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Multiple lines of research have developed training approaches that foster category learning, with important
translational implications for education. Increasing exemplar variability, blocking or interleaving by category-
relevant dimension, and providing explicit instructions about diagnostic dimensions each have been shown to
facilitate category learning and/or generalization. However, laboratory research often must distill the character
of natural input regularities that define real-world categories. As a result, much of what we know about category
learning has come from studies with simplifying assumptions. We challenge the implicit expectation that these
studies reflect the process of category learning of real-world input by creating an auditory category learning
paradigm that intentionally violates some common simplifying assumptions of category learning tasks. Across
five experiments and nearly 300 adult participants, we used training regimes previously shown to facilitate
category learning, but here drew from a more complex and multidimensional category space with tens of
thousands of unique exemplars. Learning was equivalently robust across training regimes that changed exemplar
variability, altered the blocking of category exemplars, or provided explicit instructions of the category-
diagnostic dimension. Each drove essentially equivalent accuracy measures of learning generalization
following 40 min of training. These findings suggest that auditory category learning across complex input is not
as susceptible to training regime manipulation as previously thought.

1. Introduction and guides behavior upon encountering novel input with similar prop-

erties. The latter ability — generalization — is a signature characteristic of

Is this mushroom edible? Is that a squeal of danger, or delight? Is that
stranger trustworthy? Humans and other organisms readily learn com-
plex constellations of cues that signal functionally equivalent sensory
objects and events — like crying babies, for example. Cries of pain during
a vaccination tend to be louder and longer, with more variable pitch and
greater nonlinear acoustic characteristics compared to cries of bath time
discomfort (Helmer et al., 2020; Koutseff et al., 2018). But adults’ ability
to categorize pain versus discomfort based on these complex cues de-
mands experience; adults who have spent little time with infants cate-
gorize cries no better than chance. In contrast, parents and infant
caregivers are significantly more accurate in categorizing cries, their
accuracy scales with how much infant experience they have, and their
categorization ability generalizes to unfamiliar infants’ cries (Corvin,
Fauchon, Peyron, Reby, & Mathevon, 2022). Experience molds care-
givers’ ability to use imperfect and complex sensory input regularities

effective category learning.

Cognitive science has long investigated the emergence of categories.
One especially productive approach has been to utilize training para-
digms to teach participants categories across novel or unfamiliar ex-
emplars. In addition to advancing theoretical accounts of category
learning and generalization, these literatures have informed real-world
applications in second-language acquisition (Lim & Holt, 2011;
Reetzke, Xie, Llanos, & Chandrasekaran, 2018), science learning
(Eglington & Kang, 2017; Goldwater, Hilton, & Davis, 2022; Nosofsky,
Sanders, & McDaniel, 2018), social group recognition through faces and
voices (Lavan, Burton, Scott, & McGettigan, 2019; Retter, Jiang,
Webster, & Rossion, 2020), stereotyping (Hugenberg & Sacco, 2008)
and approaches to building effective educational materials (Carvalho &
Goldstone, 2021; Nosofsky, Slaughter, & McDaniel, 2019). Many studies
of category learning have examined aspects of training that best support
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effective learning, informing both theory and application. We examine
three such aspects in more depth in the next sections.

1.1. Training manipulations thought to support category learning

1.1.1. Exemplar variability

There is a longstanding appreciation that learners benefit from
variability across the category exemplars experienced in training (W.K.
Estes & Burke, 1953; Munsinger & Kessen, 1966; Posner & Keele, 1968).
Typically, variability improves generalization to novel stimuli (see
Raviv, Lupyan, & Green, 2022). The role of exemplar variability in
category learning has been considered extensively in adult human sec-
ond language speech category learning. For example, high variability
phonetic training that uses speech exemplars from multiple speakers and
across multiple word forms can improve non-native category learning
and generalization (Logan, Lively, & Pisoni, 1991). More generally,
greater acoustic variability of the exemplars can lead to learning im-
provements for speech category learning in speakers’ first language (K.
G. Estes & Lew-Williams, 2015; Galle, Apfelbaum, & McMurray, 2015;
Rost & McMurray, 2009, 2010; Singh, 2008) and second language
(Barcroft & Sommers, 2005; Bradlow, Akahane-Yamada, Pisoni, &
Tohkura, 1999; Leong, Price, Pitchford, & Heuven, 2018; Lim & Holt,
2011; Lively, Logan, & Pisoni, 1993; Shinohara & Iverson, 2018). Past
studies have employed various techniques to introduce high acoustic
variability, such as using multiple talkers, a single talker with high
acoustic variability, multiple prosodic voice affectations, multiple word
forms, and sampling exmplars with variability across an acoustic
dimension.

1.1.2. Sequence of category exemplar presentation

Learning can also be influenced by the sequence of category exem-
plars experienced in training. For example, interleaved exemplar pre-
sentation of the to-be-learned categories (e.g., ABCACBBAC) specifically
benefits learning and/or generalization compared to blocked exemplar
presentation (e.g., AAABBBCCC; Birnbaum, Kornell, Bjork, & Bjork,
2013; Bloom & Shuell, 1981; Kang & Pashler, 2012; Kornell & Bjork,
2008; McDaniel, Fadler, & Pashler, 2013; Taylor & Rohrer, 2010; Zul-
kiply, McLean, Burt, & Bath, 2012). However, putting this approach into
practice has been complicated by interactions between the sequence of
category exemplars and elements of the experimental design, including:
(1) within- and between-category exemplar similarity and/or category
structure (Carvalho & Goldstone, 2014a, 2014b; Kang & Pashler, 2012;
Medin & Bettger, 1994; Noh, Yan, Bjork, & Maddox, 2016; Zulkiply
et al., 2012; Zulkiply & Burt, 2013); (2) whether learning is active or
passive (Carvalho & Goldstone, 2015); (3) the perceptual dimension
across which exemplars are interleaved or blocked (Rau, Aleven, &
Rummel, 2013); and (4) the type of test used to evaluate learning
(Carvalho & Goldstone, 2021). Although few studies have investigated
exemplar sequencing outside of visual category learning, there is some
evidence that blocked presentation aids participants in learning non-
native word pronunciations (Carpenter & Mueller, 2013) and phonetic
categories (Fuhrmeister & Myers, 2020). Carvalho and Goldstone (2017)
point out that blocking presentation appears to direct attention to
within-category similarities, whereas interleaving appears to direct
attention to between-category differences. Overall, studies have
demonstrated that the order and grouping of exemplars experienced
across training can influence category learning and generalization out-
comes (see Brunmair & Richter, 2019 for meta-analysis; see Rohrer,
2012 for review).

