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Abstract 

With the increasing intensity of extreme weather events, human society faces an 

unprecedented threat of personal injuries, fatalities, and economic losses. As a major 

component in lifeline infrastructures, electrical power system is of significance to human 

communities. In severe weather events, it is important to identify impact areas of power 

outages and affected communities, and thus provide support for informed decision-making 

for disaster response and relief. However, the lack of household-level power outage data 

creates challenges for timely and precise power outage assessments. To address these 

challenges, we introduced an analytical workflow that applies NASA’s Black Marble daily 

nighttime light (NTL) images to detect power outages in the 2021 Winter Storm Uri. This 

workflow includes adjustment processes to reduce the effects of viewing angle and snow 

reflection. Power outage is detected by comparing NTL images in the storm and NTL 

images in a normal condition (baseline) using an empirical adjusted equation. Outcomes of 

the workflow are 500-meter resolution power outage maps, which were found to have the 

highest consistency with real outage tracking data when NTL intensity was reduced by 

26%. With the resultant power outage maps, we analyzed the relations between power 

outages and ratios of disadvantaged populations in 126 Texas counties and 4182 census 

tracts to evaluate environmental justice in the storm. The results show that Latino/Hispanic 

communities tend to suffer more from power outages at both the county and census tract 

levels. 
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Highlights 

• Introduced an analytical workflow to detect power outages from NASA’s daily Black 

Marble nighttime light (NTL) remote sensing images. 

• Developed radiance adjustment algorithms to mitigate the effects of viewing angle and 

snow cover to NTL radiance 

• Analyzed environmental justice issues related to power outages in 2021 Winter Storm Uri 

• Latino/Hispanic communities tend to be more impacted by power outages in the storm 

  



1. Introduction 

With the changing climate, an increasing number and intensity of extreme weather events, such 

as hurricanes, winter storms, thunderstorms, and tornadoes, pose an unprecedented threat to 

human society. The serviceability of critical infrastructures (CIs) during extreme weather events 

is of critical importance to socio-economic activities (Deshmukh et al., 2011). Published 

evidence shows that disinvestment and poor maintenance of CIs often lead to greater losses in 

human communities (Chang, 2003; Mastroianni et al., 2021). Additionally, disruptions of CIs in 

extreme weather events may add extra burdens to disadvantaged communities (Hendricks & Van 

Zandt, 2021). Thus, the serviceability and resilience of CIs in extreme events are often associated 

with social equality and environmental justice. As lifeline infrastructure systems, electrical 

power systems are critical for socioeconomic activities but vulnerable to multiple types of 

hazards. The failures of electric power systems may trigger a series of cascading effects 

(Kwasinski et al., 2019). Long-lasting blackouts affect food and water supplies, disrupting 

communication and leaving people in discomforting conditions (e.g., heat, cold, and darkness) 

(Casey et al., 2020; Klinger et al., 2014). When combined with freezing temperatures, blackouts 

can cause damage to building structures and pose threats to people’s lives and health 

(Dominianni et al., 2018). Underserved and marginalized population groups often suffer greater 

impacts due to the lack of adaptive capacities (Min et al., 2017). Thus, timely and fine-resolution 

assessments of power outages in extreme weather events are of critical importance for 

emergency response, disaster relief, and policymaking to mitigate inequalities and injustice in 

disasters. 

However, monitoring power outages in extreme weather events faces challenges. First, 

household-level power outage data are not publicly available due to privacy concerns (Boroojeni 



et al., 2017). According to reports from the U.S. Energy Information Administration (EIA) 

(Alexander & Sara, 2017; Tweed, 2016), only a small proportion of the population agrees to 

share data about electricity consumption and outage with a third party, let alone the public. To 

protect individuals’ privacy, power outage data are usually aggregated at coarse spatial units 

(e.g., cities and counties), which are not sufficient to guide emergency response and resilience 

assessment at the neighborhood level. Second, multiple electric providers serving the same area 

create challenges to acquire complete outage data. For example, Texas is served by more than 

100 electric utility companies, some of which have overlapped serving areas (Public Utility 

Commission of Texas, 2022). Due to different tracking standards and methods, different utility 

companies may provide inconsistent power outage data. Additionally, the total number of 

blackouts in a disaster, which synthesizes household surveys or outage tracking devices, can take 

a long time to conclude (Cole et al., 2017), impeding timely actions for disaster response and 

relief. The data collected from surveys and power tracking devices only cover a small population 

sample and may overlook certain disadvantaged population groups. To overcome these issues, 

alternative data sources have been explored to detect power outages. For instance, Volunteered 

Geographic Information (VGI) (e.g., social media) can provide a considerable amount of data on 

the population impacted by power outages (Goodchild, 2007; Guan & Chen, 2014; L. Li et al., 

2020; Mao et al., 2018). A few studies have detected spatial and temporal distributions of power 

outages by mining social media data (Mao et al., 2018; Sun et al., 2016), despite the concerns of 

biased user demography and data uncertainty (Ribeiro et al., 2018, 2020). Thus, there is a 

pressing need to leverage alternative data sources to develop timely and reliable power outage 

assessments to support disaster response and resilience enhancement. 



