2022 North American Power Symposium (NAPS) | 978-1-6654-9921-7/22/$31.00 ©2022 IEEE | DOI: 10.1109/NAPS56150.2022.10012237

Learning to Solve the AC Optimal Power Flow via
a Lagrangian Approach

Ling Zhang
Department of Electrical and Computer Engineering
University of Washington, Seattle WA, USA
Izhang18@uw.edu

Abstract—Using deep neural networks to predict the solutions
to AC optimal power flow (ACOPF) problems has been an active
direction of research. However, because the ACOPF is nonconvex,
it is difficult to construct a good data set that contains mostly
globally optimal solutions. To overcome the challenge that the
training data may contain suboptimal solutions, we propose a
Lagrangian-based approach. First, we use a neural network to
learn the dual variables of the ACOPF problem. Then, from
the predicted dual variables, we use a second neural network to
predict solutions of the partial Lagrangian and use the predicted
solutions as warm starts for the ACOPF problem. We test our
approach on standard and modified IEEE networks and show
that our approach can reach more globally optimal solutions with
significant computational speedup even when the training data
consists of mostly suboptimal solutions.

Index Terms—AC optimal power flow, deep learning,
Lagrangian-based approach.

I. INTRODUCTION

The AC optimal power flow (ACOPF) problems are fun-
damental to power system operations, but they are often
computationally expensive to solve in real-time [1]. Recently,
machine learning has emerged as a popular method to aid
in solving ACOPFs [2]-[5]. By treating the optimization
problem as a function that maps loads to the optimal solutions
(voltage and angles), supervised learning techniques can be
used to train a neural network (NN) that replaces a nonlinear
programming solver [6]-[9]. Since training can be done offline
using historical or simulated data, neural networks can be used
in real-time to reduce computational burdens.

Despite the many advances in using learning to solve
ACOPFs, there are still some unresolved challenges. The
quality of the learned solutions is fundamentally limited by the
quality of the training data sets. In the context of ACOPF, the
training set consists of pairs of active/reactive loads and their
corresponding ACOPF solutions. A key, and often unstated
assumption, is that the solutions in the training set are the
optimal ones. However, the training set is typically constructed
using existing nonlinear programming solvers, and there is no
guarantee that the solutions are in fact globally optimal.

Historically, the presence of multiple solutions to the
ACOPF problem has been solved by assuming that there is
only one “practical” solution (i.e., with high voltage) [10].
However, many recent works have pointed out that multiple
solutions do occur under reasonable conditions and cannot be

978-1-6654-9921-7/22/$31.00 ©2022 IEEE

Baosen Zhang
Department of Electrical and Computer Engineering
University of Washington, Seattle WA, USA
zhangbao @uw.edu

easily ruled out [11]-[13]. Therefore, it is not easy to reprocess
the data set to rule out bad solutions.

Related to the presence of suboptimal solutions, a very
difficult setting for learning can arise when several solutions
are associated with similar loads. Because of the presence of
multiple solutions, a small change in load may lead a solver
to jump between distinct solutions. Therefore, the training set
could include data that are close in terms of the load, but
quite different in the solutions. For a neural network trained
using regression loss, it would output the average of the
local solutions, leading to an initialization point that neither
increase the computation speed nor helps with the quality of
the solutions.

In this paper, we present a machine learning architecture that
overcomes the challenge of multiple suboptimal local solutions
in the training data set. Instead of focusing on the load/solution
pairs, we can think of these machine learning methods to be
producing a good warm start for a solver, and learning a good
warm start would offer significant computational speedups and
improvement on solution quality [14].

We first learn a neural network that maps load to the
dual variable of the power balance constraints. These dual
variables are the locational marginal prices and would be
readily available from any modern nonlinear solver. These
dual variables are used to form a partial Lagrangian, whose
solution we also learn via a neural network. Then we use
the predicted solution of the partial Lagrangian as a warm
start [15]. Interestingly, this warm starting point tends to be
closer to the globally optimal solution of the ACOPF, even if
the training data set only has suboptimal solutions or a mixture
of global and local solutions. Therefore, by using the learned
warm start as an initialization point, we could have better
solution quality than directly learning based on load/solution
pairs.

