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Abstract

Motivated by problems from statistical analysis for discretely sampled SPDE:s, first we
derive central limit theorems for higher order finite differences applied to stochastic
processes with arbitrary finitely regular paths. These results are proved by using the
notion of A-power variations, introduced herein, along with the Holder-Zygmund
norms. Consequently, we prove a new central limit theorem for A-power variations of
the iterated integrals of a fractional Brownian motion. These abstract results, besides
being of independent interest, in the second part of the paper are applied to estimation of
the drift and volatility coefficients of semilinear stochastic partial differential equations
in dimension one, driven by an additive Gaussian noise white in time and possibly
colored in space. In particular, we solve the earlier conjecture from Cialenco et al.
(Stat. Inference Stoch. Process. 23:83-103, 2020) about existence of a nontrivial bias
in the estimators derived by naive approximations of derivatives by finite differences.
We give an explicit formula for the bias and derive the convergence rates of the
corresponding estimators. Theoretical results are illustrated by numerical examples.
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1 Introduction

The main motivation of this work comes from some open problems in statistical
analysis of discretely sampled stochastic partial differential equations (SPDEs) of the
form

dX,(x) = —0(—=A)*?X,(x)dt + F(X,(x)) dt + o (=A)VdW, (x),
t>0, x€[0,1], (1.1

where « > 0,y > 0 are given, #, 0 > 0 are the parameters of interest (unknown
to the observer), A stands for the Laplace operator dy, with Dirichlet or periodic
boundary conditions, W is a cylindrical Wiener process on L%([0,1]), and F is a
(nonlinear) operator acting on some appropriate Hilbert space. Note that —A is a
positive, selfadjoint, closed and densely-defined operator in L2 ([0, 1]), and hence the
power operator (—A)#, 8 € R, is well defined. We refer to the recent survey [24]
on fractional Laplacian and its applications such as modeling anomalous diffusions.
Most of the existing literature on statistical inference for SPDEs is dedicated to linear
SPDEs, i.e. F = 0, with few exceptions [1, 2, 7, 18, 29, 32]. Moreover, the majority
of works were dedicated to continuous time sampling setup; cf. the survey paper [11].
The parameter estimation problem for (linear) SPDEs when the solution is discretely
sampled in space and/or time component was addressed systematically only recently by
quite different methods, and we refer to [4-6, 8-10, 12, 19, 21-23, 34], and to [31, 33]
for earlier studies, as well as the recent work [18] on reaction-diffusion equations. The
central theme in these works evolves, in one form or another, around power variations
of some relevant stochastic processes, which in turn is strongly related to the regularity
properties of the solution. For example, wheno = 2, y = 0,and F = 0, one can show
that for a fixed x € (0, 1), the paths of the process X;(x) have continuous versions
with Holder order of continuity 1/4 —¢, for any ¢ > 0. Consequently, as proved in [8],
the fourth power variation is finite and yields consistent and asymptotically normal
estimators for 6 and . Similar arguments hold true for solutions of SPDEs when the
Holder order of continuity in space or time component is smaller than one. However,
this approach, as well as the existing methods from the aforementioned literature on
discrete sampling, cannot be applied directly to SPDEs with regular paths (or space
colored noise). One of the main goals of this work is to develop new methodologies
that can treat such cases. Of course, one should not expect that the solution X;(x)
as function of ¢ will get smoother than the paths of a Brownian motion, i.e. almost
1/2 Holder continuous. On the other hand, it is known, for example when F = 0,
that for any fixed r > 0, the solution process X;(x),x € (0, 1), has almost Holder
2y + a/2 — 1/2 regularity in spatial variable x, namely the solution gets smoother
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the more colored (correlated) in space is the driving noise. One approach is to take
the maximal number of (classical) derivatives in x, say m := |2y +«/2 — 1/2], and
expect that 97" X;(x) behaves as a fractional Brownian motion with Hurst parameter
2y +a/2 —1/2 —m plus a smooth process, and apply or adapt the existing results on
power variations, for example, from [8, 21, 22]. However, from a statistical point of
view, this assumes that the process 07" X;(x), x € (0, 1) is observed, which practically
speaking is an unrealistic assumption. One way to overcome this drawback, is to
approximate the derivatives by using the discrete measurements of the solution itself,
for example by finite differences. However, such approximations typically will yield
a nontrivial and non-vanishing bias in the estimators - a phenomena noticed in [13]
through numerical experiments for SPDEs driven by space-only noise and withm = 1,
and later in [12] the bias was explicitly given and the asymptotic properties of the
estimator were formally proved. We built on these line of ideas, and we focus our
study on discretely sampled (in space) of semilinear SPDEs.

A key concept of this paper is to track and use the classical regularity of a continuous
function in terms of conveniently chosen integro-difference operators, for which we use
the Holder-Zygmund norms and spaces rather than classical Holder or Sobolev norms
and spaces. To deal with the higher order finite differences and their power variations,
we introduce the notion of A-power variation, and prove that the central limit theorems
for A-power variations are invariant under smooth perturbations; see Sects. 2, 3. We
note that the idea of using power variation of higher order finite differences has been
used, for example, in estimation of self-similarity order of self-similar processes. We
highlight [20], where quadratic variations from higher order linear filters are studied
for a class of Gaussian processes. In [14], the case of p-variations is studied for
fractional Brownian motion. See also [36, Sect. 5.6] and references therein. We derive
a new central limit theorem for A-power variations of iterated integrals of a fractional
Brownian motion (fBm) (see Sect. 4), where we also explicitly compute the asymptotic
variance. These novel results are of independent interest, contributing to the literature
on limit theorems for fractional type processes, but in addition, these results provide
a method for building consistent and asymptotically normal estimators for discretely
sampled process with smooth paths, such as the SPDEs mentioned earlier.

The statistical analysis of semilinear SPDEs is investigated in Sects. 5, 6. We study
the estimation of the drift 6 and volatility o of (1.1), under fairly general assumptions
on the nonlinear part, assuming that the solution is sampled discretely in the spatial
component x at one fixed time instance ¢ > 0. In particular, we do not assume that F is
known to the observer. Similarly to the above cited works on nonlinear SPDEs, we first
use the so-called splitting of the solution argument, where the solution is written as
X = X+X, where X is the solution of the linear SPDE and X solves the corresponding
nonlinear random PDE (see Eqs. 5.2 and 5.3). In typical semilinear equations (as in
Example 5.3), X is smoother than X, which allows to argue that the estimation problem
can be reduced to the linear case. The latter is reduced to the results on fBm by proving
that the highest order (classical) derivative of X has the same probability law as a
smoothly perturbed fBm. Assuming that one of the coefficients o or 8 is known we
derive an estimator for the second coefficient, prove its consistency and provide its
rate of convergence. We note that, the results in [8], which is the closest in spirit to
this manuscript, considers only linear equations driven by space-time white noise, i.e.
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a =2,y =0,and F = 0. The results presented in this manuscript are the first ones
on parameter estimation for SPDEs with arbitrarily regular paths that are discretely
sampled in physical spatial domain. As a second application of general results of
Sect. 4, in Sect. 6 we study parameter estimation problem for a version of SPDEs (1.1)
on the whole space. Namely, same as in [21, 22], we consider linear equations driven
by a space-time Gaussian noise with covariance structure generated by the Riesz kernel
of order 4y with y € (0, 1/4). Assuming the same sampling scheme as in the bounded
domain case, we derive consistent and asymptotically normal estimators for 0 or o.
We remark that the obtained results hold true for any o > 0, generalizing the results
of [21, 22], where it is assumed that & € (0, 2]. The case of nonlinear equations on
the whole space is omitted in this study due to the lack of results on fine regularity
properties of the solution (the so-called L? theory). We validate the theoretical results
by numerical simulations for various sets of parameters; see Sect. 7. In particular, we
compute explicitly the aforementioned bias, which indeed turns out to be a significant
correction to the naively derived estimators.

