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Abstract
Motivated by problems from statistical analysis for discretely sampled SPDEs, first we
derive central limit theorems for higher order finite differences applied to stochastic
processes with arbitrary finitely regular paths. These results are proved by using the
notion of �-power variations, introduced herein, along with the Hölder-Zygmund
norms. Consequently, we prove a new central limit theorem for �-power variations of
the iterated integrals of a fractional Brownian motion. These abstract results, besides
beingof independent interest, in the secondpart of the paper are applied to estimation of
the drift and volatility coefficients of semilinear stochastic partial differential equations
in dimension one, driven by an additive Gaussian noise white in time and possibly
colored in space. In particular, we solve the earlier conjecture from Cialenco et al.
(Stat. Inference Stoch. Process. 23:83-103, 2020) about existence of a nontrivial bias
in the estimators derived by naive approximations of derivatives by finite differences.
We give an explicit formula for the bias and derive the convergence rates of the
corresponding estimators. Theoretical results are illustrated by numerical examples.
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1 Introduction

The main motivation of this work comes from some open problems in statistical
analysis of discretely sampled stochastic partial differential equations (SPDEs) of the
form

dXt (x) = −θ(−�)α/2Xt (x)dt + F(Xt (x)) dt + σ(−�)−γ dWt (x),

t > 0, x ∈ [0, 1], (1.1)

where α > 0, γ ≥ 0 are given, θ, σ > 0 are the parameters of interest (unknown
to the observer), � stands for the Laplace operator ∂xx with Dirichlet or periodic
boundary conditions, W is a cylindrical Wiener process on L2([0, 1]), and F is a
(nonlinear) operator acting on some appropriate Hilbert space. Note that −� is a
positive, selfadjoint, closed and densely-defined operator in L2([0, 1]), and hence the
power operator (−�)β, β ∈ R, is well defined. We refer to the recent survey [24]
on fractional Laplacian and its applications such as modeling anomalous diffusions.
Most of the existing literature on statistical inference for SPDEs is dedicated to linear
SPDEs, i.e. F = 0, with few exceptions [1, 2, 7, 18, 29, 32]. Moreover, the majority
of works were dedicated to continuous time sampling setup; cf. the survey paper [11].
The parameter estimation problem for (linear) SPDEs when the solution is discretely
sampled in space and/or timecomponentwas addressed systematically only recently by
quite different methods, and we refer to [4–6, 8–10, 12, 19, 21–23, 34], and to [31, 33]
for earlier studies, as well as the recent work [18] on reaction-diffusion equations. The
central theme in these works evolves, in one form or another, around power variations
of some relevant stochastic processes, which in turn is strongly related to the regularity
properties of the solution. For example, when α = 2, γ = 0, and F = 0, one can show
that for a fixed x ∈ (0, 1), the paths of the process Xt (x) have continuous versions
with Hölder order of continuity 1/4−ε, for any ε > 0. Consequently, as proved in [8],
the fourth power variation is finite and yields consistent and asymptotically normal
estimators for θ and σ . Similar arguments hold true for solutions of SPDEs when the
Hölder order of continuity in space or time component is smaller than one. However,
this approach, as well as the existing methods from the aforementioned literature on
discrete sampling, cannot be applied directly to SPDEs with regular paths (or space
colored noise). One of the main goals of this work is to develop new methodologies
that can treat such cases. Of course, one should not expect that the solution Xt (x)

as function of t will get smoother than the paths of a Brownian motion, i.e. almost
1/2 Hölder continuous. On the other hand, it is known, for example when F = 0,
that for any fixed t > 0, the solution process Xt (x), x ∈ (0, 1), has almost Hölder
2γ + α/2 − 1/2 regularity in spatial variable x , namely the solution gets smoother
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the more colored (correlated) in space is the driving noise. One approach is to take
the maximal number of (classical) derivatives in x , say m := �2γ + α/2 − 1/2�, and
expect that ∂m

x Xt (x) behaves as a fractional Brownian motion with Hurst parameter
2γ +α/2− 1/2− m plus a smooth process, and apply or adapt the existing results on
power variations, for example, from [8, 21, 22]. However, from a statistical point of
view, this assumes that the process ∂m

x Xt (x), x ∈ (0, 1) is observed, which practically
speaking is an unrealistic assumption. One way to overcome this drawback, is to
approximate the derivatives by using the discrete measurements of the solution itself,
for example by finite differences. However, such approximations typically will yield
a nontrivial and non-vanishing bias in the estimators - a phenomena noticed in [13]
through numerical experiments for SPDEs driven by space-only noise andwithm = 1,
and later in [12] the bias was explicitly given and the asymptotic properties of the
estimator were formally proved. We built on these line of ideas, and we focus our
study on discretely sampled (in space) of semilinear SPDEs.

A key concept of this paper is to track and use the classical regularity of a continuous
function in termsof conveniently chosen integro-differenceoperators, forwhichweuse
the Hölder-Zygmund norms and spaces rather than classical Hölder or Sobolev norms
and spaces. To deal with the higher order finite differences and their power variations,
we introduce the notion of�-power variation, and prove that the central limit theorems
for �-power variations are invariant under smooth perturbations; see Sects. 2, 3. We
note that the idea of using power variation of higher order finite differences has been
used, for example, in estimation of self-similarity order of self-similar processes. We
highlight [20], where quadratic variations from higher order linear filters are studied
for a class of Gaussian processes. In [14], the case of p-variations is studied for
fractional Brownian motion. See also [36, Sect. 5.6] and references therein. We derive
a new central limit theorem for �-power variations of iterated integrals of a fractional
Brownianmotion (fBm) (see Sect. 4), wherewe also explicitly compute the asymptotic
variance. These novel results are of independent interest, contributing to the literature
on limit theorems for fractional type processes, but in addition, these results provide
a method for building consistent and asymptotically normal estimators for discretely
sampled process with smooth paths, such as the SPDEs mentioned earlier.

The statistical analysis of semilinear SPDEs is investigated in Sects. 5, 6. We study
the estimation of the drift θ and volatility σ of (1.1), under fairly general assumptions
on the nonlinear part, assuming that the solution is sampled discretely in the spatial
component x at one fixed time instance t > 0. In particular, we do not assume that F is
known to the observer. Similarly to the above cited works on nonlinear SPDEs, we first
use the so-called splitting of the solution argument, where the solution is written as
X = X+˜X , where X is the solution of the linear SPDE and ˜X solves the corresponding
nonlinear random PDE (see Eqs. 5.2 and 5.3). In typical semilinear equations (as in
Example 5.3), ˜X is smoother than X , which allows to argue that the estimation problem
can be reduced to the linear case. The latter is reduced to the results on fBm by proving
that the highest order (classical) derivative of X has the same probability law as a
smoothly perturbed fBm. Assuming that one of the coefficients σ or θ is known we
derive an estimator for the second coefficient, prove its consistency and provide its
rate of convergence. We note that, the results in [8], which is the closest in spirit to
this manuscript, considers only linear equations driven by space-time white noise, i.e.
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α = 2, γ = 0, and F = 0. The results presented in this manuscript are the first ones
on parameter estimation for SPDEs with arbitrarily regular paths that are discretely
sampled in physical spatial domain. As a second application of general results of
Sect. 4, in Sect. 6 we study parameter estimation problem for a version of SPDEs (1.1)
on the whole space. Namely, same as in [21, 22], we consider linear equations driven
by a space-timeGaussian noisewith covariance structure generated by theRiesz kernel
of order 4γ with γ ∈ (0, 1/4). Assuming the same sampling scheme as in the bounded
domain case, we derive consistent and asymptotically normal estimators for θ or σ .
We remark that the obtained results hold true for any α > 0, generalizing the results
of [21, 22], where it is assumed that α ∈ (0, 2]. The case of nonlinear equations on
the whole space is omitted in this study due to the lack of results on fine regularity
properties of the solution (the so-called L p theory). We validate the theoretical results
by numerical simulations for various sets of parameters; see Sect. 7. In particular, we
compute explicitly the aforementioned bias, which indeed turns out to be a significant
correction to the naively derived estimators.

