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Abstract

We consider a Markov decision process subject to model uncertainty in a Bayesian
framework, where we assume that the state process is observed but its law is unknown
to the observer. In addition, while the state process and the controls are observed at time
t, the actual cost that may depend on the unknown parameter is not known at time ¢.
The controller optimizes the total cost by using a family of special risk measures, called
risk filters, that are appropriately defined to take into account the model uncertainty
of the controlled system. These key features lead to non-standard and non-trivial risk-
averse control problems, for which we derive the Bellman principle of optimality.
We illustrate the general theory on two practical examples: clinical trials and optimal
investment.

Keywords Markov decision processes - Model uncertainty - Dynamic measures of
risk - Dynamic programming

1 Introduction

We study a risk-averse Markov decision problem (MDP) subject to uncertainty about

the underlying dynamics as well as uncertainty about the risk-averse criterion. The
uncertainty about the underlying dynamics, that is the lack of perfect knowledge of
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the form of the controlled underlying dynamical system, is the type of uncertainty that
is referred to as the Knightian uncertainty (after Frank Knight). In the present paper,
we additionally face the uncertainty about the control criterion. Accordingly, here,
we understand by Knightian uncertainty both the uncertainty about the underlying
dynamics as well as uncertainty about the risk-averse criterion.

The literature concerning risk-averse MDPs is rather abundant, and we refer to e.g.
Fan and Ruszczyniski (2022, 2018) and references therein. Similarly, there is a vast
literature on MDPs subject to uncertainty about the model dynamics, and we refer to
(Bielecki et al., 2019) for an overview of the classical methodologies on this topic.
MDPs subject to model dynamics uncertainty have been studied using both the robust
methodology and the Bayesian methodology (see e.g. Wolff et al. (2012), Lin et al.
(2021) and references therein). However, to the best of our knowledge, the present
study is the first systematic study of risk-averse MDPs subject to model uncertainty.
An earlier effort to deal with a risk-averse MDP subject to model uncertainty in Lin
et al. (2021) focuses on the CVaR criterion that has an equivalent expected value
formulation and is only addressing the uncertainty about model dynamics. As already
said above, we are not only concerned with uncertainty regarding the underlying
dynamics, but also uncertainty about the optimization criterion, which is a novel and
important practical feature, as Examples 3.17, 3.18, and 3.19 below show. While
frequent in machine learning literature, although mainly concerned with the expected
value criterion [cf. Lattimore and Szepesvari (2020); Sutton and Barto (2018)], that
has not been addressed in the risk-averse case.

The Knightian uncertainty that we consider is parametric in nature, and our approach
to tackling the respective MDP is rooted in the Bayesian methodology. This means
that we treat the unknown parameter as a random variable, denoted by ® below, and a
part of the hybrid state that leads to the evaluation of the control policy is the posterior
distribution of this random variable [cf equation (5.1)], which is updated via an explicit
recursion given in Proposition 5.2. It came to us as quite a surprise that accounting for
possible uncertainty about the optimization criterion leads to rather intricate conceptual
ideas and technical manipulations. In order to avoid measurability and integrability
issues that are notorious and intrinsic in MDPs on general state and action spaces,
and that would quite likely burden the main takeaways from this study, we decided to
work with discrete state, action, and parameter spaces. However, morally, the results
should hold true in much more generality, which will be addressed in future works. We
chose to use integral notation with respect to the state variables, which is much more
pleasing to the eye and lighter than the summation notation. We keep the summation
with respect to the time variable though, whenever needed.

The solution to the considered risk-averse MDP hinges on the key and new con-
cepts of dynamic risk filters and recursive dynamic risk filters, as well as the notions
of parameter consistency and time consistency for dynamic risk filters. These, in par-
ticular, allow to derive a version of the dynamic programming routine suited to the
needs of our uncertain risk-averse MDP.

The main contributions of and takeaways from this paper are the following:
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1. To the best of our knowledge the present study is the first systematic study of
risk-averse MDPs subject to model uncertainty encompassing both the uncertainty
about the model dynamics as well as uncertainty about the performance criterion.

