Charge excitations across a superconductor-insulator transition
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We study the superconductor-insulator transition (SIT) in the ground state of the attractive hon-
eycomb Hubbard model in the presence of a staggered potential (a mass term), using a combination
of unbiased computational methods, namely, exact diagonalization and quantum Monte Carlo sim-
ulations. We probe the nature of the lowest-energy charge excitations across the SI'T and show that
they are bosonic, as inferred (and shown in the strongly interacting regime) in a previous study of
the same model in the square lattice. Increasing the strength of the staggered potential leads to a
crossover in which bosonic low-energy excitations give way to fermionic ones within the insulating
phase. We also show that the SIT belongs to the 3d-XY universality class, like in its square lattice
counterpart. The robustness of our results in these two lattice geometries supports the expectation
that our findings are universal for SITs in clean systems.

1. INTRODUCTION

The theory of conventional superconductors describes
the emergence of pairing among repulsive charges by
means of a Fermi surface instability in a metal (or Fermi
liquid) [1]. It leads to an effective attractive interaction
whose hallmark is the formation of a gap for one-particle
excitations, while zero-momentum pair excitations are
gapless [2]. Yet, various cases are known to evade this
paradigm, where the parent state does not have a well-
defined Fermi surface, such as in the case of insulators.
This superconductor-insulator transition (SIT) has been
experimentally investigated in various low-dimensional
systems, either via disorder tuning [3-6], introducing
magnetic fields [7-9], or introducing changes in the car-
rier density [10-12]. The development of analog quantum
simulators, comprising ultracold atoms trapped in opti-
cal lattices [13-15], has opened a door to controllably
study such SIT transitions in exquisitely clean strongly
correlated systems.

Motivated by understanding the nature of SITs in
clean strongly correlated systems, as well as their possi-
ble experimental exploration in experiments with ultra-
cold fermionic atoms, in a previous work [16] two of us
(R.M. and M.R., in collaboration with P. Nikoli¢) studied
the SIT in the attractive Hubbard model in the presence
of a staggered potential in the square lattice geometry.
We showed that in the insulating phase in the strongly
interacting regime, the lowest-energy charge excitations
can be bosonic or fermionic, depending on the param-
eters chosen. We also showed that, for all the Hamil-
tonian parameters that could be studied using quantum
Monte Carlo simulations, the SIT belongs to 3d-XY uni-
versality class. We concluded from those results that the
lowest-energy charge excitations are bosonic in both the
superconducting and insulating phases across the SIT, as
argued using field-theory arguments in the weak-coupling
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limit [17, 18]. Such a bosonic-like insulator is akin to a
pseudogap phase, where pre-formation of pairs occurs but
such pairs are not phase correlated to exhibit supercon-
ductivity [16]. Lowest-energy bosonic charge excitations
across an SIT were later argued to also occur in a model
of two coupled triangular lattices [19, 20].

Here we study the SIT in the ground state of the at-
tractive Hubbard model in the presence of a staggered po-
tential in the honeycomb lattice geometry. Our main goal
is to directly probe the nature of the lowest-energy charge
excitations across the SIT, which we find to be bosonic,
and study their crossover to being fermionic upon in-
creasing the strength of the staggered potential in the
insulating phase. For this, we compute the one-particle
(fermionic) and two-particle (bosonic) gaps, which are
more precise probes of the nature of the lowest energy
excitations than the probes used in Ref. [16]. We also
study the universality class of the SIT, which we find to
be 3d-XY as in the square lattice case [16]. Our second
goal, which together with potential experimental realiza-
tions motivated us to study the honeycomb lattice geom-
etry, is to show that our conclusions are robust indepen-
dently of the lattice geometry (Ref. [16] focused on the
square-lattice geometry); and likely to be universal for
SITs in clean systems. The fermionic model considered
in this paper, except for the next-nearest-neighbor terms,
was studied experimentally with ultracold atoms [21]. To
properly account for the effects of quantum fluctuations
and strong correlations in our model, we use two un-
biased computational techniques, exact diagonalization
and quantum Monte Carlo simulations.

