Power OQutage and Environmental Justice in Winter Storm Uri: An Analytical

Workflow Based on Nighttime Light Remote Sensing

Abstract

With the increasing intensity of extreme weather events, human society faces an
unprecedented threat of personal injuries, fatalities, and economic losses. As a major
component in lifeline infrastructures, electrical power system is of significance to human
communities. In severe weather events, it is important to identify impact areas of power
outages and affected communities, and thus provide support for informed decision-making
for disaster response and relief. However, the lack of household-level power outage data
creates challenges for timely and precise power outage assessments. To address these
challenges, we introduced an analytical workflow that applies NASA’s Black Marble daily
nighttime light (NTL) images to detect power outages in the 2021 Winter Storm Uri. This
workflow includes adjustment processes to reduce the effects of viewing angle and snow
reflection. Power outage is detected by comparing NTL images in the storm and NTL
images in a normal condition (baseline) using an empirical adjusted equation. Outcomes of
the workflow are 500-meter resolution power outage maps, which were found to have the
highest consistency with real outage tracking data when NTL intensity was reduced by
26%. With the resultant power outage maps, we analyzed the relations between power
outages and ratios of disadvantaged populations in 126 Texas counties and 4182 census
tracts to evaluate environmental justice in the storm. The results show that Latino/Hispanic
communities tend to suffer more from power outages at both the county and census tract

levels.
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Highlights

e Introduced an analytical workflow to detect power outages from NASA’s daily Black
Marble nighttime light (NTL) remote sensing images.

e Developed radiance adjustment algorithms to mitigate the effects of viewing angle and
snow cover to NTL radiance

e Analyzed environmental justice issues related to power outages in 2021 Winter Storm Uri

e Latino/Hispanic communities tend to be more impacted by power outages in the storm



1. Introduction

With the changing climate, an increasing number and intensity of extreme weather events, such
as hurricanes, winter storms, thunderstorms, and tornadoes, pose an unprecedented threat to
human society. The serviceability of critical infrastructures (Cls) during extreme weather events
is of critical importance to socio-economic activities (Deshmukh et al., 2011). Published
evidence shows that disinvestment and poor maintenance of Cls often lead to greater losses in
human communities (Chang, 2003; Mastroianni et al., 2021). Additionally, disruptions of CIs in
extreme weather events may add extra burdens to disadvantaged communities (Hendricks & Van
Zandt, 2021). Thus, the serviceability and resilience of Cls in extreme events are often associated
with social equality and environmental justice. As lifeline infrastructure systems, electrical
power systems are critical for socioeconomic activities but vulnerable to multiple types of
hazards. The failures of electric power systems may trigger a series of cascading effects
(Kwasinski et al., 2019). Long-lasting blackouts affect food and water supplies, disrupting
communication and leaving people in discomforting conditions (e.g., heat, cold, and darkness)
(Casey et al., 2020; Klinger et al., 2014). When combined with freezing temperatures, blackouts
can cause damage to building structures and pose threats to people’s lives and health
(Dominianni et al., 2018). Underserved and marginalized population groups often suffer greater
impacts due to the lack of adaptive capacities (Min et al., 2017). Thus, timely and fine-resolution
assessments of power outages in extreme weather events are of critical importance for
emergency response, disaster relief, and policymaking to mitigate inequalities and injustice in
disasters.

However, monitoring power outages in extreme weather events faces challenges. First,

household-level power outage data are not publicly available due to privacy concerns (Boroojeni



et al., 2017). According to reports from the U.S. Energy Information Administration (EIA)
(Alexander & Sara, 2017; Tweed, 2016), only a small proportion of the population agrees to
share data about electricity consumption and outage with a third party, let alone the public. To
protect individuals’ privacy, power outage data are usually aggregated at coarse spatial units
(e.g., cities and counties), which are not sufficient to guide emergency response and resilience
assessment at the neighborhood level. Second, multiple electric providers serving the same area
create challenges to acquire complete outage data. For example, Texas is served by more than
100 electric utility companies, some of which have overlapped serving areas (Public Utility
Commission of Texas, 2022). Due to different tracking standards and methods, different utility
companies may provide inconsistent power outage data. Additionally, the total number of
blackouts in a disaster, which synthesizes household surveys or outage tracking devices, can take
a long time to conclude (Cole et al., 2017), impeding timely actions for disaster response and
relief. The data collected from surveys and power tracking devices only cover a small population
sample and may overlook certain disadvantaged population groups. To overcome these issues,
alternative data sources have been explored to detect power outages. For instance, Volunteered
Geographic Information (VGI) (e.g., social media) can provide a considerable amount of data on
the population impacted by power outages (Goodchild, 2007; Guan & Chen, 2014; L. Li et al.,
2020; Mao et al., 2018). A few studies have detected spatial and temporal distributions of power
outages by mining social media data (Mao et al., 2018; Sun et al., 2016), despite the concerns of
biased user demography and data uncertainty (Ribeiro et al., 2018, 2020). Thus, there is a
pressing need to leverage alternative data sources to develop timely and reliable power outage

assessments to support disaster response and resilience enhancement.



