Rapidity and momentum distributions of 1D dipolar quantum gases
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We explore the effect of tunable integrability breaking dipole-dipole interactions in the equilib-
rium states of highly magnetic 1D Bose gases of dysprosium at low temperatures. We experimentally
observe that in the strongly correlated Tonks-Girardeau regime, rapidity and momentum distribu-
tions are nearly unaffected by the dipolar interactions. By contrast, we also observe that significant
changes of these distributions occur when decreasing the strength of the contact interactions. We
show that the main experimental observations are captured by modeling the system as an array
of 1D gases with only contact interactions, dressed by the contribution of the short-range part of
the dipolar interactions. Improvements to theory-experiment correspondence will require new tools
tailored to near-integrable models possessing both short and long-range interactions.

One-dimensional (1D) bosonic gases with only contact
interactions are integrable, and, consequently, they pos-
sess stable quasiparticles [1]. Integrability is in general
unstable to the addition of long-range interactions. Even
weak integrability-breaking interactions have drastic ef-
fects on the nonequilibrium dynamics of integrable sys-
tems, causing relaxation to a thermal distribution: For
dipole-dipole interactions (DDI) these dynamical effects
were recently explored [2]. By contrast, the effects of
integrability-breaking interactions on equilibrium states
are less clear: Instead of causing quasiparticles to decay,
one might expect (in the spirit of Fermi liquid theory)
that interactions simply perturbatively dress the quasi-
particles. When the energy scale associated with inte-
grability breaking is a small fraction of the other natural
energy scales, it is plausible that the dressing will be weak
and the bare quasiparticles can still provide an accurate
description. This expectation has not been experimen-
tally tested so far; it is not a priori clear how the dressing
depends on the parameters of the integrable system and
on the type of integrability breaking interaction.

In the past, characterizing the dressing of quasipar-
ticles would have been a forbidding experimental chal-
lenge: In dense, strongly interacting systems, the map-
ping between quasiparticles and microscopic particles is
nontrivial, and the quantum numbers of the quasiparti-
cles (known as rapidities) are distinct from the micro-
scopic particle momenta, making their distribution hard
to measure [3, 4]. In a recent experimental breakthrough,
a modified time-of-flight (TOF) sequence was developed
to measure the rapidity distribution of 1D gases [5, 6]. In
this protocol, one first allows the system to freely expand
in 1D under near-integrable dynamics; this step preserves
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FIG. 1. (a) Schematic illustrating the experimental sequence
for measuring the rapidity distribution of a dipolar 1D gas. A
dipolar 1D gas is prepared with a magnetic field magnitude B
and angle 0p resulting in contact strength ¢gip. Then, the un-
derlying harmonic trap is suddenly removed, while the trans-
verse confinement is maintained. This allows the quantum gas
to expand in a flat, 1D trap along &. Time-of-flight absorp-
tion imaging follows 3D expansion by switching off all optical
traps. The blue arrows denote the rapidities. (b) Timing se-
quence for creating a dipolar 1D gas at dipolar angle g and
g1p- Once the quantum gas is loaded into a quasi-1D trap, the
B-field angle is slowly rotated from 55° to g = 0°,35°, or 90°
in a time tg,, or kept at 55°, as the experiment requires. gip
is then set to its final value by ramping the B-field strength
near a Feshbach resonance in a time ¢, = 50 ms.

the rapidity distribution. Once the system is dilute, ra-
pidity and momentum distributions coincide, and one can
extract the rapidity distribution via TOF imaging.

Here, we use measurements of rapidity and momen-
tum distributions in an array of 1D bosonic gases with a



tunable DDI to explore how the DDI affects the equilib-
rium properties, e.g., via a dressing of the quasiparticles,
and how the effect of the DDI varies when changing the
strength of the contact interactions. We find that both
distributions are nearly unaffected by the DDI in the
Tonks-Girardeau (TG) regime, suggesting that the bare
quasiparticles can be used to characterize that regime.
As the strength of the contact interactions is decreased,
the densities of the 1D gases increase and with them the
strength of the dipolar interactions. We find that, as a
result, the dressing of the quasiparticles becomes signif-
icant and needs to be taken into account in any model
of the system in that regime. To attempt to do so, we
confirm that modeling the system as an array of 1D gases
with only (integrable) contact interactions (dressed with
the short-range part of the DDI) is most accurate in the
TG regime. We also show that the model captures the
experimental trends as the strength of the contact inter-
actions is decreased. A more accurate correspondence
will require the development of new theoretical tools to
account for the long-range part of the dipolar interaction
and dynamical effects during the initial state preparation.