The presentation is organized as follows. In Sec. 2,
we introduce the attractive Hubbard model in the pres-
ence of a staggered potential in the honeycomb lattice
geometry, present its phase diagram, and discuss limiting
regimes that can be solved analytically. We also briefly
introduce the unbiased computational techniques used to
study this model. In Sec. 3, we discuss how the phase
diagram of the model is obtained using exact diagonal-
ization and quantum Monte Carlo simulations. This is
where we show that the SIT belongs to 3d-XY universal-
ity class. Section 4 is devoted to studying the one-particle



(fermionic) and two-particle (bosonic) charge excitations
across the SIT and how the nature of the lowest-energy
one changes from bosonic to fermionic upon increasing
the strength of the staggered potential in the insulating
phase. Our results are summarized in Sec. 5.

2. MODEL AND METHODS

Our model of interest is the SU(2) honeycomb Hub-
bard model in the presence of a staggered potential [21],
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where éla (¢;,) are the fermionic creation (annihilation)

operators at site ¢, with (pseudo-)spin o =1,], and
Nie = C;,6;, is the corresponding (pseudo-)spin site-
occupation operator. The nearest-neighbor, (¢ 7), and
next-nearest neighbor (NNN), ({7 j)), hopping parame-
ters are denoted by ¢ and ', respectively; the strength
of the on-site attractive interaction by U < 0, and the
strength of the staggered potential by A [s; is either 0
or 1 depending on the sublattice to which % belongs to,
see Fig. 1(a)]. In what follows, we focus on an average
filling of one electron per site N = Ny + N =V, with
Ny =3, (nay) = N =32,y ), and V = 2L? being the
number of lattice sites [L is the number of unit cells in
each direction, see Fig. 1(a)]. We set t = 1 as the energy
scale, but write ¢ whenever it is helpful in equations.

Compared to the model studied experimentally in
Ref. [21], Eq. (1) contains only an extra set of terms,
namely, the NNN hoppings, which describe hoppings be-
tween sites that belong to the same sublattice. As will
become apparent below, those terms introduce nontriv-
ial changes to the solely nearest-neighbors model, and
they can be introduced in experiments via a modulated
shaking of the optical lattice [22].

To understand the interplay of the different terms in
Eq. (1), it is useful to analyze several of its limiting
regimes. First, let us discuss the noninteracting (U = 0)
limit, in which the Hamiltonian is diagonalizable in k
space resulting in the following two bands:

By = —t'f(k) £ A2+ 2[3+ f(K)], (2)

with f(k) = 2cos(v/3ky) + 4 cos (£k,) cos (@ky) The
first question one can ask is how large A needs to be for
the ground state at half filling to transition between the
semi-metal ground state for A = 0 to the band insulator
for A > t. The answer to that question depends on
the NNN hopping amplitude ¢'. For ¢’ = 0, the Dirac
cones of the upper and lower bands, touching at the high
symmetry points K and K’ of the first Brillouin zone,
split, generating a direct gap (= 2A) for any nonzero

;]
> >
(b)
2F == T 52
oF 4 B Jo
S K I
-2 M 170 12
—4f 5 , 44
I M K T 1 2
© - . , \
0 F 0
]2k . 4-2 L
o
—4 — -4
—6 1 -6
I M K T 0 2

1
DOS(E)

FIG. 1. (a) Schematic representation of the terms in Eq. (1)
in a honeycomb lattice with V' = 2L? sites for L = 3. (b),
(c) Band structure in the noninteracting (U = 0) limit (left),
and the corresponding density of states (right), for a strength
of the staggered potential A = 0.2. (b) Results for ¢’ = 0.2,
for which the ground state is a band insulator. (¢) Results for
t' = 0.5, for which the ground state is a metal. ¢ = 1 sets the
energy scale.

value of A. After including a nonzero ', the direct gap
is still obtained so long as t' < t, = t/3 [see Fig. 1(b)].
As t/ increases crossing ¢, the minimum of the upper
band moves from the K,K’ points to the I" point. For
t' > t, the gap becomes indirect (KK’ <+ I') and the
amplitude of the staggered potential A. needed to turn
the system into a band-insulator becomes non-vanishing
[see Fig. 1(c)]. Specifically, A, = W, as depicted by
the dashed-dotted line in the U = 0 plane in Fig. 2.