With the ability to detect artificial lights on the earth's surface, nighttime light (NTL)
remote sensing radiometers are a promising instrument to assess disaster impacts on human
communities and Cls. In previous studies, NTL images are primarily used to assess disaster
impact and damage (Xu & Qiang, 2021; Zhao et al., 2018) and monitor the recovery of human
activities (Qiang et al., 2020). Pioneer work has been conducted to detect power outages from
time series of NTL images. For example, Wang et al. (2018) introduced the use of NTL radiance
from NASA’s Black Marble images to detect the spatial extent of outages during Hurricane
Sandy in 2012 and Hurricane Maria in 2017. A few studies (e.g., Roman et al. (2019) and Azad
& Ghandehari (2021)) used the Black Marble images to monitor electricity restoration during
Hurricane Maria and discovered social and geographic disparities in electric restoration among
Puerto Rican communities. A major issue in the previous studies is the lack of empirical
validation, which raises doubts about the accuracy of power outage detection. Additionally, the
previous studies simply used original NTL radiance in the remote sensing images to detect power
outages, without addressing biases introduced by extraneous factors, such as the viewing angle
and snow reflection (Wang et al., 2021). These uncertainties can be amplified by the changing
atmospheric and ground conditions in extreme weather events, which can further affect the
validity of outage detection results.

In this study, we introduced an analytical workflow that applies NASA’s Black Marble
nighttime light (NTL) daily images to detect power outages in 2021 Winter Storm Uri (Fig. 1).
This workflow includes radiance adjustments to reduce the effects of viewing angle and snow
reflection on the NTL radiance. Additionally, novel approaches were introduced to determine the
baseline radiance (radiance captured in the normal condition) and the radiance reduction

threshold for power outage detection. The workflow generated power outage maps at a 15-arc-



second resolution (approximately 500 meters) covering the entire declared disaster areas,

enabling various analyses from the neighborhood scale to the county or city scale. Finally, we

overlaid the power outage maps with socio-economic variables to evaluate environmental justice

in the storm. Our hypothesis is that disadvantaged populations are disproportionally exposed to

power outages and correlation analysis was used to test the hypothesis. The developed workflow

can be used as an actionable tool to produce timely and scaled power outage detection from

publicly available data. Meanwhile, the analysis will provide important information for

developing sustainable, resilient, and equitable communities in the face of increasing extreme

weather events in the changing climate.
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Fig. 1. Workflow of outage detection using NASA’s Black Marble product suites



2. Datasets

2.1 Study Area

Winter Storm Uri, also named Valentine’s week winter outbreak 2021 by National Oceanic and
Atmospheric Administration (NOAA), emerged on Feb 11th, and dissipated on Feb 20th. Due to
this storm, a winter storm warning has been issued for the entire state of Texas and multiple
states in the U.S. Midwest and Southern Plains (Fig. 2(a)). As one of the most affected states,
Texas was hit by massive snow, sleet, freezing rain, and low temperature. The storm resulted in a
death toll of 246 people and an economic loss of over 195 billion dollars, which makes Uri the
costliest winter storm on record (Ivanova, 2021). As a critical infrastructure, the electric power
system in Texas was seriously disrupted and caused extensive blackouts lasting for several days
(Lee et al., 2021). The Texas Interconnection network, the largest electric grid in Texas,
generated rolling blackouts across the whole state of Texas, which affected 4 million people
(Rice & Aspegren, 2021). Due to Uri’s devastating impacts, President Joseph R. Biden approved
three major disaster declaration orders for a total of 126 Texas counties (Federal Agency
Management Agency, 2021a, 2021c, 2021b). As Texas has a large area of undeveloped lands
where NTL emissions may not be generated from human activities, the result of NTL radiance
adjustment on all pixels within Texas can be biased towards the large numbers of non-urban
pixels with minimal NTL radiance. Besides, surface oil wells outside urban areas can generate
high NTL radiance, but these locations do not represent populations affected by power outages.
To eliminate such conspicuous brightness in rural areas, our study focuses on urban areas where
the impervious surface area (ISA) ratio is above 0.5. The ISA ratio is the ratio of impervious
surface pixels to the total pixels in the LULC data, which is calculated within each pixel in the

NTL image.
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Fig. 2. a) National Weather Services (NWS) winter weather forecast near Texas, b) counties that

declared Winter Storm Uri as a major disaster

2.2 Data

2.2.1 Nighttime Light Images

NASA'’s Black Marble daily images (VNP46) were utilized to detect power outages. Black
Marble images were collected from the Visible Infrared Imaging Radiometer Suite (VIIRS)
day/night band (DNB) sensor of the Suomi National Polar-Orbiting Partnership (SNPP) satellite.
The Black Marble product suite includes two products: VNP46A1 and VNP46A2. VNP46A 1
offers a consistent temporal scale at the daily level with a spatial resolution at 15-arc-second
(around 500 meters in the study area) and overcomes the saturation effect and onboard
calibration issue in the preceding NTL product. The VNP46A2 product includes 6 layers that

were processed from the VNP46A 1 product by removing biases from irrelevant NTL sources