With the ability to detect artificial lights on the earth's surface, nighttime light (NTL) 

remote sensing radiometers are a promising instrument to assess disaster impacts on human 

communities and CIs. In previous studies, NTL images are primarily used to assess disaster 

impact and damage (Xu & Qiang, 2021; Zhao et al., 2018) and monitor the recovery of human 

activities (Qiang et al., 2020). Pioneer work has been conducted to detect power outages from 

time series of NTL images. For example, Wang et al. (2018) introduced the use of NTL radiance 

from NASA’s Black Marble images to detect the spatial extent of outages during Hurricane 

Sandy in 2012 and Hurricane Maria in 2017. A few studies (e.g.,  Román et al. (2019) and Azad 

& Ghandehari (2021)) used the Black Marble images to monitor electricity restoration during 

Hurricane Maria and discovered social and geographic disparities in electric restoration among 

Puerto Rican communities. A major issue in the previous studies is the lack of empirical 

validation, which raises doubts about the accuracy of power outage detection. Additionally, the 

previous studies simply used original NTL radiance in the remote sensing images to detect power 

outages, without addressing biases introduced by extraneous factors, such as the viewing angle 

and snow reflection (Wang et al., 2021). These uncertainties can be amplified by the changing 

atmospheric and ground conditions in extreme weather events, which can further affect the 

validity of outage detection results.  

In this study, we introduced an analytical workflow that applies NASA’s Black Marble 

nighttime light (NTL) daily images to detect power outages in 2021 Winter Storm Uri (Fig. 1). 

This workflow includes radiance adjustments to reduce the effects of viewing angle and snow 

reflection on the NTL radiance. Additionally, novel approaches were introduced to determine the 

baseline radiance (radiance captured in the normal condition) and the radiance reduction 

threshold for power outage detection. The workflow generated power outage maps at a 15-arc-



second resolution (approximately 500 meters) covering the entire declared disaster areas, 

enabling various analyses from the neighborhood scale to the county or city scale. Finally, we 

overlaid the power outage maps with socio-economic variables to evaluate environmental justice 

in the storm. Our hypothesis is that disadvantaged populations are disproportionally exposed to 

power outages and correlation analysis was used to test the hypothesis. The developed workflow 

can be used as an actionable tool to produce timely and scaled power outage detection from 

publicly available data. Meanwhile, the analysis will provide important information for 

developing sustainable, resilient, and equitable communities in the face of increasing extreme 

weather events in the changing climate. 

 

Fig. 1. Workflow of outage detection using NASA’s Black Marble product suites 



2. Datasets 

2.1 Study Area 

Winter Storm Uri, also named Valentine’s week winter outbreak 2021 by National Oceanic and 

Atmospheric Administration (NOAA), emerged on Feb 11th, and dissipated on Feb 20th. Due to 

this storm, a winter storm warning has been issued for the entire state of Texas and multiple 

states in the U.S. Midwest and Southern Plains (Fig. 2(a)). As one of the most affected states, 

Texas was hit by massive snow, sleet, freezing rain, and low temperature. The storm resulted in a 

death toll of 246 people and an economic loss of over 195 billion dollars, which makes Uri the 

costliest winter storm on record (Ivanova, 2021). As a critical infrastructure, the electric power 

system in Texas was seriously disrupted and caused extensive blackouts lasting for several days 

(Lee et al., 2021). The Texas Interconnection network, the largest electric grid in Texas, 

generated rolling blackouts across the whole state of Texas, which affected 4 million people 

(Rice & Aspegren, 2021). Due to Uri’s devastating impacts, President Joseph R. Biden approved 

three major disaster declaration orders for a total of 126 Texas counties (Federal Agency 

Management Agency, 2021a, 2021c, 2021b). As Texas has a large area of undeveloped lands 

where NTL emissions may not be generated from human activities, the result of NTL radiance 

adjustment on all pixels within Texas can be biased towards the large numbers of non-urban 

pixels with minimal NTL radiance. Besides, surface oil wells outside urban areas can generate 

high NTL radiance, but these locations do not represent populations affected by power outages. 

To eliminate such conspicuous brightness in rural areas, our study focuses on urban areas where 

the impervious surface area (ISA) ratio is above 0.5. The ISA ratio is the ratio of impervious 

surface pixels to the total pixels in the LULC data, which is calculated within each pixel in the 

NTL image.  



 

Fig. 2. a) National Weather Services (NWS) winter weather forecast near Texas, b) counties that 

declared Winter Storm Uri as a major disaster 

 

2.2 Data 

2.2.1 Nighttime Light Images 

NASA’s Black Marble daily images (VNP46) were utilized to detect power outages. Black 

Marble images were collected from the Visible Infrared Imaging Radiometer Suite (VIIRS) 

day/night band (DNB) sensor of the Suomi National Polar-Orbiting Partnership (SNPP) satellite. 