A second important limit that can be promptly un-
derstood is the ¢ = 0 case for U # 0. In this regime,
see Ref. [16] for a similar discussion in the context of
the square lattice, a particle-hole transformation on only
one of the components of the (pseudo-)spin, say, the |-
component, ¢; | < (—1)51'62$ (s4 is either 0 or 1, depend-
ing on the sublattice to which ¢ belongs), maps the orig-
inal attractive Hubbard model onto the repulsive Hub-
bard model in the presence of a staggered Zeeman field,
Le, A (=1 (Rag + fay) € A2 (=1)% (Ray — Ray)-
Since a nonzero staggered field (A # 0) in the repul-
sive Hubbard model in the honeycomb lattice explicitly
breaks SU(2) symmetry, the antiferromagnetic Mott in-
sulator for U, > 3.8 [23-28] becomes an S, antiferro-



magnet. Recalling the mapping between magnetic and
charge/pair degrees of freedom in the repulsive and at-
tractive Hubbard models under the particle-hole trans-
formation [29],
25’12 = Mg — N4y & ?Alm + N =My

Sf = éITéii < ézT'TéL = Al

S,L_ = 6‘L6’LT — éiiéif = Ai, (3)
one finds that any nonvanishing value of the staggered
potential A in the attractive Hubbard model breaks the
supersolid state at |U| > |U,|, leading to an insulating
ground state with a different (7;) in the two sublattices
that make the bipartite honeycomb lattice. An impor-
tant point to keep in mind is that this difference in the
site occupations in the sublattices results from having the
staggered potential. It is not the result of a spontaneous
symmetry-breaking process, i.e., the insulating ground
state is a Mott insulator that does not break symmetries
of the model. For |U| < |U.|, as for U = 0 and |U| > |U,|,
we expect that any non-vanishing value of the staggered
potential A leads to an insulating ground state.

For ¢ >t/ and A = 0, we mentioned before that the
ground state at U = 0 is a metal. This means that adding
attractive on-site interactions U < 0 results in a super-
conducting state. Hence, in the regime with ¢ > ¢, and
U < 0, a nonzero value A, of the staggered potential
is needed to drive the SIT. In the absence of unbiased
analytical techniques to tackle this regime for arbitrary
values of U, A, and t/, we carry out numerical calcu-
lations to obtain the phase diagram of Hamiltonian (1)
as characterized by the surface A (U,t’). A compilation
of the results obtained using Krylov-based exact diago-
nalization [30, 31] in a lattice with V = 2L? = 18 sites
is shown in Fig. 2(a). This lattice, which has L = 3
and is depicted in Fig. 1(a), contains the Brillouin zone
corner as a valid momentum point, i.e., it captures the ef-
fects of low-energy excitations about the high-symmetry
K points. This makes it optimal to determine the phase
diagram within the lattice sizes that we can study using
exact diagonalization [32]. Qualitatively similar results
were obtained on a 16-sites lattice; see Appendix A.

Much larger lattices can be studied by means of
projective quantum Monte Carlo (PQMC) simulations.
Within this approach, the ground state |¥y) is ob-
tained projecting a trial wave function |¥r), via |¥g) =
limg o0 e~ ©H|W¥7), where © is a projector parameter.
This approach works provided that the overlap between
the trial wave function and the ground-state of Hamil-
tonian (1) is nonzero, (¥o|¥r) # 0, and that |Uy) is
nondegenerate [33]. The expectation values of operators
O in the ground state can then be written as

(Uple=®H O~ | r)
(Ur|e20H|W7)

(To|O|Wo)
(Wo|Wo)

