power flow (ACOPF) problems are fun-

damental to power system operations, but they are often

computationally expensive to solve in real-time [1]. Recently,

machine learning has emerged as a popular method to aid

in solving ACOPFs [2]±[5]. By treating the optimization

problem as a function that maps loads to the optimal solutions

(voltage and angles), supervised learning techniques can be

used to train a neural network (NN) that replaces a nonlinear

programming solver [6]±[9]. Since training can be done offline

using historical or simulated data, neural networks can be used

in real-time to reduce computational burdens.

Despite the many advances in using learning to solve

ACOPFs, there are still some unresolved challenges. The

quality of the learned solutions is fundamentally limited by the

quality of the training data sets. In the context of ACOPF, the

training set consists of pairs of active/reactive loads and their

corresponding ACOPF solutions. A key, and often unstated

assumption, is that the solutions in the training set are the

optimal ones. However, the training set is typically constructed

using existing nonlinear programming solvers, and there is no

guarantee that the solutions are in fact globally optimal.

Historically, the presence of multiple solutions to the

ACOPF problem has been solved by assuming that there is

only one ªpracticalº solution (i.e., with high voltage) [10].

However, many recent works have pointed out that multiple

solutions do occur under reasonable conditions and cannot be

easily ruled out [11]±[13]. Therefore, it is not easy to reprocess

the data set to rule out bad solutions.

Related to the presence of suboptimal solutions, a very

difficult setting for learning can arise when several solutions

are associated with similar loads. Because of the presence of

multiple solutions, a small change in load may lead a solver

to jump between distinct solutions. Therefore, the training set

could include data that are close in terms of the load, but

quite different in the solutions. For a neural network trained

using regression loss, it would output the average of the

local solutions, leading to an initialization point that neither

increase the computation speed nor helps with the quality of

the solutions.

In this paper, we present a machine learning architecture that

overcomes the challenge of multiple suboptimal local solutions

in the training data set. Instead of focusing on the load/solution

pairs, we can think of these machine learning methods to be

producing a good warm start for a solver, and learning a good

warm start would offer significant computational speedups and

improvement on solution quality [14].

We first learn a neural network that maps load to the

dual variable of the power balance constraints. These dual

variables are the locational marginal prices and would be

readily available from any modern nonlinear solver. These

dual variables are used to form a partial Lagrangian, whose

solution we also learn via a neural network. Then we use

the predicted solution of the partial Lagrangian as a warm

start [15]. Interestingly, this warm starting point tends to be

closer to the globally optimal solution of the ACOPF, even if

the training data set only has suboptimal solutions or a mixture

of global and local solutions. Therefore, by using the learned

warm start as an initialization point, we could have better

solution quality than directly learning based on load/solution

pairs.

We show that our duality-based approach outperforms ex-

isting approaches on modified IEEE 22-, 39-, and 118-bus

networks [11]. The difference is especially significant if the

training data set contains some strictly suboptimal solutions.

II. PROBLEM FORMULATION

A. ACOPF Formulation

Consider a power system network where n buses are

connected by m edges. For bus i, let Vi denote its voltage

magnitude, θi its angle, PG
i and QG

i the active and reactive978-1-6654-9921-7/22/$31.00 ©2022 IEEE

2
0
2
2
 N

o
rt

h
 A

m
er

ic
an

 P
o
w

er
 S

y
m

p
o
si

u
m

 (
N

A
P

S
)

| 9
7
8
-1

-6
6
5
4
-9

9
2
1
-7

/2
2
/$

3
1
.0

0
 ©

2
0
2
2
 I

E
E

E
 |

D
O

I:
 1

0
.1

1
0
9
/N

A
P

S
5
6
1
5
0
.2

0
2
2
.1

0
0
1
2
2
3
7

Authorized licensed use limited to: University of Washington Libraries. Downloaded on September 02,2023 at 13:54:24 UTC from IEEE Xplore. Restrictions apply.

output of the generator and PD
i and QD

i the active and reactive

load. We use P f
ij and Qf

ij to denote the active and reactive

power flowing from bus i to bus j. The admittance between

buses i and j is gij − jbij . We use θij as a shorthand for

θi − θj .