The Black Marble product suite includes two products: VNP46A1 and VNP46A2. VNP46A1 

offers a consistent temporal scale at the daily level with a spatial resolution at 15-arc-second 

(around 500 meters in the study area) and overcomes the saturation effect and onboard 

calibration issue in the preceding NTL product. The VNP46A2 product includes 6 layers that 

were processed from the VNP46A1 product by removing biases from irrelevant NTL sources 



(e.g., moonlight, atmospheric effect) using the bidirectional reflectance distribution function 

(BRDF) model inversion (Román et al., 2018; Román, Wang, et al., 2019). In this study, the 

NTL radiance (DNB_BRDF-Corrected_NTL layer) in the VNP46A2 product was used to detect 

blackouts in Texas during the winter storm. Meanwhile, the viewing zenith and azimuth angles 

in VNP46A1 were used to adjust the angular effect. Images from Jan 1, 2020, to Mar 2, 2021, 

were downloaded from the Level-1 and Atmosphere Archive & Distribution System (LAADS) 

Distributed Active Archive Center (DAAC) Portal (https://ladsweb.modaps.eosdis.nasa

.gov/search/). Fig. 2(b) shows the four tiles (dashed line) of Black Marble images used in this 

study, which were mosaicked to cover the whole study area. The parameters of layers extracted 

from Black Marble products are summarized in Table 1. 

Table 1. Descriptions of layers extracted from NASA’s Black Marble product 

Layer Value Range Product 

Sensor Viewing Zenith Ranging from -90° to 90° VNP46A1 

Sensor Viewing Azimuth 

Ranging from -180° to 180°, 0° 

represents the north direction, negative 

values represent the east, and positive 

values represent the west 

VNP46A1 

UTC Time 
Ranging from -12 to 12, represent time 

in the UTC  
VNP46A1 

BRDF-corrected Radiance Ranging from 0 to 6553.4 VNP46A2 

Mandatory Quality Flag (QF) 

00 (high-quality & persistent), 01 (high-

quality & ephemeral), 02 (poor-quality), 

255 (no retrieval) 

VNP46A2 

2.2.2 Auxiliary Data 

In addition to the NTL images, several auxiliary datasets were used in this study. First, hourly 

power outage data at the county level from Feb 10, 2021 to Feb 25, 2021 were purchased from 

BlueFire Studios LLC (http://poweroutage.us) to calculate the power outage detection model. 

This dataset summarized power outage tracking data from 61 electricity providers during Uri in 

Texas. Second, the most recent land use and land cover data (LULC) from the National Land 

https://ladsweb.modaps.eosdis.nasa.gov/search/
https://ladsweb.modaps.eosdis.nasa.gov/search/
http://poweroutage.us/


Cover Database 2019 (NLCD 2019) were used to calculate the impervious surface area (ISA) 

ratios in NTL image pixels (Dewitz & U.S. Geological Survey, 2021; Homer et al., 2020; Jin et 

al., 2019; Wickham et al., 2021; Yang et al., 2018). Pixels with a ratio of ISA > 0.5 were 

considered urban areas and selected as the study area. Third, socio-economic variables at the 

census-tract and county level were acquired from the 2019 American Community Survey (Table 

2). These socio-economic variables are common indicators in community resilience assessment 

(Cutter et al., 2003; Lam et al., 2016) and are available in the American Community Survey data. 

These variables were used to analyze the relations between the detected power outages and 

socio-economic conditions of communities. Fourth, snow accumulation data were collected from 

NOAA National Gridded Snowfall Analysis (https://www.nohrsc.noaa.gov/snowfall/). Due to 

the heavy cloud cover during and after the winter storm, snow accumulation data from NOAA is 

the only data source that covers the whole research area and has a fine temporal granularity 

(updated every 12 hours). 

Table 2. The list of tables and socio-economic variables extracted from the 2019 American 

Community Survey  

Variable Name Description 

Ratio of White 
Ratio of White American population (one race) to total 

population 

Ratio of African American 
Ratio of African American population (one race) to total 

population 

Ratio of American Indian and Alaska Native 
Ratio of American Indian and Alaska Native population 

(one race) to total population 

Ratio of Asian Ratio of Asian American (one race) to total population 

Ratio of Latino/Hispanic Ratio of Latino/Hispanic population to total population 

Ratio of 25 years old + and hold a degree less than 

college degree 

Ratio of population over 25 years old and with a degree 

lower than a college degree to total population 

Ratio of commute time less than 30 minutes 
Ratio of population living in areas with less than 30 

minutes commuting time 

Ratio of income lower than poverty level 
Ratio of population with income lower than the poverty 

level to total population 

Median household income 
Median household income in the past 12 months (in 

2019 inflation-adjusted dollars) 

https://www.nohrsc.noaa.gov/snowfall/


Variable Name Description 

Unemployment ratio 
Ratio of unemployed population to total population in 

labor forces 

Renter-occupied housing ratio 
Ratio of renter-occupied housing units to total housing 

units 

Ratio of constructions built after 2000 
Ratio of constructions built before 2000 to total housing 

units 

Median housing value Median value of owner-occupied housing units in dollars 

Median gross rent 
Median gross rent of renter-occupied housing units 

paying cash rent 

 

2.2.3 NTL Date Selection 

Next, we determine the dates of NTL images for power outage detection. This selection is made 

with two criteria: (1) the images should be captured when extensive power outages occurred, and 

(2) the study area should have a clear sky (less cloud coverage). For the first criterion, the hourly 

ratio of power outages was calculated from the power outage tracking data from Bluefire Studios 

LLC. The ratio is the division of total outage hours by total tracked hours. The hourly outage 

ratio and its 24-hour moving average are displayed in Fig. 3, which shows that the extensive 

power outage lasted from Feb 15 to Feb 18 with a peak on Feb 16. For the second criterion, we 

calculated the number of counties that have > 80% high-quality NTL pixels (clear sky) each day, 

which is represented as gray bars in Fig. 3. Pixels in the VNP46A2 images where the value of the 

Mandatory Quality Flag (QF) is 00 are defined as high-quality pixels and selected for the 

analyses in this study. QF 01 pixels include ephemeral radiance, such as wildfire and lightning, 

which cannot represent a persistent human settlement. Also, QF 01 pixels are very few in the 

selected images (e.g., no QF 01 pixels on Feb 16). Thus, we decided to exclude QF 01 pixels in 

the analyses. Fig. 3 shows that the highest number of counties with a clear sky during the power 

outage period occurred on Feb 16, when 197 of the 254 counties have >80% coverage of high-

quality pixels (QF 00). Thus, NTL images on Feb 16 meet both criteria and are selected to detect 



power outages in the following analysis.  