A dipolar 152Dy BEC of 2.3(1) x 10* atoms is prepared
in a 1064-nm crossed optical dipole trap (ODT) with a fi-
nal trap frequency of 27 x[55.5(6), 22.5(5), 119.0(7)] Hz;
more details can be found in Refs. [2, 7]. The gas is then
adiabatically loaded into a 2D optical lattice that is blue-
detuned from Dy’s 741-nm transition [8, 9]. Roughly two
thousand 1D traps are populated, with the central ones
containing about 40 atoms. Before loading, the angle of
an externally imposed magnetic field is set to g ~ 55°
with respect to Z, the 1D axis of the gases. This mini-
mizes the intratube DDI among atoms within the same
1D trap, which scales as 1 — 3 cos? #g. When the optical
lattice reaches a depth of 30 Fg, the 1D trap frequency w,
is lowered to 27 x 36.4(3) Hz by reducing the power of the
1064-nm ODT. The recoil energy is Fr = h%%/?m and
kr = 27 /741 nm, where m is the mass of the highly mag-
netic, 10 Bohr magneton 2Dy atom we use [10]. Simul-
taneously, a 1560-nm ODT is superimposed to negate the
antitrapping potential caused by the blue-detuned opti-
cal lattice. We then set 0p to the particular value we re-
quire by rotating the magnetic field while maintaining the
same lattice depth by adjusting the optical lattice power
to compensate for the large tensor light shift [9]. The
1D-regularized contact interaction strength gip is then
ramped to the required final value via a confinement-
induced resonance [7, 11, 12]. The resonance is accessed
by adjusting the magnitude B of the magnetic field near
a Feshbach resonance [8, 13]. To create the dilute TG
gases, we prepare a smaller BEC of 5.8(2) x 10% atoms
and set g = 90°; this leads to a maximum of about 15
atoms in the central 1D tubes.

Figure 1 illustrates the experimental sequence for mea-
suring rapidity and momentum distributions. The rapid-
ity distribution is measured using a 1D expansion of dura-
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FIG. 2. The TOF density distribution for g = 55° and

~y1 =~ 16 for t1p = 0 to 20 ms. The width of the distributions’
0 has been scaled by hkr. Data at times >15 ms suffer from
imaging artifacts and are not used. Inset: The evolution of
the FWHM of the distribution versus tip for yr ~ 16 at
0s = 55° (light green) and yr & 19 at 05 = 90° (red). Error
bars are explained in Ref. [8].

tion t1p = 15 ms followed by a 3D expansion of duration
tsp = 18 ms. Momentum distributions are measured by
setting t;p = 0 with the same t3p. The magnetic field is
switched to the imaging axis § at a time 5 ms after the
start of the 3D expansion. To reduce the effect of initial
gas size, we employ momentum focusing for measuring
momentum distributions [8]. To determine the appropri-
ate t1p for the rapidity measurement, TOF density dis-
tributions with £;p = 0 — 20 ms are measured; see Fig. 2.
By tip &~ 15 ms, the distributions have asymptoted to
the same shape, indicating that the density distribution
reflects the rapidity distribution [5, 14, 15]. The inset
also shows the saturation in the full width at half maxi-
mum (FWHM) of the distribution beyond 10-15 ms. For
longer t1p, imaging artifacts, stray magnetic field gradi-
ents, and lower signal-to-noise ratio degrade the image
quality, as can be seen in the 20-ms data. We therefore
use t1p = 15 ms for the rapidity measurements.

Each 1D gas can be described by the Lieb-Liniger
Hamiltonian [16] with the addition of an intratube DDI
ULR; and a harmonic confining potential Us:

N

K2 92
H = —— 7 i 1
> |~ goge e (1)
+ Y [V (i — xy) + Uppy(0s, zi — )]
1<i<j<N

where m is the atomic mass, IV is the number of atoms,
and g8V is the effective 1D contact interaction due to

the van der Waals force; see Ref. [8]. Solving this Hamil-



tonian is very challenging because of the presence of the
DDI term. To make theoretical progress, we account
for only the leading-order, short-range effect of the in-
tratube DDI. (The intertube DDI is neglected.) Hence,
we solve this 1D Hamiltonian after replacing g}’gw —
910 = gip" +gip" and setting Uppy(0p, z; — ;) = 0 [8].
We note that the properties of the Lieb-Liniger model
are parameterized by v = mng/nlDHQ, where nip is
the 1D particle density. A v = 1 denotes a strongly
correlated Bose gas of intermediate-strength interactions,
while 7 — oo indicates a TG gas, which can be mapped
onto a system of noninteracting spinless fermions [1].

To model the experimental state preparation as closely
as possible, we assume there is a lattice depth Ujp at
which the 3D gas decouples into individual 1D gases as
the 2D optical lattice is turned on [6]. At this lattice
depth, we also assume that the 1D gases are in thermal
equilibrium with each other at temperature T and at a
global chemical potential that is set by the total number
of particles. Then, using the local-density approximation
(LDA) and the thermodynamic Bethe ansatz (TBA) [17],
we determine N and the entropy of each 1D gas as func-
tions of Ujp and T™. As the depth of the 2D optical
lattice is increased beyond Ujp, we assume that the 1D
gases neither exchange particles nor interact. Thus, they
no longer are in thermal equilibrium with each other. We
assume this part of the loading process is adiabatic, i.e.,
that the entropy of each 1D gas is constant. We find
the temperature of each 1D gas using: (i) the number
of atoms and entropies calculated at decoupling, and (ii)
the experimental parameters measured at the end of the
state preparation. The momentum and rapidity distri-
butions are computed using these temperatures.