The ACOPF problem is to minimize the cost of active power

generations while satisfying a set of constraints [11]:

min
V,θ

∑
i ci(P

G
i) (1a)

s.t. PG
i = PD

i +
∑N

j=1
P f
ij (1b)

QG
i = QD

i +
∑N

j=1
Qf

ij (1c)

P f
ij = V 2

i gij − ViVj(gij cos(θij)− bij sin(θij)) (1d)

Qf
ij = V 2

i b̂ij − ViVj(bij cos(θij) + gij sin(θij)) (1e)

Vi ≤ Vi ≤ V̄i (1f)

PG
i ≤ PG

i ≤ P̄G
i (1g)

QG
i ≤ QG

i ≤ Q̄G
i (1h)

(P f
ij)

2 + (Qf
ij)

2 ≤ (Smax

ij)2 (1i)

where b̂ij = bij − 0.5bCij and bCij is the line charging suscep-

tance. The constraints (1b) and (1c) enforce power balance,

(1d) and (1e) are the AC power flow equations, (1f) limits the

bus voltage magnitudes, (1g) and (1h) represent the active and

reactive limits and (1i) are the line flow limits.

The problem in (1) is nonconvex and can have multiple local

solutions. More precisely, local solutions are all the solutions

that satisfy local optimality conditions, for example, the KKT

conditions or second order ones [14]. Out of this set, the

solutions with the lowest cost are called the global ones. We

sometimes refer to the local solutions that are not global as

strict local solutions.

B. Challenges of Using Learning for ACOPF

Machine learning is often applied to the optimization prob-

lem in (1) by viewing it as the mapping from the demands PD

and QD to the solutions V and θ, with the goal of finding

a proxy function to this mapping. Training data is generated

by solving (1) for a number of demands and collecting the

corresponding solutions. Several different learning architec-

tures have been proposed, including direct regression [2],

using sensitivity information [6], and emulation of an iterative

solver [7]. The constraints in (1b) to (1i) are nontrivial to

enforce, and an additional call of power flow or optimal power

flow on a smaller problem are often used [7], [16].

However, existing learning methods face a common chal-

lenge, stemming from the fact that the ACOPF problem in (1)

is nonconvex and may have multiple solutions [11]±[13].

A number of recent works have shown that for reasonable

operation conditions, there could be multiple solutions that

differ significantly in cost, but all have practical values (e.g.,

with voltages being all close to 1 p.u.) [17]±[20].

Many nonlinear programming (NLP) solvers have been

developed for the ACOPF problem, and their speed and

efficiency have improved dramatically (e.g., see [21] and the

references within). But NLP solvers are typically only able

to return one of the feasible solutions, and there is generally

no way to tell whether these feasible solutions are globally

optimal. Therefore, using the solutions returned by NLP

solvers as ground truth data for training may fundamentally

limit the performance of the learning algorithm.

The solution returned by an NLP solver is also sensitive to

a variety of factors, and small changes in demand can lead to

a large change in the solution. For example, small changes in

demand can lead to the solution switching between global and

local. Therefore, a data set created directly using the solutions

returned by NLP solvers may very well consist of a mixture

of local and global solutions, which tend to be very confusing

for a learning algorithm.

III. ALGORITHM

In this section, we describe our learning approach to find

more optimal solutions to ACOPF problems using neural

networks, even when the training data set contains a mixture of

local and global solutions. We first give a partial Lagrangian-

based approach, then discuss the learning architecture. The key

of the approach is to obtain global solutions from a training

set of local ones.

A. Lagrangian-based Approach

In paper [15], we gave an iterative approach to improve

the solution quality by alternatively solving (1) and its partial

Lagrangian. We briefly review the algorithm here. The partial

Lagrangian for (1) is formed by dualizing the active and

reactive power balance constraints (1b) and (1c). Suppose the

Lagrangian multipliers associated with (1b) and (1c) are µP
i

and µQ
i , respectively, then the partial Lagrangian for (1) is:

Lµ(V,θ) =
∑

i ci(P
G
i) +

∑
i µ

P
i (P

D
i + P f

i − PG
i)

+
∑

i

µQ
i (Q

D
i +Qf

i −QG
i) (2a)

s.t. Vi ≤ Vi ≤ V̄i (2b)

PG
i ≤ PG

i ≤ P̄G
i (2c)

QG
i ≤ QG

i ≤ Q̄G
i (2d)

(P f
ij)

2 + (Qf
ij)

2 ≤ (Smax

ij)2 (2e)

where P f
i =

∑N
j=1

V 2

i gij − ViVj(gij cos(θij) − bij sin(θij)),

and Qf
i =

∑N
j=1

V 2

i b̂ij − ViVj(bij cos(θij) + gij sin(θij)) are

the AC power flow equations.