 
Fig. 3. Hourly ratio of power outage from Feb 11 to Feb 24 (lines, left axis) and the number of 

counties where > 80% area is covered by high-quality NTL pixels (bars, right axis). The red 

dashed line indicates the general NTL acquisition time (close to 2:45 am Central Standard Time) 

of NTL images on Feb 16, 2021 

 

The NTL images on Feb 16 were captured between 2:45 AM to 2:50 AM in Central 

Standard Time (CST) as shown in Fig. 4(a). Thus, power outage tracking data between 2:00 AM 

and 3:00 AM on Feb 16 (highlighted in Fig. 3, red dashed lines) were selected to adjust the NTL 

radiance in the following steps. Fig. 4(b) shows the county-level outage ratios between 2-3 AM 

CST on Feb 16. 



 

 

Fig. 4. (a) Acquisition time in Central Standard Time (CST) and VIIRS satellite orbit from 

VNP46A2 on Feb 16, 2021; (b) Power outage ratios (tracking data) between 2-3 AM in Texas 

counties, areas that did not experience extensive power outages are highlighted in blue dashed 

boundaries. 

 

3. NTL Radiance Adjustment 

Power outages can be detected by comparing the NTL radiance during outages and the radiance 

in the normal condition (baseline). However, the various viewing angles and snow reflection 

may affect the NTL radiance captured in the images and introduce biases to the comparison 

(Wang et al., 2021). Thus, a radiance adjustment is needed to eliminate the biases and make the 

images comparable. This section introduces the adjustment process that removes the angular 

effect and snow reflection in the NTL images. 

 



3.1 Angular Effect 

The viewing angle of the satellite sensor may affect the NTL radiance captured in images. 

Previous studies show that the relation between the viewing zenith angle and NTL radiance can 

be fitted into a quadratic equation (X. Li et al., 2019; Tan et al., 2022). This equation is known as 

the Zenith-Radiance Quadratic (ZRQ) model and can be expressed as Eq. 1: 

𝑅𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 =  𝑎 ∗ 𝑉𝑍𝐴2 + 𝑏 ∗ 𝑉𝑍𝐴 + 𝑐  Eq. 1 

where 𝑅 stands for the nighttime light radiance, 𝑉𝑍𝐴 means the viewing zenith angle, and 

a, b, and c are the coefficients. 

The actual effects of the zenith angle may vary in the geographic space due to different 

land cover types and radiance levels. Fig. 5 shows the variation of zenith-radiance relations at 

four randomly selected pixels in the study area, where shapes of the quadratic fitting curve 

between NTL radiance and viewing zenith angle are different, meaning that the coefficients a, b, 

and c in Eq. 1 vary at different pixels. Thus, instead of using a global model to adjust the entire 

study area, we fit the ZRQ model locally at each pixel using NTL values from Jan 1, 2020, to Jan 

31, 2021. To minimize the impact of the azimuth viewing angle, we selected data points on dates 

that have the same viewing direction (east or west) on Feb 16 to fit in the ZRQ model. According 

to the Interquartile Rule (Upton & Cook, 1996), NTL values that fall outside the +/− 1.5 

interquartile range from the median value were considered outliers and excluded in the model 

fitting (red dots in Fig. 5). R programs are developed to automate this local fitting process. Using 

the locally-fitted ZRQ models, the expected NTL radiance in the viewing zenith angle on Feb 16 

was simulated (orange dots in Fig. 5). 



 

Fig. 5. Scatterplots of radiance by zenith angle from Jan 1, 2020, to Mar 2, 2021, in random four 

pixels in the study area. The red box indicates the radiance values on dates that have a similar 

viewing zenith angle as Feb 16, 2021 

 

Fig. 6(a) shows the ratio of differences between the 𝑅𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 and 𝑅𝑎𝑐𝑡𝑢𝑎𝑙 at the pixel 

level (denoted as 𝐷), which is calculated using Eq. 2: 



𝐷 =  
𝑅𝑎𝑐𝑡𝑢𝑎𝑙−𝑅𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑

𝑅𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑
   Eq. 2 

where 𝑅𝑎𝑐𝑡𝑢𝑎𝑙 is the actual radiance on Feb 16, and 𝑅𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 is the simulated NTL 

radiance on Feb 16, 2021, using the ZRQ model (Eq. 1). 