We compute the momentum distributions in the pres-
ence of the trap using path integral quantum Monte Carlo
with worm updates [18-20]. The rapidity distributions
are computed within the LDA by solving the TBA equa-
tions. We then sum the results of the 1D gases to com-
pare to the experimental absorption-imaging measure-
ments (which provide distributions averaged over all 1D
gases). The values of yr reported in the figures and
throughout the text reflect the v at which the LL model—
at the experimentally set ¢gip at finite temperature—
exhibits the same ratio of kinetic—to—interaction energy
obtained in our model at g = 55° [8].

The free parameters in our model of state preparation
are Ujp and 7. We find the results to be rather insen-
sitive to the precise value of Ujp, which suggests that
assuming a single decoupling depth for all 1D gases is
a reasonable approximation. We select Uy, = H5ER [8].
To find T, we minimize the quadrature sum of the dif-
ferences between the experimental and theoretical mo-
mentum and rapidity distributions [8], which we call the
“theoretical error.” We plot this error for the results in
the TG limit versus T in the inset of Fig. 3(a). We
find the error minimum to be ~5.5% at T* =~ 15 nK.
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FIG. 3. Momentum and rapidity distributions; 6 denotes ei-
ther momentum or rapidity. Solid lines show the experimental
momentum (blue) and rapidity (red) distributions, while the
dashed lines show the simulation results. (a) Distributions for
O = 90° and 1 ~ 420 in the TG limit. The simulations use
T* = 15 nK and Ujp = 5Er. (b) Distributions for g = 55°
and yp ~ 6.7. Simulations use T* = 25 nK and Ujp = 5FER.
Insets show the theoretical error used to select T [8].

For Uspy = 5ER and T ~ 15 nK, we estimate the inter-
tube DDI energy to be ~4% of the kinetic + interaction
plus trap energy of the 1D gases; see [8] for how inter-
tube DDI energy is calculated. The comparison between
the theoretical and experimental results for the momen-
tum and rapidity distributions is shown in Fig. 3(a). The
agreement is remarkable for the momentum distribution.
The theoretical rapidity distribution is slightly narrower,
which might be due in part to intertube DDI energy being
converted into rapidity energy during the 1D expansion.

Similarly, the comparison between experimental and
theoretical results for the case of yp =~ 6.7 and g = 55° is
shown in Fig. 3(b). For these parameters, we estimate the
intertube DDI energy to be ~5.5% of the sum of kinetic,
interaction, and trap energies of the 1D gases. The theo-
retical distributions follow the experimental ones, though
less closely than in Fig. 3(a)]; they predict a lower occu-
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FIG. 4. (a) Measured momentum and rapidity distributions at field angles #g = 0° (red), 35° (orange), 55° (green), and 90°
(blue) with y7(fp = 55°) ~ 3.2, 6.7, and 16. 0 denotes either momentum or rapidity. (b) Corresponding simulation curves.
The insets in (a) show the total (interaction plus kinetic) energy that has been experimentally estimated from the rapidity
distributions. Insets in (b) show the theoretically estimated total DDI energies, intertube plus short-range intratube. The
Os-dependence comes from the contribution to gip from the short-range part of the intratube 1D DDI. Note that the theory
curves are missing for the case of y1r(55°) ~ 3.2 and g = 0° because gip becomes negative and we cannot simulate that regime.

pation of high momenta and a narrower rapidity distri-
bution.

Figure 4 reports our main results, the momentum and
rapidity distributions of 1D dipolar quantum gases upon
changing the contact and DDI strengths (and DDI sign).
To reduce systematic variation, we always start from
the same state—the one in Fig. 3(b)—when producing
1D gases with different interactions. That is, we begin
with intratube nondipolar gases (fg = 55°) at the back-
ground scattering length (yielding vr ~ 6.7) before we
then change the magnetic field strength and 6y to the
desired final setting. No additional fitting is used to pro-
duce the theory curves because the number of atoms and
entropies of the 1D gases at decoupling were already com-
puted. Hence, we need to calculate only the temperature
of the 1D gases for the experimental parameters after the
change in magnetic field angle and/or strength.

The experimental [theoretical] results are shown in
Fig. 4(a) [Fig. 4(b)]. The experimentally observed broad-
ening of the momentum and rapidity distributions for

increasing yr at fixed g and/or increasing g at fixed
~T is qualitatively captured by our theoretical model. It
can be understood to be the result of increasing total
(interaction plus kinetic) and kinetic energies through
the increase of gip by way of the Feshbach resonance or
short-range DDI.