Finally, we remark that extending the obtained results to more general sampling
schemes, e.g. sampling on a space-time grid, generally speaking is not an easy task.
See for instance [4, 5, 8, 10, 18] that deal with some particular SPDEs that admit
solutions with low spatial regularity. Such schemes are also directly related to the
joint estimation of # and o. These questions, albeit practically very important, are
beyond the scope of the present work and will be addressed in the future works.

2 Preliminaries

We fix a complete probability space F = (2, .%, P) and throughout, all equalities
and inequalities are understood in P-a.s. sense, unless otherwise stated. As usual, we

will denote by P — lim or L the convergence in probability, and w—1lim or 4 will
stand for the convergence in distribution. Correspondingly, a, = op(b,) means that

P . . . .
an /by, — 0. Moreover, we write a,, < by, if there exists a constant C, independent of

~

n, such that a, < Cb,, for alln € N.
Let X;,t € R, be a real valued measurable function, and denote by J, and Ay, the
integral, and respectively the difference operators of the form

t
J X, ::/ X,dr, teR,
0
AhX[ = X[+h - Xla t e R, h > 0.

As usual, we put JO9X = X, and for m € N, we define J"X := JJ" ! X. Similar
notations apply to Aj. Note that,

M
M
AM(X,) = Z(—I)M_k<k>X[+kh, teR, h>0.
k=0
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We will denote by C(R) the space of continuous and bounded functions on R
endowed with sup-norm | f|ls := sup|f|. Correspondingly, for k¥ € N, we put
C*R) :={f € CR) : I fllckwy == stk D’ flleo < 00}, where D stands for
differential operator.

One of the key ideas of this paper is tracking and using the classical regularity of
a continuous function in terms of conveniently chosen integral and difference oper-
ators. For this purpose, we will be using the Hélder-Zygmund spaces C*(R), s > 0,
introduced in [38] and endowed with the norm

IFNEM = fllermy + LFIE,

with
|14 = sup h™C T AR DE o, @1
h>0
and where k € No, M € N, such that k < s and M > s — k. It can be shown (cf.

[35, Sectionl.2.2]), that for any such k and M, and fixed s the norms |- |§k’M) are

equivalent. We also recall that for any s > 0, C*(R) coincides with the Besov space
B, o (R) (see also [17]), and for s ¢ N, C*(R) coincide with the classical Holder
spaces. Thus, the Holder-Zygmund norms measure the regularity of a continuous
function in the classical sense. In this study, we will be mainly interested in the case
k = 0, which corresponds to statistical experiment of discrete measurements of the
underlying process itself. However, if the observer evaluates discretely some derivative
of f, then one should consider k > 1. Thus, we emphasize that the choice of &k = 0
is primarily driven by practical reasons, but in principle all results can be elevated to
the general case k € Ny. We also set C*~(R) :=[,_, C"(R).

r<s

3 Smooth perturbations of higher order power variations

In this section, we introduce the notion of a A-power variation for a given process X
and study its stability under smooth perturbations. Let w = {1y, . .., fx} be the uniform
partition of size N of the interval [a, b] C [0, T],and put h := hy := (b —a)/N =
te41 —t, k=0,..., N.Forfixeds > 0,g, M, N € N, such that N > M, we define

N-M M q
1 A X
V. X) = —— E )
q,M,s,N( ) b—a — L

Similar to the power variation of a process, we are interested in the limiting behavior
of Vy ms,n as N — oo. The A-power variation of order (¢, M, s) of a process X is
defined as

Vors(X) :=P = lim Vg 5.8 (X, 3.1

provided that the limit (in probability) exists. Note that V), 1,1 corresponds to the
(normalized) power variation of order p.

We start with a simple, but important, result that links the path continuity of the
process X with its generalized power variation.
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Lemma3.1 Let g, M € N, s > 0, such that M > s. If X € C°([a, b]), then
Vy.m,s,n (X) is uniformly bounded in N.

Proof This follows at once by noticing that

1 N-M AMXt q
VomsnX) = —— Y (g1 — 1) |—22 | < (b AM X || 0)?
g8 b—a ; (tk+1 — t)® e

A

(11X |1 0-My4.

]

We give the main results of this section, which in the nutshell says that the central
limit theorems for A-power variations of a stochastic process remain invariant under
smooth perturbations; see also [8, Proposition 2.1].

Theorem3.2 Letqg > 1, s > 0, M € Nwith M > s. Assume that X € C°([a, b))
and for some a > 0, ¥ > 0, the following limit exists

W (Voo (X) = Vs (X)) -5 N0, ), as N — oo, (3.2)

where N'(0, ) is a Gaussian random variable with mean zero and variance' . Then,
foranyY € C**"=([a, b]) withn > o, and M > s + a,

Wy (Vamsn(X +Y) = Vi (X)) -5 N0, %), asN — o0, (3.3)

Proof Without loss of generality, we assume that M > s + 7, otherwise take n’ instead
of n witha < ' < n A (M — s). We proceed analogously to [8, Proposition 2.1]. It
suffices to show

M B (Vo e v (X4 Y) = Vs x (X)) =0, as. (3.4)

Let gn (r) = (Vg 1,58 XDV + 1V a5 8 (Y)1/9)?. Then, by Minkowski’s inequal-
ity, gy (=1) < Vg m s n(X +7Y) < gn(1), and there exist &1, & € [0, 1] (dependent
on N € N) such that

gy (=&D) = gn(=1) — gn(0) < Vo s n(X +Y) — Vg a8 (X)
< gn (1) — gn(0) = gy (62).