1.1.3. Explicit instruction

The provision of explicit instructions may also promote category
learning. Explicitly instructing learners to focus on a category-diagnostic
dimension, or to direct attention away from a category non-diagnostic
dimension, can result in enhanced non-native speech -category
learning (Chandrasekaran, Yi, Smayda, & Maddox, 2016). Moreover,
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when explicit instruction draws attention to a category-diagnostic
dimension, it benefits non-native speech category learning and pro-
duction above and beyond what is achieved with high-variability
training alone (Wiener, Chan, & Ito, 2020). More nuanced, less
explicit, manipulations that guide learners to category-diagnostic di-
mensions have also been effective in facilitating non-native speech
category learning (Ingvalson, Holt, & McClelland, 2012; Iverson, Hazan,
& Bannister, 2005; Jamieson & Morosan, 1986; McCandliss, Fiez, Pro-
topapas, Conway, & McClelland, 2002; McClelland, Fiez, & McCandliss,
2002).

1.2. Summary and aim of the study

In summary, examination of category learning across novel or un-
familiar categories has been useful in understanding how category
training regimes affect learning and suggests means of improving real-
world categorization. Indeed, an implicit assumption of category
learning research has been that laboratory training tasks with relatively
simple stimuli can inform real-world category learning. Studying visual
category learning across simple dimensions, for example, may reveal
processes available to early-career radiographers learning to categorize
the subtle patterns that differentiate a benign from a cancerous tumor
(Waite et al., 2019). Correspondingly, learning a simplified category
characteristic of non-native speech might suggest scenarios that would
improve classroom second language learning (Wiener, Murphy, Goel,
Christel, & Holt, 2019).

However, most category learning studies differ substantially from
natural category learning challenges — often by design. For example, the
number of unique exemplars in lab experiments vastly undersamples
natural exemplar variation. Laboratory studies tend to model real-world
exemplar variability with a Gaussian distribution for simplicity. Exem-
plars are often defined across just two sensory dimensions, and di-
mensions tend to be simple, easily verbalized sensory features (e.g., line
orientation, acoustic frequency). Even when categories are defined by
natural visual objects or spoken utterances, exemplar sampling tends not
to truly reflect the full complexity of natural categories. As a result,
much of what we know about category learning has come from studies
with simplifying assumptions. This entirely reasonable approach none-
theless calls into question the implicit expectation that these studies
reflect the process of category learning under more complex learning
challenges, such as those posed by real-world input.

Here, we put this question to the test by creating an auditory cate-
gory learning challenge that intentionally violates some common
simplifying assumptions. We create a novel, nonspeech acoustic stim-
ulus space comprising >36,000 tokens across four auditory categories.
The categories rely upon natural acoustic variability from spoken lan-
guage (Mandarin lexical tone across multiple talkers) with underlying
regularities known to be learnable because they are derived from real
speech. Despite their speech origins, these sounds are not familiar, do
not convey talker information, and are not heard as speech. This is
because we use signal processing to eliminate voice and linguistic in-
formation, leaving only the fundamental frequency (FO) contour
thought to be the most diagnostic dimension for conveying Mandarin
lexical tone category to native listeners (Ho, 1976; Howie, 1976). In
tonal languages like Mandarin, FO differences like these allow a syllable
like “ma” to have four different meanings according to its intonation
(Chao, 1965; Gandour, 1983). As noted, we can be confident the
structure of these novel categories is learnable because they are drawn
from natural categories. Further, prior research examining category
learning among the same pool of nonspeech hums demonstrates robust
category learning among non-Mandarin listeners (Liu, 2014).

We exaggerate the learning challenge in two ways. First, each cate-
gory exemplar is composed of two streams of three hums, each stream
spectrally filtered such that one is situated in a high frequency band and
the other in a low frequency band. These two streams are played
simultaneously, but only one carries information diagnostic to category
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decisions; the other is acoustically variable and non-diagnostic. This
creates a rarely examined category learning challenge: Listeners must
forage the acoustic soundscape to discover category-diagnostic infor-
mation as it evolves (and dissipates) over time. By design, we build this
qualitative category learning challenge into our stimulus set without
modeling specific details of speech per se. Instead, our approach is to
create a novel version of an important puzzle present in auditory cate-
gory learning: Listeners must discover category-diagnostic acoustic di-
mensions in the context of non-diagnostic (or less-diagnostic) acoustic
variability arising from other dimensions of the same sound source (e.g.,
across different bands of formant frequencies) or even across simulta-
neous competing sounds.

Second, the hum stream in one frequency band is a concatenation of
three unique hums drawn from a single Mandarin tone category. The
other is a concatenation of three unique hums, each drawn from
different Mandarin tone categories. In this way, one frequency band
contains tone-category-diagnostic information, and the other frequency
band is category uninformative. Thus, category learning requires both
discovering (at least implicitly) the category-diagnostic frequency band
that contains a statistically regular pattern derived from a single Man-
darin tone category, and also recognizing the category-diagnostic, but
acoustically variable, pattern within this band (see Fig. 1 for a schematic
depiction of the stimuli). In summary, this creates a complex high-
dimensional exemplar space across which four categories are defined
over multiple difficult-to-verbalize dimensions and sampling
distributions.
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We intentionally chose a learning challenge that would not approach
ceiling in a single session so that we could better capture differences that
might be apparent across training regimes; ceiling performance would
make this problematic. Although this approach does not measure what
learners can achieve with longer training, examining category learning
across a single session has been the workhorse paradigm across both the
visual and auditory category learning literatures because it tracks early,
online category acquisition. Further, by limiting training to a single
session, we can examine effects of online category learning without in-
fluences of offline learning or consolidation (which might be produc-
tively examined in future work).

1.3. Experiments overview

Here, we first examine whether young adult participants recruited
from a diverse online sample can accomplish this complex category
learning challenge in a single training session that involves overt cate-
gory decisions and explicit feedback. We then examine how learning is
influenced by variability in three aspects of the training regime, each of
which has been shown to affect learning in simpler categorization
challenges: manipulations of exemplar variability, category exemplar
sequencing, and explicit instructions.

B. Category Composition
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Fig. 1. Schematic of Sound Exemplars. A. Non-speech hums derived from natural utterances of four native Mandarin (2 female) speakers producing utterances
varying in lexical tone, which is conveyed by fundamental frequency (F0) contours. Hums preserve only the FO contour and do not sound like speech, yet they possess
natural acoustic regularity within hum categories and distinct patterns across hum categories. Here and in subsequent panels, color conveys the hum category. B.
Hums were filtered into high (> 1000 Hz) and low (<500 Hz) frequency bands and three hums were concatenated in each band to compose a sound exemplar. For
each, a diagnostic band (colored boxes) possessed within-hum-category exemplars and a non-diagnostic band had 3 hums, each drawn from a different one of the four
hum categories (open “wild card” boxes). Exemplars defining the four categories were created such that listeners needed to discover the diagnostic band in the
context of the simultaneous non-diagnostic band and learn the hum pattern across acoustic variability within the diagnostic band. The four aliens used to guide
categorization responses are shown, as well. C. A spectrogram showing a representative exemplar drawn from Category A, for which the high-frequency band was
diagnostic. Here, and in Panel D, colored rectangles indicate the lexical tone category from which the hum was created. Solid colored lines indicate the category-
diagnostic frequency band; dashed lines show the category uninformative frequency band. D. Spectrogram showing a representative exemplar drawn from Category

D, for which the low-frequency band was diagnostic.
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2. Materials and methods
2.1. Participants

Since this was a novel categorization challenge, we conducted
several pilot studies from which to estimate power. These studies
revealed robust learning across ~30 participants. Here, we doubled the
sample, targeting recruitment of 60 participants per experiment to
improve our ability to detect subtle learning differences across learning
contexts.