The red pixels in Fig. 6(a) have a larger radiance value than the simulated (expected) 

value (𝐷 > 0) on Feb 16. Most of the red pixels are located at higher latitudes (north). These 

larger-than-expected radiance values contradict our expectation that power outages and reduced 

human activities would dim NTL radiance in the storm. This phenomenon is possibly due to the 

snow-covered land surface that can enhance NTL radiance (Levin & Zhang, 2017; Wang et al., 

2021). Thus, we conducted the following analysis to evaluate the effect of snow reflection on the 

NTL radiance,  

 

 

Fig. 6. Comparison between NTL radiance change and snow accumulation. (a) Spatial 

distribution of NTL radiance change (𝐷).  (b) NOAA National Gridded Snowfall Analysis (72-

hour snowfall accumulation) at 12:00 AM, Feb 16, 2021 

 



3.2 Snow Reflection 

We developed an additional adjustment process to reduce the snow effect on NTL radiance. 

After evaluating multiple sources for snow data, including MODIS Snow Cover (MOD10), 

VIIRS/NPP Snow Cover (VNP10), and ground images from Sentinel-2 and Landsat-8, we found 

these products are heavily impacted by cloud coverage in the study area (Texas) during the 

storm. Previous studies show that snow accumulation is highly correlated with snow cover 

(Jonas et al., 2009). Thus, we chose to use the snow accumulation data from 

NOAA(https://www.nohrsc.noaa.gov/snowfall/), which provides complete coverage in the study 

area, to represent snow coverage. Fig. 6(b) shows the 72-hour snow accumulation measured at 

12:00 AM on Feb 16. Compared with Fig. 6(a), we found that areas with increased NTL radiance 

(positive D) generally have higher snow accumulation. To eliminate the influence of outliers, we 

applied the bin-fitting method to quantify the relation between snow accumulation and NTL 

radiance change (Currit, 2002; Sanchez de Miguel et al., 2020). Specifically, we aggregate data 

points in the scatter plot into bins, each of which represents an interval of 0.5 inches snow 

accumulation (x-axis) and 0.1 NTL change ratio (y-axis). Then, we selected the bin with the 

highest point density in each interval in the x-axis (shown as orange dots in Fig. 7(a)) to derive a 

linear regression model. The positive coefficient of the regression (β = 0.03) indicates that the 

NTL difference ratio (D) is positively correlated with snowfall accumulation. This result 

confirms that snow coverage may enhance NTL radiance and justify the need for the snow effect 

adjustment. 

https://www.nohrsc.noaa.gov/snowfall/


 

Fig. 7. (a) Bin-fit scatterplot between 72-hour snowfall and NTL difference ratio (D) of pixels in 

the Feb 16 NTL image. (b) Density plots between 72-hour snowfall and NTL difference ratio (D) 

of pixels in the Feb 16 NTL image, the white horizontal line (D = 0) represents no change. 

 

The radiance adjustment includes the following steps. First, the adjustment models were 

developed in areas that did not experience extensive power outages (i.e., outage ratio < 10%, see 

Fig. 4(b)), assuming that the difference between the actual NTL radiance and simulated radiance 

was primarily caused by snow reflection. The outage ratio is the ratio of detected power outage 

time to total tracking time in the county, described in Section 2.2.3. The adjustment is expressed 

in Eq. 3, which is a linear equation of logarithmically transformed 𝑅𝑎𝑐𝑡𝑢𝑎𝑙 and 𝑅𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑. We 

acknowledge that the correlation between 𝑅𝑎𝑐𝑡𝑢𝑎𝑙 and 𝑅𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑 varies in different snow 

accumulation categories, and thus calculated the model parameters in seven snow accumulation 

categories (Table 3). In each category, we apply the bin-fitting method to derive a regression 

model between NTL radiance change (D) and snow accumulation. Details of models in each 

snow accumulation categories can be found in Fig. SI 2 to Fig. SI 8. Then, we use the derived 



models to adjust the actual NTL radiance of pixels in different snow accumulation categories 

(Eq. 4).  

ln(𝑅𝑎𝑐𝑡𝑢𝑎𝑙) =  𝑓 ∗ ln(𝑅𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒𝑑) + 𝑔   Eq. 3 

𝑅𝐴𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = 𝑒
ln (𝑅𝑎𝑐𝑡𝑢𝑎𝑙)−𝑔

𝑓
 
  Eq. 4 

where 𝑒 is the base of natural logarithms, 𝑓 and 𝑔 were calculated from pixels in each 

snow accumulation category. 

Table 3. Coefficients in NTL radiance adjustment function by snow accumulation category 

Snow accumulation 

(inches) 
Slope (𝑓) Intercept (𝑔) 

Coefficients of 

determination (R2) 

Number of 

points 

0 - 1 0.9464 1.0543 0.9671 36796 

1 - 2 0.9707 0.7268 0.9483 50420 

2 - 3 0.7815 1.4018 0.9681 36365 

3 - 4 0.9780 1.2139 0.9738 43730 

4 - 6 0.9278 1.3944 0.8896 67490 

6 - 8 1.1255 0.7386 0.9849 20701 

8 - 12 1.0645 0.9900 0.9867 10677 

 

The actual radiance and adjusted radiance values were compared with simulated radiance 

using bin fit linear model in Fig. 8(a) & (c). The snow effect adjustment pulls the regression line 

(blue, where slope changed from 0.92589 to 0.99704 and intercept changed from 0.82176 to -

0.27409) closer to the central line (black, where slope = 1 & intercept = 0), indicating a higher 

consistency between the adjusted radiance with the simulated radiance. The enhanced NTL 

values on Feb 16 that are potentially impacted by snow were adjusted and corrected to a normal 

level (based on the simulated NTL radiance on Feb 16). Comparing Fig. 8(a) with Fig. 8(c) and 

Fig. 8(b) with Fig. 8(d), we can see that the adjustment has alleviated the radiance biases caused 

by the snow effect. 