(e.g., moonlight, atmospheric effect) using the bidirectional reflectance distribution function
(BRDF) model inversion (Roman et al., 2018; Roman, Wang, et al., 2019). In this study, the
NTL radiance (DNB_BRDF-Corrected NTL layer) in the VNP46A2 product was used to detect
blackouts in Texas during the winter storm. Meanwhile, the viewing zenith and azimuth angles
in VNP46A1 were used to adjust the angular effect. Images from Jan 1, 2020, to Mar 2, 2021,
were downloaded from the Level-1 and Atmosphere Archive & Distribution System (LAADS)

Distributed Active Archive Center (DAAC) Portal (https://ladsweb.modaps.eosdis.nasa

.gov/search/). Fig. 2(b) shows the four tiles (dashed line) of Black Marble images used in this
study, which were mosaicked to cover the whole study area. The parameters of layers extracted

from Black Marble products are summarized in Table 1.

Table 1. Descriptions of layers extracted from NASA’s Black Marble product

Layer Value Range Product

Sensor Viewing Zenith Ranging from -90° to 90° VNP46A1

Ranging from -180° to 180°, 0°
represents the north direction, negative

Sensor Viewing Azimuth - VNP46A1
values represent the east, and positive
values represent the west

. Ranging from -12 to 12, represent time

UTC Time in the UTC VNP46A1

BRDF-corrected Radiance Ranging from 0 to 6553.4 VNP46A2
00 (high-quality & persistent), 01 (high-

Mandatory Quality Flag (QF) quality & ephemeral), 02 (poor-quality), VNP46A2
255 (no retrieval)

2.2.2 Auxiliary Data

In addition to the NTL images, several auxiliary datasets were used in this study. First, hourly
power outage data at the county level from Feb 10, 2021 to Feb 25, 2021 were purchased from

BlueFire Studios LLC (http://poweroutage.us) to calculate the power outage detection model.

This dataset summarized power outage tracking data from 61 electricity providers during Uri in

Texas. Second, the most recent land use and land cover data (LULC) from the National Land


https://ladsweb.modaps.eosdis.nasa.gov/search/
https://ladsweb.modaps.eosdis.nasa.gov/search/
http://poweroutage.us/

Cover Database 2019 (NLCD 2019) were used to calculate the impervious surface area (ISA)
ratios in NTL image pixels (Dewitz & U.S. Geological Survey, 2021; Homer et al., 2020; Jin et
al., 2019; Wickham et al., 2021; Yang et al., 2018). Pixels with a ratio of ISA > 0.5 were
considered urban areas and selected as the study area. Third, socio-economic variables at the
census-tract and county level were acquired from the 2019 American Community Survey (Table
2). These socio-economic variables are common indicators in community resilience assessment
(Cutter et al., 2003; Lam et al., 2016) and are available in the American Community Survey data.
These variables were used to analyze the relations between the detected power outages and
socio-economic conditions of communities. Fourth, snow accumulation data were collected from

NOAA National Gridded Snowfall Analysis (https://www.nohrsc.noaa.gov/snowfall/). Due to

the heavy cloud cover during and after the winter storm, snow accumulation data from NOAA is
the only data source that covers the whole research area and has a fine temporal granularity

(updated every 12 hours).

Table 2. The list of tables and socio-economic variables extracted from the 2019 American

Community Survey

Variable Name

Description

Ratio of White

Ratio of White American population (one race) to total
population

Ratio of African American

Ratio of African American population (one race) to total
population

Ratio of American Indian and Alaska Native

Ratio of American Indian and Alaska Native population
(one race) to total population

Ratio of Asian

Ratio of Asian American (one race) to total population

Ratio of Latino/Hispanic

Ratio of Latino/Hispanic population to total population

Ratio of 25 years old + and hold a degree less than
college degree

Ratio of population over 25 years old and with a degree
lower than a college degree to total population

Ratio of commute time less than 30 minutes

Ratio of population living in areas with less than 30
minutes commuting time

Ratio of income lower than poverty level

Ratio of population with income lower than the poverty
level to total population

Median household income

Median household income in the past 12 months (in
2019 inflation-adjusted dollars)



https://www.nohrsc.noaa.gov/snowfall/

Variable Name Description

Ratio of unemployed population to total population in
labor forces

Ratio of renter-occupied housing units to total housing

Unemployment ratio

Renter-occupied housing ratio

units
Ratio of constructions built after 2000 E;ttl: of constructions built before 2000 to total housing
Median housing value Median value of owner-occupied housing units in dollars