Thus, it remains to show & y® sup_;, 1 gj (1) 2% 0,as N — oo. Forr € [—1, 1]
and ¢ > 0,

/ 1/q 1/g]77! 1/q
len | < @ |Vamsn GOV + 1V ps n(Y) Vg ms.n(Y)

-2 1
S h?v 8Vq,M,s+n—£,N(Y) /q’

L As usual, zero variance case is interpreted as the Dirac point mass at the mean.
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where in the last inequality we used that gh¥, [ Vg m.5, 8 (X) a4y Vyms,N(Y) 1/q)q9-1
is bounded uniformly in N andr € [—1, 1] due to Lemma 3.1, and that V,, y s v (Y) =
hcl’v("_g) V4 .M s+n—e,n (Y) by the definition of the A-power variation. Finally, since Y €
CS*1~¢([a, b)), and again making use of Lemma 3.1 we have that VoM sin—en(¥)

is bounded uniformly in N. The claim follows from choosing ¢ < (n — ) /2. O

Remark 3.3 (1) We note that the restriction M > s + « can be always satisfied by
choosing M large enough. (2) If ¥ = 0, then the limits (3.2) and (3.3) can be equiv-
alently understood as limits in probability. This in turn can be re-formulated in the
terms of rates of convergence, as we do, for example, in Theorems 5.6 and 5.7. (3)
The results in this section can be easily extended to A-power variations over arbitrary
sequence of partitions, not necessarily uniform. Namely, one can replace the sequence
of uniform partitions with a sequence of partitions with vanishing mesh-size in the
above limits. However, generally speaking the counterpart of limit (3.1) (if exists),
may depend on the choice of the sequence of partitions.

4 The case of fBM

In the Section we derive limit theorems for A-power variations of iteratively integrated
fractional Brownian motion. We start by recalling that a two-sided fractional Brownian
motion (fBm) with Hurst index H € (0, 1) is a centered Gaussian process BY =
(B[R such that

1
E(B,HBrH) =2 (|z|”’ P —r|2H>, t,r eR.

A continuous stochastic process X is called s-self-similar or self-similar of index s (or
self-similar for short) if the law of (A7 Xj;);er on C(R) does not depend on & > 0.
The process X is said to be stationary if the law of (X;4,);er on C(R) does not
depend on u € R, and X is said to have stationary increments if A, X is stationary
for all = > 0. A fractional Brownian motion B is a prominent example of a self-
similar process (of index H) with stationary increments. Many core properties of fBm
are directly linked to these two features. However, generally speaking, differences of
integrals of fBm are not self-similar in the usual sense, but rather, one has to account
for the step-width of the difference operator. Towards this end, we extend the notion
of self-similarity to a parameterized family of processes, say X", h > 0. Primarily,
we will be interested in a parameterized family of process of the form X ) = Az’[ Y,
where M € Ny and Y is a process that does not depend explicitly on # > 0. We say
that a parameterized family of process X ") is parameterized s-self-similar (or just
parameterized self-similar) if the law of (h_SX;(f[’)),E]R is independent of 2 > 0. We
also note that in general, if X is stationary, then J X is not necessarily stationary.

Lemma4.1 Let X and X, h > 0, be centered Gaussian processes. Then:

(1) A2JX = A AX.
(2) If X is s-self-similar, then J X is (s + 1)-self-similar.
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(3) If X is parameterized s-self-similar, then Ay X ) is parameterized s-self-similar
and JX™ is parameterized (s + 1)-self-similar.
(5) If X is stationary, then A, X and ApJ X are stationary for any h > 0.

Proof First we note that if X is a centered Gaussian process, then JX and A, X

are also Gaussian and centered. Thus, the law of A,JX ") is determined by
E [AhJX,(h)AhJth)], which is equal to t[+h frr+h E [Xl(,h)Xl(Uh)] dvdw, t,r € R.
Using this, the above properties follow now by direct calculations. O

Next, we state some properties specific to integro-differences of the J” B and
AM gmpH

n .
Lemma 4.2 The following assertions hold true:

(1) Form e Ngandt,r € R, we have

m k (;m—k_ m+k+2H m—k m+k+2H
(=DF (em=*r + kg )
mnpH mnpHY\ __
E(IB,uIB,>—§: —
k=0 2m — k) [[@H +1)
i=1
(_1)m+1 |t _ I’|2m+2H

“.1)

2m

2[JeH+0)

i=1

0
In addition, J" B™ is (m + H)-self-similar. By convention, H(ZH +1i)=1.

i=1
(2) For M,m € Ngandt,r € R, we have

M M\ (M
E[af Bl aN "Bl = 3 (—1)2"“—’( k)( l )E [ 7Bl 1B ]

k,1=0
4.2)

(3) If M > m, then Aﬁ:’l J"BH is parameterized (m + H)-self-similar and has sta-
tionary increments.

Proof (1) We prove (4.1) by induction in m. Form = 0, (4.1) is immediate. Form = 1,
by direct computations, we have

t r
E(JBF-JBF :i/./ E Bfo)dudv
/ / 2H+v2H |u—v|2H)dudv

2H+1 +7- t2H+1 |t—l"|2H+2—r2H+2—t2H+2
:E[ 1IQH + 1) QH + 1)2H +2) ]
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and hence (4.1) is true for m = 1. Suppose (4.1) holds true for m > 0. Then,

t r
E(J’"“Bf’.Jm“BrH =[ / IE J’”B:’-JvaH>dudv

/ / l)k m—k m+k+2H | um—kvm+k+2H)
2m — )M QH + i)
-1 m+1y,, _ . 12m+2H
=D 2m|v ul - du dv
21, QH + 1)
m+1 (—1)" (tm+1—krm+1+k+2H + tm+1—krm+1+k+2H)
- ,; 2(m +1— T QH + i)
(_1)m+2|t o r|2(m+1)+2H

2 1—12(m+l)(2H 4 l)

and thus (4.1) is proved. Consequently, (m + H)-self-similarity of J” B follows

from Lemma 4.1(2).

(2) Identity (4.2) is immediate.

(3) The parameterized self-similarity follows from Lemma 4.1(3). Finally,
Lemma 4.1(4) yields stationarity for AM*1ympH = AM="(A,Jy" A, BH,
where we use Lemma 4.1(1) and the fact that A, BY is stationary for all 47 > 0.
The proof is complete.

O

Letusfix M e Nand s > 0, and write s = m + H withm € Ngand H € (0, 1).
In view of Lemma 4.2, there exists 7,5 > 0 such that

2
E‘A,I:”J’”BtH = pm sh%,

forallt € Rand & > 0, and where s 5 1S given by

M M 2 m ( l)f’kzs
Fats ’_Z< ) Z(m PITT P QH + i)

k=0 =0

4 Z (= 1)2M—k=j <M> (M)[(—l)m+l(k — )
0<j<k<M kJN\J M7, QH +1i)
+>

p=0

(=n? (km*pjm+p+2H + jmpkm+p+2H):|
(m — pI T @H +1i) ‘

We further set

s (0) = iyt b~ 2vE(AMJ'"BH AMmp ,W) teNy.  (@43)
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Note that due to parametrized self-similarity and stationarity of A 2” J"BHY as in
Lemma 4.1, we have that pps (£) does not dependont € R and 2 > 0.