Finally, we remark that extending the obtained results to more general sampling
schemes, e.g. sampling on a space-time grid, generally speaking is not an easy task.
See for instance [4, 5, 8, 10, 18] that deal with some particular SPDEs that admit
solutions with low spatial regularity. Such schemes are also directly related to the
joint estimation of θ and σ . These questions, albeit practically very important, are
beyond the scope of the present work and will be addressed in the future works.

2 Preliminaries

We fix a complete probability space F = (
,F ,P) and throughout, all equalities
and inequalities are understood in P-a.s. sense, unless otherwise stated. As usual, we

will denote by P − lim or
P−→ the convergence in probability, and w−lim or

d−→ will
stand for the convergence in distribution. Correspondingly, an = oP(bn) means that

an/bn
P−→ 0. Moreover, we write an � bn , if there exists a constant C , independent of

n, such that an ≤ Cbn for all n ∈ N.
Let Xt , t ∈ R, be a real valued measurable function, and denote by J , and �h , the

integral, and respectively the difference operators of the form

J Xt :=
∫ t

0
Xr dr , t ∈ R,

�h Xt := Xt+h − Xt , t ∈ R, h > 0.

As usual, we put J 0X := X , and for m ∈ N, we define J m X := J J m−1X . Similar
notations apply to �h . Note that,

�M
h (Xt ) =

M
∑

k=0

(−1)M−k
(

M

k

)

Xt+kh, t ∈ R, h > 0.
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We will denote by C(R) the space of continuous and bounded functions on R

endowed with sup-norm ‖ f ‖∞ := sup | f |. Correspondingly, for k ∈ N, we put
Ck(R) := { f ∈ C(R) : ‖ f ‖Ck (R) := ∑

j≤k ‖D j f ‖∞ < ∞}, where D stands for
differential operator.

One of the key ideas of this paper is tracking and using the classical regularity of
a continuous function in terms of conveniently chosen integral and difference oper-
ators. For this purpose, we will be using the Hölder-Zygmund spaces Cs(R), s > 0,
introduced in [38] and endowed with the norm

‖ f ‖(k,M)
s = ‖ f ‖Ck (R) + | f |(k,M)

s ,

with
| f |(k,M)

s = sup
h>0

h−(s−k)‖�M
h Dk f ‖∞, (2.1)

and where k ∈ N0, M ∈ N, such that k < s and M > s − k. It can be shown (cf.
[35, Section1.2.2]), that for any such k and M , and fixed s the norms | · |(k,M)

s are
equivalent. We also recall that for any s > 0, Cs(R) coincides with the Besov space
Bs∞,∞(R) (see also [17]), and for s /∈ N, Cs(R) coincide with the classical Hölder
spaces. Thus, the Hölder-Zygmund norms measure the regularity of a continuous
function in the classical sense. In this study, we will be mainly interested in the case
k = 0, which corresponds to statistical experiment of discrete measurements of the
underlying process itself. However, if the observer evaluates discretely some derivative
of f , then one should consider k ≥ 1. Thus, we emphasize that the choice of k = 0
is primarily driven by practical reasons, but in principle all results can be elevated to
the general case k ∈ N0. We also set Cs−(R) :=⋂r<s Cr (R).

3 Smooth perturbations of higher order power variations

In this section, we introduce the notion of a �-power variation for a given process X
and study its stability under smooth perturbations. Letπ = {t0, . . . , tN } be the uniform
partition of size N of the interval [a, b] ⊂ [0, T ], and put h := hN := (b − a)/N =
tk+1 − tk, k = 0, . . . , N . For fixed s > 0, q, M, N ∈ N, such that N > M , we define

Vq,M,s,N (X) := 1

b − a

N−M
∑

k=0

h

∣

∣

∣

∣

∣

�M
h Xtk

hs

∣

∣

∣

∣

∣

q

.

Similar to the power variation of a process, we are interested in the limiting behavior
of Vq,M,s,N as N → ∞. The �-power variation of order (q, M, s) of a process X is
defined as

Vq,M,s(X) := P − lim
N→∞ Vq,M,s,N (X), (3.1)

provided that the limit (in probability) exists. Note that Vp,1,1 corresponds to the
(normalized) power variation of order p.

We start with a simple, but important, result that links the path continuity of the
process X with its generalized power variation.
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Lemma 3.1 Let q, M ∈ N, s > 0, such that M > s. If X ∈ Cs([a, b]), then
Vq,M,s,N (X) is uniformly bounded in N.

Proof This follows at once by noticing that

Vq,M,s,N (X) = 1

b − a

N−M
∑

k=0

(tk+1 − tk)

∣

∣

∣

∣

∣

�M
h Xtk

(tk+1 − tk)s

∣

∣

∣

∣

∣

q

� (h−s‖�M
h X‖∞)q

� (‖X‖(0,M)
s )q .

��
We give the main results of this section, which in the nutshell says that the central

limit theorems for �-power variations of a stochastic process remain invariant under
smooth perturbations; see also [8, Proposition 2.1].

Theorem 3.2 Let q ≥ 1, s > 0, M ∈ N with M > s. Assume that X ∈ Cs−([a, b])
and for some α > 0, � ≥ 0, the following limit exists

h−α
N

(

Vq,M,s,N (X) − Vq,M,s(X)
) d−→ N (0, �), as N → ∞, (3.2)

whereN (0, �) is a Gaussian random variable with mean zero and variance1 �. Then,
for any Y ∈ Cs+η−([a, b]) with η > α, and M > s + α,

h−α
N

(

Vq,M,s,N (X + Y ) − Vq,M,s(X)
) d−→ N (0, �), as N → ∞. (3.3)

Proof Without loss of generality, we assume that M > s +η, otherwise take η′ instead
of η with α < η′ < η ∧ (M − s). We proceed analogously to [8, Proposition 2.1]. It
suffices to show

lim
N→∞ h−α

N (Vq,M,s,N (X + Y ) − Vq,M,s,N (X)) = 0, a.s.. (3.4)

Let gN (r) = (Vq,M,s,N (X)1/q + r Vq,M,s,N (Y )1/q
)q
. Then, by Minkowski’s inequal-

ity, gN (−1) ≤ Vq,M,s,N (X + Y ) ≤ gN (1), and there exist ξ1, ξ2 ∈ [0, 1] (dependent
on N ∈ N) such that

g′
N (−ξ1) = gN (−1) − gN (0) ≤ Vq,M,s,N (X + Y ) − Vq,M,s,N (X)

≤ gN (1) − gN (0) = g′
N (ξ2).

Thus, it remains to show h−α
N sup−1≤r≤1 g′

N (r)
a.s.−−→ 0, as N → ∞. For r ∈ [−1, 1]

and ε > 0,

∣

∣g′
N (r)

∣

∣ ≤ q
∣

∣

∣Vq,M,s,N (X)1/q + r Vq,M,s,N (Y )1/q
∣

∣

∣

q−1
Vq,M,s,N (Y )1/q

� hη−2ε
N Vq,M,s+η−ε,N (Y )1/q ,

1 As usual, zero variance case is interpreted as the Dirac point mass at the mean.
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where in the last inequality we used that qhε
N |Vq,M,s,N (X)1/q +r Vq,M,s,N (Y )1/q |q−1

is bounded uniformly in N and r ∈ [−1, 1] due to Lemma 3.1, and that Vq,M,s,N (Y ) =
hq(η−ε)

N Vq,M,s+η−ε,N (Y ) by the definition of the�-power variation. Finally, since Y ∈
Cs+η−ε([a, b]), and again making use of Lemma 3.1 we have that Vq,M,s+η−ε,N (Y )

is bounded uniformly in N . The claim follows from choosing ε < (η − α)/2. ��
Remark 3.3 (1) We note that the restriction M > s + α can be always satisfied by
choosing M large enough. (2) If � = 0, then the limits (3.2) and (3.3) can be equiv-
alently understood as limits in probability. This in turn can be re-formulated in the
terms of rates of convergence, as we do, for example, in Theorems 5.6 and 5.7. (3)
The results in this section can be easily extended to �-power variations over arbitrary
sequence of partitions, not necessarily uniform. Namely, one can replace the sequence
of uniform partitions with a sequence of partitions with vanishing mesh-size in the
above limits. However, generally speaking the counterpart of limit (3.1) (if exists),
may depend on the choice of the sequence of partitions.