It turns out the solution of the partial Lagrangian in (2)

tends to be close to the global optimal solution of the original

ACOPF in (1). This is true even if the multipliers µP and µQ

are the ones associated with the strict local solutions (see [15]

for more details). Therefore, the solution of (2) serves as a

good warm start point for an ACOPF solver.

In this paper, we train two neural networks to replace

explicitly solving (1) and (2). The first one predicts the dual

variables of the active and reactive power balance constraints

from the load, and the second one to predicts the solution

of (2) from the load and the predicted multipliers using the

Authorized licensed use limited to: University of Washington Libraries. Downloaded on September 02,2023 at 13:54:24 UTC from IEEE Xplore. Restrictions apply.

(a) The neural network to learn
the dual variables of the power
balance constraints.

(b) The neural network to pre-
dict the solutions of the partial
Lagrangian.

Fig. 1: The two neural networks to be trained.

first neural network. The output of the second neural network

is used as a warm start point for an ACOPF solver. Since

this starting point is close to the global solution, the ACOPF

solver is solved much faster and is more likely to find the

global solution than a solver with a flat or random start.

B. Training of Neural Networks

The architectures of the two neural networks are shown in

Fig. 1. The first neural network takes the active and reactive

load demands (PD,QD) as the input, and the output is

the predicted multipliers, denoted by (µ̄P , µ̄Q). Let x be

the collection of voltage magnitudes and angles, µ be the

collection of (µP ,µQ), and (xi,µi) be the i-th pair of data

in the training set, then the first neural network, denoted as

gacopf and parameterized by w, is trained by minimizing:

min
w

1

N

N∑

i=1

(µi − gacopf (x
i;w))2. (3)

The second neural network emulates solving the partial

Lagrangian in (2). The input for the second neural network

is the active and reactive load demands (PD,QD), as well as

the associated dual variable solutions (µP ,µQ). The output of

the neural network is the solution to (2), denoted by (V̄, θ̄).
Let z be the collection of inputs, x̄ be the collection of outputs,

and (zi, x̄i) be the i’th pair of data in the training set, then the

second network, denoted by gdual with weights w is trained

by minimizing

min
w

1

N

N∑

i=1

(x̄i − gdual(z
i;w))2. (4)

C. Making Predictions in Real-time

After training, we use the process in Fig. 2 to make

predictions. We use the first trained neural network to predict

the dual variables (µ̄P , µ̄Q) from the input load. Then from

the predicted dual variable solutions, we use the second

trained neural network to predict the solutions (V̄, θ̄) of

the Lagrangian. Then we call the NLP solver to solve (1)

using (V̄, θ̄) as the initial point. This learning algorithm is

summarized below as Algorithm 1.

In our approach, even when the training data set contains

suboptimal solutions, the solution of the Lagrangian would be

a good warm start that makes the NLP solver get around being

Fig. 2: Outline of the solution process.

Algorithm 1: Solving ACOPF using learning

Inputs: (PD,QD)
First trained neural network to predict multipliers:

gacopf (P
D,QD;w) −→ (µ̄P , µ̄Q)

Second trained neural network to predict solutions

to (2):

gdual(P
D,QD, µ̄P , µ̄Q;w) −→ (V̄, θ̄)

Call NLP solver for (1) initialized at (V̄, θ̄);

Outputs: Solutions (V̂, θ̂) to (1).

trapped at strictly local solutions. The reason is that the partial

Lagrangian in (2) has ªniceº geometry: It has minimums that

are near the globally optimal solution of the ACOPF problem,

even if it is formed with the multipliers obtained at local

optimal solutions of the ACOPF problem [15].