2. The concepts of parameter-consistency and time-consistency of dynamic risk filters.

3. Theorem 3.14 that characterizes the dynamic risk filters satisfying conditions stated
in Definition 3.3.

4. Explicit recursion for the posterior distribution (belief state) for ®, given in Propo-
sition 5.2.

5. Theorem 5.6 that provides a solution to our risk-averse control of Markovian sys-
tems subject to model uncertainty.

The paper is organized as follows. In Sect.2 we set the stage and define MDP
and the model uncertainty framework. Also here we introduce a series of probabil-
ity measures and some of their properties used frequently in the sequel. Section 3 is
devoted to risk filters, starting with the definition and some fundamental properties of
these objects. The key concept of parameter consistency of risk filters is introduced in
Sect. 3.2, while the time consistency of risk filters is studied in Sect.3.3. In this Sect.
we provide a characterization of parameter-consistent and time-consistent risk filters;
cf. Theorem 3.14. Also here we discuss two important examples of risk filters: the
expectation of an additive functional, Example 3.17, and risk-sensitive criteria in the
context of clinical trials, Example 3.18. The structure Theorem 3.14 leads to the nota-
tion of recursive risk filters, introduced in Sect. 4. Sect. 5.3 is devoted to the risk-averse
control problem. In Sect.5.1 we derive the Bayes kernel for the posterior distribution
of the parameter of interest. Then, we derive the dynamic programming backward
recursion for the classical additive reward case; Sect.5.2. Here, as a particular case,
we briefly discuss the optimal investment and consumption problem, when the investor
faces Knightian uncertainty and unknown risk-aversion parameter; Example 3.19. We
conclude with the solution to the optimal control problem for a general recursive risk
filer: Theorem 5.6.

Finally, we want to mention that while writing this manuscript we strove to keep
a balance between heavy notations and rigor. Nevertheless, some formulas still may
appear overwhelming, which is typically the case for MDPs.

2 Markov decision processes with model uncertainty

We consider an observed, controlled random process X = {X;};=1.... 7. The corre-

sponding state space is a finite set X'. The underlying probability space that we will

work with is canonical. It includes the space of paths of X: 2 = X' x --- x X =
—_— ——

T times

(X)T, endowed with the canonical product o-field F = 2X® e ® 2% The ele-
[ —

T times
ments of Q are w = (wq, ..., wr). We use x; to denote the canonical projections at
time ¢, so that X; (w) = x; = w;. We let {.7-",X }t=1,....T to denote the canonical filtration

generated by the process X, so that .7-'tX =29 ®2%® (R, - {2, d}.

t times T —t times

We will make use of the notations 7 = {1, ..., T}and 7, = {¢, ..., T}.
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The control space is given by a finite set{{, and the set of admissible controls at step
t is given by a set-valued function (or a multifunction) ¢; : X = U with nonempty
values. We consider a parametric family of transition kernels Ky : X x U — P(X),
where P(X) is the space of probability measures on X', and 6 € ) represents an
unknown parameter. Here, O is a finite set. The unknown true value of the parameter
0 is 6*.

We will consider the Bayesian setting, and therefore, we consider the product space
2 = 2 x © endowed with product o -algebra F = F ®2©. We denote & = (w,0)
and @; = (v, 9).AIn accordance wigh the Bayesian setting we denote by ® a random
variable on (§ , F) with values in ®, and with ® (w) = 6. We also assume that some
prior distribution &1 of ® (supported in @) is available.

Remark 2.1 We chose to work with finite sets X', U, and O 50 to avoid dealing with
technical and delicate issues of measurability of various functions that we encounter
throughout the analysis, as well as the issues of existence and nature of measurable
selectors. These technical problems will be tackled in the future.

The process {X;},c7 considered as a process on (ﬁ, j—'\) is denoted as X = {X\t}teT,
and X, (@) = X, (0, 0) = X, (w) = w;. Accordingly, the canonical filtration generated
by the process X is given as {]—",X = ]-}X ® {9, @}, teT}

At time ¢, the history of observed states is #; = (x1, x2, ..., x;), while all the
information available for making a decision is g; = (x1, u1, x2, 42, ..., x;). We use
H; = X' = X x --- x X to denote the spaces of possible state histories &,;. We

t times
make distinction of g; and h; because we should make the decision of u; based on g;
as the past controls uq, ..., u;—1 are also taken into consideration when estimating the
conditional distribution of 8. We write H; for (X, ..., X;) and flt for ()A(], cey 5(\,).