4 The case of fBM

In the Sectionwe derive limit theorems for�-power variations of iteratively integrated
fractional Brownianmotion.We start by recalling that a two-sided fractional Brownian
motion (fBm) with Hurst index H ∈ (0, 1) is a centered Gaussian process B H =
(B H

t )t∈R such that

E

(

B H
t B H

r

)

= 1

2

(

|t |2H + |r |2H − |t − r |2H
)

, t, r ∈ R.

A continuous stochastic process X is called s-self-similar or self-similar of index s (or
self-similar for short) if the law of (h−s Xht )t∈R on C(R) does not depend on h > 0.
The process X is said to be stationary if the law of (Xt+u)t∈R on C(R) does not
depend on u ∈ R, and X is said to have stationary increments if �h X is stationary
for all h > 0. A fractional Brownian motion B H is a prominent example of a self-
similar process (of index H ) with stationary increments. Many core properties of fBm
are directly linked to these two features. However, generally speaking, differences of
integrals of fBm are not self-similar in the usual sense, but rather, one has to account
for the step-width of the difference operator. Towards this end, we extend the notion
of self-similarity to a parameterized family of processes, say X (h), h > 0. Primarily,
we will be interested in a parameterized family of process of the form X (h) = �M

h Y ,
where M ∈ N0 and Y is a process that does not depend explicitly on h > 0. We say
that a parameterized family of process X (h) is parameterized s-self-similar (or just
parameterized self-similar) if the law of (h−s X (h)

ht )t∈R is independent of h > 0. We
also note that in general, if X is stationary, then J X is not necessarily stationary.

Lemma 4.1 Let X and X (h), h > 0, be centered Gaussian processes. Then:

(1) �2
h J X = �h J�h X.

(2) If X is s-self-similar, then J X is (s + 1)-self-similar.
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(3) If X (h) is parameterized s-self-similar, then �h X (h) is parameterized s-self-similar
and J X (h) is parameterized (s + 1)-self-similar.

(5) If X is stationary, then �h X and �h J X are stationary for any h > 0.

Proof First we note that if X is a centered Gaussian process, then J X and �h X
are also Gaussian and centered. Thus, the law of �h J X (h) is determined by

E

[

�h J X (h)
t �h J X (h)

r

]

, which is equal to
∫ t+h

t

∫ r+h
r E

[

X (h)
v X (h)

w

]

dv dw, t, r ∈ R.

Using this, the above properties follow now by direct calculations. ��
Next, we state some properties specific to integro-differences of the J m B H and

�M
h J m B H .

Lemma 4.2 The following assertions hold true:

(1) For m ∈ N0 and t, r ∈ R, we have

E

(

J m B H
t · J m B H

r

)

=
m
∑

k=0

(−1)k
(

tm−krm+k+2H + rm−k tm+k+2H
)

2(m − k)!
m+k
∏

i=1

(2H + i)

+ (−1)m+1|t − r |2m+2H

2
2m
∏

i=1

(2H + i)

. (4.1)

In addition, J m B H is (m + H)-self-similar. By convention,
0
∏

i=1

(2H + i) = 1.

(2) For M, m ∈ N0 and t, r ∈ R, we have

E

[

�M
h J m B H

t �M
h J m B H

r

]

=
M
∑

k,l=0

(−1)2M−k−l
(

M

k

)(

M

l

)

E

[

J m B H
t+kh J m B H

r+lh

]

.

(4.2)

(3) If M ≥ m, then �M
h J m B H is parameterized (m + H)-self-similar and has sta-

tionary increments.

Proof (1)We prove (4.1) by induction inm. Form = 0, (4.1) is immediate. Form = 1,
by direct computations, we have

E

(

J B H
t · J B H

r

)

=
∫ t

0

∫ r

0
E

(

B H
u B H

v

)

du dv

= 1

2

∫ t

0

∫ r

0

(

u2H + v2H − |u − v|2H
)

du dv

= 1

2

[

t · r2H+1 + r · t2H+1

1!(2H + 1)
+ |t − r |2H+2 − r2H+2 − t2H+2

(2H + 1)(2H + 2)

]

,
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and hence (4.1) is true for m = 1. Suppose (4.1) holds true for m ≥ 0. Then,

E

(

J m+1B H
t · J m+1B H

r

)

=
∫ t

0

∫ r

0
E

(

J m B H
u · J m B H

v

)

du dv

=
∫ t

0

∫ r

0

[

m
∑

k=0

(−1)k
(

vm−kum+k+2H + um−kvm+k+2H
)

2(m − k)!∏m+k
i=1 (2H + i)

+ (−1)m+1|v − u|2m+2H

2
∏2m

i=1(2H + i)

]

du dv

=
m+1
∑

k=0

(−1)k
(

tm+1−krm+1+k+2H + tm+1−krm+1+k+2H
)

2(m + 1 − k)!∏m+1+k
i=1 (2H + i)

+ (−1)m+2|t − r |2(m+1)+2H

2
∏2(m+1)

i=1 (2H + i)
,

and thus (4.1) is proved. Consequently, (m + H)-self-similarity of J m B H follows
from Lemma 4.1(2).

(2) Identity (4.2) is immediate.
(3) The parameterized self-similarity follows from Lemma 4.1(3). Finally,

Lemma 4.1(4) yields stationarity for �M+1
h J m B H = �M−m

h (�h J )m�h B H ,
where we use Lemma 4.1(1) and the fact that �h B H is stationary for all h > 0.
The proof is complete.

��
Let us fix M ∈ N and s > 0, and write s = m + H with m ∈ N0 and H ∈ (0, 1).

In view of Lemma 4.2, there exists μM,s > 0 such that

E

∣

∣

∣�
M
h J m B H

t

∣

∣

∣

2 = μM,sh2s,

for all t ∈ R and h > 0, and where μM,s is given by

μM,s :=
M
∑

k=0

(

M

k

)2 m
∑

p=0

(−1)pk2s

(m − p)!∏m+p
i=1 (2H + i)

+
∑

0≤ j<k≤M

(−1)2M−k− j
(

M

k

)(

M

j

)[

(−1)m+1(k − j)2s

∏2m
i=1(2H + i)

+
m
∑

p=0

(−1)p
(

km−p jm+p+2H + jm−pkm+p+2H
)

(m − p)!∏m+p
i=1 (2H + i)

]

.

We further set

ρM,s(�) := μ−1
M,sh−2s

E

(

�M
h J m B H

t · �M
h J m B H

t+h�

)

, � ∈ N0. (4.3)
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Note that due to parametrized self-similarity and stationarity of �M
h J m B H as in

Lemma 4.1, we have that ρM,s(�) does not depend on t ∈ R and h > 0.
Next, we will investigate the asymptotic behavior of the q-th (Hermite) variation

of �M
h J m B H , for which we will make use of (Breuer-Major) Theorem A.1 applied to

process Yt =
(

μ
1/2
M,shs

)−1 ·�M
h J m B H

t . First we note that by Lemma 4.2 the process

Y is a centered stationary Gaussian process with unit variance. Next result will be used
to show that (A.1) is satisfied.