Next, we will investigate the asymptotic behavior of the g-th (Hermite) variation
of AQ’I J"™BH  for which we will make use of (Breuer-Major) Theorem A.1 applied to

-1
process Y; = (u%ihﬂ -A}’:” J™BH . First we note that by Lemma 4.2 the process

Y is a centered stationary Gaussian process with unit variance. Next result will be used
to show that (A.1) is satisfied.

1
Lemma 4.3 Assume that M,q e Nand 0 <s < M — % Then
q

> lpw s < oo, (4.4)

LeZ

Proof Without loss of generality, we assume that £ > M. The covariance function
pum s (£) becomes

3 M M (_l)m—H(] 4+ ¢ —k)2m+2H
0 3 ()]
ot (0) = 1y O<J.’Zk<M( ) U " ar v
+§: (_l)p (kmp(j+g)m+p+2H+(j+£)mpkm+p+2H)]
m — p)! T2 P 2H + i)

p=0

= aaPM 1O+ Y [e2pA Lp® +espAl f5,0] @)
p=0

where
fitx) = (x = M) 20 () = xR () = XM P

First note that A{"Ifip = (Alj)Mf;%) =0for M > m, so

m-+p M I,
c2,p = ((m— p)! l_[ (2H +i))~! Z(_1)Mk<k)kmp —0.
i=l1 k=0

By direct computations, one can show that ¢y # 0, and ¢3 , # 0, for any H € (0, 1).
It is clear that, as £ — o0,

2 2 2 _
A%Mfl(e) — A%szMfl( M)(e) — (AIJ)ZMfl( M)(() ~ fl( M)(g) ~ €2m+2H 2M.

If M < m + p, we similarly deduce that A{”flp(ﬂ) ~ m=P=M and A%Mfl grows
faster than A?’Ifg,p, since2m +2H —2M >m —p — M. If M > m + p, we have
A{VI f3,p(€) = 0. Combining the above, we have

2m+2H-2M
~ ,

om,s (£) { — oo.
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1
Thus,if H < M —m — 52 then (4.4) is true. This concludes the proof. 0
q
. . 1
As an immediate consequence of Lemma 4.3, we get thatforany 0 < s < M — o
q
the quantity
pams =a'Y_ (pms(©)? (4.6)
LeZ

is well-defined and finite.
The following result identifies V, y s(J™BH) for s = m + H together with its
convergence rate.

Theorem 4.4 Let M > m > 0 and q > 1 be integers, and assume that either of the
following assumptions is satisfied:

(1) M=m+1and0 < H < 3/4,
(2) M>m+2and0 < H < 1.

Then, there exists o4 pm,s > 0 such that

IN (Voo (77 B7) = 1giff) > N (0,02 40018y, ) o as N — 00, (47)

where 1y :=E|Z|? with Z ~ N (0, 1).

Moreover, if q is an even number, then O’ M.s Zk 1 ( ) qfk,o,iM’S.
Proof We apply Theorem A.1, by taking (Yi)rez = (,ulezh SAM gm B,’:)k , and

(S

f@) = |x|9—14 = Y 52 arHi(x) withay = (27)~ l/zf(|x|q—rq)Hk(x)e—X2/2 dx.
Note that, in view of [28, Example 7.2.2] the function f has Hermite rank d = 2,
namely ap = a; = 0anday # 0. Itremains to show that (A.1) is satisfied, which in our
case becomes ), , pjzwys (€) < co. By Lemma 4.3, thisis true if 0 < s < M — 1/4,
or equivalently if 0 < H < (M —m) — 1/4, which is satisfied in view of assumptions
(1)—(2). Thus, (4.7) is proved.

For g even, it can be shown (for example, by induction, or see [27, p.1076]) that

N-M+1
Vy.M.s.N (J’"BH) — —N qlt?w/zY
1 q AMJmBH
2
o 2 (f)res & (S @
k=1
O

Remark 4.5 (1) We emphasize that the limit of V, s n(J m gHY depends through
um.s on the regularity s of the process as well as the number of differences M.
In particular, even for small % it is not possible to approximate the rescaled finite
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difference operator h~'A}, in the definition of Vamsn(J mpHy by a derivative
operator without introducing a non—trivial bias, due to the change in M and s.
However, as noticed in [12] for a different model with simpler computations,
the bias is linked to the specific choice of the geometry of the sampling grid. If
additional ‘auxiliary’ observation points are available that allow to evaluate 1~ A},
at a scale & smaller than the distance 1/N between points at which the derivative
is approximated the bias term may disappear.

(2) The constant 1ty ¢ can be easily computed, and for reader’s convenience we list
some of its values. If M = 1,m =0and0 < H < 3/4,then upy s = 1.If M =2,
m=1and H = 1/4, then jup;5 = (V2 — 1)}—2 ~044.1fM =2, m=1and
H =1/2,then pupy s = 2/3.

5 Semilinear SPDEs on a bounded domain

In this and the next section, we study the parameter estimation problem for SPDEs by
using the A-power variations and the results on from previous section on integrated
fractional Brownian motion. Specifically, we consider SPDEs on D = (0, 1) with
zero boundary conditions. Towards this end, for k > 1, set & (x) = V2 sin(kmrx) and
Ak = k??. The set {®r }ken forms an orthonormal basis in L?(D). Further, for s € R,
set HS(D) := {u € L* | Y 5o, Ay (u, @) 2(py”> < oo}. The Laplacian A = 9y,
acting on C*°(D), can be extended to a closed, densely defined operator A on L*(D)
with domain H?(D) and compact resolvent. The ®; are eigenfunctions of —A with
eigenvalues A. In this case, for « € R, the fractional Laplacian (—A)®/? is given by
(=A)*?Z =32, AZ/Z(Z, @) 2(p) P whenever this term exists. Note that for
s > 1/2, the Sobolev embedding theorem [3] H*(D) — C(D), and thus the point
evaluations are well-defined.
We consider the following semilinear SPDE on L2(D):

dX, = (—9(—A)°‘/2X, T F(X,)) dt + o BAW,, Xoe L2(D),  (5.1)

where o, 6,0 > 0, W is a cylindrical Wiener process on LZ(D), B = (—A)7Y for
some y > 1/4 —«a/4, and F is a nonlinear operator.

We assume that (5.1) is well-posed in L2(D) in the analytically mild and prob-
abilistically weak sense. We refer, for instance, to [16, 25] for sufficient conditions
regarding the well-posedness, as well as Proposition 5.2 and Example 5.3 below.