In total, 300 young adults aged 18-35 years participated online for
monetary compensation via recruitment through Prolific.co. There were
no restrictions on language background, and all participants self-
reported normal hearing. Table 1 shares participant demographics.
Given our relatively unrestricted recruitment of participants online, our
sample is likely more representative of the general population than that
of studies that recruit from a university student population (Henrich,
Heine, & Norenzayan, 2010). Four participants were excluded due to an
experimental error that duplicated trials, leaving 296 participants in the
final analyses and a minimum of 58 participants per experiment. All
participants provided informed consent approved by the Carnegie
Mellon University Institute Review Board (IRB).

2.2, Stimuli

Fig. 1 illustrates the construction of sound exemplars. Stimuli for all
experiments were drawn from the same acoustic space. The building
blocks for these stimuli were nonspeech hums created by extracting the
fundamental frequency (FO) contour from natural speech recordings of
single-syllable words, each recorded by four native Mandarin speakers

Table 1
Participant demographics.
Experiment N Age Mean Gender Race # of Native
Range [SE] Languages
(in Age (in Represented’
years) years)
1 59 18-33 23.1 68% 68% 9
[0.51] female white
29%
male
3% non-
binary
2 59 18-35 24.9 31% 76% 22
[0.61] female white
69%
male
3 60 18-35 239 45% 72% 18
[0.60] female white
53%
male
2% non-
binary
4 58 18-33 24.2 66% 55% 16
[0.52] female white
24%
male
9% non-
binary
2% no
response
5 60 18-34 24.8 43% 85% 13
[0.51] female white
52%
male
3% non-
binary
2% no
response

! Based on self-reported languages when asked to “List language(s) spoken
before age 2.”
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(2 male, 2 female; Liu, 2014). A screen displayed both the Mandarin
Chinese character and the pinyin spelling of the word frame (with tone
number 1, 2, 3, 4) to prompt native speakers to utter each word twice,
with self-paced progress as utterances were digitally recorded with Praat
(Boersma, 2001). Each speaker produced 20 unique word-frames
(pinyin spellings: can, chou, di, fa, ge, guo, huan, jie, kui, peng, pu, gian,
shi, tuo, xi, xiang, xing, xue, yang, yu) in each of the four lexical tones for a
total of 80 utterances per talker. A native Mandarin listener checked
stimuli for clarity and representativeness of the lexical tone contour.

These speech recordings were processed in the open-source speech
analysis software Praat (Boersma, 2001) to create non-speech hums by
extracting the pitch contour using the Analyse periodicity: To Pitch
function and converted into hums using the To Sound (hum) function.
Expert listeners removed some stimuli from the pool based on poor pitch
tracking and discontinuous hum outcomes (Liu, 2014).

To make a single stimulus exemplar, three unique non-speech hums
drawn from the same Mandarin talker were assigned to a higher fre-
quency band and three to a lower frequency band. As illustrated in
Fig. 1B, one of the frequency bands was designated the diagnostic band;
it possessed 3 unique hums drawn from a single lexical tone category.
The other band possessed 3 unique hums from any lexical tone category
(“wild card”).

Next, the hums were processed using the audio processing software
Sound eXchange (sox.sourceforge.net), with additional processing in
Adobe Audition (version 13.0.7). First, hums were padded with 50 ms of
silence at the beginning and end of the sound clip and high-pass-filtered
at 30 Hz to remove slow drift and reduced in gain by 10 dB. Second,
high- and low-frequency-band versions of these stimuli were created. To
create the high-frequency-band components, hums were pitch-shifted
+33 semitones in Audition and then high-pass filtered using sinc
Kaiser-windowed filter in Sox to preserve all frequencies at and above
1000 Hz. To create the low-frequency-band components, the same hums
were pitch-shifted by —1 semitone and low-pass filtered to preserve all
frequencies at and below 500 Hz. In the process of pitch shifting, hums
were simultaneously normalized to be 400 ms using the iZotope algo-
rithm in Audition, using the high precision mode with pitch coherence
set to 4. The 400-ms, pitch-shifted and high/low-pass filtered hums were
RMS-matched in amplitude and normalized to be —6 dB below the
maximum digital range.

As shown in Fig. 1B, the category-diagnostic band was created by
drawing from the pool of hums derived from a single talker, choosing a
frequency band (high or low), randomly selecting three hums from a
single hum (lexical tone) category, and concatenating the hums with
100 ms of total silence between each token. We created all permutations
in both high and low frequency bands.

Similarly, the category-uninformative “distractor” band was created by
drawing from a pool of hums from the same talker used to create the
diagnostic-band hum sequence, with hums placed into the frequency
band opposite the diagnostic band. For the non-diagnostic band, hums
were randomly selected from three different hum categories (selected
from any of the four hum categories) and concatenated with 100 ms
silences between each hum. This was repeated for all permutations. The
diagnostic band and uninformative distractor band were then added
together such that the onset of each of the three hums of each frequency
band was temporally aligned, and stimuli evolved across 1400 ms in all.

For counterbalancing purposes, there were two sets of four cate-
gories. Fig. 1B illustrates Set 1, in which Category A and Category B are
defined by high-frequency diagnostic bands whereas Category C and D
are defined by low-frequency diagnostic bands. This relationship was
reversed in Set 2 (e.g., low-frequency diagnostic for Categories A and B,
not shown in Fig. 1). Assignment of set was counterbalanced across
participants in each experiment and analyses collapse across set
assignment.

Overall, the full constellation of hum permutations resulted in a
stimulus pool with over 36,000 exemplars. From this exemplar space we
randomly selected 2048 total exemplars (256/category/set) for the
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present experiments. Half of the exemplars for each condition (128/
category/set) were reserved as the training stimulus pool whereas the
other half was reserved as a pool to test generalization. The 2048 stimuli
selected for the present experiments are available on OSF.io.

2.3. General procedure

Five experiments shared common procedures, differing only in their
approach to training. In all experiments, training blocks alternated with
generalization blocks (see Fig. 2C). Only the nature of the training
blocks varied across experiments. Generalization blocks were identical
across experiments to facilitate cross-experiment outcome comparisons.
All experiments involved training over 40 min.

