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the contact interactions are strong, particles avoid each
other and the 1D densities are lower, resulting in weaker
dipolar interactions. As one decreases γT, particles in
the equilibrium state of the integrable system are likelier
to overlap; therefore, the 1D densities increase, and with
them, the strength of the DDI. Remarkably, all these
variations are accessible in our experimental apparatus.

In summary, we showed that the DDI significantly ef-
fects the equilibrium rapidity and momentum distribu-
tions of dipolar 162Dy gases as one departs from the
strongly correlated TG regime, suggesting that an in-
creasingly stronger dressing of the quasiparticles takes
place. Our model captured the main experimental
trends, but quantitative differences remain. This is likely
due, in part, to not accounting for the effect of the long-
range aspect of the DDI. It couples different 1D gases as
well as bosons that are far away within each 1D gas. The
long-range DDI produce correlations and slow dynamical
processes that go beyond what can be computed using
state-of-the-art numerical methods. Another potential
source of discrepancy are the nonthermal effects related
to the near-integrability of the 1D gases as well as to
heating, which we neglected. Nevertheless, it is remark-
able that we are able to closely describe the experimen-
tal results in such a complex, strongly-interacting system
despite the above-mentioned omissions in our modeling.
Notably, our largest “theoretical error” for the results
reported in Fig. 4 is only ∼11%.

We hope our findings will motivate studies to incor-
porate the long-range part of the DDI in arrays of 1D
gases described by otherwise integrable models [21], both
to understand and quantify how they dress the quasi-
particles in equilibrium and to clarify the role of near-
integrability nonthermal effects during the initial state
preparation. Such endeavors may usher a new direc-
tion for precision quantum many-body physics involving
near-integrable models with short-range interactions per-
turbed by long-range interactions.
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Supplemental Material:

EXPERIMENTS

Experiment sequence

BEC production

A 162Dy dipolar Bose-Einstein condensate (BEC) is
prepared by evaporative cooling in a 1064-nm crossed
optical dipole trap (ODT) with beam waists ∼65 µm
along x̂. The typical atom number is 2.3(1) × 104 at
a temperature of 38 nK with a BEC fraction of near
75%; these numbers are consistent with those reported
in Ref. [22]. The final ODT trap frequency is [55.5(6),
22.5(5), 119.0(7)] Hz. The bias magnetic field is set along
ẑ during the evaporation; this is the θB = 90◦ direction,
where θB is the field angle with respect to x̂. The field
is then slowly rotated to θB = 55◦. During the field ro-
tation, the field vector is kept in the x-z plane with a
constant field magnitude. The angle θB = 55◦ is chosen
to remove the intratube dipole-dipole interaction (DDI)
so that the results can be compared with numerical sim-
ulations using the Lieb-Liniger model. For the Tonks-
Girardeau (TG) results, we prepare a BEC of 5.8(2)×103

atoms at a temperature of ∼20 nK with the field angle
fixed at 90◦ for better field stability as we approach the
Feshbach resonance [7].

Lattice loading

The BEC is loaded into a 2D optical lattice to create
an array of 1D gases while the 1064-nm ODT remains
on. The 2D optical lattice is 5-GHz blue-detuned from
the λ = 741 nm atomic transition. The 741-nm beams
have a beam of waist ∼150 µm and are retroreflected.
The lattice depth is adiabatically ramped to 30ER in

200 ms, creating a strong confinement in both ŷ and ẑ.
The resulting transverse trap frequency is ω⊥ = 2π ×
25 kHz. ER = ~

2k2R/2m is the recoil energy and kR =
2π/λ. There are around 40 atoms in the center tube.
This reduces to around 15 for the TG case.

1D harmonic and flat trap

A 1560-nm ODT is then superimposed onto the 1064-
nm ODT. Their powers are adjusted such that the lon-
gitudinal trap frequency is ω|| = 2π × 36.4(3) Hz. Using
two ODT beams allows us to have better control of the
trap shape when switching from the harmonic trap to the
flat trap.
The longitudinal antitrap frequency due to the blue-

detuned lattice beams is ∼7 Hz at a lattice depth of
30ER. This antitrapping potential is balanced by the
1560-nm ODT. Its beam waist is 150 µm to match the
shape of optical lattice beams. This results in a flat,
1D trap of length 60 µm. The final trap configuration
consists of the superposition of the 1064-nm ODT, the
blue-detuned, 741-nm 2D optical lattice, and the 1560-
nm ODT. The more tightly confining 1064-nm ODT sets
the final longitudinal trap frequency ω||. This config-
uration allows us to quickly switch off the longitudinal
harmonic trap by turning off the 1064-nm ODT.