(0) = (4)

o ©—00

For our simulations, we considered two trial wave func-
tions, the half-filled Fermi sea of the noninteracting part
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FIG. 2. (a) Phase diagram of Hamiltonian (1) obtained via
exact diagonalization in an 18-site lattice; similar results for
a smaller lattice are reported in Appendix A. The dashed
line in the U/t = 0 plane shows the boundary between the
metallic and band-insulating phases obtained analytically.
For nonzero U, the surface formed by connecting the points
(which report A.) delimits the insulating (A > A.) and su-
perconducting (A < A.) phases. (b) The phase diagram ob-
tained from PQMC calculations in larger lattices, using a scal-
ing ansatz for results obtained in lattices with L = 6,9,12,
and 15. In both panels, the onset of the supersolid regime (or
an SU(2) antiferromagnetic Mott insulator in the repulsive
language [29]) at ¢’ = 0 is marked by a star.

of the Hamiltonian and a Hartree-Fock solution. We
found the latter to converge more quickly with increasing
O so all results reported are obtained with that trial wave
function for ©t = 40, which is sufficiently large for the
convergence of the expectation values of all observables
studied here. Since our PQMC calculations are carried
out within the canonical ensemble for Ny = N, they do
not suffer from the sign problem [33-36]. The phase dia-



gram A.(U,t") extracted from the PQMC simulations of
lattices with up to L = 15 is reported in Fig. 2(b). It is
similar to the one obtained using exact diagonalization
in small lattices.

In the next section, we discuss in detail how the phase
diagrams reported in Fig. 2 are obtained using exact di-
agonalization and PQMC simulations.

3. PHASE DIAGRAM CALCULATIONS

Before explaining in detail how we locate the phase
transition using exact diagonalization and PQMC sim-
ulations and how we probe its universality class, let us
briefly comment on the overall structure of the phase dia-
grams in Fig. 2. Increasing attractive interactions results
in smaller Cooper pairs: In the limit |U| — oo they fit in
a site, becoming hardcore bosons [37]. Consequently, the
magnitude of the staggered potential needed to transi-
tion between the superfluid and insulating ground states
decreases as the increasingly local fermionic pairs at
stronger interactions become pinned at the —A sites in
the lattice. On the other hand, the NNN hopping terms
act to counteract the pinning promoted by the staggered
potential, so increasing the magnitude of ¢ results in
the need for a stronger staggered potential to induce the
superfluid-insulator transition. Notably, the phase dia-
gram also indicates that the transition at nonvanishing
interactions is smoothly connected to the noninteract-
ing metal-band insulator one, marked by the dash-dotted
lines at U = 0 in both panels of Fig. 2. We also note that,
for values of ' > t/3, the noninteracting regime at A =0
no longer corresponds to a semi-metal but rather to a
metal with a finite density of states at the Fermi level.
Hence, the inclusion of attractive interactions results in
pairing and superconductivity.

A. SIT in exact diagonalization calculations

In our exact diagonalization calculations, to identify
the critical value A, for any given value of U and ¢/, we
use the fidelity susceptibility [38—41],

a = él — (T (U, t',A(?if;g(U, t' A +5A)>|’ )

for which one needs to compute the fidelity of ground-
state wave functions for slightly different Hamiltonian
parameters; we modify the staggered potential by dA =
1073 in our calculations. Continuous phase transitions
can be identified by large peaks that appear as a critical
point is crossed [16, 42—44].

In Fig. 3, we show results for ga vs A for different val-
ues of U, when t' = 0.4 [Fig. 3(a)], ¢ = 0.6 [Fig. 3(b)],
and ¢ = 0.8 [Fig. 3(c)]. For ¢’ = 0.4 in Fig. 3(a), one can
see that the curves for different values of U exhibit sharp
peaks (notice the logarithmic scale in the y axis) in ga

FIG. 3. Fidelity susceptibility computed using exact diago-
nalization in the 18-site cluster shown in Fig. 1(a) for different
values of U, when (a) ' = 0.4, (b) t' = 0.6, and (c) t' = 0.8.
Insets: Corresponding occupation of the —A sites.

at A = 0 and nonzero values of A. The A = 0 peaks sig-
nal changes in the superconducting state resulting from
introducing the staggered potential. [With increasing ¢/,
see Figs. 3(b) and 3(c), those peaks can be seen to move
to nonzero values of A.] The peaks at nonzero values
of A in Fig. 3(a) signal the SIT, A.. As advanced, for
t’ fixed, increasing |U| results in a decrease of A.. Fig-
ures 3(b) and 3(c) show that increasing ¢', at any given
value of U, results in an increase of A.. The compilation
of such peak locations in the space of parameters (U,t’)
leads to the phase diagram in Fig. 2(a).