Median gross rent of renter-occupied housing units

Median gross rent .
paying cash rent

2.2.3 NTL Date Selection

Next, we determine the dates of NTL images for power outage detection. This selection is made
with two criteria: (1) the images should be captured when extensive power outages occurred, and
(2) the study area should have a clear sky (less cloud coverage). For the first criterion, the hourly
ratio of power outages was calculated from the power outage tracking data from Bluefire Studios
LLC. The ratio is the division of total outage hours by total tracked hours. The hourly outage
ratio and its 24-hour moving average are displayed in Fig. 3, which shows that the extensive
power outage lasted from Feb 15 to Feb 18 with a peak on Feb 16. For the second criterion, we
calculated the number of counties that have > 80% high-quality NTL pixels (clear sky) each day,
which is represented as gray bars in Fig. 3. Pixels in the VNP46A2 images where the value of the
Mandatory Quality Flag (QF) is 00 are defined as high-quality pixels and selected for the
analyses in this study. QF 01 pixels include ephemeral radiance, such as wildfire and lightning,
which cannot represent a persistent human settlement. Also, QF 01 pixels are very few in the
selected images (e.g., no QF 01 pixels on Feb 16). Thus, we decided to exclude QF 01 pixels in
the analyses. Fig. 3 shows that the highest number of counties with a clear sky during the power
outage period occurred on Feb 16, when 197 of the 254 counties have >80% coverage of high-

quality pixels (QF 00). Thus, NTL images on Feb 16 meet both criteria and are selected to detect



power outages in the following analysis.
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Fig. 3. Hourly ratio of power outage from Feb 11 to Feb 24 (lines, left axis) and the number of
counties where > 80% area is covered by high-quality NTL pixels (bars, right axis). The red
dashed line indicates the general NTL acquisition time (close to 2:45 am Central Standard Time)

of NTL images on Feb 16, 2021

The NTL images on Feb 16 were captured between 2:45 AM to 2:50 AM in Central
Standard Time (CST) as shown in Fig. 4(a). Thus, power outage tracking data between 2:00 AM
and 3:00 AM on Feb 16 (highlighted in Fig. 3, red dashed lines) were selected to adjust the NTL
radiance in the following steps. Fig. 4(b) shows the county-level outage ratios between 2-3 AM

CST on Feb 16.
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3. NTL Radiance Adjustment

Power outages can be detected by comparing the NTL radiance during outages and the radiance
in the normal condition (baseline). However, the various viewing angles and snow reflection
may affect the NTL radiance captured in the images and introduce biases to the comparison
(Wang et al., 2021). Thus, a radiance adjustment is needed to eliminate the biases and make the
images comparable. This section introduces the adjustment process that removes the angular

effect and snow reflection in the NTL images.



3.1 Angular Effect

The viewing angle of the satellite sensor may affect the NTL radiance captured in images.
Previous studies show that the relation between the viewing zenith angle and NTL radiance can
be fitted into a quadratic equation (X. Li et al., 2019; Tan et al., 2022). This equation is known as

the Zenith-Radiance Quadratic (ZRQ) model and can be expressed as Eq. 1:

Rgimutatea = @ * VZA> +b*VZA+ ¢ Eq. 1

where R stands for the nighttime light radiance, VZA means the viewing zenith angle, and
a, b, and c are the coefficients.

The actual effects of the zenith angle may vary in the geographic space due to different
land cover types and radiance levels. Fig. 5 shows the variation of zenith-radiance relations at
four randomly selected pixels in the study area, where shapes of the quadratic fitting curve
between NTL radiance and viewing zenith angle are different, meaning that the coefficients a, b,
and c in Eq. 1 vary at different pixels. Thus, instead of using a global model to adjust the entire
study area, we fit the ZRQ model locally at each pixel using NTL values from Jan 1, 2020, to Jan
31, 2021. To minimize the impact of the azimuth viewing angle, we selected data points on dates
that have the same viewing direction (east or west) on Feb 16 to fit in the ZRQ model. According
to the Interquartile Rule (Upton & Cook, 1996), NTL values that fall outside the +/— 1.5
interquartile range from the median value were considered outliers and excluded in the model
fitting (red dots in Fig. 5). R programs are developed to automate this local fitting process. Using
the locally-fitted ZRQ models, the expected NTL radiance in the viewing zenith angle on Feb 16

was simulated (orange dots in Fig. 5).
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Fig. 5. Scatterplots of radiance by zenith angle from Jan 1, 2020, to Mar 2, 2021, in random four

pixels in the study area. The red box indicates the radiance values on dates that have a similar

viewing zenith angle as Feb 16, 2021

Fig. 6(a) shows the ratio of differences between the Rgimuiatea and Rycenar at the pixel

level (denoted as D), which is calculated using Eq. 2:



R 1—Rgi
D= actua simulated Eq 2

Rsimulated

where R .1yq1 18 the actual radiance on Feb 16, and Rg;jq1qteq 1 the simulated NTL
radiance on Feb 16, 2021, using the ZRQ model (Eq. 1).