We find that the rapidity and momentum distributions
depend weakly on 6g in the strongly correlated (yr = 16)
TG regime. They exhibit larger changes versus fp as
~r decreases. The insets in Fig. 4(a) show the changes
with 0 of the experimental estimation of the sum of
the interaction and kinetic energies, calculated using the
measured rapidity distributions. The insets in Fig. 4(b)
show the changes with 6g of our theoretical estimation
of the total DDI energies, intertube plus short-range in-
tratube. One can see that the changes in the total en-
ergy in the experiment become larger as ~p decreases,
and they parallel the larger changes observed in the esti-
mated DDI energy. Our results illustrate how the nature
of the equilibrium state changes as one tunes yp. When



the contact interactions are strong, particles avoid each
other and the 1D densities are lower, resulting in weaker
dipolar interactions. As one decreases v, particles in
the equilibrium state of the integrable system are likelier
to overlap; therefore, the 1D densities increase, and with
them, the strength of the DDI. Remarkably, all these
variations are accessible in our experimental apparatus.

In summary, we showed that the DDI significantly ef-
fects the equilibrium rapidity and momentum distribu-
tions of dipolar 92Dy gases as one departs from the
strongly correlated TG regime, suggesting that an in-
creasingly stronger dressing of the quasiparticles takes
place. Our model captured the main experimental
trends, but quantitative differences remain. This is likely
due, in part, to not accounting for the effect of the long-
range aspect of the DDI. It couples different 1D gases as
well as bosons that are far away within each 1D gas. The
long-range DDI produce correlations and slow dynamical
processes that go beyond what can be computed using
state-of-the-art numerical methods. Another potential
source of discrepancy are the nonthermal effects related
to the near-integrability of the 1D gases as well as to
heating, which we neglected. Nevertheless, it is remark-
able that we are able to closely describe the experimen-
tal results in such a complex, strongly-interacting system
despite the above-mentioned omissions in our modeling.
Notably, our largest “theoretical error” for the results
reported in Fig. 4 is only ~11%.

We hope our findings will motivate studies to incor-
porate the long-range part of the DDI in arrays of 1D
gases described by otherwise integrable models [21], both
to understand and quantify how they dress the quasi-
particles in equilibrium and to clarify the role of near-
integrability nonthermal effects during the initial state
preparation. Such endeavors may usher a new direc-
tion for precision quantum many-body physics involving
near-integrable models with short-range interactions per-
turbed by long-range interactions.
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Supplemental Material:

EXPERIMENTS
Experiment sequence

BEC production

A 192Dy dipolar Bose-Einstein condensate (BEC) is
prepared by evaporative cooling in a 1064-nm crossed
optical dipole trap (ODT) with beam waists ~65 um
along #. The typical atom number is 2.3(1) x 10* at
a temperature of 38 nK with a BEC fraction of near
75%; these numbers are consistent with those reported
in Ref. [22]. The final ODT trap frequency is [55.5(6),
22.5(5), 119.0(7)] Hz. The bias magnetic field is set along
% during the evaporation; this is the g = 90° direction,
where 0p is the field angle with respect to . The field
is then slowly rotated to g = 55°. During the field ro-
tation, the field vector is kept in the z-z plane with a
constant field magnitude. The angle g = 55° is chosen
to remove the intratube dipole-dipole interaction (DDI)
so that the results can be compared with numerical sim-
ulations using the Lieb-Liniger model. For the Tonks-
Girardeau (TG) results, we prepare a BEC of 5.8(2) x 103
atoms at a temperature of ~20 nK with the field angle
fixed at 90° for better field stability as we approach the
Feshbach resonance [7].

Lattice loading

The BEC is loaded into a 2D optical lattice to create
an array of 1D gases while the 1064-nm ODT remains
on. The 2D optical lattice is 5-GHz blue-detuned from
the A = 741 nm atomic transition. The 741-nm beams
have a beam of waist ~150 um and are retroreflected.
The lattice depth is adiabatically ramped to 30FER in

200 ms, creating a strong confinement in both ¢ and 2.
The resulting transverse trap frequency is w; = 27w X
25 kHz. Er = th:?z/2m is the recoil energy and kr =
27/A. There are around 40 atoms in the center tube.
This reduces to around 15 for the TG case.

1D harmonic and flat trap

A 1560-nm ODT is then superimposed onto the 1064-
nm ODT. Their powers are adjusted such that the lon-
gitudinal trap frequency is w)| = 27 x 36.4(3) Hz. Using
two ODT beams allows us to have better control of the
trap shape when switching from the harmonic trap to the
flat trap.

The longitudinal antitrap frequency due to the blue-
detuned lattice beams is ~7 Hz at a lattice depth of
30ER. This antitrapping potential is balanced by the
1560-nm ODT. Its beam waist is 150 pm to match the
shape of optical lattice beams. This results in a flat,
1D trap of length 60 pm. The final trap configuration
consists of the superposition of the 1064-nm ODT, the
blue-detuned, 741-nm 2D optical lattice, and the 1560-
nm ODT. The more tightly confining 1064-nm ODT sets
the final longitudinal trap frequency wy. This config-
uration allows us to quickly switch off the longitudinal
harmonic trap by turning off the 1064-nm ODT.