Lemma 4.3 Assume that M, q ∈ N and 0 < s < M − 1

2q
. Then

∑

�∈Z
|ρM,s(�)|q < ∞. (4.4)

Proof Without loss of generality, we assume that � ≥ M . The covariance function
ρM,s(�) becomes

ρM,s(�) = μ−1
M,s

∑

0≤ j,k≤M

(−1)2M−k− j
(

M

k

)(

M

j

)[

(−1)m+1( j + � − k)2m+2H

∏2m
i=1(2H + i)

+
m
∑

p=0

(−1)p
(

km−p( j + �)m+p+2H + ( j + �)m−pkm+p+2H
)

(m − p)!∏m+p
i=1 (2H + i)

]

=: c1�
2M
1 f1(�) +

m
∑

p=0

[

c2,p�
M
1 f2,p(�) + c3,p�

M
1 f3,p(�)

]

, (4.5)

where

f1(x) = (x − M)2m+2H , f2,p(x) = xm+p+2H , f3,p(x) = xm−p.

First note that �M
1 f3,p = (�1 J )M f (M)

3,p ≡ 0 for M > m, so

c2,p = ((m − p)!
m+p
∏

i=1

(2H + i))−1
M
∑

k=0

(−1)M−k
(

M

k

)

km−p = 0.

By direct computations, one can show that c1 �= 0, and c3,p �= 0, for any H ∈ (0, 1).
It is clear that, as � → ∞,

�2M
1 f1(�) = �2M

1 J 2M f (2M)
1 (�) = (�1 J )2M f (2M)

1 (�) ∼ f (2M)
1 (�) ∼ �2m+2H−2M .

If M ≤ m + p, we similarly deduce that �M
1 f3,p(�) ∼ �m−p−M , and �2M

1 f1 grows
faster than �M

1 f3,p, since 2m + 2H − 2M > m − p − M . If M > m + p, we have
�M

1 f3,p(�) ≡ 0. Combining the above, we have

ρM,s(�) ∼ �2m+2H−2M , � → ∞.
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Thus, if H < M − m − 1

2q
, then (4.4) is true. This concludes the proof. ��

As an immediate consequence of Lemma 4.3, we get that for any 0 < s < M − 1

2q
,

the quantity

ρ2
q,M,s := q!

∑

�∈Z

(

ρM,s(�)
)q (4.6)

is well-defined and finite.
The following result identifies Vq,M,s(J m B H ) for s = m + H together with its

convergence rate.

Theorem 4.4 Let M > m ≥ 0 and q ≥ 1 be integers, and assume that either of the
following assumptions is satisfied:

(1) M = m + 1 and 0 < H < 3/4,
(2) M ≥ m + 2 and 0 < H < 1.

Then, there exists σq,M,s > 0 such that

√
N
(

Vq,M,s,N

(

J m B H
)

− τqμ
q/2
M,s

)

d−→ N
(

0, σ 2
q,M,sμ

q
M,s

)

, as N → ∞, (4.7)

where τq := E|Z |q with Z ∼ N (0, 1).

Moreover, if q is an even number, then σ 2
q,M,s =∑q

k=1

(q
k

)2
τ 2q−kρ

2
k,M,s .

Proof We apply Theorem A.1, by taking (Yk)k∈Z =
(

μ
−1/2
M,s h−s�M

h J m B H
tk

)

k∈Z and

f (x) = |x |q −τq =∑∞
k=0 ak Hk(x)with ak = (2π)−1/2

∫

(|x |q −τq)Hk(x)e−x2/2 dx .
Note that, in view of [28, Example 7.2.2] the function f has Hermite rank d = 2,
namely a0 = a1 = 0 and a2 �= 0. It remains to show that (A.1) is satisfied, which in our
case becomes

∑

�∈Z ρ2
M,s(�) < ∞. By Lemma 4.3, this is true if 0 < s < M − 1/4,

or equivalently if 0 < H < (M − m)− 1/4, which is satisfied in view of assumptions
(1)–(2). Thus, (4.7) is proved.

For q even, it can be shown (for example, by induction, or see [27, p.1076]) that

Vq,M,s,N

(

J m B H
)

− N − M + 1

N
τqμ

q/2
M,s

= 1

N
μ

q/2
M,s

q
∑

k=1

(

q

k

)

τq−k

N−M
∑

j=0

Hk

(

�M
h J m B H

t j

μ
1/2
M,shs

)

. (4.8)

��
Remark 4.5 (1) We emphasize that the limit of Vq,M,s,N (J m B H ) depends through

μM,s on the regularity s of the process as well as the number of differences M .
In particular, even for small h it is not possible to approximate the rescaled finite

123



Stoch PDE: Anal Comp

difference operator h−1�h in the definition of Vq,M,s,N (J m B H ) by a derivative
operator without introducing a non–trivial bias, due to the change in M and s.
However, as noticed in [12] for a different model with simpler computations,
the bias is linked to the specific choice of the geometry of the sampling grid. If
additional ‘auxiliary’ observation points are available that allow to evaluate h−1�h

at a scale h smaller than the distance 1/N between points at which the derivative
is approximated the bias term may disappear.

(2) The constant μM,s can be easily computed, and for reader’s convenience we list
some of its values. If M = 1, m = 0 and 0 < H < 3/4, thenμM,s = 1. If M = 2,
m = 1 and H = 1/4, then μM,s = (

√
2 − 1) 1615 ≈ 0.44. If M = 2, m = 1 and

H = 1/2, then μM,s = 2/3.

5 Semilinear SPDEs on a bounded domain

In this and the next section, we study the parameter estimation problem for SPDEs by
using the �-power variations and the results on from previous section on integrated
fractional Brownian motion. Specifically, we consider SPDEs on D = (0, 1) with
zero boundary conditions. Towards this end, for k ≥ 1, set�k(x) = √

2 sin(kπx) and
λk = k2π2. The set {�k}k∈N forms an orthonormal basis in L2(D). Further, for s ∈ R,
set Hs(D) := {u ∈ L2 | ∑∞

k=1 λs
k(u,�k)L2(D)

2 < ∞}. The Laplacian � = ∂xx ,
acting on C∞(D), can be extended to a closed, densely defined operator � on L2(D)

with domain H2(D) and compact resolvent. The �k are eigenfunctions of −� with
eigenvalues λk . In this case, for α ∈ R, the fractional Laplacian (−�)α/2 is given by
(−�)α/2Z := ∑∞

k=1 λ
α/2
k (Z ,�k)L2(D)�k whenever this term exists. Note that for

s > 1/2, the Sobolev embedding theorem [3] Hs(D) → C(D), and thus the point
evaluations are well-defined.

We consider the following semilinear SPDE on L2(D):

dXt =
(

−θ(−�)α/2Xt + F(Xt )
)

dt + σ BdWt , X0 ∈ L2(D), (5.1)

where α, θ, σ > 0, W is a cylindrical Wiener process on L2(D), B = (−�)−γ for
some γ > 1/4 − α/4, and F is a nonlinear operator.

We assume that (5.1) is well-posed in L2(D) in the analytically mild and prob-
abilistically weak sense. We refer, for instance, to [16, 25] for sufficient conditions
regarding the well-posedness, as well as Proposition 5.2 and Example 5.3 below.

As is customary in statistical inference for nonlinear SPDEs [2, 7, 32], we will use
the splitting of the solution argument, by writing X = X + ˜X , where

dXt = −θ(−�)α/2Xtdt + σ BdWt , X0 = 0, (5.2)

d˜Xt =
(

−θ(−�)α/2
˜Xt + F(Xt + ˜Xt )

)

dt, ˜X0 = X0. (5.3)

The solution to (5.2) can be expressed either as a Fourier series, or can be given by
the stochastic convolution
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Xt (x) = σ

∫ t

0
e−θ(t−r)(−�)α/2

BdWr =
∞
∑

k=1

(

σλ
−γ

k

∫ t

0
e−θ(t−r)λ

α/2
k dW (k)

r

)

�k(x)

=:
∞
∑

k=1

xk(t)�k(x), (5.4)

where W (k) = (W ,�k)L2(0,1), k ≥ 1, are independent one-dimensional Brown-

ian motions, t �→ e−θ t(−�)α/2
, t > 0, is the C0-semigroup on L2(D) generated

by −θ(−�)α/2, and the convergence is understood in L2(D). Note that xk(t) =
(Xt ,�k)L2 , i.e. xk(t) is also the Fourier coefficient of the solution Xt with respect to
{�k}k∈N.