The red pixels in Fig. 6(a) have a larger radiance value than the simulated (expected)
value (D > 0) on Feb 16. Most of the red pixels are located at higher latitudes (north). These
larger-than-expected radiance values contradict our expectation that power outages and reduced
human activities would dim NTL radiance in the storm. This phenomenon is possibly due to the
snow-covered land surface that can enhance NTL radiance (Levin & Zhang, 2017; Wang et al.,
2021). Thus, we conducted the following analysis to evaluate the effect of snow reflection on the

NTL radiance,
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3.2 Snow Reflection

We developed an additional adjustment process to reduce the snow effect on NTL radiance.
After evaluating multiple sources for snow data, including MODIS Snow Cover (MOD10),
VIIRS/NPP Snow Cover (VNP10), and ground images from Sentinel-2 and Landsat-8, we found
these products are heavily impacted by cloud coverage in the study area (Texas) during the
storm. Previous studies show that snow accumulation is highly correlated with snow cover
(Jonas et al., 2009). Thus, we chose to use the snow accumulation data from

NOAA(https://www.nohrsc.noaa.gov/snowfall/), which provides complete coverage in the study

area, to represent snow coverage. Fig. 6(b) shows the 72-hour snow accumulation measured at
12:00 AM on Feb 16. Compared with Fig. 6(a), we found that areas with increased NTL radiance
(positive D) generally have higher snow accumulation. To eliminate the influence of outliers, we
applied the bin-fitting method to quantify the relation between snow accumulation and NTL
radiance change (Currit, 2002; Sanchez de Miguel et al., 2020). Specifically, we aggregate data
points in the scatter plot into bins, each of which represents an interval of 0.5 inches snow
accumulation (x-axis) and 0.1 NTL change ratio (y-axis). Then, we selected the bin with the
highest point density in each interval in the x-axis (shown as orange dots in Fig. 7(a)) to derive a
linear regression model. The positive coefficient of the regression (f = 0.03) indicates that the
NTL difference ratio (D) is positively correlated with snowfall accumulation. This result
confirms that snow coverage may enhance NTL radiance and justify the need for the snow effect

adjustment.
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(b)

—
o
—

8000 500 1000 1500 2000

N
N

6000

4000

NTL Change Ratio (D)
NTL Change Ratio (D)

1

2000

y = 0.030017 * x + 0.012581,R? = 0.7687 ¥ = 0.030017 * x + 0.012581, R? = 0.7687
0 4 10 0 5 10
Snow Accumulation (inches) Snow Accumulation (inches)

Fig. 7. (a) Bin-fit scatterplot between 72-hour snowfall and NTL difference ratio (D) of pixels in
the Feb 16 NTL image. (b) Density plots between 72-hour snowfall and NTL difference ratio (D)
of pixels in the Feb 16 NTL image, the white horizontal line (D = 0) represents no change.

The radiance adjustment includes the following steps. First, the adjustment models were
developed in areas that did not experience extensive power outages (i.e., outage ratio < 10%, see
Fig. 4(b)), assuming that the difference between the actual NTL radiance and simulated radiance
was primarily caused by snow reflection. The outage ratio is the ratio of detected power outage
time to total tracking time in the county, described in Section 2.2.3. The adjustment is expressed
in Eq. 3, which is a linear equation of logarithmically transformed R;¢yq; and Rgimuiatea- We
acknowledge that the correlation between R ;.11 and Rgimuiatea Varies in different snow
accumulation categories, and thus calculated the model parameters in seven snow accumulation
categories (Table 3). In each category, we apply the bin-fitting method to derive a regression
model between NTL radiance change (D) and snow accumulation. Details of models in each

snow accumulation categories can be found in Fig. SI 2 to Fig. SI 8. Then, we use the derived



models to adjust the actual NTL radiance of pixels in different snow accumulation categories

(Eq. 4).
ln(Ractual) = f * ln(Rsimulated) +9 Eq.3
In (Rgerya)—9
RAdjusted =e ! Eq. 4

where e is the base of natural logarithms, f and g were calculated from pixels in each

snow accumulation category.

Table 3. Coefficients in NTL radiance adjustment function by snow accumulation category

Snow accumulation Coefficients of Number of
(inches) Slope (f) Intercept (g) determination (R?) points
0-1 0.9464 1.0543 0.9671 36796
1-2 0.9707 0.7268 0.9483 50420
2-3 0.7815 1.4018 0.9681 36365
3-4 0.9780 1.2139 0.9738 43730
4-6 0.9278 1.3944 0.8896 67490
6-8 1.1255 0.7386 0.9849 20701
8-12 1.0645 0.9900 0.9867 10677

The actual radiance and adjusted radiance values were compared with simulated radiance
using bin fit linear model in Fig. 8(a) & (c). The snow effect adjustment pulls the regression line
(blue, where slope changed from 0.92589 to 0.99704 and intercept changed from 0.82176 to -
0.27409) closer to the central line (black, where slope = 1 & intercept = 0), indicating a higher
consistency between the adjusted radiance with the simulated radiance. The enhanced NTL
values on Feb 16 that are potentially impacted by snow were adjusted and corrected to a normal
level (based on the simulated NTL radiance on Feb 16). Comparing Fig. 8(a) with Fig. 8(c) and
Fig. 8(b) with Fig. 8(d), we can see that the adjustment has alleviated the radiance biases caused

by the snow effect.
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Fig. 8. (a) Bin-fit scatterplot between the actual NTL radiance and simulated NTL radiance on