Field rotation and magnitude ramping

After the array of 1D dipolar gases is created, the field
is rotated from 6 = 55° to the final angle of choice, ei-
ther 8 = 0°, 35° or 90°, or kept constant at 55°. The
magnetic field is held within the z-z plane throughout
the rotation at the evaporation field magnitude. The



abg(ao) B()l (G) Al (mG) BOQ (G) AQ (I’IlG)
156(4) 5.112(1) 24(2) 3.879(1) 4(1)

TABLE S1. Feshbach resonance parameters.

angular velocity is chosen to be 47/3 rad/s, which we ex-
perimentally found to be sufficiently slow to avoid collec-
tive excitations. Because of strong tensor light shifts [9],
we must adjust the lattice power during the field rota-
tion to maintain the 30ER lattice depth. After the field
reaches the final angle, we ramp its magnitude to set ~.
This takes 50 ms. For the TG case, we hold the field at
O = 90° throughout the sequence. The final field ramp
takes 30 ms to reach the desired . This value is cho-
sen to avoid atom loss during the ramp and to minimize
collective excitations.

Scattering length and Feshbach resonance

Two Feshbach resonances are used for tuning the final
~ value in the experiments. The s-wave scattering length
asp(B) near each Feshbach resonance can be modeled by

a3D(B) = Ubg <1 — Z ﬁ) , (Sl)

for resonance poles at By, with widths A;. The back-
ground scattering length is aps. Table S1 lists the pa-
rameters of the two Feshbach resonances. These param-
eters are obtained from anisotropic expansion measure-
ments [23] and atom loss & temperature measurements
during evaporative cooling versus B-field, as shown in
Supp. Fig. S1. The field at the point of greatest atom
loss and the highest temperature indicate the pole and
zero-scattering-length fields, respectively. From these we
infer Bgo and As. For the data in Fig. 4 of the main text,
BEC evaporation is performed at 4.8 G for vyp(55°) = 6.7
and 16, and at 3.95 G for yp(55°) = 3.2. Here, 7 is our
estimate of the average ~y in the finite-temperature exper-
imental setup. We discuss the calculation of y7 below.
For the TG data, the Feshbach resonance near 27 G is
used to produce the high-+y state; see Ref. [7].

Time-of-flight imaging

We use time-of-flight (TOF) absorption imaging. To
ensure 3D ballistic expansion without contact interaction
effects, we quickly change the B-field to set asp ~ 0 in
less than a ms before release. An 18-ms 3D TOF expan-
sion is used for all datasets. The resulting TOF images
contain momentum/rapidity information along the & di-
rection.

1D expansion

Mapping rapidities to free-particle momenta requires
a long 1D expansion time. To expand the gas in 1D, the
1064-nm ODT beam is suddenly turned off. After the
gas expands for a time ¢1p in the quasi-1D geometry, we
perform the same measurement as described above.

Momentum focusing

The long initial size of the unexpanded 1D gas can
distort the TOF images, resulting in a poor momentum
distribution measurement. We employ a momentum fo-
cusing protocol to correct this. A short momentum kick
is applied to the gas along the longitudinal direction for
0.4 ms. This occurs via a sudden jump of power in the
1064-nm ODT after agp is set to zero. The exact power
level is calibrated experimentally, as shown in Fig. S2.
The measured full-widths at half-maximums (FWHMs)
are fitted to w = wo/1+ a(P/Py — Procus)?, where Py
is the original ODT laser power; Picus is found to be
approximately 5.2F;. We do not need to use momentum
focusing for the rapidity measurements after 1D expan-
sion because the longer total expansion time makes the
initial size effect negligible. This 1D expansion time is
tip = 15 ms; see discussion in main text.

The interaction between atoms can complicate the ef-
fect of the momentum kick in the momentum focusing
protocol. We experimentally show that there is a broad-
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Supp. Fig. S1. Atom loss and temperature spectroscopy
at fields near 3.88 G. Atom number shows a minimum at
By =3.879(1) G, the pole of the resonance. The temperature
has a peak at Boz + Az = 3.883 G, with Ay = 4(1) mG. The
peak arises due to the vanishing cross section, which causes
worse evaporative cooling efficiency and higher final temper-
ature. The temperature dips near the resonance pole are due
to atom loss.
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Supp. Fig. S2. Measured FWHM as a function of the focusing
power. The field angle is set to g = 55°. The fitted curve
indicates that optimal focusing occurs near P/Py = 5.2.
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Supp. Fig. S3. Red (green) curve shows the 1D distribution of
the gas after momentum focusing with the s-wave interaction
turned off (or remaining at apy) during the momentum kick.
Here, 65 = 55°.

ening effect when the s-wave interaction is not turned
off; see Fig. S3. The low-momentum part near the cen-
ter is broadened due to the s-wave interaction, showing
that we must turn off this interaction before momentum
focusing.