A history-dependent admissible policy m = (my, ..., ) isasequence of functions
1 (gy) such that 77, (g,) € U;(x;) for all possible g;. One can easily prove that for such
an admissible policy m, each m; reduces to a function of 7, = (x1, x2, ..., xl),1 as
ug = mws(x1,...,x5) foralls =1, ..., ¢t — 1. Therefore the set of admissible policies
is

O={mr=@,....77) : mx1,....x) €Ux), 1 €T}

Any policy w € IT defines the control process, also denoted by # = {m;},c7, with
;= 7 (X1, ..., X;). We make a distinction between u; = m;(xy,...,x;) and 7, =
(X1, ..., Xp). N

As said in the Introduction, even though we work with discrete spaces X and @, we
are using the more convenient integral notation, rather than the summation notation.

1 We are still using 75 to denote the decision rule; it will not lead to any misunderstanding.
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For a fixed initial state xj, every policy = € I1, and every 6 € 0,a probability
measure P}’ on (£2, F) is uniquely defined by:

Pér(Al X Ay X ... X Ar_1 X AT)

=/ / f Ko(Arlx7—1, mr—1(x1, ..., X7-1))
Ay J Ay AT

x Ko(dxr_1|x7—2, m7—2(X1, ..., XT-2)) X -
x Ko(dxalx1, m1(x1))0x, (dy), A, CX,teT, (2.1)

where, as usual, 8, denotes the Dirac measure concentrated at x. In particular,
PJ(A)=Pf](XeA) =P/l : X(w)e A}), ACQ.
The true but unknown measure under the policy 7 is PJi. This measure gives the
true law of the canonical process X subject to the control strategy 7.

Given the prior distribution &, a probability measure P” on (2, F) is defined as
well:

P™(A x D) = / PJ(A)£(d6), ACQ, DC®. 2.2)
D

In particular,
PT(AxD)=P"({(&ecQ: X@) € A, O@) € D).

Clearly, &; is the marginal of P7, thatis & (D) = P" (2 x D). To simplify the ensuing
study, we assume that for any r € 7 and h; € H, we have P”(f{,\: hy) > 0. This
assumption is of course an assumption about the kernels Ky, 0 € ©.

Furthermore, foreacht = 1,..., T — 1 and for each history 4; € H;, we define
the set of tail control strategies

- = {gthe . rr,"h’ =1 (hy), T gty Xg)
- n.?(ht7-xt+la e 9-x.8‘)’ s € ’];-'r]a T e H}'
In addition, fors = 1,...,T — 1, and foreach 6 € ®, h, € H,, and 7" e T1"" we

construct a probability measure ng ;fl,T on X7~ in analogy to (2.1). Specifically,
we put

thy
PI (At % -+ x Ar)

=/ / f Ko(Arlxr—1,mr—1(hy, X415 - -5 XT—1))
Ary1 JArp2 AT

~Ko(dxr_1lxr—2, mr—2(he, Xeq1, oo, X7-2)) - - - Ko(dxsq2lxr 11, 1 (e s Xp41))
-Ko(dxiq1lxe, mi(hy)), Ay CX, s €Tiqy. (2.3)
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We proceed with three technical results that are rather straightforward consequences
of the above set-up.

Lemma 2.2 Forany h; € Hy, and Ay C X, s € T;+1, w € 11, and the corresponding
b e TIMM we have that

thy

Perft+l,T(Al+1 X...X A7) = Peﬂ(XtJrl € Attty ..., X7 € AT|Hy = hy). (2.4)
Proof First, note that?

Pen(Xl =x1,...,Xt Z.X't)
= Kg(x2|x1, w1 (x1)) Kg(x3]x2, m2(x1, X2)) - - -
Ko (x¢lx—1, me—1(x1, ... X¢)).

On the other hand,

g(Xl+1 EAZ‘+15'-'7XT GATaHZZhl)
:PéT(Xllev"'3Xf=-xl"Xl+1 GAI+1""7XT€AT)

nt,ﬁt
= Pe,t+1,T(Af+1 X - X AT)
fal

Ko(dX;|%—1, -1 (he—1)) - - - Ko (dXa| %1, 711 (F1))8, ()
t.h
= Pg’f,+t1,T(Az+1 X - X AT) Ko (Xt |xr—1, -1 (hy—1)) - - - Ko (x2|x1, 1 (x1)).
Combining the above we immediately have (2.4). O

N
For future reference we denote by PG” ; +’1 a measure on (X, 2X ) defined as

thy

t,h i
P9ﬂ,t+l(B) = P971,t+r1,T(B x X1 l)-

(2.5)
Thus, we have that, fort < T — 1,
t,h
PE(B) = / Ko (i1 | e 7)) = Ko(B | xp. 70 (hy))
B
= Py (X1 € BlH, = Iy). (2.6)
Next, we construct a probability measure Pl’j:’lth on X7~ x @ as
t.h N o
P\ (A x D) :/D PIL (M) g7 de), Ae2¥®---©2%, De2°,
T —t times
2.7)