Feb 16 (bin width = 0.25 unit); (b) Density plots between the actual NTL radiance and simulated

NTL radiance on Feb 16; (c) Bin-fit scatterplot between the actual NTL radiance and simulated
NTL radiance on Feb 16 (bin width = 0.25 unit); (d) Density plots between the adjusted NTL

radiance and simulated NTL radiance on Feb 16, black lines in (a)&(c) and white lines in

(b)&(d) indicate the adjustment target (f(x) = x) and blue line indicates the actual bin fit to the

target in all figures (equation and R listed at the bottom of each graph)



4. Blackout Detection

Power outage is detected by comparing the adjusted NTL radiance on Feb 16 and the radiance in
the normal condition (baseline radiance). The baseline radiance is a sample of radiance values on
dates from Jan 1, 2020, to Jan 31, 2021, when the viewing angle and acquisition time is similar
to that on Feb 16. We assume that blackout occurs in pixels where the radiance on Feb 16
reduces below a certain level (threshold) in comparison with the baseline radiance. The
comparison was conducted only in high-quality pixels (Mandatory Quality Flag is 00) with
similar viewing zenith angles (+/— 0.3°). Various thresholds are used in previous studies to detect
power outages (Kar et al., 2021; Min et al., 2017; Shah et al., 2020). In this study, we tested three
different thresholds to detect power outages using Eq. 5-7 respectively. The detected power
outage by the three thresholds was validated against the county-level power outage tracking data.
The threshold that generates the best correlation with the county-level power outage data was
considered optimal and was used for the analysis in the next step. The parallel computing
package (doSnow) in R developed by Analytics & Weston (2014) was applied to accelerate the

pixel-wise computation.

Rthresholdl = mean(Rbaseline) - ﬁl * StdeV(Rbaseline) Eq' 5
Rinreshotaz = Bz * mean(Rpgseiine) Eq. 6
Rinreshotas = Min (Rpgsetine) Eq.7

where Ry serine 18 the radiance values from Jan 1, 2020, to Jan 31, 2021 when the
viewing angle is similar to that on Feb 16, 2021. These radiance values are considered the

baseline that represents radiance values at the normal time. As an example, the red bounding



boxes in Fig. 5 highlight the baseline radiance values in the four pixels. Ripresnoiai—3 are the
thresholds below which power outages are determined. Stdev, mean, and min are functions to
calculate standard deviation, mean, and minimum from the baseline radiance values.

Using the three thresholds, pixels in the Feb 16 images are classified into outage pixels
(radiance < threshold) and non-outage pixels (radiance > threshold). The ratio of power outages
is calculated as the division of outage pixels by total pixels in counties and census tracts. Instead
of using arbitrary values, the coefficient £; and £, in Ripreshoiar @and Represhoraz are derived
from an iterative program. The program uses all possible values of ; in [0,1] and B,in [0,2]
with an increment of 0.01 to calculate power outage ratios in counties and conducts regression
analysis between the power outage ratios detected from NTL and the outage ratios calculated
from the outage tracking data. The optimal values of ; and [, are selected when the coefficient
of determination (R?) of the regression analysis is the highest, indicating the highest consistency
between the two datasets. Fig. 9 shows the changing pattern of R? with increasing values of 3;
and [, in the iterative program. The values of 8; and S, at the peaks of the curves are considered
optimal and applied in Eq. 5&6 to calculate R;presnota1r and Renreshoraz respectively. The higher
R? in the blue line shows that adjusted radiance achieved a higher consistency with the outage

tracking data than the original radiance.
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Fig. 9. Changes of R? with increasing f; (left) and S, (right) in the iterative program. Blue and

red curves are calculated with adjusted and original radiance respectively.

To evaluate the effect of the adjustment in Section 3, changing patterns of R* calculated
from the original NTL images (red lines) and adjusted NTL images (blue lines) are illustrated in
Table 4, indicating that the adjustment process has improved the ability of the NTL images for
power outage detection. Regression analysis was used to validate the power outage ratios
calculated from NTL images against the ratios calculated from outage tracking data at the county
level. A higher coefficient of determination (R?) implies a better match of power outages
detected in the two data sources. Comparing the three thresholds, the power outage ratio
calculated using Rypresnoiaz (EQ. 6) has the highest correlation (R? = 0.4157) with the ratios from
the outage tracking data, followed by the ratios calculated by Ripresnotar (EQ- 5) & Rinresholds
(Eq. 7). Thus, the power outage pixels and ratios of the outage pixels calculated with Ripyesnordz

(Eq. 6) are used in the following analysis.