The next two results provide some fine continuity properties of the trajectories of
X and ˜X .

Proposition 5.1 For any s < 2γ + α/2 − 1/2, it holds that X ∈ C(0, T ; Cs(D)).

Proof The common line of attack is to show that X ∈ C(0, T ; W s,p(D)) for any
p ≥ 2, and then employ the Sobolev embedding theorem. We refer, for example, to
[2, Appendix B.1] for details when α = 2, and since the proof is based on the Fourier
decomposition of the solution in the base {�k}, the general case is obtained similarly.

��
As a direct consequence, we note that Xt (·) has up to �2γ + α/2 − 1/2� classical

derivatives. We call s∗ = 2γ + α/2 − 1/2 the optimal regularity, and we make a
standing assumption that s∗ > 0 and s∗ /∈ N. With this in mind, here we remark that
the results from previous sections on fBm will be applied to derivatives of Xt (x) with
respect to x , and thus in what follows the space variable x corresponds to t variable
in the previous sections.

Proposition 5.2 Assume that there exist η, ε > 0, 0 ≤ s0 < s∗, and a continuous
function g : [0,∞) → [0,∞), such that for any s0 ≤ s < s∗,

‖F(u)‖s+η−α+ε ≤ g(‖u‖s), (5.5)

where as before, ‖·‖s denotes the Hölder-Zygmund norm. Let X ∈ C(0, T ; Cs0(D))

and X0 ∈ Cs∗+η(D). Then we have ˜X ∈ C(0, T ; Cs+η(D)), for any 0 ≤ s < s∗, and
in particular X ∈ C(0, T ; Cs(D)).

Proof The case of Sobolev spaces W s,p(D) instead of Hölder spaces Cs(D) has been
treated in [2, 29] for α = 2, the proof for general α is identical. Since for an arbitrary
chosen ε > 0, we have that Cs(D) ⊂ W s,p(D) ⊂ Cs−ε(D) for large enough p, the
desired result follows at once. ��
Example 5.3 We present several types of semilinear SPDEs whose nonlinearity F
satisfies (5.5), which in particular guarantees that all results from this section hold for
the solutions to these classes of equations. For technical details see [2, 32].
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(1) (fractional) Heat equation In the case F = 0, (5.1) becomes linear, sometimes
called fractional heat equation, and (5.5) is trivially satisfied for any η > 0.

(2) Reaction-diffusion equation Let F(u)(x) = f (u(x)), where f is a polynomial
function or f ∈ C∞

b (R). Then (5.5) is true for any 0 < η < 2.
(3) Advection-diffusion equation Let F(u) = v∂x u for a given v ∈ C∞(D). Then

(5.5) holds with any 0 < η < 1.
(4) If F = F1 + F2, for some F1, F2 that satisfy (5.5) with continuous functions

g1, g2, then F satisfies (5.5) with g = g1 + g2.

Next, using representation (5.4), we set

ξk :=
√

√

√

√

√

2θλ
α/2+2γ
k

(

1 − e−2θλ
α/2
k t
)

σ 2
· xk(t), k ≥ 1.

Clearly, ξk’s are independent standard Gaussian random variables, and Xt can be
written as

Xt (x) = σ√
2θ

∑

k≥1

1

λ
α/4+γ

k

ξk�k(x) + σ√
2θ

∑

k≥1

(√

1 − e−2θλ
α/2
k t − 1

)

λ
α/4+γ

k

ξk�k(x).

(5.6)
Recall that under our standing assumption s∗ /∈ N0, and thus us write s∗ = m + H
for some unique m ∈ N0 and 0 < H < 1. As one may expect, H will be linked to the
Hurst parameter of a fBM. In particular, if α = 2 and γ = 0, then s∗ = 1/2, m = 0
and H = 1/2, and as shown in [8, p.16] the first term in (5.6) is a fBM with Hurst
index H and the second term is an infinitely smooth process.

In view of (5.6), we have, for fixed t > 0 and m ∈ N0,

∂m
x Xt (x) =

{

(−1)m/2 σ√
2θ

L H
sin(x) + Rsin,m(x), if m is even,

(−1)(m−1)/2 σ√
2θ

L H
cos(x) + Rcos,m(x), if m is odd,

(5.7)

where

L H
sin(x) := √

2
∑

k≥1

λ
−H/2−1/4
k ξk sin(kπx),

L H
cos(x) := √

2
∑

k≥1

λ
−H/2−1/4
k ξk cos(kπx), (5.8)

and Rsin,m, Rcos,m ∈ C∞ (D) almost surely. The latter follows by observing that the
coefficients in the sum of the second term in (5.6) decay exponentially in k, which
together with the polynomial growth of the eigenvalues λk , implies ||R||2

L2(
,Hs )
=

E||R||2Hs
< ∞, thus R ∈ Hs (almost surely) for all s ∈ R. The Sobolev embedding

theorem yields R ∈ C∞(D). We also note that in (5.7), we used that
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∂m
x

∑

k≥1

1

λ
α/4+γ

k

ξk�k(x) =
∑

k≥1

1

λ
α/4+γ

k

ξk∂
m
x �k(x), (5.9)

which is true thanks to the uniform convergence of the last series. The latter is due to
the following estimates

E

∣

∣

∣

∣

∣

∣

∑

k≥1

1

λ
α/4+γ

k

ξk∂
m
x �k(x)

∣

∣

∣

∣

∣

∣

2

�
∑

k≥1

k2m−α−4γ < ∞.

Motivated by [30, Sect. 6.4], next we show that the stochastic processes L H
sin and

L H
cos, as functions of x , are strongly related to a fBM. For 0 < H < 1, H �= 1/2, let

νH := − 2

π
�(−2H) cos(π H), (5.10)

and further put νH = 1 for H = 1/2. The constant νH corresponds to ρH in [30].
We emphasis that the fBm in this work, say B H

x , x ≥ 0, is scaled as in most of the
literature, namely E[(B H

1 )2] = 1, in contrast to [30], where the fBm is scaled such
that E[(B H

1 )2] = νH . Respectively, some of the results from [30] used below have to
be adjusted accordingly.

Lemma 5.4 Let 0 < H < 1, and B H
x , x ≥ 0, be a fBM with Hurst parameter H.

There exists a stochastic process RH ∈ C∞(R), such that for any 0 < a < b < 1,
the following hold true:

(1) The probability laws of ν1/2H B H· and (L H
sin(a+·)+ RH (a+·))−(L H

sin(a)+ RH (a))

are equivalent on (canonical space) C([0, b − a]).
(2) The laws of ν

1/2
H B H· and L H

cos(a + ·) − L H
cos(a) are equivalent on C([0, b − a]).

Moreover, if H = 1/2, then the above laws in both items 1) and 2) are even equal.

Proof Same as in [30], we define the process

̂B H
x = ξ0x + √

2
∑

k≥1

(

ξ ′
k
cos(2πkx) − 1

(2πk)H+1/2 + ξ ′′
k

sin(2πkx)

(2πk)H+1/2

)

,

where ξ0, ξ
′
k, ξ

′′
k , k ≥ 1 are i.i.d. standard normal random variables, and x ∈ R.

Note that in view of [30, Theorem 27], ̂B H has stationary increments. Then, (i) is
proved by following similar steps as in the proof of [30, Theorem 30]. First, from
[30, Remark 28] it follows that the laws of B H and the increment process x �→
(B H

x+a − B H−x−a)/
√
2− (B H

a − B H−a)/
√
2 are equivalent on C([0, b−a]). Due to self-

similarity, the latter can be replaced by the increments of x �→ 2H−1/2(B H
x/2− B H−x/2).