The insets in Fig. 3 show that at A. the occupation
of the sites with chemical potential —A, in short, the
—A sites, exhibits a rapid increase after which it nearly
saturates to the maximal possible value (f;) = 2. The
derivatives of the site occupations, as well as of the double
occupancy

Dy = (firfiy), (6)
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FIG. 4. Numerical derivative of the double occupancy with re-
spect to A for (a), (b) U = —4 and (¢), (d) U = —6; the insets
display the double occupancy before differentiation. Empty
(filled) symbols denote the double occupancy in the +A-sites
[—A-sites]. (a), (c) Results obtained using exact diagonaliza-
tion in a lattice with L = 3. (b), (d) Results obtained using
PQMC in a lattice with L = 15. The vertical dashed lines de-
pict A, as identified using exact diagonalization [(a), (¢)] and
PQMC [(b), (d)]. All these results were obtained for ¢’ = 0.6.

and the kinetic energy per site

1
K=-v Z tij (el,250), (7)
ij,0

with respect to A was used to track the SIT in a related
model [16], and can be measured in ultracold gases ex-
periments [21]. It was recently shown that studying the
dynamics of local quantities after quantum quenches also
allows one to locate quantum phase transitions [45].

In Figs. 4(a) and 4(c), we show exact diagonaliza-
tion results for 9D/OA vs A in the two sublattices for
t'/t = 0.6, when U/t = —4 [Fig. 4(a)] and U/t = —6
[Fig. 4(c)]. The corresponding evolutions of the double
occupancies are shown in the insets. The vertical dashed
lines depict A, as identified using the fidelity susceptibil-
ity. They coincide with the values of A at which 0D/9A
exhibit local extrema. In Figs. 4(b) and 4(d), we show
results for 9D /IA vs A obtained using PQMC in much
larger lattices for the same parameters as in Figs. 4(a)
and 4(c), respectively. The vertical dashed lines depict
A, identified using PQMC (as explained in Sec. 3B). In
those larger system sizes, 0D /JA exhibits a kink at A,
after which it decreases rapidly. A more prominent kink,
also signaling A, is seen in the derivative of the kinetic
energy, see Appendix B. Comparing the results obtained
using PQMC and exact diagonalization, one notices that
the values of A, are different, and that the differences de-
crease with increasing |U|. This is expected as the exact
diagonalization results are affected by finite-size effects,
and finite-size effects are stronger in the weakly interact-
ing regime in which the pair sizes are larger.

In the context of ultracold fermionic atoms experi-
ments, we note that double occupancy was originally used

to identify the Mott insulating regime [46]. It is currently
used, together with other local observables, to experi-
mentally characterize fermionic systems with single-site
resolution [47-49)].

B. SIT in PQMC calculations

The critical points in our PQMC simulations are iden-
tified using the scaling of the pair structure factor

1 PN
Po= 5 S (AAD, (5)
i3

where A, = EirCiy (AI = éI iézﬂ“) is the pair annihilation
(creation) operator at site ¢. Long-range order in the
superconducting phase means that P; is extensive in V,
but the way such behavior is approached when decreas-
ing the staggered potential from the insulating phase is
controlled by the critical exponents.

In Ref. [16], a scaling ansatz for P, was discussed for a
similar model in the square lattice. Next, we summarize
the arguments presented there. To start, we note that,
in the strongly interacting (large-|U|) regime, second-
order perturbation theory shows that our model effec-
tively becomes a model of repulsive hardcore bosons in
the presence of a staggered potential [37, 50, 51]. The
creation and annihilation operators of hardcore bosons
are related to the annihilation and creation of pairs, re-
spectively, b = AI and BI = A;. In the absence of
NNN hoppings and interactions, such a hard-core boson
model was studied in Refs. [52, 53] in square and cubic
lattices. The transition between the superfluid and the
Mott-insulating state, driven by the staggered potential,
was shown to belong to the (d+1)-XY universality class,
which is the same universality class of the superfluid—
Mott-insulator transition in the Bose-Hubbard model at
fixed integer site occupancy [54].