Table 4. Highest coefficient of determination (R?) in each NTL threshold and the optimal
coefficient 8 (if applicable) that generates the highest R>.

Rthresholdl (Eq 5) Rthresholdz (Eq 6) RthresholdS (Eq 7)
I I I I 1
Original NTL 0.2938 0.3035 02882
radiance (81 =0.96) (B2 =0.71) ’
Adjusted NTL 0.3939 0.4157 03827
radiance (B, =1.44) (B2 =0.26) ’

The outage pixels derived from the threshold with the best performance (R¢nreshoiaz )
were visualized in Fig. 10 (a). A zoom-in view for three metropolitan areas, Houston, Dallas-Fort
Worth, and Austin-San Antonio, was shown in Fig. 10(b)—(d). The outage occurred around
suburban areas or the edges of the urban areas in Dallas, Austin, and San Antonio, whereas large
areas in the center of Houston suffered from blackouts. At the pixel level (Fig. 10(c)), areas
surrounding Houston were heavily impacted by the outage. The western area of Texas did not

experience widespread outages.
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Fig. 10. a) Outage pixels from NTL images in the declared disaster counties in Texas, b) Zoom-
in view of Austin (Travis County) and San Antonio (Bexar County), ¢) zoom-in view of Houston

(Harris County), d) zoom-in view of Dallas (Dallas County) and Fort Worth (Tarrant County).

Fig. 11(a)&(b) show outage ratios in counties and each census tract, where coastal
counties near the Gulf of Mexico experienced large outage ratios. The patterns of NTL power

outage ratios generally agree with the outage ratios calculated in Fig. 4(b). However, within



Harris County, the outage tracking data show a low outage ratio (Fig. 4(b)) whereas the outage

ratio detected from NTL (Fig. 11(a)) shows the opposite. Considering the large industrial areas in

Houston and differences in electricity consumption between residential clients and industrial

clients, the power outage tracking data in residential areas can be diluted by the large regularly

supplied industrial electricity consumption. Overall, regardless of a few places that show

discrepancies between outage tracking data and NTL outage ratio, the spatial patterns of county-

level power outage ratios derived from the two datasets are similar, plus the NTL images can

provide timely power outage detection at a higher resolution (~500m).
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Fig. 11. a) Power outage ratios aggregated in counties, b) Power outage ratios aggregated in

census tracts.

5. Correlation Analysis

Pearson correlation analyses were then used to analyze the relations between outage ratios

detected in NTL images and socio-economic variables listed in Table 2 at both the county level



and the census tract level. Table 5 lists the p values and Pearson correlation coefficients between
the power outage ratio and each socio-economic variable. Socio-economic variables that have
significant correlations (p-value < 0.05) with power outage ratios are highlighted in bold font. At
the county level, the blackouts tend to occur in Hispanic/Latino communities and communities
with newer buildings. At the census tract level, power outages are more likely to happen in
Latino/Hispanic communities, communities with fewer white populations, a longer commuting
time, lower unemployment ratios, and higher median housing value. The results show that the
relations between disadvantaged population groups and power outages vary at the two spatial
scales, except that Ratios of the Hispanic/Latino population show strong correlations at both

scales.

Table 5. The statistics (p-value and Pearson correlation coefficient) of the correlation models

between socio-economic variables and the NTL power outage ratio

NTL outage (county) NTL outage (census tract)
Population group , Degree of , Degree of
p-value Pearson’s r p-value Pearson’s r
freedom freedom
Ratio of White only 0.764 0.027 123 0.013* -0.038 4180
ORI?lt;O of African American 0.184 -0.120 123 0.194 0.020 4180
Ratio of American Indianand ) 4 -0.149 123 0.135 20023 4180
Alaska Native alone
Ratio of Asian 0.097 0.149 123 0.139 0.023 4180
Ratio of Latino/Hispanic 0.000%** 0.334 123 0.000%** 0.083 4180
Ratio of 25 years old + and
hold a degree less than 0.356 -0.083 123 0.546 0.009 4180
college degree
Ratio of Commute time less 0.144 123 0.000%**  -0.171 4180
than 30 minutes
Ratio of income lower than 0.484 0.063 123 0.360 0.014 4180
poverty level
Median household income 0.331 0.088 123 0.266 0.017 4180
Unemployment ratio 0.281 -0.097 123 0.000%** -0.069 4180
Renter-occupied housing ratio 0.889 0.013 123 0.120 -0.024 4180
Ratio of constructions built ) 0.205 123 0.559 20.009 4180
after 2000

Median value 0.266 0.100 123 0.018* 0.037 4180




Median gross rent 0.299 0.094 123 0.803 0.004 4180
*** p<0.001, ** p<0.01, * p<0.05

6. Discussion

This study presents an analytical workflow to detect power outages from daily Black Marble
NTL images and the application of this approach in 2021 Winter Storm Uri. Compared to other
data sources (e.g., the county-level power outage tracking data), the NTL-based approach can
detect power outages at a finer spatial resolution (~500m), providing important support for
emergency response and assessment of infrastructure damage and recovery. Through exploratory
data analysis, we discovered the effects of the viewing angle and ground snow reflection on the
NTL radiance, which prohibits a direct comparison between the images captured in the storm
with the images in normal times (baseline condition). Additionally, the snow and angular effects
show strong spatial variation, and thus cannot be corrected using a global model. To this end, we
developed radiance adjustment models to reduce the biases introduced by various viewing angles
and snow reflection over the study area. The model training at each pixel creates a substantial
computational load, which was effectively addressed by parallel algorithms. In the validation
against the outage tracking data, the adjusted NTL radiance shows an improved ability in power
outage detection than the non-adjusted images.