As is customary in statistical inference for nonlinear SPDEs [2, 7, 32], we will use
the splitting of the solution argument, by writing X = X + X, where

dX; = —0(—=A)*?X,dt + o BAW,, X =0, (5.2)
aX, = (—9(—A)°‘/2)~(, +FX, + )?,)) dr, Xo = Xo. (5.3)

The solution to (5.2) can be expressed either as a Fourier series, or can be given by
the stochastic convolution
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t o0 t o
Yt(x) _ Of e—&(l—r)(—A)a/ZBdWr — Z (U)”k_y/ e—é(l—r)kk/zdwr(k)> Dy (x)
0 k=1 0
o0
=) () Dx(x), (5.4)
k=1
where WK = (W, ®p) L2(0,1)> k > 1, are independent one-dimensional Brown-

. . 2 . .
ian motions, ¢ > o012 ,t > 0, is the Co-semigroup on L*(D) generated

by —0(=A)¥/2, and the convergence is understood in L*(D). Note that X (1) =
(X1, Pr)p2, 1.e. Xi(2) is also the Fourier coefficient of the solution X, with respect to
{Pr}ren.
__ The next two results provide some fine continuity properties of the trajectories of
X and X.

Proposition 5.1 Forany s < 2y +a/2 — 1/2, it holds that X € C(0, T; C*(D)).

Proof The common line of attack is to show that X € C(0, T; W*?(D)) for any
p > 2, and then employ the Sobolev embedding theorem. We refer, for example, to
[2, Appendix B.1] for details when o = 2, and since the proof is based on the Fourier
decomposition of the solution in the base {®}, the general case is obtained similarly.

O

As a direct consequence, we note that X, (-) has up to |2y + /2 — 1/2] classical
derivatives. We call s* = 2y + «/2 — 1/2 the optimal regularity, and we make a
standing assumption that s* > 0 and s* ¢ N. With this in mind, here we remark that
the results from previous sections on fBm will be applied to derivatives of X, (x) with
respect to x, and thus in what follows the space variable x corresponds to ¢ variable
in the previous sections.

Proposition 5.2 Assume that there exist n,e > 0, 0 < so < s* and a continuous
function g : [0, 00) — [0, 00), such that for any sy < s < s*,

IF @) lls+n-a+e = g(llulls), (5.5

where as before, |-||s denotes the Holder-Zygmund norm. Let X € C(0, T; C*(D))
and Xo € CS" (D). Then we have X € C(0, T; C511(D)), forany 0 < s < s*, and
in particular X € C(0, T; C*(D)).

Proof The case of Sobolev spaces W*:? (D) instead of Holder spaces C* (D) has been
treated in [2, 29] for o = 2, the proof for general « is identical. Since for an arbitrary
chosen € > 0, we have that C*(D) ¢ W5 P(D) c C*~¢(D) for large enough p, the
desired result follows at once. m|

Example 5.3 We present several types of semilinear SPDEs whose nonlinearity F
satisfies (5.5), which in particular guarantees that all results from this section hold for
the solutions to these classes of equations. For technical details see [2, 32].
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(1) (fractional) Heat equation In the case F = 0, (5.1) becomes linear, sometimes
called fractional heat equation, and (5.5) is trivially satisfied for any n > 0.

(2) Reaction-diffusion equation Let F(u)(x) = f(u(x)), where f is a polynomial
function or f € Cgo (R). Then (5.5) is true for any 0 < n < 2.

(3) Advection-diffusion equation Let F(u) = vd,u for a given v € C*(D). Then
(5.5) holds with any 0 < n < 1.

@) If F = F1 + F», for some Fp, F» that satisfy (5.5) with continuous functions
g1, &2, then F satisfies (5.5) with g = g1 + g».

Next, using representation (5.4), we set

29ka/2+2y

(1 —26AD‘/2 )02

& = - X (1), k>1.

Clearly, &’s are independent standard Gaussian random variables, and Y, can be
written as

oc/2
—29}» -1

(V1-
Xi(x) = J_Z a/4+yék K00 + Z T §c P (x).

k>1 k>1

(5.6)

Recall that under our standing assumption s* ¢ Ny, and thus us write s* = m + H

for some unique m € Nop and 0 < H < 1. As one may expect, H will be linked to the

Hurst parameter of a fBM. In particular, if « =2 and y = 0, thens* =1/2,m =0

and H = 1/2, and as shown in [8, p.16] the first term in (5.6) is a fBM with Hurst
index H and the second term is an infinitely smooth process.

In view of (5.6), we have, for fixed r > 0 and m € Ny,

2 . .
9T (x) = (=™ }Lgn(x) + Rgin.m (%), if m is even, 57
* (=1)lm= 1)/2\”ﬁLg,s(x)+Rcos,m(x), if m is odd,

where

sm(x) _\/—Z)" Hz= 1/4€k Sln(kr[x)

k>1

L) =2 a1 g costkx), (5.8)

k>1

and Rgin.m» Reos,m € C™ (D) almost surely. The latter follows by observing that the
coefficients in the sum of the second term in (5.6) decay exponentially in k, which

together with the polynomial growth of the eigenvalues Ay, implies || R||? L) =

E”R”m < 00, thus R € H; (almost surely) for all s € R. The Sobolev embedding
theorem yields R € C°°(D). We also note that in (5.7), we used that
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1
am Z a/4+y EkPr(x) = Z )\’C(/4+)/ Ska Dy (x), (5.9)

k>1 k>1 "k

which is true thanks to the uniform convergence of the last series. The latter is due to
the following estimates

2

E Z oz/4+y%_k8 D (x) < ZkZm a—4y - oo
k>1 P

Motivated by [30, Sect. 6.4], next we show that the stochastic processes LSln and

LH | as functions of x, are strongly related to a fBM. For 0 < H < 1, H # 1/2, let

Ccos?
2

vy = ——I'(=2H) cos(mH), (5.10)
T

and further put vy = 1 for H = 1/2. The constant vy corresponds to pg in [30].
We emphasis that the fBm in this work, say Bf ,x > 0, is scaled as in most of the
literature, namely E[(Bf] )2] = 1, in contrast to [30], where the fBm is scaled such
that ]E[(B]H )21 = vy . Respectively, some of the results from [30] used below have to
be adjusted accordingly.

Lemmab5.4 Let 0 < H < 1, and BH, x > 0, be a fBM with Hurst parameter H.
There exists a stochastic process RH € C®(R), such that forany 0 < a < b < 1,
the following hold true:

(1) The probability laws ova BH and (Lgn(a +)+RH(a+))— (Lgn(a) + R (a))
are equivalent on (canonical space) C([0, b — a)).

(2) The laws ova BH and LY (a+ ) — Lcos(a) are equivalent on C ([0, b — a]).

cos

Moreover, if H = 1/2, then the above laws in both items 1) and 2) are even equal.