Also, our algorithm is robust in the sense that the solutions

x̄ to partial Lagrangian are not sensitive to the variations in

µ̄. That is, even if the multipliers µ̄ associated with different

local solutions are different, the resulting solutions to partial

Lagrangian do not change much. This also means we do not

ask the predictions of the neural network to be very accurate.

Therefore, the training set for our algorithm need not be

very large. We sketch the geometric intuitions behind our

algorithm in Section IV. We validate our algorithm in standard

and modified IEEE benchmark systems, and report simulation

results in Section V.

IV. GEOMETRY AND INTUITION

In this section, we use a 2-bus network as an example to

shed some light on why Algorithm 1 might learn more globally

optimal solutions, even when the training data consists of a

lot of local solutions. In the 2-bus network, for simplicity, we

ignore the reactive power and set both voltage magnitudes to

be 1 per unit. Suppose bus 1 is a generator and also is the

reference bus with an increasing cost function c(·), and bus 2

is the load bus with angle −θ. The line admittance is g − jb.
Given a load of l at bus 2 and ignoring all constraints except

for the load balancing one, the ACOPF in (1) becomes

min
θ

c(g − g cos(θ) + b sin(θ)) (5a)

s.t. l + g − g cos(θ)− b sin(θ) = 0. (5b)

This is an example of an OPF with a disconnected feasible

space, since there are two distinct solutions to (5b) and we

are asking for the lower cost one.

To see how an NLP solver would approach this problem,

we adopt the common practice in nonlinear programming and

Authorized licensed use limited to: University of Washington Libraries. Downloaded on September 02,2023 at 13:54:24 UTC from IEEE Xplore. Restrictions apply.

form a penalized version of (5) [14], [22]. The penalized

unconstrained problem is given by

Lρ =c(g − g cos(θ) + b sin(θ)) (6)

+
ρ

2
(l + g − g cos(θ)− b sin(θ))2,

where ρ is a penalty parameter. For large enough ρ, the

solutions of (6) would be very close to those of (5) [14]. The

function Lρ is plotted in Fig. 3. We can see that there are two

local minima, with the left one being global. However, both

minima satisfy first- and second-order optimality conditions.

Therefore, if an NLP solver is initialized with a poor starting

point, it would be stuck at the strict local solution.

Fig. 3: Geometry of the penalized objective function Lρ and the
partial Lagrangian Lµ. The line admittance is g− jb and the penalty
parameter is 2. The red curve is the partial Lagrangian formed at
the strict local solution and the black curve is formed at the global
solution.

Now suppose µ is the multiplier corresponding to the

equality constraint (5b) at the strict local solution. The partial

Lagrangian of (5) by dualizing (5b) is:

Lµ =c(g − g cos(θ) + b sin(θ)) (7)

+ µ(l + g − g cos(θ)− b sin(θ)).

Since the sinusoidal functions are periodic with period 2π, let

us consider the range θ ∈ [−π, π]. It is interesting now to

compare the solution of Lµ to the original problem in (5) (or

equivalently, Lρ). The red curve in Fig. 3 plots Lµ at the local

minimum and the black curve at the global minimum. We can

observe an interesting fact that the minimum of Lµ is close

to the global minimum of Lρ, even when the multiplier at the

strict local solution is used.

It is instructive to think about a training data set with both

local and global solutions for the same load, and compare the

learned warm starts using direct regression and Algorithm 1.

Suppose a regression method is used to minimize the distance

between a predicted solution and the solutions in the training

set. Since a mixture of local and global solutions are used in

training, the learned neural network would make a prediction

that is the average of the two solutions, as shown in Fig. 4. But

it may be closer to the local solution rather than the global

one. Preprocessing the training data may alleviate some of

these issues, but that is likely to be cumbersome and removes

some of the appeals of using machine learning.