Data analysis

Image processing

The absorption images are processed by eigenimage
analysis to remove fringes due to shot-to-shot variations
of the imaging beam. All the processed images are post-
selected for +10% of the mean atom number. The col-

umn density then provides the 1D momentum/rapidity
distributions. Between 20-to-30 shots are typically taken
for each configuration setting. A pixel-wise optical den-
sity (OD) average and standard deviation (oop) is cal-
culated. We flag pixels that are part of the zero-atom
region if they are within +1loop of zero. We then fit
this zero-atom region with a third-order polynomial to
determine the background noise level. (A small ampli-
tude sinusoidal function is added to the fit to account
for a periodic variation in background.) The background
is then subtracted from the distribution. The FWHM
of each 1D distribution is determined from each aver-
age. The lower (upper) bound of FWHM is estimated by
offsetting the zero point of the distribution to the max
(min) value of the residual background. Their differences
from the nominal FWHM are calculated, and the larger
value is reported as the FWHM uncertainty in the inset
to Fig. 2 of the main text.

Heating during the 1D gas preparation

We now gauge the amount by which the system heats
during the loading procedure. To do so, we load the
BEC into the 2D optical lattice up to various lattice
depths and then follow the exact same reverse procedure
to remove the 2D optical lattice. We then use a double-
Gaussian fit to obtain a measure of the temperature from
the Gaussian-shaped thermal wings. A Gaussian, rather
than inverted parabola is used to fit the center, because
the BEC is not deeply in the Thomas-Fermi regime. The
measured temperature is corrected via deconvolution by
two factors arising from the finite TOF and the finite-
imaging resolution (~4 pum).

It is assumed that the temperature increase is identi-
cal during loading and deloading, allowing us to infer the
amount of heating that occurs during the loading pro-
cedure. The results are presented in Fig. S4 for various
initial atom numbers. Because the results show only a
few nK of heating, we neglect the effect of heating after
the 1D gases decouple; see the modeling discussion below.
If the system is always thermalizing, any potential heat-
ing that occurs before the decoupling of the system into
1D gases is expected to be accounted for by our fitting
of the temperature of the 1D gases when they decouple
(see the modeling discussion next).

MODELING
Experimental system

Neglecting the intertube DDI, the experimental system
can be modeled as a 2D array of independent 1D gases.
Each 1D gas is described by the Lieb-Liniger Hamilto-
nian [16], with the addition of an intratube DDI USR;
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Supp. Fig. S4. Inferred temperature versus lattice depth dur-
ing the loading sequence. Red circles represent the data for
the number of atoms used for Fig. 4 in the main text. Or-
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and a longitudinal harmonic confining potential Uy,

N

h2 2
H=3 | + Ut
+ > [9Ve(wi — xy) + Ubi(0, 2 — 25)]
1<i<j<N

(52)

where m is the mass of the 2Dy atoms and N is the
number of atoms. ¢}V = —h%/(maip) is the effective
1D contact interaction due to the van der Waals force. It
depends on the depth of the 2D optical lattice Usp and on
the 3D s-wave scattering length azp(B), set by the mag-
netic field, through a1p = —a, (a1 /asp(B) — C)/2. aip
is the 1D scattering length, where a; = /2h/(mw, ) is
the transverse confinement, w, = \/2U2Dk% /m,and C =
—((1/2) ~ 1.4603 [24]. The longitudinal confinement po-
tential is modeled as a harmonic trap Un(z) = +mw?2z?,
where w, is the trapping frequency.

The effective intratube DDI in the single-mode approx-
imation has the following form [2, 7, 25-27],

pop? 1 —3cos?d 8
UDDI(HB z) = . = 1D() 55(U)a

N T R e

where VEB, (1) = —2Ju| + v2r(1 + u2)ev’2erfe(|ul /V2),
= V2z/a,, and erfc(x) is the complementary error
function. 1 =9.93up is the dipole moment of 152Dy.
The 1D Hamiltonian (S2) is not exactly solvable in the
presence of USR;(fp,x), except at O ~ 55°, at which
the intratube DDI vanishes. In order to account for the
leading-order effect of the intratube DDI, which is due to
its short-range part, we consider it as a correction to the

vdW 0B DDI

asp g1D 91D g1ib
(a0) (5 pm™") (B pm™) (B pm )
89.5 4.1 0° -5.4 -1.3
89.5 4.1 35° -2.7 1.4
89.5 4.1 55° 0 4.1
89.5 4.1 90° 2.7 6.8
167 8.5 0° -5.4 3.1
167 8.5 35° -2.7 5.8
167 8.5 55° 0 8.5
167 8.5 90° 2.7 11.2
320 20.4 0° -5.4 15.0
320 20.4 35° -2.7 17.7
320 20.4 55° 0 20.4
320 20.4 90° 2.7 23.1
803 260 90° 2.7 263
TABLE S2. List of gip parameters. Relevant scattering

lengths and the corresponding g7SW are listed. The DDI cor-
rection ghP! is calculated using Eq. (S4), and gip is calculated
using Eq. (S6).