Proof Same as in [30], we define the process

H x4+ ‘/EZ <§/£ cos(2mkx) — 1 +8 sin(2mkx) ) ’
k>1

Qrk)H+1/2 Qrk)H+1/2

where &0, &/, &,k > 1 are i.i.d. standard normal random variables, and x € R.
Note that in view of [30, Theorem 27], B has stationary increments. Then, (i) is
proved by following similar steps as in the proof of [30, Theorem 30]. First, from
[30 Remark 28] it follows that the laws of B’ and the increment process x >
(BE ,—BH _ _)/V2—(BF — BH )/\/2 are equivalent on C([0, b —a]). Due to self-
similarity, the latter can be replaced by the increments of x +— 217~1/ Z(BH —BH /2)
Now, as a consequence of [30, Theorem 27], the laws of x +— v l/ ZBH/2 andx — B 2
are equivalent on C([—b + a, b — a]). Now the claim follows from noting that

2fi=1/2 (B 1y — §f’x/2) 2H2g0x 4 L (x).
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Consequently, taking R¥ (x) = 2H#~1/2gyx we have proved (1).
(2) We proceed similarly, and note that

—-H/2—-1/4 _
oH- 1/Z(BX/ZJFB x/Z)_Lg)S ng VA LH (o) —

From here since clearly ¢/ € L?(Q), for any H > 0, we conclude that the law of

LE — ¢H on C([0, b — a)) is equivalent to the law of (vl/zBH +v 1/2BH ()/7/2.In

CcOos
view of [30, Remark 28], the increments of this process and thus also the increments

of LE , have a law equivalent to the law of vH *pH 2, on C([a, b]), and the claim
follows. The case H = 1/2 is known, and follows, for example, by Karhunen-Logve
type expansions of Brownian motion. O

Proposition5.5 Lett > 0, m € Noand 0 < H < 1 such that m + H = s* =
2y + a/2 — 1/2. Then, there exists a stochastic process R™H e C(D), such that

_1ylm/2) —1,,—1/2 Y m,H m pH
forany0 < a < b < 1, the laws of (—1) o vy TN20 Xi+R and J" B,
are equivalent on C ([a, b]). If H = 1/2, the laws are even equal.

Proof Applylng J" to (5.7), we note that it suffices to prove that for any m € Ny there
exist R” RCOS € C°(R) such that the laws P of J"LH + R™H and P of

Sln ’ sSin sSin sSin
JALE 4 R™H are equivalent to the law Q™ of v

H 2JmBH on C(la, b)).
We will prove the above by induction in m. First, for z € R, let 7, be the shift
operator, given by 7. f := f.1., and we view J = 1_4J 7, as a bounded operator J:
C([a, b]) — C(la, b]). Form = 0, we note that by Lemma 5.4, rY Péf,’g) and Q(O) on

sin ?

C([a b)) are equivalent, where R>" (x) = R (x) — (LH (a) + R¥ (a)), RO (x) =

sin sin

—LH (a). Now assume that the claim is true for 72 > 0. Then the pushforward

measures J *PS(:I?), TP and J*Q0 are equlvalent measures on C([a, b]). As

J = t_4J 7., we see that J* Q™ 1sthelawofv J’"“BH e JFQUM = Q(’”“)
Likewise, J*P'™ is the law of JA+ILH Rm'H H ith RTHLH — jRMH

s sin s sin s
fo J™LH (y)dy. For this choice of RZHH it holds J*Ps(l'[':) Ps(l':'H) The case of

J* Pc(g? is treated similarly. If H = 1/2, one can trace the above arguments and notice
that equivalent laws can be replaced with equal laws. The proof is complete. O

Now, we are in the position to prove the main result of this section. In the sequel,
we fix0 < a < b < 1andt > 0 and consider the generalized variation Vy a5, v (X;)

on [a, b], namely on an interval away from the boundary.

Theorem 5.6 Let M, q € N, and assume that either M = m + 1 with H < 1/2 or
M > m + 2. Suppose that (5.5) holds for some n > 1/2. Then, for any € > 0,

GZVHMM N\9/2
8 _
Vs n (X)) =14 <T> + op(N ™1/, (5.11)
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If in addition s* € 1/2 + Ny, then

Vg g 5+ q/2 d o2V Ly s+ q
W(VQ,M,S*,N(XJ_% (%> < (o, (%> )
(5.12)

Proof Set Z™H .= (—I)Lm/zjcr*]v;[l/zx/Z@X + R™H with R™H as in Proposi-
tion 5.5. Since n > 1/2, Proposition 5.2 and Theorem 3.2 (withe = 1/2 — €, X =0
ora=1/2,% =0 v(;{u%’s*oj’M’S*/QQ)q in the notation therei_n) imply that it is
enough to show that (5.11), and (5.12) hold with X; replaced by X;. Consequently,
again using Theorem 3.2,% since R"™ € C*° (D), the claims are, respectively, equiv-
alent to

_ P
N'/2e (Vq,M,s*,N(Zm’H) - Tq“?\fs*) =0, (5.13)
2 d
IN (Vs N @) = tguif2) S N (0,02 4oty ). 514)

for a general s*, and, respectively, for s* € 1/2 4+ Ny. From Theorem 4.4 it follows
that

> e’) dL™BH )(f) — 0,

(5.15)
for any €, €’ > 0. By Proposition 5.5, the laws of J" B  and Z™# are equivalent
on C([a, b]), and thus?

_ 2
[ (W (V) = i)
C(la,b]) ,

/cqa,b]) ! <‘N 1/27€<V‘1’M~S*vN(f )—Tq/f%i*) > 6’) acz™"(fH -0  (5.16)

for any €, €’ > 0, which is equivalent to (5.13). Finally, if s* € 1/2 + Ny, then zm.H
and J" BH ., are equal in law, and (5.14) becomes (4.7). This concludes the proof. O

As a direct consequence, we obtain a procedure to estimate one of the parameters
o, 0, if the other one is known, based on discrete observations on the uniform grid of
la, b].

Theorem 5.7 In the setting of Theorem 5.6, the following hold true:

(1) If 0 is known, then 3,‘5’”’ = rq_1(29 Jr s ?Vy m s+ v (X,) is a consistent
estimator for o4, and for any € > 0,

GIM — 64 4 op(NTV2FE),

2 Note that in the case M = m + 1, the condition M > s + « from Theorem 3.2 imposes H < 1/2 instead
of H < 3/4 as in Theorem 4.4.

3 We recall that for two equivalent measures P ~ Q on some measureable space (M, M), it holds that
P(Ay) — Oifand only if Q(Ay) — O forany (Ay)yeny C M, see e.g. [37, Chapter 6].
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If s* € 1/2 + Ny, then also

~q,M d Uzq 2
~'N (UN’ _ aq) — N |0, 7%,M,s* , as N — oo.
q

(2) If o is known, then @’(,’M = rqz/qVHMM,S*UZ/QV%M’S*,N(Xt)z/q) is a consistent
estimator for 0, and

’9\]%,/\4 =9+0[P(N_1/2+€)9

forany e > 0. If s* € 1/2 4+ Ny, then

462
\/N(%’M—9>i>./\f(0 2 ) as N — oo.

y =550, X
qthz q,M,s

We conclude this section with several remarks:

1. The only a priori knowledge needed in order to apply our procedure is the spatial
regularity s* of X. In practice, this can be determined by examining the rate of
convergence to zero (or divergence to infinity) of the A-power variation for some
fixed (and arbitrary) s > 0, for example, by thinning the sampling mesh and
determining the regression slope in a log-log-plot. Such an approach has been
studied in a related setting in [14, 20].