Moreover, across all experiments, training involved overt category
decisions and explicit feedback (see Fig. 2 for schematics). Following a
500-ms fixation, participants heard a category exemplar and matched it
to one of four novel ‘alien’ illustrations via keyboard response at sound
offset, with immediate feedback lasting 1500 ms; the next trial
commenced immediately. Across experiments, each auditory category
consistently mapped to a specific alien presented on the screen. In Ex-
periments 1 and 2 all four alien creatures were visible on the screen (4-
alternative force choice (4AFC)), whereas in Experiments 3-5, only pairs
of alien creatures were visible (2AFC), with the other two aliens greyed
out and unavailable for response.

Each of the four training blocks consisted of 120 trials (30 trials/
category), totaling 480 training trials. At the commencement of each
training block, 30 exemplars/category were randomly selected without
replacement from the pool of 128 category exemplars. Thus, exemplars
were never repeated within a single training block, and there was a low
probability of any single exemplar repeating across training blocks. Each
training block was divided into either three mini-blocks of 40 trials each
(Experiments 1 and 2, for 4AFC training) or six mini-blocks of 20 trials
each (Experiments 3, 4, and 5, for 2AFC training), to allow for brief self-
timed breaks between mini-blocks. Except for Experiment 5 (see Section
7), participants were not informed of the dual-band nature of the stimuli
and were simply instructed to use the feedback during training trials to
learn which sounds corresponded with which alien.

Generalization was similar to training, but participants did not
receive feedback. Generalization trials for all experiments were 4AFC.
Each of the four generalization blocks consisted of 20 novel exemplars/
category (80 total stimuli) not encountered during training. These 80

A. Training Trial
Keyboard

Response
~

sound
exemplar

fixation

feedback
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exemplars were randomly selected without replacement from the stim-
ulus pool reserved for novel generalization prior to the experiment, and
the generalization set was used consistently for each participant across
each experiment. This presented the opportunity to examine cross-
experiment effects of training manipulations via participants’ ability
to generalize category learning to novel exemplars.

Participants completed the experiment online via Gorilla, an online
experiment creation and hosting website (Anwyl-Irvine, Massonnié,
Flitton, Kirkham, & Evershed, 2020) on a laptop or desktop computer
using the Google Chrome browser. Prior to beginning the category
learning task, participants underwent a system check to ensure the auto
play of sound at a comfortable listening level and a short task to ensure
compliance with the use of binaural headphones (Milne et al., 2021). All
sounds were presented in the lossless *.FLAC format. After the experi-
ment, participants shared language and music training history, were
invited to share notes detailing their task strategies, and received an
experiment debriefing.

2.4. Approach to analyses

For each experiment, we analyzed training and generalization blocks
separately, asking whether significant learning and generalization
occurred with a specific training regime. For training and generalization
blocks, we analyzed: (1) the overall change in performance across Blocks
1-4 using a repeated measures ANOVA and post-hoc comparison of
Block 1 and Block 4; and (2) indices of early learning by examining Block
1 accuracy compared to chance. We compared training and general-
ization performance between select pairs of experiments using mixed
model ANOVA. (Linear mixed effects modeling yielded the same results
and are available on OSF.io.)

To ask whether training regime differentially affected generalization
overall, a set of cross-experiment analyses (reported after Experiment 5)
compared generalization progress from Block 1 to 4 as well as final
generalization achievement in Block 4. We supplemented these analyses
with Bayesian Equivalence Independent t-tests across all pairs of ex-
periments, looking both at generalization progress and final general-
ization achievement.

3. Experiment 1: 4AFC training with full exemplar variability
Experiment 1 tested listeners’ ability to learn the complex auditory

Fig. 2. Trial and Block Structure Across Experiments.
A. Training trials with overt categorization decisions
and immediate feedback. B. Generalization trials with
novel sound exemplars not encountered in training,
with no feedback C. Training regimes (defined by the
nature of training trials) differed across experiments,
but all experiments were comprised of four cycles of

500 ms 1400 ms 1500 ms 120 training trials (A) followed by 20 generalization
. . . trials (B). Note that generalization trials were iden-
B. Genel'allzatlon Tl'lal Keyboard tical across experiments.
Response
o novel sound
exemplar

500 ms 1400 ms

C. Block Structure
repeat 4x

training
(120 trials)

generalization
(20 trials)
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categories under conditions of full acoustic variability in a four-
alternative forced-choice categorization task, with feedback (Table 2).

3.1. Methods specific to experiment 1

Here, 480 exemplars (120/category) were randomly selected from
the full pool of 512 training stimuli (128/category). On each trial,
participants chose which of four aliens (4AFC) corresponded to the
sound they had heard; as with all experiments, they received feedback
after each training trial. Participant characteristics are shown in Table 1;
data are shown in Fig. 3.

3.2. Results

3.2.1. Training accuracy

A Greenhouse-Geisser (GG)-corrected repeated-measures ANOVA
showed mean accuracy changed over Training Block (F(2.03, 117.74) =
29.3,p = 3.7e-11, n(z; = 0.096). Accuracy was above chance even in the
first block (M = 0.343, t(58) = 8.510, p = 8.62e-12, Cohen’s d = 1.108),
and accuracy significantly improved from Block 1 to Block 4 (Mgjock4-
Block1 = 0.107, t(58) = 6.206, p = 6.22e-08, Cohen’s d = 0.8080).

3.2.2. Generalization accuracy

Generalization of category learning to novel exemplars was evident
even in Block 1 (M = 0.374, t(58) = 6.895, p = 4.39e-09, Cohen’s d =
0.8977), changed significantly across blocks (F(3, 174) = 9.295, p =
9.83e-06, 13 = 0.058), and improved significantly from Block 1 to 4
(Mglock4-Blocki = 0.107, t(58) = 4.437, p = 4.14e-05, Cohen’s d =
0.5776).

4. Experiment 2: 4AFC training with low exemplar variability

As noted above, high exemplar variability may lead to slower and
initially less accurate performance in training. However, it can yield
dividends in supporting better generalization (Logan et al., 1991; Lively
et al.,, 1993; see Raviv et al.,, 2022 for review). Conversely, small
numbers of training exemplars may lead to faster and more accurate
learning, but poorer generalization. We test this hypothesis in Experi-
ment 2 with a limited set of training exemplars, but with the same set of
novel generalization exemplars as in Experiment 1.

4.1. Methods specific to experiment 2

Here, training involved only 40 exemplars (10 exemplars/category)
randomly selected from the training pool of 512 training exemplars prior

Table 2
Training Protocols.