We show that our duality-based approach outperforms ex-
isting approaches on modified IEEE 22-, 39-, and 118-bus
networks [11]. The difference is especially significant if the
training data set contains some strictly suboptimal solutions.

II. PROBLEM FORMULATION
A. ACOPF Formulation

Consider a power system network where n buses are
connected by m edges. For bus i, let V; denote its voltage

magnitude, 6; its angle, PS¢ and Q¢ the active and reactive

Authorized licensed use limited to: University of Washington Libraries. Downloaded on September 02,2023 at 13:54:24 UTC from IEEE Xplore. Restrictions apply.

output of the generator and PP and QP the active and reactive
load. We use P” and Q to denote the active and reactive
power flowing from bus z to bus j. The admittance between
buses ¢ and j is g;; — jb;;. We use 0;; as a shorthand for
0; — 0;.

The ACOPF problem is to minimize the cost of active power
generations while satisfying a set of constraints [11]:

min > ci(PE) (1a)
s.t. P¢ = PP + Z (1b)
QG:QD+ZF¢% (Ic)
Pf Vi2gi; — ViVj(gij cos(0:;) — by sin(6;;)) (1d)
ij V2bi; — ViV;(bij cos(0i;) + gij sin(6y;)) (le)
V, <V, <V, (1)
P{ < PY < PF (1g)
Qf <QF <Qf (1h)
(PL)? +(Qf)? < (sm)? (10)

where b;; = bij — 0.5b; and b; is the line charging suscep-
tance. The constraints (1b) and (1c) enforce power balance,
(1d) and (le) are the AC power flow equations, (1f) limits the
bus voltage magnitudes, (1g) and (1h) represent the active and
reactive limits and (1i) are the line flow limits.

The problem in (1) is nonconvex and can have multiple local
solutions. More precisely, local solutions are all the solutions
that satisfy local optimality conditions, for example, the KKT
conditions or second order ones [14]. Out of this set, the
solutions with the lowest cost are called the global ones. We
sometimes refer to the local solutions that are not global as
strict local solutions.

B. Challenges of Using Learning for ACOPF

Machine learning is often applied to the optimization prob-
lem in (1) by viewing it as the mapping from the demands P”
and QP to the solutions V and @, with the goal of finding
a proxy function to this mapping. Training data is generated
by solving (1) for a number of demands and collecting the
corresponding solutions. Several different learning architec-
tures have been proposed, including direct regression [2],
using sensitivity information [6], and emulation of an iterative
solver [7]. The constraints in (1b) to (1i) are nontrivial to
enforce, and an additional call of power flow or optimal power
flow on a smaller problem are often used [7], [16].

However, existing learning methods face a common chal-
lenge, stemming from the fact that the ACOPF problem in (1)
is nonconvex and may have multiple solutions [11]-[13].
A number of recent works have shown that for reasonable
operation conditions, there could be multiple solutions that
differ significantly in cost, but all have practical values (e.g.,
with voltages being all close to 1 p.u.) [17]-[20].

Many nonlinear programming (NLP) solvers have been
developed for the ACOPF problem, and their speed and
efficiency have improved dramatically (e.g., see [21] and the

references within). But NLP solvers are typically only able
to return one of the feasible solutions, and there is generally
no way to tell whether these feasible solutions are globally
optimal. Therefore, using the solutions returned by NLP
solvers as ground truth data for training may fundamentally
limit the performance of the learning algorithm.

The solution returned by an NLP solver is also sensitive to
a variety of factors, and small changes in demand can lead to
a large change in the solution. For example, small changes in
demand can lead to the solution switching between global and
local. Therefore, a data set created directly using the solutions
returned by NLP solvers may very well consist of a mixture
of local and global solutions, which tend to be very confusing
for a learning algorithm.