The previously mentioned operator mapping brings a
direct analogy: The s-wave pair structure factor trans-
lates into the zero-momentum occupancy for hard‘core
bosons in the effective model, ng=o = (1/V) 3, ; (bib,),
which is known to diverge when approaching the tran-
sition from the normal side as ng—o ~ 177 [55, 56],
where & is the correlation length and n = 0.0381(2) [57]
the anomalous scaling dimension. In a finite system,
this relation implies that the ‘condensate fraction’ fy =
nk=0/Npairs (With Npairs = V/2 = L?) vanishes at the
critical point as fo ~ L~ [55 56]. A scaling ansatz
thus naturally follows as foL't" = g(|A — A |L'/"), with
v =0.6717(1) (see Ref. [57]) the critical exponent related
to the divergence of the correlation length at A — A..
Translating it to the original fermionic model, we get

Py
(3o ) B =gia-adpm . @
pairs

In Fig. 5, we show the scaled pair structure factor
for two on-site attractive interaction strength values at
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FIG. 5. Scaled pair structure factor versus A, for fixed

t' = 0.6 and two values of U, (a) U = —4 and (b) —6. The
upper right insets display the corresponding scaling collapse
following the ansatz (9), with A, = 0.637(1) and 0.420(1) for
U = —4 and —6, respectively. The lower inset in (b) depicts
the |U| dependence of the cost function used to quantify the
quality of data collapse; see text.

t" = 0.6. Crossings of the curves for different system
sizes can be seen to occur at specific values of A that
depend on U; these crossings allow us to identify A, us-
ing our PQMC calculations. The results in Fig. 5 show
that the strength of the staggered potential needed to
induce the SIT decreases with increasing the strength of
the on-site attractive interactions. The upper right in-
sets in Figs. 5(a) and 5(b) display the scaling collapse
according to the ansatzin Eq. (9).

The analysis in Fig. 5 confirms that the SIT in our
model belongs to the 3d-XY universality class even if one
is not in a regime that can be described using an effec-
tive hard-core boson Hamiltonian. Using the cost func-
tion C(a, vy = (35 [Yi+1 — y51)/(max{y;} — min{y;}) —
1 [58, 59], where y; are the values of (Ps/Npairs) L' or-
dered according to their corresponding (A — A.)L'Y/"’s,
allows us to quantify the quality of the scaling collapse.
We show results for this cost function in the lower inset
in Fig. 5(b). They reveal that, for the system sizes con-
sidered, the collapse improves with increasing |U|. This
is expected to be the result of a reduction of the finite-
size effects as the size of the Copper pairs decreases. A
compilation of the values of A, obtained via the crossing
of the scaled pair structure factor in the space of param-
eters (U,t') gives rise to the phase diagram in Fig. 2(b).

4. CHARGE EXCITATIONS

The 3d-XY universality class of the transition advances
that the lowest energy charge excitations across the tran-
sition are bosonic [16]. With increasing A in the insu-
lating phase, the lowest-energy charge excitations must
cross over from bosonic to fermionic (at A = oo they are
fermionic for any finite U).

In this section, we study the nature of the lowest-
energy charge excitations across the SIT and their be-
havior with increasing A in the insulating phase. For
this, we compute the one-particle (m = 1, fermionic)
and two-particle (m = 2, bosonic) gaps [60, 61],

5™ = Eo(N +m) + Eo(N —m) — 2Ey(N),  (10)

where Fy(z) is the ground-state energy with z-fermions.
For m = 2, we always add/remove one fermion with
(pseudo-)spin 1 and one with (pseudo-)spin |, namely,
a pair. Hence, in what follows, we call the m = 2 gap the
pair gap.