Experiment  Response # Unique Feedback

Type Exemplars

Training Type

1 4AFC 480 Yes Full exemplar variability
and all 4 category
response options/trial
Restricted exemplar
variability and all 4
category response
options/trial

2 category response
options/trial, always
grouped by high/low
informative band

2 category response
options/trial, all possible
pair-wise combinations
As in Exp 3, but with
explicit instructions to
direct attention to the
diagnostic band

2 4AFC 40 Yes

3 2AFC 480 Yes

4 2AFC 480 Yes

5 2AFC 480 Yes
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Fig. 3. Experiment 1, 4AFC Full Exemplar Variability: Training and General-
ization Accuracy by Block. The top panel represents training accuracy. The
bottom panel shows generalization accuracy. Dashed lines represent chance and
error bars reflect standard error of the mean. Each individual gray point rep-
resents an individual participant’s mean accuracy and larger, colored symbols
show mean across-participant accuracy.

to experimentation and consistent among participants. Each exemplar
was encountered 12 times across training to arrive at the same number
of 480 training trials as Experiment 1. Participant demographics are in
Table 1. Fig. 4 shows training and generalization data.

4.2. Results

4.2.1. Training accuracy

A Greenhouse-Geisser (GG)-corrected repeated-measures ANOVA
showed accuracy changed with Training Block (F(1.87, 108.23) =
31.257, p = 5.8e-11, n% = 0.089). Block 1 accuracy was above chance
(M = 0.34, t(58) = 8.245, p = 2.39e-11, Cohen’s d = 1.073), and ac-
curacy significantly improved from Block 1 to Block 4 (Mpjock4-Blockl =
0.114, t(58) = 6.768, p = 7.17e-09, Cohen’s d = 0.8812).

4.2.2. Generalization accuracy

Generalization of category learning to novel exemplars was evident
even in Block 1 (M = 0.381, t(58) = 5.970, p = 1.52e-07, Cohen’s d =
0.7773), changed across blocks (F(3, 174) = 5.9, p = 0.00074, n% =
0.03), and improved from Block 1 to 4 (Mpjock4-Block1 = 0.087, t(58) =
3.766, p = 0.000389, Cohen’s d = 0.4903).
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Experiment 2
40 training exemplars
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Fig. 4. Experiment 2, 4AFC Low Exemplar Variability: Training and General-
ization Accuracy by Block. The top panel represents training accuracy. The
bottom panel shows generalization accuracy. Dashed lines represent chance and
error bars reflect standard error of the mean. Each individual gray point rep-

resents an individual participant’s mean accuracy and larger, colored symbols
show mean across-participant accuracy.

4.2.3. Comparison of experiments 1 and 2

A mixed-model ANOVA across Training Regime (Experiment) and
Training Block showed no significant effect of exemplar variability in
training (F(1, 116) = 0.000338, p = 0.985, n% = 2.35e-6) and no
interaction (GG-corrected F(2.01, 233.03) = 0.067, p = 0.936, né =
1.12e-4). Likewise, neither improvements across Block 1 to 4 (t
(115.9814) = —0.3435, p = 0.732, Cohen’s d = —0.06324) nor final
Block 4 achievement in training (£(115.9996) = —0.1391, Bonferroni-
adjusted p = 1, Cohen’s d = —0.0256) differed as a function of exem-
plar variability. In all, exemplar variability did not produce differential
training outcomes.

In a similar manner, there was no influence of exemplar variability
on generalization accuracy (F(1, 116) = 0.048, p = 0.828, n% =
0.000271), nor an interaction of exemplar variability with generaliza-
tion block (F(3, 348) = 0.258, p = 0.855, n(Z; = 0.000753). Changes in
generalization accuracy from Block 1 to 4 did not differ with exemplar
variability experienced in training (t(115.8347) = 0.5834, p = 0.561,
Cohen’s d = 0.1074) nor did generalization achievement in Block 4 (t
(114.3794) = 0.3689, Bonferroni-adjusted p = 1, Cohen’s d = 0.06792).
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5. Experiment 3: 2AFC training with pairs grouped by category-
diagnostic band

Recall that the auditory category exemplars confront participants
with two learning challenges: (1) to identify the diagnostic frequency
band in the context of a simultaneous, non-diagnostic band and (2) to
learn the pattern of hums present in the diagnostic band despite their
within-category acoustic variability. In Experiment 3, we block cate-
gorization decisions according to the category-diagnostic band, thereby
potentially (implicitly) encouraging selective attention to the category-
relevant frequency band within blocks of trials (Carvalho & Goldstone,
2017).

5.1. Methods specific to experiment 3

Here, training trials were blocked as 2AFC category decisions. Like
Experiment 1, participants completed 480 training trials with feedback,
where the 480 trials (120/category) were randomly selected from the
full pool of 512 training exemplars (128/category). This was accom-
plished by dividing each training block (120 trials) into six 20-trial mini-
blocks. Half of the mini-blocks were grouped by high-frequency diag-
nostic band and half by low-frequency diagnostic band. For example, as
shown in Fig. 1B, Category A and B stimuli were presented in one half of
the mini-blocks, and Category C and D were presented in the other half.
Mini-blocks alternated between category pairs differentiated in either
the high- and low-frequency diagnostic band, with order counter-
balanced across participants. Generalization blocks mirrored Experi-
ments 1 and 2. Participant demographics are shown in Table 1. Data are
plotted in Fig. 5.

5.2. Results

5.2.1. Training accuracy

Accuracy changed across Training Block (GG-corrected F(2.05,
120.68) = 18.488, p = 7.75e-08, n% = 0.065), with improvement from
Block 1 to Block 4 (Mpjockd-Blockt = 0.087, £(59) = 5.380, p = 1.34e-06,
Cohen’s d = 0.6946) and as previously, above-chance accuracy in Block
1 (M =0.588, t(59) =9.712, p = 7.59e-14, Cohen’s d = 1.254; chance =
0.50).

5.2.2. Generalization accuracy

Generalization accuracy changed with Training Block (F(3, 177) =
12.934, p = 1.12e-07, n3 = 0.061) with significant improvement in
generalization from Block 1 to Block 4 (Mpjock4-Block1 = 0.137, t(59) =
5.438, p = 1.08e-06, Cohen’s d = 0.7021), and above-chance general-
ization accuracy in Block 1 (M = 0.355, t(59) = 4.534, p = 2.88e-05,
Cohen’s d = 0.5853; chance = 0.25).

6. Experiment 4: 2AFC training with all category pairs

As a counterpart to Experiment 3, Experiment 4 examines whether
category learning with 2AFC training is successful without category-
diagnostic blocking. Here, all six possible pairs of categories were pre-
sented in separate training blocks (e.g., AB/AC/AD/BC/BD/CD). We
hypothesized that without implicit direction to the diagnostic band,
participants would be forced to discover the two learning challenges
simultaneously and that this would, akin to interleaved presentation,
exaggerate between-category differences (Carvalho & Goldstone, 2017).
After Experiment 4 findings are reported, results from Experiments 3
and 4 are directly compared.