III. ALGORITHM

In this section, we describe our learning approach to find
more optimal solutions to ACOPF problems using neural
networks, even when the training data set contains a mixture of
local and global solutions. We first give a partial Lagrangian-
based approach, then discuss the learning architecture. The key
of the approach is to obtain global solutions from a training
set of local ones.

A. Lagrangian-based Approach

In paper [15], we gave an iterative approach to improve
the solution quality by alternatively solving (1) and its partial
Lagrangian. We briefly review the algorithm here. The partial
Lagrangian for (1) is formed by dualizing the active and
reactive power balance constraints (1b) and (1c). Suppose the
Lagrangian multipliers associated with (1b) and (Ic) are !’
and u?, respectively, then the partial Lagrangian for (1) is:

Lu(V,0) = ci(PF)+ >, nl (PP + Pif - Pf)

+> QP +Qf - Qf) (2a)

st.V, <V, <V, (2b)

P¢ < p¢ < pf (2¢)

Qf <Qf <@f (2d)

fy2 2 max 2

(P)” +(Q;5)° < (S57™) (Ze)

where Pf Z; L Vi2gi5 — ViVi(gij cos(0;5) — bij sin(6;5)),
and Q] = Y"1 V2bij — ViVj(bij cos(0y) + gij sin(6;;)) are

the AC power flow equations.

It turns out the solution of the partial Lagrangian in (2)
tends to be close to the global optimal solution of the original
ACOPF in (1). This is true even if the multipliers ;" and ;@
are the ones associated with the strict local solutions (see [15]
for more details). Therefore, the solution of (2) serves as a
good warm start point for an ACOPF solver.

In this paper, we train two neural networks to replace
explicitly solving (1) and (2). The first one predicts the dual
variables of the active and reactive power balance constraints
from the load, and the second one to predicts the solution
of (2) from the load and the predicted multipliers using the

Authorized licensed use limited to: University of Washington Libraries. Downloaded on September 02,2023 at 13:54:24 UTC from IEEE Xplore. Restrictions apply.

Inputs Outputs Inputs Outputs
D P
P i’ b : 14
QP E> E>ﬁQ uP 'j‘> - ‘:> g
#Q

(a) The neural network to learn (b) The neural network to pre-
the dual variables of the power dict the solutions of the partial
balance constraints. Lagrangian.

Fig. 1: The two neural networks to be trained.

first neural network. The output of the second neural network
is used as a warm start point for an ACOPF solver. Since
this starting point is close to the global solution, the ACOPF
solver is solved much faster and is more likely to find the
global solution than a solver with a flat or random start.

B. Training of Neural Networks

The architectures of the two neural networks are shown in
Fig. 1. The first neural network takes the active and reactive
load demands (PP,QP) as the input, and the output is
the predicted multipliers, denoted by (fip, fig). Let x be
the collection of voltage magnitudes and angles, @ be the
collection of (pp, pg), and (x%, p) be the i-th pair of data
in the training set, then the first neural network, denoted as
Jacops and parameterized by w, is trained by minimizing:

N
1 i i 2
ngnﬁzg(u ~ Gacops (' w))”. 3)
The second neural network emulates solving the partial
Lagrangian in (2). The input for the second neural network
is the active and reactive load demands (PP, QP), as well as
the associated dual variable solutions (ptp, t1q). The output of
the neural network is the solution to (2), denoted by (V,8).
Let z be the collection of inputs, X be the collection of outputs,
and (z*,x") be the i’th pair of data in the training set, then the
second network, denoted by gg4.; With weights w is trained
by minimizing
1N
Hgn N Zl(il — Gdual (zl; ’lD))2 (4)
C. Making Predictions in Real-time

After training, we use the process in Fig. 2 to make
predictions. We use the first trained neural network to predict
the dual variables (fip, ftg) from the input load. Then from
the predicted dual variable solutions, we use the second
trained neural network to predict the solutions (V,8) of
the Lagrangian. Then we call the NLP solver to solve (1)
using (V,8) as the initial point. This learning algorithm is
summarized below as Algorithm 1.