 

Fig. 8. (a) Bin-fit scatterplot between the actual NTL radiance and simulated NTL radiance on 

Feb 16 (bin width = 0.25 unit); (b) Density plots between the actual NTL radiance and simulated 

NTL radiance on Feb 16; (c) Bin-fit scatterplot between the actual NTL radiance and simulated 

NTL radiance on Feb 16 (bin width = 0.25 unit); (d) Density plots between the adjusted NTL 

radiance and simulated NTL radiance on Feb 16, black lines in (a)&(c) and white lines in 

(b)&(d) indicate the adjustment target (f(x) = x) and blue line indicates the actual bin fit to the 

target in all figures (equation and R2 listed at the bottom of each graph) 



4. Blackout Detection 

Power outage is detected by comparing the adjusted NTL radiance on Feb 16 and the radiance in 

the normal condition (baseline radiance). The baseline radiance is a sample of radiance values on 

dates from Jan 1, 2020, to Jan 31, 2021, when the viewing angle and acquisition time is similar 

to that on Feb 16. We assume that blackout occurs in pixels where the radiance on Feb 16 

reduces below a certain level (threshold) in comparison with the baseline radiance. The 

comparison was conducted only in high-quality pixels (Mandatory Quality Flag is 00) with 

similar viewing zenith angles (+/− 0.3°). Various thresholds are used in previous studies to detect 

power outages (Kar et al., 2021; Min et al., 2017; Shah et al., 2020). In this study, we tested three 

different thresholds to detect power outages using Eq. 5-7 respectively. The detected power 

outage by the three thresholds was validated against the county-level power outage tracking data. 

The threshold that generates the best correlation with the county-level power outage data was 

considered optimal and was used for the analysis in the next step. The parallel computing 

package (doSnow) in R developed by Analytics & Weston (2014) was applied to accelerate the 

pixel-wise computation. 

𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 =  𝑚𝑒𝑎𝑛(𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒) −  𝛽1 ∗ stdev(𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒) Eq. 5 

𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 = 𝛽2 ∗  𝑚𝑒𝑎𝑛(𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)   Eq. 6 

𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑3 = 𝑚𝑖𝑛 (𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒)  Eq. 7 

where 𝑅𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 is the radiance values from Jan 1, 2020, to Jan 31, 2021 when the 

viewing angle is similar to that on Feb 16, 2021. These radiance values are considered the 

baseline that represents radiance values at the normal time. As an example, the red bounding 



boxes in Fig. 5 highlight the baseline radiance values in the four pixels. 𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1−3 are the 

thresholds below which power outages are determined. 𝑆𝑡𝑑𝑒𝑣, 𝑚𝑒𝑎𝑛, and 𝑚𝑖𝑛 are functions to 

calculate standard deviation, mean, and minimum from the baseline radiance values.  

Using the three thresholds, pixels in the Feb 16 images are classified into outage pixels 

(radiance < threshold) and non-outage pixels (radiance ≥ threshold). The ratio of power outages 

is calculated as the division of outage pixels by total pixels in counties and census tracts. Instead 

of using arbitrary values, the coefficient 𝛽1 and 𝛽2 in 𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 and 𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 are derived 

from an iterative program. The program uses all possible values of 𝛽1 in [0,1] and 𝛽2in [0,2] 

with an increment of 0.01 to calculate power outage ratios in counties and conducts regression 

analysis between the power outage ratios detected from NTL and the outage ratios calculated 

from the outage tracking data. The optimal values of 𝛽1 and 𝛽2 are selected when the coefficient 

of determination (R2) of the regression analysis is the highest, indicating the highest consistency 

between the two datasets. Fig. 9 shows the changing pattern of R2
 with increasing values of 𝛽1 

and 𝛽2 in the iterative program. The values of 𝛽1 and 𝛽2 at the peaks of the curves are considered 

optimal and applied in Eq. 5&6 to calculate 𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 and 𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 respectively. The higher 

R2 in the blue line shows that adjusted radiance achieved a higher consistency with the outage 

tracking data than the original radiance. 

 



 

Fig. 9. Changes of R2 with increasing 𝛽1 (left) and 𝛽2 (right) in the iterative program. Blue and 

red curves are calculated with adjusted and original radiance respectively. 

 

To evaluate the effect of the adjustment in Section 3, changing patterns of R2
 calculated 

from the original NTL images (red lines) and adjusted NTL images (blue lines) are illustrated in 

Table 4, indicating that the adjustment process has improved the ability of the NTL images for 

power outage detection. Regression analysis was used to validate the power outage ratios 

calculated from NTL images against the ratios calculated from outage tracking data at the county 

level. A higher coefficient of determination (R2) implies a better match of power outages 

detected in the two data sources. Comparing the three thresholds, the power outage ratio 

calculated using 𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 (Eq. 6) has the highest correlation (R2 = 0.4157) with the ratios from 

the outage tracking data, followed by the ratios calculated by 𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 (Eq. 5) & 𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑3 

(Eq. 7). Thus, the power outage pixels and ratios of the outage pixels calculated with 𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 

(Eq. 6) are used in the following analysis. 