6.1. Methods specific to experiment 4
Experiment 4 used full exemplar variability (like Experiments 1 and

3) and presented 2AFC training across six 20-trial mini-blocks per
training block (like Experiment 3). The order of category pair mini-
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Fig. 5. Experiment 3, 2AFC Pairs Grouped by Category-Diagnostic Band:
Training and Generalization Accuracy by Block. The top panel represents
training (2AFC) accuracy. The bottom panel shows generalization (4AFC) ac-
curacy. Dashed lines represent chance and error bars reflect standard error of
the mean. Each individual gray point represents an individual participant’s
mean accuracy, and larger, colored symbols show mean across-
participant accuracy.

blocks was randomized for each training block, for each participant.
Generalization blocks mirrored previous experiments. Table 1 provides
demographic information, and data are plotted in Fig. 6.

6.2. Results

6.2.1. Training accuracy

Accuracy changed with Block (GG-corrected F(2.37, 134.96) =
9.673, p = 4.27e-05, nZ = 0.044), with improvement from Block 1 to
Block 4 (Mgjocka-Block1 = 0.061, t(57) = 4.118, p = 0.000125, Cohen’s d
= 0.5407) and above-chance accuracy in Block 1 (M = 0.664, t(57) =
16.46, p = 2.51e-23, Cohen’s d = 2.162; chance = 0.50).

6.2.2. Generalization accuracy

Accuracy changed across Block (F(3, 171) = 6.654, p = 0.000282, n%,
= 0.041), with significant improvements from Block 1 to 4 (Mpjock4-
Block1 = 0.089, t(57) = 3.973, p = 0.000202, Cohen’s d = 0.5216) and
above-chance generalization in Block 1 (M = 0.39, #(57) = 8.929, p =
2.02e-12, Cohen’s d = 1.172).
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Experiment 4
480 training exemplars
2AFC, all category pairs
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Fig. 6. Experiment 4, 2AFC All Category Pairs: Training and Generalization
Accuracy by Block. Top panel shows training accuracy, and bottom panel shows
generalization accuracy. Dashed lines represent chance and error bars reflect
standard error of the mean. Each individual gray point represents an individual
participant’s mean accuracy and larger, colored symbols show mean across-
participant accuracy.

6.2.3. Comparison of experiments 3 and 4

We asked how training that paired categories according to diagnostic
band (Experiment 3) compared to pairing categories randomly regard-
less of diagnostic band (Experiment 4). A mixed-model ANOVA revealed
that there was a significant effect of Training Regime (F(1, 116) =
12.130, p =0.000701, n% = 0.073) but no interaction between Block and
Experiment (GG-corrected F(2.22, 257.56) = 1.07, p = 0.35, n% =
0.002).

Random pairing of categories without regard to the diagnostic band
in Experiment 4 resulted in significantly better Block 1 training accuracy
(t(114.7529) = —5.5759, Bonferroni-adjusted p = 6.64e-7, Cohen’s d =
—1.027) compared to Experiment 3. However, there was no significant
difference in final training achievement in Block 4 (#(114.6223) =
—1.9417, Bonferroni-adjusted p = 0.2184, Cohen’s d = —0.3571) nor a
difference in overall training improvement from Block 1 to 4 (t
(115.4895) = 1.1408, p = 0.256, Cohen’s d = 0.2099).

There was no influence of category pairing on generalization accu-
racy (F(1,116) =0.000729, p = 0.979, n% = 4.23e-06) nor an interaction
with block (F(3, 348) = 1.019, p = 0.384, n% = 0.003). Likewise, there
were no significant differences in generalization progress from Block 1
to 4 (t(114.942) = 1.4117, p = 0.161, Cohen’s d = 0.2597) or final
generalization achievement in Block 4 (#(113.1273) = 0.3403,
Bonferroni-adjusted p = 1, Cohen’s d = 0.06255).
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7. Experiment 5: 2AFC training with pairs grouped by category-
diagnostic band and explicit instructions

Experiment 3 blocked categories according to their diagnostic fre-
quency band in a manner that might implicitly guide discovery of
category-relevant dimensions. Experiment 5 takes a more explicit
approach, asking whether category learning is facilitated by providing
instructions about the category-relevant frequency band.

7.1. Methods specific to experiment 5

Experiment 5 used full exemplar variability (like Experiment 1) and a
2AFC training task with trials blocked according to a shared diagnostic
band (like Experiment 3). In addition, participants were informed that
“previous participants [...] found it beneficial to listen to the higher [or
lower] pitched sounds when learning which sounds go with which
alien.” Before each mini-block of 20 trials, participants were presented
with a blank screen with the text “Listen high!” or “Listen low!” in
accordance with the diagnostic frequency band of the category pairs in
the mini-block. Otherwise, the procedure followed that of Experiment 3.
Table 1 shows participant demographics. Data are plotted in Fig. 7.

Experiment 5
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Fig. 7. Experiment 5 2AFC, Pairs Grouped by Category-Diagnostic Band +
Explicit Instructions: Training and Generalization Accuracy by Block. The top
panel represents training accuracy. The bottom panel shows generalization
accuracy. Dashed lines represent chance and error bars reflect standard error of
the mean. Each individual gray point represents an individual participant’s
mean accuracy and larger, colored symbols show mean
participant accuracy.

across-
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7.2. Results

7.2.1. Training accuracy

Accuracy changed with Training Block (GG-corrected F(2.48,
146.23) = 35.011, p = 3.93e-15, n(Z; = 0.063). Performance was above
chance in Block 1 (M = 0.633, t(59) = 8.977, p = 1.25e-12, Cohen’s d =
1.159) and improved from Block 1 to 4 (Mgjock4-Block1 = 0.093, t(59) =
7.736, p = 1.53e-10, Cohen’s d = 0.9987).

7.2.2. Generalization accuracy

Generalization accuracy changed over block (GG-corrected F(2.55,
150.28) = 9.629, p = 2.52e-05, q% = 0.041). Block 1 generalization
accuracy was above chance (M = 0.386, t(59) = 5.570, p = 6.61e-07,
Cohen’s d = 0.7190) and improved significantly from Block 1 to 4
(MBjock4-Blocki = 0.107, t(59) = 4.284, p = 6.87e-05, Cohen’s d =
0.5531).

7.2.3. Comparison of experiments 3 and 5

There was a significant influence of the presence of explicit in-
structions on training accuracy (F(1, 118) = 4.311, p = 0.04, né =0.03)
but no interaction between Block and Experiment (GG-corrected F(2.28,
268.87) = 0.304, p = 0.766, n% = 0.000416). There was a significant
difference in training accuracy in Block 1 with an advantage for learning
with explicit instructions (t(98.1304) = 2.551, Bonferroni-adjusted p =
0.0492, Cohen’s d = 0.4657), but no difference in learning progress
from Block 1 to 4, t(109.5165) = 0.3311, p = 0.741, Cohen’s d = 0.0604)
or in the final training accuracy achievement (t(117.7899) = 1.8456,
Bonferroni-adjusted p = 0.27, Cohen’s d = 0.3370).