In our approach, even when the training data set contains
suboptimal solutions, the solution of the Lagrangian would be
a good warm start that makes the NLP solver get around being

Predicted Predicted
Load input Multipliers Warm Start

_) S A Nonlinear
(7, 0P| N D)= R 7, By M

Fig. 2: Outline of the solution process.

Algorithm 1: Solving ACOPF using learning
Inputs: (PP, QP)
First trained neural network to predict multipliers:
Yacops (PP, QP w) — (ip, q)
Second trained neural network to predict solutions
to (2):
9aual (PP, QP ip, fg; w) — (V,6)
Call NLP solver for (1) initialized at (V,0);
Outputs: Solutions (V,é) to (1).

trapped at strictly local solutions. The reason is that the partial
Lagrangian in (2) has “nice” geometry: It has minimums that
are near the globally optimal solution of the ACOPF problem,
even if it is formed with the multipliers obtained at local
optimal solutions of the ACOPF problem [15].

Also, our algorithm is robust in the sense that the solutions
X to partial Lagrangian are not sensitive to the variations in
f. That is, even if the multipliers fi associated with different
local solutions are different, the resulting solutions to partial
Lagrangian do not change much. This also means we do not
ask the predictions of the neural network to be very accurate.
Therefore, the training set for our algorithm need not be
very large. We sketch the geometric intuitions behind our
algorithm in Section IV. We validate our algorithm in standard
and modified IEEE benchmark systems, and report simulation
results in Section V.

IV. GEOMETRY AND INTUITION

In this section, we use a 2-bus network as an example to
shed some light on why Algorithm 1 might learn more globally
optimal solutions, even when the training data consists of a
lot of local solutions. In the 2-bus network, for simplicity, we
ignore the reactive power and set both voltage magnitudes to
be 1 per unit. Suppose bus 1 is a generator and also is the
reference bus with an increasing cost function ¢(-), and bus 2
is the load bus with angle —6. The line admittance is g — jb.
Given a load of [at bus 2 and ignoring all constraints except
for the load balancing one, the ACOPF in (1) becomes

Hgln c(g — gcos(f) + bsin(6)) (5a)

s.t. [+ g — gcos(f) — bsin(f) = 0. (5b)
This is an example of an OPF with a disconnected feasible
space, since there are two distinct solutions to (5b) and we
are asking for the lower cost one.

To see how an NLP solver would approach this problem,
we adopt the common practice in nonlinear programming and

Authorized licensed use limited to: University of Washington Libraries. Downloaded on September 02,2023 at 13:54:24 UTC from IEEE Xplore. Restrictions apply.

form a penalized version of (5) [14], [22]. The penalized
unconstrained problem is given by

L, =c(g — gcos(f) + bsin(h)) (6)

+ g(z + g — gcos(d) — bsin(0))?,

where p is a penalty parameter. For large enough p, the
solutions of (6) would be very close to those of (5) [14]. The
function £, is plotted in Fig. 3. We can see that there are two
local minima, with the left one being global. However, both
minima satisfy first- and second-order optimality conditions.
Therefore, if an NLP solver is initialized with a poor starting
point, it would be stuck at the strict local solution.

20.0 -=--- £, formed at 6"
—-— r, formed at @
—_
% global minimum @*
3% local minimum &

17.5

15.0

12.5

10.0

Function values

v~
o wu

o N
o

-1 [i 2 3

Fig. 3: Geometry of the penalized objective function £, and the
partial Lagrangian £,,. The line admittance is g — jb and the penalty
parameter is 2. The red curve is the partial Lagrangian formed at
the strict local solution and the black curve is formed at the global
solution.