Now, as a consequence of [30, Theorem 27], the laws of x �→ ν
1/2
H B H

x/2 and x �→ ̂B H
x/2

are equivalent on C([−b + a, b − a]). Now the claim follows from noting that

2H−1/2
(

̂B H
x/2 − ̂B H−x/2

)

= 2H−1/2ξ0x + L H
sin(x).
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Consequently, taking RH (x) = 2H−1/2ξ0x we have proved (1).
(2) We proceed similarly, and note that

2H−1/2
(

̂B H
x/2 + ̂B H−x/2

)

= L H
cos(x) − 1√

2

∞
∑

k=1

ξkλ
−H/2−1/4
k =: L H

cos(x) − cH .

From here, since clearly cH ∈ L2(
), for any H > 0, we conclude that the law of
L H
cos − cH on C([0, b − a]) is equivalent to the law of (ν

1/2
H B H

x + ν
1/2
H B H−x )/

√
2. In

view of [30, Remark 28], the increments of this process, and thus also the increments
of L H

cos, have a law equivalent to the law of ν
1/2
H B H·−a on C([a, b]), and the claim

follows. The case H = 1/2 is known, and follows, for example, by Karhunen-Loève
type expansions of Brownian motion. ��

Proposition 5.5 Let t > 0, m ∈ N0 and 0 < H < 1 such that m + H = s∗ =
2γ + α/2 − 1/2. Then, there exists a stochastic process Rm,H ∈ C∞(D), such that
for any 0 < a < b < 1, the laws of (−1)�m/2�σ−1ν

−1/2
H

√
2θ Xt + Rm,H and J m B H·−a

are equivalent on C([a, b]). If H = 1/2, the laws are even equal.

Proof Applying J m to (5.7), we note that it suffices to prove that for any m̄ ∈ N0 there
exist Rm̄,H

sin , Rm̄,H
cos ∈ C∞(R) such that the laws P(m̄)

sin of J m̄ L H
sin + Rm̄,H

sin and P(m̄)
cos of

J m̄ L H
cos + Rm̄,H

cos are equivalent to the law Q(m̄) of ν
1/2
H J m̄ B H·−a on C([a, b]).

We will prove the above by induction in m̄. First, for z ∈ R, let τz be the shift
operator, given by τz f := f·+z , and we view J̃ := τ−a Jτa as a bounded operator J̃ :
C([a, b]) → C([a, b]). For m̄ = 0, we note that by Lemma 5.4, P(0)

sin , P(0)
cos and Q(0) on

C([a, b]) are equivalent, where R0,H
sin (x) = RH (x) − (L H

sin(a) + RH (a)), R0,H
cos (x) ≡

−L H
cos(a). Now assume that the claim is true for m̄ ≥ 0. Then the pushforward

measures J̃ ∗ P(m̄)
sin , J̃ ∗ P(m̄)

cos and J̃ ∗Q(m̄) are equivalent measures on C([a, b]). As
J̃ = τ−a Jτa , we see that J̃ ∗Q(m̄) is the law of ν1/2H J m̄+1B H·−a , i.e. J̃ ∗Q(m̄) = Q(m̄+1).

Likewise, J̃ ∗ P(m̄)
sin is the law of J m̄+1L H

sin + Rm̄+1,H
sin with Rm̄+1,H

sin = J̃ Rm̄,H
sin −

∫ a
0 J m̄ L H

sin(y)dy. For this choice of Rm̄,H
sin it holds J̃ ∗ P(m̄)

sin = P(m̄+1)
sin . The case of

J̃ ∗ P(m̄)
cos is treated similarly. If H = 1/2, one can trace the above arguments and notice

that equivalent laws can be replaced with equal laws. The proof is complete. ��

Now, we are in the position to prove the main result of this section. In the sequel,
we fix 0 < a < b < 1 and t > 0 and consider the generalized variation Vq,M,s,N (Xt )

on [a, b], namely on an interval away from the boundary.

Theorem 5.6 Let M, q ∈ N, and assume that either M = m + 1 with H < 1/2 or
M ≥ m + 2. Suppose that (5.5) holds for some η > 1/2. Then, for any ε > 0,

Vq,M,s∗,N (Xt ) = τq

(

σ 2νH μM,s∗

2θ

)q/2

+ oP(N−1/2+ε). (5.11)
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If in addition s∗ ∈ 1/2 + N0, then

√
N

(

Vq,M,s∗,N (Xt ) − τq

(

σ 2νH μM,s∗

2θ

)q/2
)

d−→ N
(

0,

(

σ 2νH μM,s∗

2θ

)q

σ 2
q,M,s∗

)

.

(5.12)

Proof Set Zm,H := (−1)�m/2�σ−1ν
−1/2
H

√
2θ X + Rm,H , with Rm,H as in Proposi-

tion 5.5. Since η > 1/2, Proposition 5.2 and Theorem 3.2 (with α = 1/2 − ε, � = 0
or α = 1/2, � = σ 2qν

q
H μ

q
M,s∗σ 2

q,M,s∗/(2θ)q in the notation therein) imply that it is

enough to show that (5.11), and (5.12) hold with Xt replaced by Xt . Consequently,
again using Theorem 3.2,2 since Rm,H ∈ C∞(D), the claims are, respectively, equiv-
alent to

N 1/2−ε
(

Vq,M,s∗,N (Zm,H ) − τqμ
q/2
M,s∗

)

P−→ 0, (5.13)

√
N
(

Vq,M,s∗,N (Zm,H ) − τqμ
q/2
M,s∗

)

d−→ N
(

0, σ 2
q,M,s∗μ

q
M,s∗

)

, (5.14)

for a general s∗, and, respectively, for s∗ ∈ 1/2 + N0. From Theorem 4.4 it follows
that
∫

C([a,b])
1
(∣

∣

∣N 1/2−ε
(

Vq,M,s∗,N ( f ) − τqμ
q/2
M,s∗

)∣

∣

∣ > ε′) dL(J m B H·−a)( f ) → 0,

(5.15)
for any ε, ε′ > 0. By Proposition 5.5, the laws of J m B H·−a and Zm,H are equivalent
on C([a, b]), and thus3

∫

C([a,b])
1
(∣

∣

∣N 1/2−ε
(

Vq,M,s∗,N ( f ) − τqμ
q/2
M,s∗

)∣

∣

∣ > ε′) dL(Zm,H )( f ) → 0 (5.16)

for any ε, ε′ > 0, which is equivalent to (5.13). Finally, if s∗ ∈ 1/2 + N0, then Zm,H

and J m B H·−a are equal in law, and (5.14) becomes (4.7). This concludes the proof. ��
As a direct consequence, we obtain a procedure to estimate one of the parameters

σ, θ , if the other one is known, based on discrete observations on the uniform grid of
[a, b].
Theorem 5.7 In the setting of Theorem 5.6, the following hold true:

(1) If θ is known, then σ̂
q,M
N := τ−1

q (2θ/(νH μM,s∗))q/2Vq,M,s∗,N (Xt ) is a consistent
estimator for σ q , and for any ε > 0,

σ̂
q,M
N = σ q + oP(N−1/2+ε).

2 Note that in the case M = m + 1, the condition M > s +α from Theorem 3.2 imposes H < 1/2 instead
of H < 3/4 as in Theorem 4.4.
3 We recall that for two equivalent measures P ∼ Q on some measureable space (M,M), it holds that
P(AN ) → 0 if and only if Q(AN ) → 0 for any (AN )N∈N ⊂ M, see e.g. [37, Chapter 6].
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If s∗ ∈ 1/2 + N0, then also

√
N
(

σ̂
q,M
N − σ q

)

d−→ N
(

0,
σ 2q

τ 2q
σ 2

q,M,s∗

)

, as N → ∞.