When Algorithm 1 is used, we first predict the multipliers

from the load. Since the training set is a mix of local and

Fig. 4: When the training set has both local and global solutions, the
predicted warm start using direct regression is marked as red, which
is closer to the strict local minimum. A solver initialized with this
warm start would converge to the strict local minimum.

global solutions, the predicted multiplier would be some point

lying between the locally and globally optimal values. The

predicted multiplier is plotted in Fig. 5a, where we adopt a

linear cost function for c(·) in (7) and set the cost coefficient

to be one, i.e., c(x) = x. Then we predict the solution of Lµ

from the predicted multiplier. For a given multiplier µ̄, the

solution to Lµ is found through the optimality condition of

(7):

(c′ + µ̄)g sin(θ̄) + (c′ − µ̄)b cos(θ̄) = 0, (8)

where c′ is a shorthand for the derivative c′(g − g cos(θ̄) +
b sin(θ̄)). By varying the multipliers, we can represent the

mapping from the multipliers to the solutions of Lµ as follows:

θ̄ = tan−1(
µ̄− c′

µ̄+ c′
b/g), (9)

which is plotted in Fig. 5a. The set of solutions of Lµ that

is mapped from the multipliers varying between the locally

and globally optimal values is denoted by set I . The predicted

solution of Lµ would lie in set I . We also plot set I in Fig. 5b.

We can see that every point in set I is close to the global

minimum of Lρ. More precisely, every point is in the basin

of attraction of the global solution. This means if we use the

predicted solution of Lµ as a warm start, the solver would

converge to the global minimum.

In the next section, we test Algorithm 1 on IEEE benchmark

systems and show the intuition developed in this section is true

for much larger and more complex problems.

V. SIMULATION RESULTS

In this section, we demonstrate the simulation results of

using Algorithm 1 to predict solutions to the ACOPF problem.

We test our algorithm on IEEE networks with 22, 39, and

118 buses. The full specifications for these networks can be

found in [11] and [23]. The popular solver IPOPT [24] is

used to generate training samples for each network. For a

comparison baseline, we use the method in [7], where a deep

neural network is trained to learn the mapping from load to

optimal generation values by minimizing the loss between the

learned and ground-truth values. Then power flow equations

are solved to recover and ensure the feasibility of the overall

ACOPF solutions.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on September 02,2023 at 13:54:24 UTC from IEEE Xplore. Restrictions apply.

(a) The solutions of the partial Lagrangian as a function of the predicted
multipliers. When the training data set is a mix of local and global solutions,
the predicted multiplier and the associated solution of the partial Lagrangian
are marked as red. The set I corresponds to the set of all possible solutions.

(b) The learned warm start point using Algorithm 1 is marked as red, which
is close to the global minimum of the ACOPF problem. If this predicted warm
start is used, the solver would converge to the global solution.

Fig. 5: Use Algorithm 1 to learn a warm start point for the ACOPF
solver.

Our method can obtain globally optimal solutions even

when the training data only contains local solutions and using

the warm starts learned by our algorithm can speed up the

computation time of solving ACOPF problems using IPOPT.

We use fully-connected neural networks with 2 hidden

layers for both Algorithm 1 and the baseline method. For the

baseline method, the activation function of the neural network

is sigmoid for all layers. For Algorithm 1, we use ReLU as

an activation function except for the output layer, where a

linear activation function is used. All neural network models

are implemented using the Tensorflow software library.

A. 22-bus Network

In the 22-bus network, there exist two solutions for a given

load, where the cost of the local solution is 30% higher than

that of the global solution. We generate the training data by

varying the load around the nominal value. For each given

load, we solve the ACOPF problem using IPOPT to obtain

both solutions (this is done by using a number of random

initial points). Then we construct 5 different training sets by

adjusting the proportion of strictly local solutions in the data.

There are 4000 training samples. We use 90% of them for

training and 10% for testing.

The generation costs of the obtained solutions using both

methods on different training sets are reported in Fig. 6,

where the generation costs are represented proportionally to

the globally optimal cost. In Fig. 6, as the proportion of strictly

Fig. 6: Normalized generation costs of the obtained solutions using
Algorithm 1 and baseline algorithm for the 22-bus network as the
proportion of strictly local solutions in the training set increases.
Algorithm 1 is not sensitive to the quality of training data and is able
to obtain the global solution, where the performance of the baseline
learning method degrades as the training data quality degrades.

local solutions in the training set increases, the predicted cost

using the baseline method also increases and is larger than

the globally optimal cost on every training set. In contrast,

Algorithm 1 is able to obtain the global solution, even when

the training set is comprised only of strictly local solutions.

This implies that Algorithm 1 is not sensitive to the quality of

the training set, and local solutions can also be useful. This

observation carries over to larger networks.