Now suppose p is the multiplier corresponding to the
equality constraint (5b) at the strict local solution. The partial
Lagrangian of (5) by dualizing (5b) is:

L, =c(g — gcos(#) + bsin(d)) (7)
+ p(l+ g — gcos(0) — bsin(0)).

Since the sinusoidal functions are periodic with period 2, let
us consider the range 6 € [—m,7]. It is interesting now to
compare the solution of £, to the original problem in (5) (or
equivalently, £,). The red curve in Fig. 3 plots £, at the local
minimum and the black curve at the global minimum. We can
observe an interesting fact that the minimum of £, is close
to the global minimum of £,, even when the multiplier at the
strict local solution is used.

It is instructive to think about a training data set with both
local and global solutions for the same load, and compare the
learned warm starts using direct regression and Algorithm 1.
Suppose a regression method is used to minimize the distance
between a predicted solution and the solutions in the training
set. Since a mixture of local and global solutions are used in
training, the learned neural network would make a prediction
that is the average of the two solutions, as shown in Fig. 4. But
it may be closer to the local solution rather than the global
one. Preprocessing the training data may alleviate some of
these issues, but that is likely to be cumbersome and removes
some of the appeals of using machine learning.

When Algorithm 1 is used, we first predict the multipliers
from the load. Since the training set is a mix of local and

20.0{ % global minimum

3 local minimum
prediction using regression

17.5] P
15.0]
12.5]

10.0

Penalized function values

NowoN
u o uw

0.0

—d o 1 2 3
e

Fig. 4: When the training set has both local and global solutions, the
predicted warm start using direct regression is marked as red, which
is closer to the strict local minimum. A solver initialized with this
warm start would converge to the strict local minimum.

global solutions, the predicted multiplier would be some point
lying between the locally and globally optimal values. The
predicted multiplier is plotted in Fig. 5a, where we adopt a
linear cost function for ¢(+) in (7) and set the cost coefficient
to be one, i.e., ¢(x) = x. Then we predict the solution of L,
from the predicted multiplier. For a given multiplier z, the
solution to £, is found through the optimality condition of
():

(¢ + f)gsin(f) + (¢ — p)bcos(6) = 0, (8)

where ¢ is a shorthand for the derivative ¢/(g — gcos(6) +

bsin(f)). By varying the multipliers, we can represent the
mapping from the multipliers to the solutions of £, as follows:

7] i p=d

0= tan " (525b/9), ©)
which is plotted in Fig. 5a. The set of solutions of £, that
is mapped from the multipliers varying between the locally
and globally optimal values is denoted by set I. The predicted
solution of £,, would lie in set I. We also plot set I in Fig. 5b.
We can see that every point in set I is close to the global
minimum of £,. More precisely, every point is in the basin
of attraction of the global solution. This means if we use the
predicted solution of £, as a warm start, the solver would
converge to the global minimum.

In the next section, we test Algorithm 1 on IEEE benchmark

systems and show the intuition developed in this section is true
for much larger and more complex problems.

V. SIMULATION RESULTS

In this section, we demonstrate the simulation results of
using Algorithm 1 to predict solutions to the ACOPF problem.
We test our algorithm on IEEE networks with 22, 39, and
118 buses. The full specifications for these networks can be
found in [11] and [23]. The popular solver IPOPT [24] is
used to generate training samples for each network. For a
comparison baseline, we use the method in [7], where a deep
neural network is trained to learn the mapping from load to
optimal generation values by minimizing the loss between the
learned and ground-truth values. Then power flow equations
are solved to recover and ensure the feasibility of the overall
ACOPF solutions.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on September 02,2023 at 13:54:24 UTC from IEEE Xplore. Restrictions apply.