(2) If σ is known, then̂θq,M
N := τ

2/q
q νH μM,s∗σ 2/(2Vq,M,s∗,N (Xt )

2/q) is a consistent
estimator for θ , and

̂θ
q,M
N = θ + oP(N−1/2+ε),

for any ε > 0. If s∗ ∈ 1/2 + N0, then

√
N
(

̂θ
q,M
N − θ

)

d−→ N
(

0,
4θ2

q2τ 2q
σ 2

q,M,s∗

)

, as N → ∞.

We conclude this section with several remarks:

1. The only a priori knowledge needed in order to apply our procedure is the spatial
regularity s∗ of X . In practice, this can be determined by examining the rate of
convergence to zero (or divergence to infinity) of the �-power variation for some
fixed (and arbitrary) s > 0, for example, by thinning the sampling mesh and
determining the regression slope in a log-log-plot. Such an approach has been
studied in a related setting in [14, 20].

2. The choice of the Dirichlet boundary conditions is not essential. By changing
the role of L H

sin and L H
cos, we immediately get an analogous result for Neumann

boundary conditions. Similarly, using the representation of B H in terms of L H
mix =

∑

k≥1 (λM
k )

−H/2−1/4
ξk�

M
k (cf. [30, Theorem 6.19]) with �M

k (x) = √
2 sin((k −

1/2)πx) and λM
k = (k − 1/2)2π2, we get the same result for mixed boundary

conditions.
3. Applying the central limit theorem from Theorem 4.4 to SPDEs, essentially

depends on establishing a stronger than equivalence in law representation of
the solution Xt in terms of a fractional Brownian motion. The CLT for the case
s∗ /∈ 1/2 + N0 requires a different approach, for example by direct calculations
of the covariance operator of X , and can not be reduced to integrated fractional
Brownian motion. Nevertheless, we believe that there is a CLT for s∗ ∈ 1/2+N0,
and to the best of our knowledge, this remains an open problem.

4. Similar results can be derived if (5.1) is driven by an additive space-only noise
(the so-called parabolic Anderson model) instead of space-time noise. The main
difference in this case is that the optimal regularity is s∗ = 2γ + α − 1/2 (cf.
[12, 13]). In particular, the results from Sect. 4 are applicable to a broad range of
different models, as long as an additive dispersion operator is considered.

5. As noticed in [8, 19], under the sampling scheme of our work, but applied to linear
SPDEs driven by space-time white noise, only the ratio θ/σ 2 is identifiable, or
equivalently one of the two parameters assuming the second one is known. More-
over, to estimate jointly θ and σ , one has to consider spatio-temporal observations,
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for example on a rectangular grid [18, 19, 23] or using infill asymptotics for one
spatial and one temporal direction separately [8]. We conjecture that when the
solution is observed on space-time grid, the average across time instances of the
proposed estimators remains consistent and asymptotically normal under different
space and/or time infill regime. A strict proof of these results relies on establishing
some nontrivial asymptotics of the corresponding covariance structure and it is
beyond the scope of this work.

6 Linear SPDEs on unbounded domain

We consider the (linear) counterpart of (5.1) on the whole space, namely the stochastic
evolution equation of the form

∂t Xt (x) = −θ (−�)α/2 Xt (x) + σ Ẇ γ (t, x), t > 0, x ∈ R,

X0(x) = 0, x ∈ R, (6.1)

whereα, θ, σ > 0 and (−�)α/2 is definedvia its Fourier transform:F[(−�)α/2u](ξ) =
|ξ |α F[u](ξ) for u ∈ L2(R) with |·|α F[u] ∈ L2(R). W γ (t, A), t ≥ 0, A ∈ B(R),
for some γ ∈ (0, 1/4), is a centered Gaussian field with covariance structure

E[W γ (t, A)W γ (s, B)] = (t ∧ s)
∫

A

∫

B
Kγ (x − y) dx dy,

with Kγ being the so-called Riesz kernel of order γ given by

Kγ (x) = �(1/2 − 2γ )

2π3/2�(2γ )
· |x |4γ−1, γ ∈ (0, 1/4).

We remark that traditionally in the literature the Riesz kernel has slightly different
parameterization, with γ instead of 4γ above. We choose such form of Riesz kernel
simply to match the spatial regularity of the solution with the one from the bounded
domain case.

We recall that Gα(t, x) =
∫

R

eixξ−t |ξ |α dξ is the fundamental solution of

∂t Gα(t, x) =
− (−�)α/2 Gα(t, x). Consequently, the mild solution to (6.1) is defined as

Xt (x) = σ

∫ t

0

∫

R

Gα (θ(t − s), x − z) W γ (ds, dz) , (6.2)

where the above integral is a Wiener integral with respect to the Gaussian noise W γ .
For details, see for instance [26, Sect. 3] and [15, Sect. 2].

In the context of statistical inference, SPDEs similar to (6.1) were recently consid-
ered in [21] and [22].
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Proposition 6.1 For m ∈ N ∪ {0}, we have that

sup
t∈[0,T ],x∈R

E
∣

∣∂m
x Xt (x)

∣

∣

2
< ∞ for every T > 0,

if and only if 1 + 2m < α + 4γ . In particular, ∂m
x Xt (x) is well-defined for x ∈ R,

0 ≤ t ≤ T and 1 + 2m < α + 4γ .

Proof Without loss of generality, we fix θ = σ = 1 for simplicity. Note that the
Fourier transforms of Kγ and Gα(t, ·) are given by

FKγ (ξ) = |ξ |−4γ and FGα(t, ·)(ξ) = e−t |ξ |α , for t > 0 and ξ ∈ R.

Then, for each 0 ≤ t ≤ T and x ∈ R, we have

E
∣

∣∂m
x Xt (x)

∣

∣

2 =
∫ t

0

∫

R

∫

R

∂m
x Gα(s, x − y)Kγ (y − z)∂m

x Gα(s, x − z) dy dz ds.

From here, making the substitution ỹ = x − y, z̃ = x − z, and using that Kγ (x) =
Kγ (−x), we continue

E
∣

∣∂m
x Xt (x)

∣

∣

2 =
∫ t

0

∫

R

∂m
x Gα(s, y) × (Kγ ∗ ∂m

x Gα(s, ·)) (y) dy ds

= (2π)−1
∫ t

0

∫

R

F (∂m
x Gα(s, ·)) (ξ) × F (Kγ ∗ ∂m

x Gα(s, ·)) (ξ) dξ ds

= (2π)−1
∫ t

0

∫

R

|ξ |2m−4γ e−2s|ξ |α dξ ds

= (2π)−1
∫ t

0
s(4γ−2m−1)/α ds

∫

R

e−2|ξ |α |ξ |2m−4γ dξ < ∞,

if and only if (4γ − 2m − 1)/α > −1, which is equivalent to 1 + 2m < α + 4γ . ��
Define the following remainder term:

R(x) = σ

∫ ∞

t

∫

R

∂m
x (Gα (θ(t − s), z) − Gα (θ(t − s), x − z)) W γ (ds, dz). (6.3)

Note that the remainder termdecays exponentially fast in Fourier space and is therefore
smooth in space for each t > 0.

The next result is based on [22, Proposition 4.6].

Proposition 6.2 For t > 0, the process ∂m
x Xt has the same distribution as a perturbed

fBM of the form cα,γ,m
σ√
θ

B2γ+α/2−1/2−m + R, provided that 2γ + α/2 − 1/2 −
m ∈ (0, 1), where c2α,γ,m := (2π)−1

∫

R
(1 − cos(ξ)) |ξ |2m−4γ−α dξ and R ∈ C∞(R)

almost surely.
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Proof For every x ∈ R and a fixed t > 0, we set v(x) := ∂m
x Xt (x) − R(x). Then, for

x, y ∈ R,

E |v(x) − v(y)|2 = σ 2

π

∫ ∞

0

∫

R

|ξ |2m−4γ (1 − cos(ξ(x − y))) e−2θs|ξ |α dξ ds

= σ 2

2πθ
(x − y)α+4γ−1−2m

∫

R

(1 − cos(ξ)) |ξ |2m−4γ−α dξ.