The power outage detection was conducted by comparing the adjusted NTL radiance on
Feb 16 with the radiance in the normal condition (baseline). Due to the instability of NTL
radiance, choosing images on a specific date as the baseline may introduce uncertainties caused
by radiance fluctuations on that day. Instead, we used a sample of dates in 2020 and 2021 when
the viewing angle was similar to that on Feb 16 to represent the baseline radiance. Another

challenge we faced in this study is choosing an appropriate threshold to detect power outages.



The choice of the threshold determines the extent of radiance reduction that should be classified
as power outages. Various thresholds are used in previous studies, which are somehow arbitrary
and lack empirical validation. To address this issue, we developed an iterative algorithm to
search for the optimal threshold that can generate the highest correlation between the outage
detected from NTL and the outage tracking data. This approach fuses the outage tracking data
and NTL images to find the threshold to obtain a finer-resolution (~500m) power outage
detection.

With the developed power outage detection approach, the second objective is to evaluate
environmental justice issues in Winter Storm Uri. Our hypothesis is that disadvantaged
populations are disproportionally exposed to power outages in the storm. The resultant power
outage map at a finer resolution (~500m) enables the evaluation of the hypothesis at the census
tract level. The statistical analyses show that the ratio of the Latino/Hispanic population has a
significant correlation with power outage ratios at both the county and census-tract level. This
result confirms the finding in the previous studies by Lee et al. (2021) and Flores et al. (2022).
As Texas is the state with the second largest Hispanic population (Nielsen-Gammon, 2011), this
result signals an alarming trend that the Hispanic population may be disproportionally exposed to
vulnerable electric power systems in natural disasters. Despite the statistical significance, the
correlations between power outages and other disadvantaged population groups are not very
strong (relatively low Pearson’s r values). This result is possibly due to the limited data sample
in one specific event. To fully understand the environmental justice issues, further research with
improved outage detection techniques should be conducted in more and other hazard events to

confirm the findings from this study.



The proposed method can be improved in the following aspects. First, the NTL should be
further decomposed into different types of human activities. The captured NTL radiance can be
generated from road traffic, industrial sites (e.g., oil refineries), and critical facilities that have an
emergency power supply (e.g., hospitals). The illumination from these facilities may influence
the detection of power outages that hit residential households. A future improvement is to
classify the NTL radiance into different land use and land cover types, from which the power
outage occurred in residential areas can be differentiated. The differentiated power outage
detection will provide more reliable data to study environmental justice issues in the storm.
Second, the NTL radiance captured in the Black Marble images is highly dependent on weather
conditions. The introduced approach requires a clear sky to detect changes in NTL radiance,
which may not occur in some disaster events. In this study, Feb 16 is the only date during the
storm when there are sufficient high-quality pixels (clear sky) to observe NTL in the study area.
On other dates, most urban areas are fully or partially covered by clouds, preventing the
observation of NTL on the ground. Additionally, the NTL variation is affected by complex
factors other than snow cover, which lead to only a moderate fit between outage tracking data
and outages detected by NTL. Such factors can include but are not limited to the ground
condition (e.g., snow cover, flood inundation) and atmospheric conditions (e.g., moisture). In
future research, we would further improve the method to reduce biases and uncertainties

introduced by these factors.

7. Conclusion

This study utilizes NASA’s daily Black Marble images to detect power outages in Winter Storm
Uri that hit Texas in 2021. The study introduces a complete workflow from image selection,

processing, and radiance adjustment to power outage detection. The analysis uncovers the effects



of viewing angle and snow cover on NTL radiance and introduces adjustment methods to
mitigate the effects. The validation against an additional data source (the outage tracking data)
indicates an improved NTL quality after the adjustment. The derived power outage maps at a
finer resolution (~500m) provide important support for emergency response, disaster relief, and
recovery. Using publicly available data sources, the developed methodology is widely applicable
to other hazardous events in other regions, which provide important support for enhancing
community and infrastructure resilience. Furthermore, we analyzed the relations between the
ratios of detected power outages and ratios of several disadvantaged population groups, aiming
to discover environmental injustice and social disparities in this disaster. The results show that
the Hispanic/Latino population tends to reside in communities that are impacted by power
outages, which echoes findings in peer studies about this storm. This finding raises concerns
about potential environmental justice issues in natural disasters, which deserve further

investigation with improved data and techniques.
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