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We study the superconductor-insulator transition (SIT) in the ground state of the attractive hon-
eycomb Hubbard model in the presence of a staggered potential (a mass term), using a combination
of unbiased computational methods, namely, exact diagonalization and quantum Monte Carlo sim-
ulations. We probe the nature of the lowest-energy charge excitations across the SIT and show that
they are bosonic, as inferred (and shown in the strongly interacting regime) in a previous study of
the same model in the square lattice. Increasing the strength of the staggered potential leads to a
crossover in which bosonic low-energy excitations give way to fermionic ones within the insulating
phase. We also show that the SIT belongs to the 3d-XY universality class, like in its square lattice
counterpart. The robustness of our results in these two lattice geometries supports the expectation
that our findings are universal for SITs in clean systems.

1. INTRODUCTION

The theory of conventional superconductors describes
the emergence of pairing among repulsive charges by
means of a Fermi surface instability in a metal (or Fermi
liquid) [1]. It leads to an effective attractive interaction
whose hallmark is the formation of a gap for one-particle
excitations, while zero-momentum pair excitations are
gapless [2]. Yet, various cases are known to evade this
paradigm, where the parent state does not have a well-
defined Fermi surface, such as in the case of insulators.
This superconductor-insulator transition (SIT) has been
experimentally investigated in various low-dimensional
systems, either via disorder tuning [3–6], introducing
magnetic fields [7–9], or introducing changes in the car-
rier density [10–12]. The development of analog quantum
simulators, comprising ultracold atoms trapped in opti-
cal lattices [13–15], has opened a door to controllably
study such SIT transitions in exquisitely clean strongly
correlated systems.
Motivated by understanding the nature of SITs in

clean strongly correlated systems, as well as their possi-
ble experimental exploration in experiments with ultra-
cold fermionic atoms, in a previous work [16] two of us
(R.M. and M.R., in collaboration with P. Nikolić) studied
the SIT in the attractive Hubbard model in the presence
of a staggered potential in the square lattice geometry.
We showed that in the insulating phase in the strongly
interacting regime, the lowest-energy charge excitations
can be bosonic or fermionic, depending on the param-
eters chosen. We also showed that, for all the Hamil-
tonian parameters that could be studied using quantum
Monte Carlo simulations, the SIT belongs to 3d-XY uni-
versality class. We concluded from those results that the
lowest-energy charge excitations are bosonic in both the
superconducting and insulating phases across the SIT, as
argued using field-theory arguments in the weak-coupling
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limit [17, 18]. Such a bosonic-like insulator is akin to a
pseudogap phase, where pre-formation of pairs occurs but
such pairs are not phase correlated to exhibit supercon-
ductivity [16]. Lowest-energy bosonic charge excitations
across an SIT were later argued to also occur in a model
of two coupled triangular lattices [19, 20].
Here we study the SIT in the ground state of the at-

tractive Hubbard model in the presence of a staggered po-
tential in the honeycomb lattice geometry. Our main goal
is to directly probe the nature of the lowest-energy charge
excitations across the SIT, which we find to be bosonic,
and study their crossover to being fermionic upon in-
creasing the strength of the staggered potential in the
insulating phase. For this, we compute the one-particle
(fermionic) and two-particle (bosonic) gaps, which are
more precise probes of the nature of the lowest energy
excitations than the probes used in Ref. [16]. We also
study the universality class of the SIT, which we find to
be 3d-XY as in the square lattice case [16]. Our second
goal, which together with potential experimental realiza-
tions motivated us to study the honeycomb lattice geom-
etry, is to show that our conclusions are robust indepen-
dently of the lattice geometry (Ref. [16] focused on the
square-lattice geometry); and likely to be universal for
SITs in clean systems. The fermionic model considered
in this paper, except for the next-nearest-neighbor terms,
was studied experimentally with ultracold atoms [21]. To
properly account for the effects of quantum fluctuations
and strong correlations in our model, we use two un-
biased computational techniques, exact diagonalization
and quantum Monte Carlo simulations.
The presentation is organized as follows. In Sec. 2,

we introduce the attractive Hubbard model in the pres-
ence of a staggered potential in the honeycomb lattice
geometry, present its phase diagram, and discuss limiting
regimes that can be solved analytically. We also briefly
introduce the unbiased computational techniques used to
study this model. In Sec. 3, we discuss how the phase
diagram of the model is obtained using exact diagonal-
ization and quantum Monte Carlo simulations. This is
where we show that the SIT belongs to 3d-XY universal-
ity class. Section 4 is devoted to studying the one-particle
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can be seen in which a direct one-particle gap within
the superconducting regime or at the transition point is
replaced by an indirect gap, K,K ′

↔ Γ, within the in-
sulating phase. As pointed out in the main text, in the

noninteracting regime such an indirect gap is also ob-
served for values of ∆ > ∆c between precisely the same
high-symmetry points.
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