1.0

0.5

0.0

 Minimizer of Lagrangian 6

% global solution to u
% local solution to i
% prediction using Algorithm 1

4.0

1.0 1.5 2.5 3.0

: X 35
Lagrangian multiplier u

(a) The solutions of the partial Lagrangian as a function of the predicted
multipliers. When the training data set is a mix of local and global solutions,
the predicted multiplier and the associated solution of the partial Lagrangian
are marked as red. The set I corresponds to the set of all possible solutions.

3¢ prediction using Algorithm 1

20.0

17.5

15.0

12.5

10.0

Penalized function values

.
o

o N
o w

(b) The learned warm start point using Algorithm 1 is marked as red, which
is close to the global minimum of the ACOPF problem. If this predicted warm
start is used, the solver would converge to the global solution.

Fig. 5: Use Algorithm 1 to learn a warm start point for the ACOPF
solver.

Our method can obtain globally optimal solutions even
when the training data only contains local solutions and using
the warm starts learned by our algorithm can speed up the
computation time of solving ACOPF problems using IPOPT.

We use fully-connected neural networks with 2 hidden
layers for both Algorithm 1 and the baseline method. For the
baseline method, the activation function of the neural network
is sigmoid for all layers. For Algorithm 1, we use ReLU as
an activation function except for the output layer, where a
linear activation function is used. All neural network models
are implemented using the Tensorflow software library.

A. 22-bus Network

In the 22-bus network, there exist two solutions for a given
load, where the cost of the local solution is 30% higher than
that of the global solution. We generate the training data by
varying the load around the nominal value. For each given
load, we solve the ACOPF problem using IPOPT to obtain
both solutions (this is done by using a number of random
initial points). Then we construct 5 different training sets by
adjusting the proportion of strictly local solutions in the data.
There are 4000 training samples. We use 90% of them for
training and 10% for testing.

The generation costs of the obtained solutions using both
methods on different training sets are reported in Fig. 6,
where the generation costs are represented proportionally to
the globally optimal cost. In Fig. 6, as the proportion of strictly

—A— Baseline
M- Algorithm 1

' =
N W
u o

N
N
o

—
"
o

\

Proportional to globally optimal cost
5 5
w w
\
>

I
=]
]

30 0 0o 100
Proportion of local solutions (%)

Fig. 6: Normalized generation costs of the obtained solutions using
Algorithm 1 and baseline algorithm for the 22-bus network as the
proportion of strictly local solutions in the training set increases.
Algorithm 1 is not sensitive to the quality of training data and is able
to obtain the global solution, where the performance of the baseline
learning method degrades as the training data quality degrades.

local solutions in the training set increases, the predicted cost
using the baseline method also increases and is larger than
the globally optimal cost on every training set. In contrast,
Algorithm 1 is able to obtain the global solution, even when
the training set is comprised only of strictly local solutions.
This implies that Algorithm 1 is not sensitive to the quality of
the training set, and local solutions can also be useful. This
observation carries over to larger networks.

B. 39-bus Network

—— Random
—— Algorithm 1

o
N
o

o
H
o

Lomputation tume (seconas)
[} o
B I
» o

°
b
N

75 100 125 150 175 200
Test instances

o 25 50

Fig. 7: Computation time of calling IPOPT to solve the ACOPF
problem in 39-bus network with different initialization. The blue
curve is the computation time when the warm starts learned by
Algorithm 1 are used as initial points, which is lower than the random
initialization (red curve) almost for every instance.

A key benefit of using machine learning for ACOPF is to
speed up computation. Here, we take the IEEE 39-bus network
and compare the solution speed of using Algorithm 1 to that
of directly using IPOPT on random (Gaussian) initial points.
We evaluate the computation time on Macbook Pro with Intel
Core 15 8259U CPU @ 2.30GHz.