We note that, by the assumption 0 < (α + 4γ − 1)/2 − m < 1,

∫

R

(1 − cos(ξ)) |ξ |2m−4γ−α dξ �
∫

|ξ |>1
|ξ |2m−4γ−αdξ

+
∫

|ξ |≤1
|ξ |2m−4γ−α+2dξ < ∞.

This implies that v is a fractional Brownian motion with Hurst index α+4γ−1
2 −m. The

smoothness property R ∈ C∞(R) follows from [22, Proposition 4.6]. This concludes
the proof. ��

The following result on estimation of drift θ or volatility σ of fractional heat equa-
tion (6.1) follows immediately from Theorem 4.4 in conjunction with Proposition 6.2.

Theorem 6.3 Let m ∈ N0 and 0 < H < 1 such that m + H = s∗ = 2γ + α/2− 1/2.
Let M, q ∈ N, and assume that either M = m + 1 with H < 1/2 or M ≥ m + 2.
Then, we have,

w − lim
N→∞

√
N

(

Vq,M,s∗,N (Xt ) − cq
α,γ,mτqμ

q/2
M,s∗

(

σ√
θ

)q)

= N
(

0, c2q
α,γ,mσ 2

q,M,s∗μ
q
M,s∗

(

σ√
θ

)2q
)

. (6.4)

Moreover,

(1) If θ is known, then σ̃
q,M
N := c−1

α,γ,mτ
−1/q
q μ

−1/2
M,s∗

√
θVq,M,s∗,N (Xt )

1/q is an asymp-
totically normal estimator for σ ;

(2) Ifσ is known,˜θq,M
N := c2α,γ,mτ

2/q
q μM,s∗σ 2Vq,M,s∗,N (Xt )

−2/q is an asymptotically
normal estimator for θ .

We conclude this section with several clarifying remarks on the class of considered
SPDEs in this section. The choice of Riesz kernel was primarily prompted by [22]
that considers same equations. In particular this allows to have a direct compassion of
the results obtained in this paper and those from [21, 22]. A careful reader will also
notice that working with Riesz kernel, which is characterized by its Fourier transform
FKγ (ξ) = |ξ |−4γ , is technically convenient. On the other hand, such correlation
structure of the noise limits γ ∈ (0, 1/4), thus limiting the range of regularity of the
solution in spatial component (as described above). To overcome this, but also to be
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on par with SPDEs from Sect. 5, one can replace the Riesz kernel with Bessel kernel
with Fourier transform FK B

γ (ξ) = (1 + |ξ |2)−2γ , for any γ > 0. This case indeed
can be addressed, and results similar to those from Sect. 5 can be obtained. For the
sake of brevity, we shortly sketch the main arguments of the proof. For simplicity, let
us also assume that the drift operator −θ(−�)α/2 is substituted by −θ(I − �)α/2 in
(6.1). First, we note that for 0 < γ < 1/4, there exists a positive definite kernel K R/B

γ

such thatFK R/B
γ = FKγ −FK B

γ . Let m ∈ R such that γ ′ := 2γ +α/2−1/2−m ∈
(0, 1), let ˜W γ ′

a centered Gaussian field with covariance kernel K R/B
γ ′ , independent

of W γ . Then, similarly to [22, Proposition 4.6], one can prove that the increments of
(I −�)m/2X − R(1) − R(2) are the increments of a fractional Brownian motion, where

R(1)(x)=σ

∫ ∞

t

∫

R

(I − �)m/2(Gα(θ(t − s), z) − Gα(θ(t − s), x−z))W γ (dz, ds),

R(2)(x) = σ

∫ ∞

0

∫

R

(Gα(θ(t − s), z) − Gα(θ(t − s), x − z))˜W γ ′′
(dz, ds).

Then, for m ∈ 2N, we have that (I − �)m/2X is a linear combination of ∂2m′
x X ,

where 0 ≤ m′ ≤ m/2, so Vq,M,s,N (X) = Vq,M,s,N (J m∂m
x X) = Vq,M,s,N (J m(I −

�)m/2X), up to negligible terms. Furthermore, J m(I − �)m/2X behaves like J m B H

with H = γ ′, up to a perturbation by R(1) and R(2). Consequently, similar statements
concerning consistency and rate of convergence of the �-power variation can be
made. However, the central limit theorem does not transfer since R(2) is not arbitrarily
smooth. Similar to the bounded domain, the asymptotic normality property of the
corresponding estimators for θ and σ remains an open question.

The emphasis that the extension of the results from linear to nonlinear equations of
the form (1.1) via a splitting argument depends on spatial regularity properties of the
solution X to (6.1). In contrast to the case of bounded domains, the covariance operator
as given by the Riesz (or Bessel) kernel is not of trace class, so X will not belong to
L2(R) or any higher-order Sobolev space derived from L2(R). Instead, we believe
that suitably chosen weighted Sobolev spaces can help to mitigate this issue. To the
best of our knowledge, this has not been investigated systematically in the literature.

7 Numerical example

In this section we illustrate the theoretical results of Sect. 5 via numerical simulations,
by considering the stochastic heat equation

dXt = θ�Xtdt + σ(−�)−γ dWt , (7.1)

with initial condition X0 = 0 on D = [0, 1] with Dirichlet boundary conditions. We
take the true values of the parameters θ, σ = 1. As far as the smoothing parameter
γ , we consider the following representative cases γ ∈ {0.0, 0.375, 0.5, 0.625}, which
correspond to the regularity level s∗ = 2γ + 1/2 ∈ {0.5, 1.25, 1.5, 1.75}. To numer-
ically simulate a path, we use the Fourier series decomposition of the solution (5.4)
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Fig. 1 Estimation of θ (top row) and σ 2 (bottom row). Left panel: the average of 100Monte Carlo estimates
as function of spatial sampling resolution h. The solid black line corresponds to the true value 1.0. Right
panel: The RMSE (root mean square error) as function of h. The black line corresponds to the theoretical
convergence rate h1/2

by taking N0 = 1 × 104 eigenmodes, and each eigenmode is numerically simulated
by the Euler implicit scheme with temporal stepsize δt = 1×10−8. Correspondingly,
the solution is computed at N0 + 1 uniformly spaced spatial grid points with step size
h = 1 × 10−4.

Next, we assume that the solution X is observed at time T = 1 on spatial grid points
belonging to the interval [a, b], with a = 0.2, b = 0.8. We apply Theorem 5.7, with
q = 2 and M = �s∗� + 2, to estimate one of the parameters μ or σ 2 assuming that
the second one is known. For each set of the parameters, we perform these evaluations
on 100 Monte Carlo sample paths of the solution. The average values of the estimates
as function of step size h are displayed in Fig. 1, left panel. Clearly, the estimators
converge to the true value (horizontal solid line θ = 1 and σ 2 = 1), as the mesh size
gets smaller. Moreover, as shown in Fig. 1, right panel, the root mean square error
of the estimators behaves as h1/2, confirming the theoretical rate of converges of the
proposed estimators, regardless of the order of regularity s∗ of the solution. Similar
results were obtained for various sets of the parameters. Finally, while not shown here,
we remark that the results from Sect. 4 were also confirmed via numerical simulations.
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Appendix

For reader’s convenience, we recall a useful asymptotic result of Hermite polynomials
of a stationary Gaussian sequence.

Theorem A.1 [28, Theorem 7.2.4 Breuer-Major Theorem] Let Y = {Yk}k∈Z be a cen-

tered stationary Gaussian sequence with unit variance, and f (x)=
∞
∑

q=d

aq Hq(x), aq ∈
R, where Hq is the q-th Hermite polynomial. Assume that

∑

�∈Z
|ρ(�)|d < ∞, (A.1)

where ρ(�) = E (Y0Y�) , � ∈ Z. Then,

w − lim
N→∞

1√
N

N
∑

k=1

f (Yk) = N
⎛

⎝0,
∞
∑

q=d

q!a2
q

∑

�∈Z
ρ(�)q

⎞

⎠ .
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