Field rotation and magnitude ramping

After the array of 1D dipolar gases is created, the field
is rotated from θB = 55◦ to the final angle of choice, ei-
ther θB = 0◦, 35◦ or 90◦, or kept constant at 55◦. The
magnetic field is held within the x-z plane throughout
the rotation at the evaporation field magnitude. The
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explain how these parameters are computed to model as
close as possible what is experimentally done.
In our experiment, we load a 3D BEC with Ntot atoms

at temperature T3D in a 2D optical lattice (U2D) that
is ramped-up to create the 2D array of 1D gases. Our
first theoretical assumption is that at a lattice depth U∗

2D

(which sets g∗1D) the 3D gas decouples into individual 1D
gases with Nl atoms. Our second assumption is that all
the 1D gases are in thermal equilibrium at a temperature
T ∗ with each other at that point. Given those assump-
tions, we can use the exact solution of the homogeneous
Lieb-Liniger model at finite temperature—together with
the LDA and knowledge from measurements of Ntot and
ODT frequencies ωx, ωy, and ωz—to determine the num-
ber of atoms Nl in each 1D gas. (We round Nl to the
nearest integer number.) We can do this for any given
decoupling depth U∗

2D and temperature T ∗ at decoupling.
We also compute the entropy Sl of each 1D gas at that
point. The effectiveness of such a theoretical modeling
procedure, under the assumption that the entire system
is in the ground state at all times, was demonstrated in
Ref. [6] for 1D gases with only contact interactions.
As the loading in the 2D optical lattice proceeds be-

yond U∗
2D to the final 2D lattice depth, our third assump-

tion is that the process is adiabatic; namely, that the en-
tropy Sl (not the temperature) of each 1D gas remains
constant. Using that entropy and the parameters for each
1D gas at the end of the state preparation, we find the
temperature Tl of each 1D gas and use it to compute the
momentum and rapidity distributions. It is important
to stress that after the 2D lattice is ramped to its final
depth, our state preparation includes the experimentally
relevant reduction of the longitudinal trapping frequency
ωx. This overall procedure not only makes Tl lower than
T ∗ but also results in different temperatures across the
array of 1D gases. In our calculations, we first group the
1D tubes with the same Nl = N (rounded to the closest
integer) and assume that they have the same entropy [us-
ing the average entropy S̄(N) = Sl(Nl = N)]. Then, we
search for T (N) (in a grid of temperatures that change
in steps of 0.5 nK) that produces the appropriate S̄(N)
using the value of ωx and g1D at the end of the state
preparation.
The free parameters in our modeling of the experiment

are U∗
2D and T ∗. We select their values by minimizing

the quadrature sum of the differences between the exper-
imental measurements and the theoretical calculations
for the momentum and rapidity distributions

∆ =
√

∆2
rapidity +∆2

momentum , (S7)

where

∆α =

∑

|f exp.
α (k)− f theo.

α (k)|δk
∑

|f exp.
α (k)|δk +

∑

|f theo.
α (k)|δk

, (S8)

and α denotes either rapidity or momentum. We call ∆
the theoretical error.

(a) (b)

Supp. Fig. S5. Theoretical error for the experimental pa-
rameters considered in Fig. 2 of the main text. (a) and (b)
correspond to the parameters in the same panels of that fig-
ure.

Results for the theoretical error as a function of T ∗

and U∗
2D are shown in Fig. S5. We use a coarse grid of

temperatures (in 5-nK steps) and decoupling depths (in
5ER steps) because our strong assumptions in the mod-
eling of the state preparation do not make a finer grid
quite meaningful. Figure S5 shows that, around the min-
imum theoretical error, the error depends strongly on T ∗

and weakly on U∗
2D. The latter suggests that assuming

a single decoupling depth is a reasonable approximation.
We also find that, likely because of ignoring the effect of
the DDI, our theoretical error is lower at low decoupling
depths. This is because low decoupling depths result in
higher particle densities in the 1D gases and, hence, in
broader rapidity distributions, which are closer to (yet
still narrower than) the experimental ones. For our sim-
ulations we select U∗

2D = 5ER. The line cut along 5ER is
shown in the insets of Fig. 3 of the main text.
An interesting observation is that the experimentally

estimated BEC temperature T3D is higher than the op-
timal T ∗ at decoupling, which suggests that the loading
from 3D to 1D results in cooling even if this process is
not perfectly adiabatic—we do not assume adiabaticity
in the transition from 3D to 1D. Note that adiabaticity
is assumed after decoupling.
For the results reported in the main text, the intertube

DDI energy is estimated by summing all of the DDI en-
ergy between atoms in the 2D array of 1D gases using
the density profiles calculated from the state preparation
model.

Reduction of ωx

Our modeling of the experimental state preparation
pinpointed a process that results in cooling of the 1D
gases (a reduction in Tl from T ∗). It is the ramping
down of the longitudinal trap frequency with the opening
of the trap; ωx changes linearly from ωi

x = 2π×55.5 Hz