contact interaction term,

2 2
~ pop” 1 — 3cos” Op 8 falel
= A— =
0(0p.) = = 4= 2 alo) = gEB 0.
(S4

)
where A = f ViBi(w)du = 4. The Hamiltonian (S2)
can then be written as

Z 9100 (2 —xj),

fl:i {—h—23—2+UH(a:¢)} +

, 2m 02 i
=1 ? 1<i<j<N
(S5)
where
910 = 91D + 9B - (S6)

The values of ngW, g]ﬁ?l, and ¢g1p for the experimen-

tal results reported in the main text are shown in Ta-
ble S2. In the absence of Uy, this Hamiltonian is exactly
solvable via the Bethe ansatz [16, 17]. The observables
in equilibrium depend on the dimensionless parameter
v =mgip/(h*nip), where nip is the 1D density.

We use path integral quantum Monte Carlo with worm
updates [18-20] to compute the momentum distributions
for the equilibrium states of Hamiltonian (S5). The ra-
pidity distributions for these states are calculated solving
the thermodynamic Bethe ansatz equations [17] within
the local density approximation (LDA).

SIMULATION OF STATE PREPARATION

To compare to the experimental measurements, we
carry out theoretical calculations that model the 1D gases
forming the 2D array. For 1D gas “l,” at spatial location
(y1, 21) in the 2D plane, we need to find the number of
atoms N; and the temperature 7;. In this section, we



explain how these parameters are computed to model as
close as possible what is experimentally done.

In our experiment, we load a 3D BEC with Ny, atoms
at temperature Ts3p in a 2D optical lattice (Usp) that
is ramped-up to create the 2D array of 1D gases. Our
first theoretical assumption is that at a lattice depth Ujp
(which sets ¢g7p) the 3D gas decouples into individual 1D
gases with IV; atoms. Our second assumption is that all
the 1D gases are in thermal equilibrium at a temperature
T* with each other at that point. Given those assump-
tions, we can use the exact solution of the homogeneous
Lieb-Liniger model at finite temperature—together with
the LDA and knowledge from measurements of Ny and
ODT frequencies wy, wy, and w,—to determine the num-
ber of atoms N; in each 1D gas. (We round N; to the
nearest integer number.) We can do this for any given
decoupling depth Ujp and temperature T at decoupling.
We also compute the entropy S; of each 1D gas at that
point. The effectiveness of such a theoretical modeling
procedure, under the assumption that the entire system
is in the ground state at all times, was demonstrated in
Ref. [6] for 1D gases with only contact interactions.

As the loading in the 2D optical lattice proceeds be-
yond U3p, to the final 2D lattice depth, our third assump-
tion is that the process is adiabatic; namely, that the en-
tropy S; (not the temperature) of each 1D gas remains
constant. Using that entropy and the parameters for each
1D gas at the end of the state preparation, we find the
temperature T; of each 1D gas and use it to compute the
momentum and rapidity distributions. It is important
to stress that after the 2D lattice is ramped to its final
depth, our state preparation includes the experimentally
relevant reduction of the longitudinal trapping frequency
wz. This overall procedure not only makes 7; lower than
T* but also results in different temperatures across the
array of 1D gases. In our calculations, we first group the
1D tubes with the same N; = N (rounded to the closest
integer) and assume that they have the same entropy [us-
ing the average entropy S(N) = S;(N; = N)]. Then, we
search for T(N) (in a grid of temperatures that change
in steps of 0.5 nK) that produces the appropriate S(N)
using the value of w, and g;p at the end of the state
preparation.

The free parameters in our modeling of the experiment
are Ujp and T™*. We select their values by minimizing
the quadrature sum of the differences between the exper-
imental measurements and the theoretical calculations
for the momentum and rapidity distributions

A= \/A?apidity + A121r1010rlelr1tumf1 ’ (87)

where

Ao = L) = g (o 58

- T RISk + 31 fareo (k)oK

and a denotes either rapidity or momentum. We call A
the theoretical error.

T T T T T T T
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Supp. Fig. S5. Theoretical error for the experimental pa-
rameters considered in Fig. 2 of the main text. (a) and (b)
correspond to the parameters in the same panels of that fig-
ure.

Results for the theoretical error as a function of T
and Ujp are shown in Fig. S5. We use a coarse grid of
temperatures (in 5-nK steps) and decoupling depths (in
5ER steps) because our strong assumptions in the mod-
eling of the state preparation do not make a finer grid
quite meaningful. Figure S5 shows that, around the min-
imum theoretical error, the error depends strongly on T*
and weakly on Ujp. The latter suggests that assuming
a single decoupling depth is a reasonable approximation.
We also find that, likely because of ignoring the effect of
the DDI, our theoretical error is lower at low decoupling
depths. This is because low decoupling depths result in
higher particle densities in the 1D gases and, hence, in
broader rapidity distributions, which are closer to (yet
still narrower than) the experimental ones. For our sim-
ulations we select Us, = 5Eg. The line cut along 5FR is
shown in the insets of Fig. 3 of the main text.