Table 4. Highest coefficient of determination (R2) in each NTL threshold and the optimal 

coefficient 𝛽 (if applicable) that generates the highest R2. 

 𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑1 (Eq. 5)  𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 (Eq. 6) 𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑3 (Eq. 7) 

Original NTL 

radiance  

0.2938 

(𝛽1 = 0.96) 

0.3035 

(𝛽2 = 0.71) 
0.2882 

Adjusted NTL 

radiance 

0.3939 

(𝛽1 = 1.44) 

0.4157 

(𝛽2 = 0.26) 
0.3827 

 

The outage pixels derived from the threshold with the best performance (𝑅𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑2 ) 

were visualized in Fig. 10 (a). A zoom-in view for three metropolitan areas, Houston, Dallas-Fort 

Worth, and Austin-San Antonio, was shown in Fig. 10(b)–(d). The outage occurred around 

suburban areas or the edges of the urban areas in Dallas, Austin, and San Antonio, whereas large 

areas in the center of Houston suffered from blackouts. At the pixel level (Fig. 10(c)), areas 

surrounding Houston were heavily impacted by the outage. The western area of Texas did not 

experience widespread outages. 



 

Fig. 10. a) Outage pixels from NTL images in the declared disaster counties in Texas, b) Zoom-

in view of Austin (Travis County) and San Antonio (Bexar County), c) zoom-in view of Houston 

(Harris County), d) zoom-in view of Dallas (Dallas County) and Fort Worth (Tarrant County). 

Fig. 11(a)&(b) show outage ratios in counties and each census tract, where coastal 

counties near the Gulf of Mexico experienced large outage ratios. The patterns of NTL power 

outage ratios generally agree with the outage ratios calculated in Fig. 4(b). However, within 



Harris County, the outage tracking data show a low outage ratio (Fig. 4(b)) whereas the outage 

ratio detected from NTL (Fig. 11(a)) shows the opposite. Considering the large industrial areas in 

Houston and differences in electricity consumption between residential clients and industrial 

clients, the power outage tracking data in residential areas can be diluted by the large regularly 

supplied industrial electricity consumption. Overall, regardless of a few places that show 

discrepancies between outage tracking data and NTL outage ratio, the spatial patterns of county-

level power outage ratios derived from the two datasets are similar, plus the NTL images can 

provide timely power outage detection at a higher resolution (~500m). 

 

Fig. 11. a) Power outage ratios aggregated in counties, b) Power outage ratios aggregated in 

census tracts. 

 

5. Correlation Analysis 

Pearson correlation analyses were then used to analyze the relations between outage ratios 

detected in NTL images and socio-economic variables listed in Table 2 at both the county level 



and the census tract level. Table 5 lists the p values and Pearson correlation coefficients between 

the power outage ratio and each socio-economic variable. Socio-economic variables that have 

significant correlations (p-value < 0.05) with power outage ratios are highlighted in bold font. At 

the county level, the blackouts tend to occur in Hispanic/Latino communities and communities 

with newer buildings. At the census tract level, power outages are more likely to happen in 

Latino/Hispanic communities, communities with fewer white populations, a longer commuting 

time, lower unemployment ratios, and higher median housing value. The results show that the 

relations between disadvantaged population groups and power outages vary at the two spatial 

scales, except that Ratios of the Hispanic/Latino population show strong correlations at both 

scales. 

Table 5. The statistics (p-value and Pearson correlation coefficient) of the correlation models 

between socio-economic variables and the NTL power outage ratio 

Population group 

NTL outage (county) NTL outage (census tract) 

p-value Pearson’s r 
Degree of 

freedom 
p-value Pearson’s r 

Degree of 

freedom 

Ratio of White only 0.764 0.027 123 0.013* -0.038 4180 

Ratio of African American 

only 
0.184 -0.120 123 0.194 0.020 4180 

Ratio of American Indian and 

Alaska Native alone 
0.097 -0.149 123 0.135 -0.023 4180 

Ratio of Asian 0.097 0.149 123 0.139 0.023 4180 

Ratio of Latino/Hispanic 0.000*** 0.334 123 0.000*** 0.083 4180 

Ratio of 25 years old + and 

hold a degree less than 

college degree 

0.356 -0.083 123 0.546 0.009 4180 

Ratio of Commute time less 

than 30 minutes 
0.109 -0.144 123 0.000*** -0.171 4180 

Ratio of income lower than 

poverty level 
0.484 0.063 123 0.360 -0.014 4180 

Median household income 0.331 0.088 123 0.266 0.017 4180 

Unemployment ratio 0.281 -0.097 123 0.000*** -0.069 4180 

Renter-occupied housing ratio 0.889 0.013 123 0.120 -0.024 4180 

Ratio of constructions built 

after 2000 
0.022* 0.205 123 0.559 -0.009 4180 

Median value 0.266 0.100 123 0.018* 0.037 4180 



Median gross rent 0.299 0.094 123 0.803 0.004 4180 

*** p<0.001, ** p<0.01, * p<0.05 

6. Discussion 

This study presents an analytical workflow to detect power outages from daily Black Marble 