The one-particle and pair gaps in Eq. (10) can be
straightforwardly computed using exact diagonalization.
Similarly, since for m = 2 we have that Ny = N, so there
is no sign problem, the pair gap in Eq. (10) can also be
computed using PQMC simulations in much larger sys-
tem sizes. PQMC runs into the sign problem for m =1
in Eq. (10), because Ny # N,. Hence, we follow a dif-
ferent approach to compute the one-particle gap. We
probe the decay of the appropriate time-displaced corre-
lation function [24]. Specifically, the one-particle gap is
extracted using the imaginary-time 7 displaced Green’s
functions G4 (k,7) = (ékﬁg(r)éLg(OD and G_(k,7) =

(el o (1w o (0)), with ¢l (1) = e"ef (0)e"™, which
describe the particle and hole excitations with respect to
the Fermi energy, respectively. At large 7’s, they de-

1)
cay as Gi(k,7) x e 0% () By comparing the two

branches over different momenta k, the one-particle gap
is obtained as §(1) = mink[ésrl)(k)} + mink[é(,l)(k)] (see
Appendix C for further details about this analysis).
Focusing on ¢’ = 0.6, Figs. 6(a)—6(c) display the one-
particle and pair gaps (m = 1 and 2) obtained using
PQMC in lattices with L = 6, 9, and 12 (main panels)
and using exact diagonalization in a lattice with L = 3
(insets). The PQMC and exact diagonalization results
are qualitatively similar. The pair gap vanishes in the
superconducting phase. It then becomes nonzero, with
a magnitude that increases with increasing A, once the
SIT (marked by the dashed line) is crossed. On the other
hand, the one-particle gap is nonvanishing in both the su-
perconducting and insulating phases and exhibits a min-
imum at the SIT. Hence, as advanced, the pair gap is
smaller than the one-particle gap in both the supercon-
ducting and insulating phases across the SIT. With in-
creasing A, those gaps cross in the insulating phase at a
value of A that, deep in the strongly interacting regime,
increases with increasing |U|. The PQMC results for dif-
ferent system sizes show that finite-size effects are small
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FIG. 6. (a)—(c) The one-particle and pair gap dependence on
the staggered potential strength A in both PQMC calcula-
tions for L = 6, 9, and 12 (main panels) and ED calculations
for L = 3 (insets). We show results for ' = 0.6, and (a)
U= -4, (b) U= -6, and (c) U = —8. In all panels, the ver-
tical dashed lines depict the SIT location as obtained using
the corresponding computational technique, while the vertical
dotted lines show the value of A at the crossing of the gaps.

in the gaps computed for those system sizes, and even
more so as |U| and A increase. This suggests that our
PQMC estimation of the crossing points does not suffer
from significant finite-size effects.

Compiling results like those depicted in Fig. 6 allows
us to obtain exact diagonalization (inset in Fig. 7) and
PQMC (main panel in Fig. 7) phase diagrams in the
(U,A) plane for ¢ = 0.6. They highlight that, with
increasing |U|, there is an increase in the extension of
the region in which the lowest-energy charge excitation
in the insulating phase is bosonic. The observed weak
non-monotonicity of the crossover curve as the interac-
tion strength decreases reflects the bosonic character of
the lowest-energy charge excitations close to the SIT.

G T =, | ]
20, Pl
hy e ® 4
i oy BI 1 >
1.5H e i |
. N *
0 ] ‘-
Aok wY " 1
| R . BI
S
Tl
oSp T |
“ N *
| I : I
0.0} D) + ’ 8
U]

FIG. 7. Phase diagram in the (U, A) plane for ¢ = 0.6 ob-
tained via PQMC (main panel) and exact diagonalization
in a lattice with L = 3 (inset). The lower curve depicts
the location of the SIT; between the superconducting phase
(SC) and the insulating phase with lowest-energy charge ex-
citations that are bosonic (BI). The upper curve depicts the
crossover location in the insulating phase between the regime
in which the lowest-energy charge excitation is bosonic (BI)
and fermionic (FI).