There was no influence of explicit instructions on generalization (F
(1, 118) = 0.126, p = 0.723, né = 0.000769) and there was no inter-
action with Block (GG-corrected F(2.79, 329.31) = 0.556, p = 0.632, n%
= 0.001). There was no significant difference in generalization progress
from Block 1 to 4 (£(117.9932) = 0.8422, p = 0.401, Cohen’s d =
0.1538) or final generalization achievement in Block 4 (¢(116.7032) =
0.0208, Bonferroni-adjusted p = 1, Cohen’s d = 0.003804) as a function
of providing explicit instruction.

8. Comparing generalization across training regimes

As described above, each experiment involved generalization testing
blocks comprised of the same 80 exemplars, not heard during training.
This allows for direct comparison of the influence of different training
regimes on generalization of category learning. To this end, we con-
ducted a two-way mixed model ANOVA of generalization accuracy
across Block versus all five Training Regimes (Experiments). The sig-
nificant effect of Block (GG-corrected F(2.91, 845.94) = 42.678, p =
5.05e-25, 3 = 0.044) is indicative of improvement of generalization
with training, consistent with the results from individual experiments.
Crucially, there was no overall difference in generalization accuracy
across Training Regimes (F(4, 291) = 0.058, p = 0.994, 1](2; =0.000542)
and no interaction (GG-corrected F(11.63, 845.94) = 0.513, p = 0.903,
1% = 0.002). Neither generalization progress (examined with a one-way
ANOVA comparing the Block 4 — Block 1 difference in generalization
accuracy; F(4, 291) = 0.698, p = 0.594, n% = 0.009; Fig. 8A) nor
generalization achievement (examined with a one-way ANOVA
comparing Block 4 accuracy; F(4, 291) = 0.164, p = 1, n%, = 0.002;
Fig. 8B) differed across training regimes.

Given the similarity among experimental outcomes, we also con-
ducted Bayesian equivalence testing to examine the strength of the ev-
idence that training regime manipulations have essentially equivalent
effects. We again focus on generalization progress along with final
generalization achievement, setting the equivalence region from —0.05
to 0.05 in Cohen’s d units using Bayesian Independent Samples Equiv-
alence t-test (JASP Team, 2022).

Fig. 9 shows Bayes Factor (BF) comparing the equivalence hypoth-
esis (i.e., that the effect falls within our equivalence interval) versus the
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B. Generalization Achievement
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Fig. 8. Generalization Progress and Achievement Across Training Regimes. Generalization of category learning was very robust. Training regime manipulations
across experiments did not influence generalization progress from Block 1 to Block 4 (panel A), nor did they influence ultimate generalization achievement in Block 4

(panel B). Error bars indicate standard error.

A. Generalization Progress
Accuracy Difference [Block 4 — Block 1]

BF&elvs. ¢l
BF&glvs.6€el
Exp1 Exp2 Exp3 Exp4 Exp5
Exp 1 5.154 4.107 5.334 6.256
0.194 0.243 0.187 0.160
Exp 2 2.081 6.179 5.151
0481 0.162 0.194
Exp 3 2.234 4.267
0.448 0.234
Exp 4 5.331
0.188
Exp 5

hypothesis that the effect lies outside this interval. For each pairwise
comparison, the evidence is stronger for equivalence. Using criteria
suggested by Andraszewicz et al. (2015), there is moderate evidence that
generalization progress and ultimate achievement are not differentially
influenced by the training regimes that manipulate exemplar variability,
exemplar sequencing, or explicit instruction.

Finally, we examined the potential influence of four (Exp 1-2) versus
two (Exp 3-5) response options on generalization outcomes. Bayesian
equivalence testing on generalization results pooled across 4AFC and
2AFC training reveals moderate evidence in favor of their equivalence,
suggesting that 4AFC (n = 118) versus 2AFC (n = 178) training regimes
did not differentially influence generalization of category learning (BF
8€l vs. 8¢l = 7.994; BF &¢I vs. 8l = 0.125) or final generalization
achievement (BF &€l vs. 8¢1 = 8.441; BF 8¢1 vs. 6€l= 0.118).
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B. Generalization Achievement

Accuracy [Block 4]
BFo€elvs.6¢l
BF&¢lvs.6€l
Exp1 Exp2 Exp3 Exp4 Exp5
Exp 1 5.769 5.908 6.194 5.807
0.173 0.169 0.161 0.172
Exp 2 5.030 5.848 4.819
0.199 0.171 0.207
Exp 3 5.836 6.286
0.171  0.159
Exp 4 5.733
0.174
Exp 5

Fig. 9. Generalization Across Training Regimes, Bayesian Equivalence Testing. Each panel shows comparison of two Bayes Factors (BF) across experiments: the top
number indicates the evidence that the difference lies within the equivalence region, and the bottom number indicates the evidence that the difference lies outside
the equivalence region. A. BF results from Generalization Progress (Block 4 — Block 1 accuracy). B. BF results from Generalization Achievement (Block 4). For ease of
interpretation, comparisons where BF > 4 are in bold font, and BF < 1 in italics.

9. General discussion

Category learning studies have often taken the entirely reasonable
approach of examining simplified category-learning challenges; one or a
few often easily verbalizable diagnostic dimensions with low exemplar
variability and a small number of category exemplars have been typical
(e.g., Gabay, Dick, Zevin, & Holt, 2015; Lim & Holt, 2011; Maddox,
Koslov, Yi, & Chandrasekaran, 2016; Roark, Lehet, Dick, & Holt, 2022).
This has been as true for natural exemplars, like non-native speech
sounds as well as for novel objects and events. Overall, these studies
have informed theories of category learning and have significantly
driven our understanding of both basic processes and application. Yet
we do not completely understand how factors that impact simplified
category learning challenges might play out in more real-world category
learning. Here, we developed a novel space of auditory categories that
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embodied some of the natural complexity and variability typically
encountered in real-world stimuli. Within this space, categories were
characterized by many unique exemplars, difficult-to-characterize di-
mensions, and simultaneous non-diagnostic information.

We observed strong evidence that these categories are learnable even
over short-term training. Moreover, this learning generalizes readily to
novel exemplars. Across five independent experiments involving 296
listeners, adult participants learned these challenging auditory cate-
gories above chance accuracy at the group level. Learning was rapid.
There was evidence of learning as early as the first block across all
training regimes; for most participants, categorization improved across
the 40-45 min of total training. The learning curves across training are
consistent with results from a wide variety of category learning studies
with simpler category learning challenges. Typically, these studies show
evidence of significant learning early in training followed by relatively
slow, incremental increases in accuracy across subsequent blocks (e.g.,
Reetzke et al., 2018; Roark & Holt, 2019; Zeithamova & Maddox, 2006).