2. The choice of the Dirichlet boundary conditions is not essential. By changing
the role of L and LY | we immediately get an analogous result for Neumann

sin cos’
boundary conditions. Similarly, using the representation of B interms of LY. =

mix

Y iy MYV e @M (et [30, Theorem 6.19]) with &M (x) = /2 sin((k —
1/2)mrx) and )L,i” = (k — 1/2)’7?, we get the same result for mixed boundary
conditions.

3. Applying the central limit theorem from Theorem 4.4 to SPDEs, essentially
depends on establishing a stronger than equivalence in law representation of
the solution X; in terms of a fractional Brownian motion. The CLT for the case
s* ¢ 1/2 + Ny requires a different approach, for example by direct calculations
of the covariance operator of X, and can not be reduced to integrated fractional
Brownian motion. Nevertheless, we believe that there is a CLT for s* € 1/2 + Ny,
and to the best of our knowledge, this remains an open problem.

4. Similar results can be derived if (5.1) is driven by an additive space-only noise
(the so-called parabolic Anderson model) instead of space-time noise. The main
difference in this case is that the optimal regularity is s* = 2y +«a — 1/2 (cf.
[12, 13]). In particular, the results from Sect. 4 are applicable to a broad range of
different models, as long as an additive dispersion operator is considered.

5. Asnoticed in [8, 19], under the sampling scheme of our work, but applied to linear
SPDEs driven by space-time white noise, only the ratio 6/o2 is identifiable, or
equivalently one of the two parameters assuming the second one is known. More-
over, to estimate jointly 6 and o, one has to consider spatio-temporal observations,
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for example on a rectangular grid [18, 19, 23] or using infill asymptotics for one
spatial and one temporal direction separately [8]. We conjecture that when the
solution is observed on space-time grid, the average across time instances of the
proposed estimators remains consistent and asymptotically normal under different
space and/or time infill regime. A strict proof of these results relies on establishing
some nontrivial asymptotics of the corresponding covariance structure and it is
beyond the scope of this work.

6 Linear SPDEs on unbounded domain

We consider the (linear) counterpart of (5.1) on the whole space, namely the stochastic
evolution equation of the form

X (x) = =0 (=AY X, (x)+oWY(t,x), t>0, x €R,
Xo(x) =0, xeR, (6.1)

wherea, 0, 0 > 0and (—A)%/? is defined via its Fourier transform: F[(—A)%/2u](&) =
€] Flul(€) for u € L2(R) with |-|* Flu] € L2(R). WY (¢, A), t > 0, A € B(R),
for some y € (0, 1/4), is a centered Gaussian field with covariance structure

E[WY(t, AWY (s, B)] = (t A s)/ / K, (x —y)dxdy,
AJB

with K, being the so-called Riesz kernel of order y given by

T(1/2 —2y)

4y—1
2713/2—F(2)/).|x| Y7, vy e(0,1/4).

Ky(x) =

We remark that traditionally in the literature the Riesz kernel has slightly different
parameterization, with y instead of 4y above. We choose such form of Riesz kernel
simply to match the spatial regularity of the solution with the one from the bounded
domain case.

We recall that Gy(t,x) = / e XE—1IEN d¢ is the fundamental solution of
R

0Gal(t,x) =
—(=AN)*? Gy (1, x). Consequently, the mild solution to (6.1) is defined as

¢
X (x) =U/ f Gy, (0(t —s),x —z) WY (ds, dz), (6.2)
0 JR

where the above integral is a Wiener integral with respect to the Gaussian noise W7
For details, see for instance [26, Sect. 3] and [15, Sect. 2].

In the context of statistical inference, SPDEs similar to (6.1) were recently consid-
ered in [21] and [22].
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Proposition 6.1 For m € N U {0}, we have that

sup E ’8;”Xl(x)’2 < oo forevery T >0,
t€l0,T],xeR

if and only if 1 +2m < o + 4y. In particular, 9" X, (x) is well-defined for x € R,
0<t<Tand1+2m < o +4y.

Proof Without loss of generality, we fix &6 = o = 1 for simplicity. Note that the
Fourier transforms of K, and G(t, -) are given by

FK, (&) =E]™ and FGu(t,)(&) =e " forr>0and & € R.
Then, foreachO <t < T and x € R, we have
t
E \8;"Xt(x)|2 = / / / 07 Go(s, x =K, (y — 207 Go(s, x —z)dydzds.
0o JRJR

From here, making the substitution y = x — y, 7 = x — z, and using that K, (x) =
K, (—x), we continue

t
E|8)’C”Xt(x)|2=/(; Aa;"Ga(s,y)x (Ky % 3" Ga(s, ) (y)dyds

t
= (2;1)—1/0 /Rf(a;g’c;a(s, ) &) x F (K, % 8MGyls, ) (£) d& ds
t
:(271)_1/ /|g|2’"—4Ve—25'5'“ dé ds
0 JR

t
- (2n)*1/0 sy =2m=Da ds/Re*Z‘S‘ﬂgF’"*“V dé < oo,

if and only if (4y —2m — 1)/ > —1, which is equivalentto 1 +2m < o 4+ 4y. O

Define the following remainder term:

R(x) =a/oof 3" (G (0t —5),2) — G (0(t — 5), x —2)) WY (ds, dz). (6.3)
t R

Note that the remainder term decays exponentially fast in Fourier space and is therefore
smooth in space for each ¢ > 0.
The next result is based on [22, Proposition 4.6].

Proposition 6.2 Fort > 0, the process 0" X; has the same distribution as a perturbed
o
JBM of the form Ca,y,mﬁ32y+a/2_l/2_m + R, provided that 2y + a/2 — 1/2 —

m € (0, 1), where ¢, := Q2m) ™" [ (1 —cos(§)) |§]*"~*~*d& and R € C*(R)
almost surely.
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Proof Forevery x € R and a fixed t > 0, we set v(x) := 07 X;(x) — R(x). Then, for
x,y €R,

2 00
E|v(x) —v(y)|* = "; /0 /R E12m4 (1 — cos(E(x — y))) e 205E1 dg ds
2

= =y [ o 6P e,
R

We note that, by the assumption 0 < (¢ +4y — 1)/2 —m < 1,

/ (1 — cos(&)) [+~ de < f &P g
R

|€1>1

+ / |§.|2m—4y—a+2d§ < 00.
|§1=<1

This implies that v is a fractional Brownian motion with Hurst index % —m. The
smoothness property R € C*°(R) follows from [22, Proposition 4.6]. This concludes
the proof. O

The following result on estimation of drift 6 or volatility o of fractional heat equa-
tion (6.1) follows immediately from Theorem 4.4 in conjunction with Proposition 6.2.