An interesting observation is that the experimentally
estimated BEC temperature T3p is higher than the op-
timal T* at decoupling, which suggests that the loading
from 3D to 1D results in cooling even if this process is
not perfectly adiabatic—we do not assume adiabaticity
in the transition from 3D to 1D. Note that adiabaticity
is assumed after decoupling.

For the results reported in the main text, the intertube
DDI energy is estimated by summing all of the DDI en-
ergy between atoms in the 2D array of 1D gases using
the density profiles calculated from the state preparation
model.

Reduction of w,

Our modeling of the experimental state preparation
pinpointed a process that results in cooling of the 1D
gases (a reduction in T from T*). It is the ramping
down of the longitudinal trap frequency with the opening
of the trap; w, changes linearly from w! = 27x55.5 Hz
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Supp. Fig. S6. Numerical results for (a) momentum and (b)
rapidity distributions after the reduction of w, to its final
value. We studied a single 1D gas with N = 20 particles at the
TG limit. Solid lines are the results of the exact dynamics fol-
lowing the reduction of w, in the experiment, where we start
from an equilibrium state at 15 nK with w’ = 27 x 55.5 Hz
and simulate the linear reduction of the trap frequency to
wi =27 x 36.4 Hz in 150 ms. Dashed (dashed-dotted) lines
are the calculations for an equilibrium state at 10 nK (15 nK)
with w, = 27 x 36.4 Hz. The 10 nK state is the one that has
the closest entropy (within the 0.5-nK temperature-resolution
used) to the initial state.

to w! = 27x36.4 Hz in 150 ms. The 1D gases expand
and adiabatically cool.

We used numerical simulations in the TG limit
(ip — o0) to check that the experimental protocol
followed during this step is slow enough to produce adi-
abatic cooling. In Fig. S6, we plot the numerical results
for the (a) momentum and (b) rapidity distributions
after the reduction of w,. The calculations were done
for a single 1D gas with N = 20 atoms at 7% = 15 nK
before the trap changes. We do the exact time evolution
with the numerical approach introduced in Ref. [28].
The linear ramp downward of the trap frequency is dis-
cretized in 600 steps in our calculation. The results after
the linear ramp (solid lines) agree with the calculations
for an equilibrium state in the w, = 27 x 36.4 Hz trap
at 10 nK (dashed lines), which has the closest entropy
(within the 0.5-nK temperature-resolution used) to the
state (T* = 15 nK with w, = 27 x 55.5 Hz) before this
operation. As reference, we also plot calculations for
an equilibrium state in the w, = 27 x 36.4 Hz trap at
15 nK (dashed-dotted lines).

11
DEFINITION AND VALUES OF ~r

Due to the presence of the confining potential in
experimental systems, y(zr) = mgip/[h?nip(z)] de-
pends on the local 1D density nip(z). To gauge how
strongly correlated a specific inhomogeneous 1D sys-
tem is, one can compute the weighted average 7 =
[ dznip(x)y(x)/[[ denp(z)] = [drgin/N. 7 is well
defined at zero temperature, [ dx = zo, where o is the
size of the trapped 1D gas; however, at finite tempera-
ture, the particle density exhibits long tails and so xq is
not well defined [20]. Previous work circumvented this
problem replacing o — z, where z{ is computed us-
ing the specific fraction 7 of the atoms that is within
[—z{,2]; e.g., 80% of the atoms in Ref. [29]. We follow
a different approach in order to avoid the arbitrariness in
selecting the fraction 7.

We instead report vy, which is based on the ratio of ki-
netic and interaction energy. We compute v as follows.
For a given set of experimental parameters, we calcu-
late the ratio between the total kinetic (Ex = >, E%)
and total interaction energy (E; = Y, E}), as obtained
from our modeling. ~7 is the value of ~ of a homo-
geneous system at finite temperature that has exactly
that ratio. The homogeneous system is selected to have
the same ¢g1p as the trapped one, and a temperature
that is the weighted average temperature of the array
of 1D gases, T = YuNT/ >, Ni. Since Ex/Er is a
monotonic function with «, it is straightforward to find
the particle density anD in such a homogeneous system
for which Efx/FE; matches the result obtained for the
modeling of the experimental results. Then we compute
yr = mgip/(h*nTy). In Table S3, we show the calcu-
lated ~r for the experimental parameters considered in
the main text.

giD T YT
(B /m pm™) (nK)

-1.3 - -

1.4 16 1.0
4.1 16 3.2
6.8 16 5.3
3.1 16 2.2
5.8 16 4.5
8.5 16.5 6.7
11.2 16.5 8.7
15.0 16.5 12
17.7 16.5 14
204 17 16
23.1 17 19
263 10 420

TABLE S3. Calculated 1 for the experimental parameters
considered in the main text. See Table S2 for the experimental
parameters underpinning the calculation of gip.