As is often the case in category learning studies, there were sub-
stantial range individual differences in learning outcomes (e.g., Baese-
Berk, Chandrasekaran, & Roark, 2022). We informally examined two
potential contributors to these individual differences across our sample
of almost 300 participants: (1) experience with Mandarin or another
tonal language and (2) musical expertise. Neither was predictive of
generalization outcomes (supplemental information can be found at
OSF.io).

With this learning and generalization as a baseline, we examined the
extent to which manipulations of exemplar variability (Logan et al.,
1991), exemplar blocking (Carvalho & Goldstone, 2017), and provision
of explicit instruction (Chandrasekaran et al., 2016) — each shown to
impact category learning outcomes in prior research — modulate
generalization of category learning in a more complicated stimulus
space. Under the present category learning challenge, learning was
surprisingly consistent across training regimes. As demonstrated by the
Bayesian analyses, generalization progress and final generalization
achievement were essentially equivalent.

This is quite unexpected given the prior literature. Even participants
left to discover diagnostic dimensions implicitly via feedback did not
fare more poorly in generalization of category learning than participants
provided explicit instruction about where to find category-relevant in-
formation. Next, we consider the findings from prior literature and how
they diverge from and inform our findings by examining the three
training manipulations.

9.1. Exemplar variability

The expectation that training with high variability exemplars pro-
duces more robust generalization of category learning has a long history
and continues to have a substantial impact on theory and application. As
we noted in the introduction, the implications of high variability
training have been especially well-investigated in non-native speech
category learning (e.g., Logan et al., 1991). Brekelmans et al. (2022)
review this literature thoroughly and make a case that evidence is mixed
regarding an advantage of high versus low exemplar variability. More-
over, in this well-powered replication of Logan et al. (1991) and Lively
et al. (1993), Brekelmans and colleagues observed no learning differ-
ences across high and low exemplar variability.

Other studies have shown that the benefit from high variability
acoustic training interacts strongly with participants’ individual char-
acteristics and perceptual abilities. For example, Perrachione, Lee, Ha,
and Wong (2011) demonstrated that high-variability training benefited
only learners with already strong perceptual abilities and indeed
impeded learners with weaker perceptual abilities. Several other studies
have reported variation in the effectiveness of high-variability training
for different learners, with some studies finding no beneficial effect of
the high-variability condition, and others finding that high exemplar
variability in training hinders learning (Fuhrmeister & Myers, 2017,
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2020; Sadakata & McQueen, 2014). Further, another recent study has
demonstrated that high variability training sets could confer an advan-
tage or a disadvantage in voice-identity category learning, depending on
stimulus type, the dimension that is varied, and the nature of the post-
test (Lavan, Knight, Hazan, & Mcgettigan, 2019).

In summary, emerging evidence challenges the strength and/or
consistency of effects of exemplar variability on category learning out-
comes. The present results echo these concerns. Here, there was no
advantage to generalization progress or ultimate achievement across
training with high exemplar variability (480 unique exemplars) versus
low exemplar variability (40 unique exemplars).

9.2. Exemplar sequence

A recent meta-analysis revealed that interleaved exemplar presen-
tation tends to benefit learning (Brunmair & Richter, 2019), but
vanishingly few studies have examined exemplar sequencing in the
auditory modality. Studies examining learning across auditory input of
non-native speech sounds — though few in number — have found benefits
of blocking, rather than interleaving, category exemplars (Carpenter &
Mueller, 2013; Fuhrmeister & Myers, 2020). These studies also found
that participants learned to rely on the category-diagnostic dimensions
and made error judgments based on category-irrelevant dimensions.

In the present study, exemplars blocked according to the category-
diagnostic frequency band initially led to significantly poorer training
performance than randomly paired category exemplars. Even so, by the
end of training there was no difference in learning outcomes or gener-
alization across training regimes. Any influence of blocked versus
interleaved presentation of exemplars in training was ephemeral and
contrary to expectations that category-diagnostic blocking would sup-
port learning. Participants left to discover category-relevant dimensions
through trial-and-error tuned by explicit feedback fared no better or
worse than learners who were supported by blocking according to the
category-diagnostic dimension.

9.3. Explicit instruction

Explicitly instructing learners about the nature of category-
diagnostic dimensions can improve categorization accuracy for non-
native speech categories (Chandrasekaran et al., 2016). Other studies
have more implicitly “instructed” participants via training methods that
exaggerate category-relevant dimensions; these appear to enhance
learning compared to control conditions (Ingvalson et al., 2012; [verson
et al., 2005; Jamieson & Morosan, 1986; McCandliss et al., 2002;
McClelland et al., 2002).

In the present study, explicit instruction improved early training
accuracy compared to implicit support to learning via blocking by
category-diagnostic frequency band. But that advantage was fleeting. By
the culmination of training, groups’ learning and generalization
achievements were equivalent. It is possible that simple instructions
such as “Listen high!” or “Listen low!” may not be informative enough to
direct listeners to the diagnostic dimension. However, we modeled our
instructions after those of Chandrasekaran et al. (2016), who instructed
listeners that previous participants had succeeded in listening to a spe-
cific dimension of sound, and listeners are fully capable of paying
explicit attention to one of two spectrally separated dimensions in a
range of tasks (Dick et al., 2017; Holt, Tierney, Guerra, Laffere, & Dick,
2018).

9.4. Conclusions

In sum, the present results underscore the robustness of auditory
category learning, regardless of training regime. A large, diverse sample
of online research participants exhibited the ability to acquire novel
auditory categories drawn from a complex acoustic space within 40 min
and to generalize this knowledge robustly to novel exemplars. At a group
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level, participants across experiments began to categorize at above-
chance levels even in the first 10 min of training and generalized this
learning to novel exemplars along a similarly speedy timeline. Adult
listeners are capable of quickly acquiring complex novel categories that
involve substantial simultaneous, non-diagnostic exemplar variability.

Previous work suggested that training regime should have mean-
ingful influence on the speed and generalizability of category learning.
Instead, we observed remarkable consistency in learning and general-
ization across manipulations of exemplar variability, exemplar
sequencing, and explicit instruction. To put this in context, consider
Experiment 1 versus Experiment 5. In Experiment 1, participants were
left to discover category-relevant regularities by foraging the sounds’
multiple dimensions and utilizing feedback to shape future responses
across four category alternatives. In contrast, Experiment 5 learners had
the opportunity to benefit from blocking by (high/low) category-
diagnostic information and explicit instruction about the nature of
that information. Nonetheless, the two groups’ generalization perfor-
mance was statistically indistinguishable.

What we take away from these studies is that auditory category
learning is robust to the introduction of challenging input distributions,
despite our best efforts to influence its progress. This rather surprising
finding suggests a modicum of caution when drawing conclusions from
studies of simpler learning challenges (including many of our own) and
inspires us to explore and create new category spaces whose perceptual
and dimensional richness begin to approximate that of the natural
world.
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