Theorem 6.3 Letm € Noand0 < H < 1 suchthatm + H = s* =2y 4+ «a/2—1/2.
Let M, q € N, and assume that either M = m + 1 with H < 1/2 or M > m + 2.
Then, we have,

q
2 o
w— lim \/_(Vqu*N(Xt) Cayqu:“%s* (_> )

N—o00 ﬁ
2q

_ 2g 2 q o

= N (0, Ca’y’moq,M,S*/'LM,s* <ﬁ) ) . (64)
Moreover,
(1) If 0 is known, then aq M c;l},’mtq_l a 1/2«/_Vq M.s*, N(X,)l/q is an asymp-

totically normal estimator for o;

(2) Ifo isknown, Gg,’M = cg_’y mT /un §+O Vq M.+ N(Xi)~ 2/q is an asymptotically

normal estimator for 6.

We conclude this section with several clarifying remarks on the class of considered
SPDE:s in this section. The choice of Riesz kernel was primarily prompted by [22]
that considers same equations. In particular this allows to have a direct compassion of
the results obtained in this paper and those from [21, 22]. A careful reader will also
notice that working with Riesz kernel, which is characterized by its Fourier transform
FK, (&) = |§ =%, is technically convenient. On the other hand, such correlation
structure of the noise limits y € (0, 1/4), thus limiting the range of regularity of the
solution in spatial component (as described above). To overcome this, but also to be
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on par with SPDEs from Sect. 5, one can replace the Riesz kernel with Bessel kernel
with Fourier transform .7-"[(5 (&) = (1 +|£]*) 727, for any y > 0. This case indeed
can be addressed, and results similar to those from Sect. 5 can be obtained. For the
sake of brevity, we shortly sketch the main arguments of the proof. For simplicity, let
us also assume that the drift operator —0(—A)¥/? is substituted by —6(1 — INKEST

(6.1). First, we note that for 0 < y < 1/4, there exists a positive definite kernel K 5 /B

such that FK;'® = FK, — FKB.Letm € Rsuchthaty’ := 2y +a/2—1/2—m €

0, 1), let W7 a centered Gaussian field with covariance kernel Kf,/ B, independent
of WY Then, similarly to [22, Proposition 4.6], one can prove that the increments of
(I —A)"2X —RMD — R are the increments of a fractional Brownian motion, where

R“>(x>=o/ /(1 — AYM2(Ga (Bt — 5), 2) — Ga(B(t — 5), x—2)) WY (dz, ds),
t R

R@ (x) :0/00/(Ga(9(t—s),z)—Ga(e(t—s),x — )W dz, ds).
0 R

Then, for m € 2N, we have that (I — A)’”/ZX is a linear combination of 83"1/X,
where 0 < m" < m/2,s0 Vypr s N(X) = Vym s NUI"OTX) = Vymsn(I"(UT —
A)"™2X), up to negligible terms. Furthermore, J” (I — A)"/%>X behaves like J" B
with H = y’, up to a perturbation by RV and R®. Consequently, similar statements
concerning consistency and rate of convergence of the A-power variation can be
made. However, the central limit theorem does not transfer since R® is not arbitrarily
smooth. Similar to the bounded domain, the asymptotic normality property of the
corresponding estimators for 6 and o remains an open question.

The emphasis that the extension of the results from linear to nonlinear equations of
the form (1.1) via a splitting argument depends on spatial regularity properties of the
solution X to (6.1). In contrast to the case of bounded domains, the covariance operator
as given by the Riesz (or Bessel) kernel is not of trace class, so X will not belong to
L%(R) or any higher-order Sobolev space derived from L2(R). Instead, we believe
that suitably chosen weighted Sobolev spaces can help to mitigate this issue. To the
best of our knowledge, this has not been investigated systematically in the literature.

7 Numerical example

In this section we illustrate the theoretical results of Sect. 5 via numerical simulations,
by considering the stochastic heat equation

dX; = 0AX,df + (—A)VdW,, (7.1)

with initial condition Xo = 0 on D = [0, 1] with Dirichlet boundary conditions. We
take the true values of the parameters 6, 0 = 1. As far as the smoothing parameter
y, we consider the following representative cases y € {0.0, 0.375, 0.5, 0.625}, which
correspond to the regularity level s* = 2y + 1/2 € {0.5, 1.25, 1.5, 1.75}. To numer-
ically simulate a path, we use the Fourier series decomposition of the solution (5.4)
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Fig.1 Estimation of 6 (top row) and o2 (bottom row). Left panel: the average of 100 Monte Carlo estimates
as function of spatial sampling resolution /4. The solid black line corresponds to the true value 1.0. Right
panel: The RMSE (root mean square error) as function of /. The black line corresponds to the theoretical
convergence rate /2

by taking Nop = 1 x 10* eigenmodes, and each eigenmode is numerically simulated
by the Euler implicit scheme with temporal stepsize 8t = 1 x 1078, Correspondingly,
the solution is computed at Ny + 1 uniformly spaced spatial grid points with step size
h=1x10"%

Next, we assume that the solution X is observed at time 7' = 1 on spatial grid points
belonging to the interval [a, b], with a = 0.2, b = 0.8. We apply Theorem 5.7, with
g =2and M = [s*] + 2, to estimate one of the parameters x or o> assuming that
the second one is known. For each set of the parameters, we perform these evaluations
on 100 Monte Carlo sample paths of the solution. The average values of the estimates
as function of step size & are displayed in Fig. 1, left panel. Clearly, the estimators
converge to the true value (horizontal solid line & = 1 and 02 = 1), as the mesh size
gets smaller. Moreover, as shown in Fig. 1, right panel, the root mean square error
of the estimators behaves as h!/2, confirming the theoretical rate of converges of the
proposed estimators, regardless of the order of regularity s* of the solution. Similar
results were obtained for various sets of the parameters. Finally, while not shown here,
we remark that the results from Sect. 4 were also confirmed via numerical simulations.
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Appendix

For reader’s convenience, we recall a useful asymptotic result of Hermite polynomials
of a stationary Gaussian sequence.

Theorem A.1 [28, Theorem 7.2.4 Breuer-Major Theorem] Let Y = {Yj}xez be a cen-
o

tered stationary Gaussian sequence with unit variance, and f (x) = Z agHy(x), a4 €
q=d
R, where Hy is the q-th Hermite polynomial. Assume that

> e < oo, (A.1)

LeZ

where p(£) = E (YoYy), € € Z. Then,

w— lim —Zf(m = Zq'cﬂZp(e)‘f

LeZ
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