B. 39-bus Network

Fig. 7: Computation time of calling IPOPT to solve the ACOPF
problem in 39-bus network with different initialization. The blue
curve is the computation time when the warm starts learned by
Algorithm 1 are used as initial points, which is lower than the random
initialization (red curve) almost for every instance.

A key benefit of using machine learning for ACOPF is to

speed up computation. Here, we take the IEEE 39-bus network

and compare the solution speed of using Algorithm 1 to that

of directly using IPOPT on random (Gaussian) initial points.

We evaluate the computation time on Macbook Pro with Intel

Core i5 8259U CPU @ 2.30GHz.

We call IPOPT with both initializations for 200 instances

and report the computation time for each instance in Fig. 7.

The computation time of using the learned warm starts given

by Algorithm 1 is plotted as the blue line, which is much faster

than the random initialization (red) almost for every instance.

Note that the neural networks used in Algorithm 1 are feed-

forward functions, and their evaluation time (sub-milliseconds)

is negligible for the comparison in Fig. 7.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on September 02,2023 at 13:54:24 UTC from IEEE Xplore. Restrictions apply.

C. 118-bus Network

For the 118-bus network, there exist three solutions for a

given load. The worst cost is 39% higher than the globally

optimal cost. We generate the training data by varying the

load around the nominal value. For each given load, we solve

the ACOPF problem using IPOPT to obtain multiple solutions

(this is done by using a number of random initializations).

Then we construct 3 different training sets with different

proportions of strict local solutions as shown in Fig 8. There

are 1900 training samples and 90% used for training and 10%
for testing. In Fig. 8, we compare the generation costs, which

are normalized to the global optimal value, of the obtained

solutions using Algorithm 1 to that predicted by the baseline

method.

The predicted cost using the baseline method is larger than

the globally optimal cost on every training set, and increases

as the quality of the training data degrade (the proportion of

local solutions increases). In contrast, Algorithm 1 is able to

obtain the globally optimal cost regardless of the quality of

the training data. Even when the training data only contains

the solutions with the highest cost, the predicted cost using

Algorithm 1 is globally optimal. This confirms with the

intuition in Section IV that the predicted solutions of the

partial Lagrangian would be close to the global minimum of

the ACOPF problem, and hence could be good warm starts

for the solver to reach the global solution.

Fig. 8: Generation costs of the obtained solutions using Algorithm
1 and the baseline method on different training sets for the 118-bus
network. All the generation costs are represented proportionally to
the globally optimal cost. Algorithm 1 is able to obtain the global
solution even when the training data only consists of local solutions.

VI. CONCLUSION

In this paper, we propose a partial Lagrangian-based learn-

ing approach to predict solutions of the ACOPF problem.

First, we use a neural network to learn dual variables of the

ACOPF problem. Then we use a second neural network to

predict solutions of the partial Lagrangian from the predicted

dual variables. Using the predicted solutions of the partial

Lagrangian as warm starts, the ACOPF solver can reach more

globally optimal solutions. We validate the effectiveness of our

algorithm on standard 22-bus, 39-bus and 118-bus networks,

and show our algorithm is able to obtain the globally optimal

solutions and offer significant speedups.

REFERENCES

[1] A. Castillo and R. P. O’Neill, ªComputational performance of solution
techniques applied to the acopf,º Federal Energy Regulatory Commis-

sion, Optimal Power Flow Paper, vol. 5, 2013.
[2] X. Pan, T. Zhao, and M. Chen, ªDeepopf: Deep neural network for dc

optimal power flow,º 2020.
[3] N. Guha, Z. Wang, M. Wytock, and A. Majumdar, ªMachine learning

for ac optimal power flow,º 2019.
[4] D. Owerko, F. Gama, and A. Ribeiro, ªOptimal power flow using graph

neural networks,º in ICASSP 2020-2020 IEEE International Conference

on Acoustics, Speech and Signal Processing, 2020, pp. 5930±5934.
[5] Y. Zhou, B. Zhang, C. Xu, T. Lan, R. Diao, D. Shi, Z. Wang, and W.-J.