NTL images and the application of this approach in 2021 Winter Storm Uri. Compared to other 

data sources (e.g., the county-level power outage tracking data), the NTL-based approach can 

detect power outages at a finer spatial resolution (~500m), providing important support for 

emergency response and assessment of infrastructure damage and recovery. Through exploratory 

data analysis, we discovered the effects of the viewing angle and ground snow reflection on the 

NTL radiance, which prohibits a direct comparison between the images captured in the storm 

with the images in normal times (baseline condition). Additionally, the snow and angular effects 

show strong spatial variation, and thus cannot be corrected using a global model. To this end, we 

developed radiance adjustment models to reduce the biases introduced by various viewing angles 

and snow reflection over the study area. The model training at each pixel creates a substantial 

computational load, which was effectively addressed by parallel algorithms. In the validation 

against the outage tracking data, the adjusted NTL radiance shows an improved ability in power 

outage detection than the non-adjusted images.  

The power outage detection was conducted by comparing the adjusted NTL radiance on 

Feb 16 with the radiance in the normal condition (baseline). Due to the instability of NTL 

radiance, choosing images on a specific date as the baseline may introduce uncertainties caused 

by radiance fluctuations on that day. Instead, we used a sample of dates in 2020 and 2021 when 

the viewing angle was similar to that on Feb 16 to represent the baseline radiance. Another 

challenge we faced in this study is choosing an appropriate threshold to detect power outages. 



The choice of the threshold determines the extent of radiance reduction that should be classified 

as power outages. Various thresholds are used in previous studies, which are somehow arbitrary 

and lack empirical validation. To address this issue, we developed an iterative algorithm to 

search for the optimal threshold that can generate the highest correlation between the outage 

detected from NTL and the outage tracking data. This approach fuses the outage tracking data 

and NTL images to find the threshold to obtain a finer-resolution (~500m) power outage 

detection.  

With the developed power outage detection approach, the second objective is to evaluate 

environmental justice issues in Winter Storm Uri. Our hypothesis is that disadvantaged 

populations are disproportionally exposed to power outages in the storm. The resultant power 

outage map at a finer resolution (~500m) enables the evaluation of the hypothesis at the census 

tract level. The statistical analyses show that the ratio of the Latino/Hispanic population has a 

significant correlation with power outage ratios at both the county and census-tract level. This 

result confirms the finding in the previous studies by Lee et al. (2021) and Flores et al. (2022). 

As Texas is the state with the second largest Hispanic population (Nielsen-Gammon, 2011), this 

result signals an alarming trend that the Hispanic population may be disproportionally exposed to 

vulnerable electric power systems in natural disasters. Despite the statistical significance, the 

correlations between power outages and other disadvantaged population groups are not very 

strong (relatively low Pearson’s r values). This result is possibly due to the limited data sample 

in one specific event. To fully understand the environmental justice issues, further research with 

improved outage detection techniques should be conducted in more and other hazard events to 

confirm the findings from this study. 



The proposed method can be improved in the following aspects. First, the NTL should be 

further decomposed into different types of human activities. The captured NTL radiance can be 

generated from road traffic, industrial sites (e.g., oil refineries), and critical facilities that have an 

emergency power supply (e.g., hospitals). The illumination from these facilities may influence 

the detection of power outages that hit residential households. A future improvement is to 

classify the NTL radiance into different land use and land cover types, from which the power 

outage occurred in residential areas can be differentiated. The differentiated power outage 

detection will provide more reliable data to study environmental justice issues in the storm. 

Second, the NTL radiance captured in the Black Marble images is highly dependent on weather 

conditions. The introduced approach requires a clear sky to detect changes in NTL radiance, 

which may not occur in some disaster events. In this study, Feb 16 is the only date during the 

storm when there are sufficient high-quality pixels (clear sky) to observe NTL in the study area. 

On other dates, most urban areas are fully or partially covered by clouds, preventing the 

observation of NTL on the ground. Additionally, the NTL variation is affected by complex 

factors other than snow cover, which lead to only a moderate fit between outage tracking data 

and outages detected by NTL. Such factors can include but are not limited to the ground 

condition (e.g., snow cover, flood inundation) and atmospheric conditions (e.g., moisture).  In 

future research, we would further improve the method to reduce biases and uncertainties 

introduced by these factors. 

7. Conclusion 

This study utilizes NASA’s daily Black Marble images to detect power outages in Winter Storm 

Uri that hit Texas in 2021. The study introduces a complete workflow from image selection, 

processing, and radiance adjustment to power outage detection. The analysis uncovers the effects 



of viewing angle and snow cover on NTL radiance and introduces adjustment methods to 

mitigate the effects. The validation against an additional data source (the outage tracking data) 

indicates an improved NTL quality after the adjustment. The derived power outage maps at a 

finer resolution (~500m) provide important support for emergency response, disaster relief, and 

recovery. Using publicly available data sources, the developed methodology is widely applicable 

to other hazardous events in other regions, which provide important support for enhancing 

community and infrastructure resilience. Furthermore, we analyzed the relations between the 

ratios of detected power outages and ratios of several disadvantaged population groups, aiming 

to discover environmental injustice and social disparities in this disaster. The results show that 

the Hispanic/Latino population tends to reside in communities that are impacted by power 

outages, which echoes findings in peer studies about this storm. This finding raises concerns 

about potential environmental justice issues in natural disasters, which deserve further 

investigation with improved data and techniques. 
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