5. SUMMARY

We used unbiased numerical calculations to study the
SIT in the ground state of the attractive honeycomb
Hubbard model in the presence of a staggered potential.
We directly showed that the lowest-energy charge excita-
tions are bosonic across the transition, and cross over to
fermionic in the insulating phase. The former is consis-
tent with the finding that the SIT in this model belongs
to the 3d-XY universality class. The results obtained in
the honeycomb lattice are qualitatively similar to those
in the square lattice [16], suggesting that our findings are
universal for SITs in clean systems. For example, we ex-
pect similar results for the attractive Hubbard model in
the triangular lattice if one adds a positive (negative) lo-
cal potential to one site in each triangle when the filling
isn=4/3 (n=2/3).

Given that, in the absence of nearest-neighbor hop-
pings, the Hamiltonian considered here has already been
simulated in optical lattice experiments [21], we expect
that our findings can readily be tested in such exper-
iments. An interesting open question for both theory
and experiments is what happens in three dimensions, in
which the critical temperature that triggers the onset of
superconductivity is nonzero at half-filling [62, 63]. Ex-
ploring the interplay between the temperature and the
parameters considered here in two dimensions may help
improve our understanding of the role of the preforma-
tion of pairs in the finite-temperature realm.
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Appendix A: Phase diagram in a 16-sites lattice

In Fig. 8, we show the phase diagram obtained as ex-
plained in Sec. 3 A using the fidelity susceptibility but in
a lattice with 16 sites. This lattice geometry was referred
to as cluster 16B in Ref. [64], and does not feature the
K and K’ high symmetry points of the Brillouin zone.
Nonetheless, the resulting phase diagram closely follows
the one reported in Fig. 2(a), which was obtained in the
commensurate 18-sites lattice depicted in Fig. 1.

Appendix B: Kinetic energy in PQMC

In Fig. 4, we showed that the double occupancy D (re-
solved in each sublattice) can be used as a proxy to locate
the SIT in experiments. Other local quantities, such as
the kinetic energy, can equally be used to locate the SIT
in experiments. Figure 9 shows the variation of the ki-
netic energy per site K with increasing the strength A of
the staggered potential, for two values of U, as obtained
using PQMC simulations in a lattice with L = 15. A
prominent kink is observed in the derivative of K at A..

U=-6
1.1 T T —08FT T
1.0 /
~1.0F —
0.9F = /
0.8F
g —1.2 Iz | . n
S 0.25 0.50 0.7
207F A
S
0.6 _
0.5F
b
0.4 (b)
| | |
0.5 0.5 1.0

FIG. 9. Numerical derivative of the kinetic energy per site K
with respect to A in a lattice with L = 15, for ¢’ = 0.6, when
(a) U = —4 and (b) U = —6. Insets: K before differentiation.
Vertical dashed lines mark the SIT location, A., obtained
using the scaling analysis of the pair structure factor.

Appendix C: Single-particle gap in PQMC

In Sec. 4, we explained the procedure used to extract
the one-particle gap based on the exponential decay of
the one-particle Green’s functions at long imaginary-
times. In Fig. 10, we show G4 (k,7) for staggered po-
tentials A < A., A ~ A,, and A > A, for each value
of U, for the k-points that give the smallest gap d+ (k)
after fitting G4 (k, 7) to an exponential form at large 7’s.
Irrespective of the interaction strength, an overall trend
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FIG. 10. Dependence of the imaginary-time displaced Green’s
functions related to particle (upper row) and hole (bot-
tom panels) excitations at ¢ = 0.6 and increasing interac-
tion strengths, U = —4,—6, and —8. For each interaction
strength, we plot G4 (k, 7) for values A < A., A ~ A,, and
A > A, for the momentum k corresponding to the small-
est gap. In the superconducting regime, we observe a direct
gap at the closest k point to the center of the Brillouin zone
I = (0,2v/37/9) for this system size, while at the transition
point the direct gap resides at I' = (0,0). An indirect gap
ensues within the insulating regime (see text). These results
were obtained in a lattice with L = 6.



can be seen in which a direct one-particle gap within
the superconducting regime or at the transition point is
replaced by an indirect gap, K, K’ <+ I", within the in-
sulating phase. As pointed out in the main text, in the

noninteracting regime such an indirect gap is also ob-
served for values of A > A, between precisely the same
high-symmetry points.
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