We call IPOPT with both initializations for 200 instances
and report the computation time for each instance in Fig. 7.
The computation time of using the learned warm starts given
by Algorithm 1 is plotted as the blue line, which is much faster
than the random initialization (red) almost for every instance.
Note that the neural networks used in Algorithm 1 are feed-
forward functions, and their evaluation time (sub-milliseconds)
is negligible for the comparison in Fig. 7.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on September 02,2023 at 13:54:24 UTC from IEEE Xplore. Restrictions apply.

C. 118-bus Network

For the 118-bus network, there exist three solutions for a
given load. The worst cost is 39% higher than the globally
optimal cost. We generate the training data by varying the
load around the nominal value. For each given load, we solve
the ACOPF problem using IPOPT to obtain multiple solutions
(this is done by using a number of random initializations).
Then we construct 3 different training sets with different
proportions of strict local solutions as shown in Fig 8. There
are 1900 training samples and 90% used for training and 10%
for testing. In Fig. 8, we compare the generation costs, which
are normalized to the global optimal value, of the obtained
solutions using Algorithm 1 to that predicted by the baseline
method.

The predicted cost using the baseline method is larger than
the globally optimal cost on every training set, and increases
as the quality of the training data degrade (the proportion of
local solutions increases). In contrast, Algorithm 1 is able to
obtain the globally optimal cost regardless of the quality of
the training data. Even when the training data only contains
the solutions with the highest cost, the predicted cost using
Algorithm 1 is globally optimal. This confirms with the
intuition in Section IV that the predicted solutions of the
partial Lagrangian would be close to the global minimum of
the ACOPF problem, and hence could be good warm starts
for the solver to reach the global solution.

1.30/ —& Baseline _—A
—— Algorithm 1 -

&
N
w

In
N
o

1.15{ &

"
"
o

Proportional to globally optimal cost
B
o o &
e U

[0
o
"
o
o

70
Proportion of local solutions (%)

Fig. 8: Generation costs of the obtained solutions using Algorithm
1 and the baseline method on different training sets for the 118-bus
network. All the generation costs are represented proportionally to
the globally optimal cost. Algorithm 1 is able to obtain the global
solution even when the training data only consists of local solutions.

VI. CONCLUSION

In this paper, we propose a partial Lagrangian-based learn-
ing approach to predict solutions of the ACOPF problem.
First, we use a neural network to learn dual variables of the
ACOPF problem. Then we use a second neural network to
predict solutions of the partial Lagrangian from the predicted
dual variables. Using the predicted solutions of the partial
Lagrangian as warm starts, the ACOPF solver can reach more
globally optimal solutions. We validate the effectiveness of our
algorithm on standard 22-bus, 39-bus and 118-bus networks,
and show our algorithm is able to obtain the globally optimal
solutions and offer significant speedups.

[1]

[2]
[3]
[4]

[5]

[6]

[7]
[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

REFERENCES

A. Castillo and R. P. O’Neill, “Computational performance of solution
techniques applied to the acopf,” Federal Energy Regulatory Commis-
sion, Optimal Power Flow Paper, vol. 5, 2013.

X. Pan, T. Zhao, and M. Chen, “Deepopf: Deep neural network for dc
optimal power flow,” 2020.

N. Guha, Z. Wang, M. Wytock, and A. Majumdar, “Machine learning
for ac optimal power flow,” 2019.

D. Owerko, F. Gama, and A. Ribeiro, “Optimal power flow using graph
neural networks,” in ICASSP 2020-2020 IEEE International Conference
on Acoustics, Speech and Signal Processing, 2020, pp. 5930-5934.

Y. Zhou, B. Zhang, C. Xu, T. Lan, R. Diao, D. Shi, Z. Wang, and W.-J.
Lee, “A data-driven method for fast ac optimal power flow solutions via
deep reinforcement learning,” Journal of Modern Power Systems and
Clean Energy, vol. 8, no. 6, pp. 1128-1139, 2020.

M. K. Singh, V. Kekatos, and G. B. Giannakis, “Learning to
solve the ac-opf using sensitivity-informed deep neural networks,”
ArXiv:2103.14779, 2021.