Lee, ªA data-driven method for fast ac optimal power flow solutions via
deep reinforcement learning,º Journal of Modern Power Systems and

Clean Energy, vol. 8, no. 6, pp. 1128±1139, 2020.
[6] M. K. Singh, V. Kekatos, and G. B. Giannakis, ªLearning to

solve the ac-opf using sensitivity-informed deep neural networks,º
ArXiv:2103.14779, 2021.

[7] K. Baker, ªEmulating ac opf solvers for obtaining sub-second feasible,
near-optimal solutions,º ArXiv:2012.10031, 2020.

[8] H. Lange, B. Chen, M. Berges, and S. Kar, ªLearning to solve ac op-
timal power flow by differentiating through holomorphic embeddings,º
arXiv:2012.09622, 2020.

[9] A. Zamzam and K. Baker, ªLearning optimal solutions for extremely
fast ac optimal power flow,º 2019.

[10] J. Momoh, R. Koessler, M. Bond, B. Stott, D. Sun, A. Papalexopoulos,
and P. Ristanovic, ªChallenges to optimal power flow,º IEEE Transac-

tions on Power systems, vol. 12, no. 1, pp. 444±455, 1997.
[11] W. A. Bukhsh, A. Grothey, K. I. McKinnon, and P. A. Trodden, ªLocal

solutions of the optimal power flow problem,º IEEE Transactions on

Power Systems, vol. 28, no. 4, pp. 4780±4788, 2013.
[12] D. Wu, D. K. Molzahn, B. C. Lesieutre, and K. Dvijotham, ªA deter-

ministic method to identify multiple local extrema for the ac optimal
power flow problem,º IEEE Transactions on Power Systems, vol. 33,
no. 1, pp. 654±668, 2017.

[13] D. K. Molzahn and I. A. Hiskens, ªA survey of relaxations and
approximations of the power flow equations,º Foundations and Trends

in Electric Energy Systems, vol. 4, no. 1-2, pp. 1±221, 2019.
[14] D. P. Bertsekas, ªNonlinear programming,º Journal of the Operational

Research Society, vol. 48, no. 3, pp. 334±334, 1997.
[15] L. Zhang and B. Zhang, ªAn iterative approach to improving solution

quality for ac optimal power flow problems,º in Proceedings of the ACM

E-Energy, 2022, p. 289±301.
[16] P. L. Donti, D. Rolnick, and J. Z. Kolter, ªDc3: A learning method for

optimization with hard constraints,º arXiv:2104.12225, 2021.
[17] W. Ma and J. S. Thorp, ªAn efficient algorithm to locate all the load

flow solutions,º IEEE Transactions on Power Systems, vol. 8, no. 3, pp.
1077±1083, 1993.

[18] J. A. Momoh, R. Adapa, and M. El-Hawary, ªA review of selected
optimal power flow literature to 1993. i. nonlinear and quadratic pro-
gramming approaches,º IEEE transactions on power systems, vol. 14,
no. 1, pp. 96±104, 1999.

[19] B. Lesieutre and D. Wu, ªAn efficient method to locate all the load
flow solutions-revisited,º in 2015 53rd Annual Allerton Conference on

Communication, Control, and Computing, 2015, pp. 381±388.
[20] B. Lesieutre, J. Lindberg, A. Zachariah, and N. Boston, ªOn the

distribution of real-valued solutions to the power flow equations,º in
2019 57th Annual Allerton Conference on Communication, Control, and

Computing, 2019, pp. 165±170.
[21] M. B. Cain, R. P. O’neill, A. Castillo et al., ªHistory of optimal power

flow and formulations,º FERC, vol. 1, pp. 1±36, 2012.
[22] J. Mulvaney-Kemp, S. Fattahi, and J. Lavaei, ªLoad variation enables

escaping poor solutions of time-varying optimal power flow,º in PESGM,
2020.

[23] H. D. Nguyen and K. S. Turitsyn, ªAppearance of multiple stable load
flow solutions under power flow reversal conditions,º in 2014 IEEE PES

General Meeting— Conference & Exposition. IEEE, 2014, pp. 1±5.
[24] A. WÈachter and L. T. Biegler, ªOn the implementation of an interior-

point filter line-search algorithm for large-scale nonlinear programming,º
Mathematical programming, vol. 106, no. 1, pp. 25±57, 2006.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on September 02,2023 at 13:54:24 UTC from IEEE Xplore. Restrictions apply.