K. Baker, “Emulating ac opf solvers for obtaining sub-second feasible,
near-optimal solutions,” ArXiv:2012.10031, 2020.

H. Lange, B. Chen, M. Berges, and S. Kar, “Learning to solve ac op-
timal power flow by differentiating through holomorphic embeddings,”
arXiv:2012.09622, 2020.

A. Zamzam and K. Baker, “Learning optimal solutions for extremely
fast ac optimal power flow,” 2019.

J. Momoh, R. Koessler, M. Bond, B. Stott, D. Sun, A. Papalexopoulos,
and P. Ristanovic, “Challenges to optimal power flow,” IEEE Transac-
tions on Power systems, vol. 12, no. 1, pp. 444-455, 1997.

W. A. Bukhsh, A. Grothey, K. I. McKinnon, and P. A. Trodden, “Local
solutions of the optimal power flow problem,” IEEE Transactions on
Power Systems, vol. 28, no. 4, pp. 47804788, 2013.

D. Wu, D. K. Molzahn, B. C. Lesieutre, and K. Dvijotham, “A deter-
ministic method to identify multiple local extrema for the ac optimal
power flow problem,” IEEE Transactions on Power Systems, vol. 33,
no. 1, pp. 654-668, 2017.

D. K. Molzahn and I. A. Hiskens, “A survey of relaxations and
approximations of the power flow equations,” Foundations and Trends
in Electric Energy Systems, vol. 4, no. 1-2, pp. 1-221, 2019.

D. P. Bertsekas, “Nonlinear programming,” Journal of the Operational
Research Society, vol. 48, no. 3, pp. 334-334, 1997.

L. Zhang and B. Zhang, “An iterative approach to improving solution
quality for ac optimal power flow problems,” in Proceedings of the ACM
E-Energy, 2022, p. 289-301.

P. L. Donti, D. Rolnick, and J. Z. Kolter, “Dc3: A learning method for
optimization with hard constraints,” arXiv:2104.12225, 2021.

W. Ma and J. S. Thorp, “An efficient algorithm to locate all the load
flow solutions,” IEEE Transactions on Power Systems, vol. 8, no. 3, pp.
1077-1083, 1993.

J. A. Momoh, R. Adapa, and M. El-Hawary, “A review of selected
optimal power flow literature to 1993. i. nonlinear and quadratic pro-
gramming approaches,” IEEE transactions on power systems, vol. 14,
no. 1, pp. 96-104, 1999.

B. Lesieutre and D. Wu, “An efficient method to locate all the load
flow solutions-revisited,” in 2015 53rd Annual Allerton Conference on
Communication, Control, and Computing, 2015, pp. 381-388.

B. Lesieutre, J. Lindberg, A. Zachariah, and N. Boston, “On the
distribution of real-valued solutions to the power flow equations,” in
2019 57th Annual Allerton Conference on Communication, Control, and
Computing, 2019, pp. 165-170.

M. B. Cain, R. P. O’neill, A. Castillo et al., “History of optimal power
flow and formulations,” FERC, vol. 1, pp. 1-36, 2012.

J. Mulvaney-Kemp, S. Fattahi, and J. Lavaei, “Load variation enables
escaping poor solutions of time-varying optimal power flow,” in PESGM,
2020.

H. D. Nguyen and K. S. Turitsyn, “Appearance of multiple stable load
flow solutions under power flow reversal conditions,” in 20/4 IEEE PES
General Meeting— Conference & Exposition. 1EEE, 2014, pp. 1-5.
A. Wichter and L. T. Biegler, “On the implementation of an interior-
point filter line-search algorithm for large-scale nonlinear programming,”
Mathematical programming, vol. 106, no. 1, pp. 25-57, 2006.

Authorized licensed use limited to: University of Washington Libraries. Downloaded on September 02,2023 at 13:54:24 UTC from IEEE Xplore. Restrictions apply.