2 To further simplify the notation we write Ky (x|...) in place of Kg ({x}|...). Ina similar way, for a probability
measure Q on Q, and y € O, we may write Q(y) instead of Q({y}).
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where £ € P(©), is given as

Th(Dy=P" (@€ D|H =h), fort =2,...,T, and £""(D)=& (D).
2.8)

With some abuse of terminology, we define a conditional measure

Jht
P (A X {6))

P (XT x (o)

P (A1©=6) = 0ec® Ac2¥®...@2%.

2.9)
Then, clearly,

t,hy

P,’f;‘l'ﬂ’T(A 1©=0)= P, 7(4), 00 Ac2¥® --®2Y. (210

Occasionally, in what follows we will use a simplified notation Pt’i'l}itT | g(A) for
h
PR (A © =0)

Lemma2.3 Let A € 2X®'~®2X, D e 2@, h; € Hy, and t € T1. Then
—

T —t times
nt,h[ T o~ ~ ~ o~ -~ -~
Pl (Ax D)= P"((X41, X142, ... X7_1,X7) € A,©® € D| H, = hy).
(2.11)
Proof First, in view of (2.8) and (2.2) we note that
7 (D) = [p PF(H; = hy) §1(d6)
' PT(H =h)
Thus,
t,ht
P}, (AP (H; = hy) £1(d)
PV (A x D) = Jp Pir.r (PG (He = h . (2.12)

P7(H; = hy)
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On the other hand, using (2.2) and Lemma 2.2, we have

P (X141, X142, -, Xr—1, X1) € A, © € D|H, = hy)
Jp PF((Xis1, ..., X7) € A, Hy = hy) £(d6)
N P (H, = hy)
Jp PF((Xis1, ..., X7) € A | Hy = hy)PJ (H; = hy) £1(d6)
N P7(H, = hy)
[ PI (AYPF (Hy = hy) §1(d6)
N P7(H, = h;) '

This, combined with (2.12) concludes the proof of part (i). O
Remark 2.4 Formally, taking T =t 4 1 in (2.10) we obtain

t,hy t,hy t,hy

Pt11,1+1|0(A) = Péfl-l—l,t—&-l(A) = P(;r,tﬂ(A)’ (2.13)

where in the last equality we used (2.5).

Lemma2.5 Lett € {1,..., T — 1}, and let F be a function on X7 x @. Then, for
each h; € 'H; we have

E™[F(X;11, X142, ... X7—1, X7, ©) | H = h;] =

T—1hp_ g
/@/X Flaogroxr. O PFy " dar) - PE )6 (d6),
(2.14)

where ET denotes the expectation with respect to probability PT.

Proof In view of Lemma 2.3, we have
P (dxi41, ..., dxr;d6 | By = hy) = P7p(dxis, ..., dxrs d6).

Consequently, by (2.7), we continue

t.h

1 Jhy Jhy
P (dxsrs . dxr; dO) = PR p(dxigr, ... dxp)ET " (d6).

This combined with (2.3) and (2.6) yields the identity (2.14). O

Jh o
For future reference we denote by Pt’ﬂrr 1 ' the measure on X' x O defined as

P71 (B x D)= PR (B x XT7'"' x D)= P"(Ri11 € B,® € D| H, = hy),
(2.15)

fort =1,..., T — 1, with the convention, employed throughout, that B x X 0w D=
B x D. The second equality in (2.15) follows from (2.11).
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T,h Py
Fort = T and hy € Hr we construct a measure P}TH TT on O as

2T hr

PZ\7(D)=P™(© € D|Hr = hr) = 67" (D).

Given that a strategy 7 is used, then at each time € 7 a random cost Z7, , is
incurred, with

Zg,, = ¢ (Xy, 711, 0),

Wherec,:XxZ/{x@—>R+.

Remark 2.6 1t is important to note that even though X; and 7, are observed at time ¢,
the actual cost ¢; (X, 7y, 6*) is not known (or observed) at time 7 as 6* is not known.
The dependence of both the transition kernel and the accrued costs on the unknown
parameter is an important practical situation, leading to non-standard and non-trivial
risk-averse Markov decision problems.

To proceed, for each t € 7 and each history #; € H; we denote

Zp = e, (), 0), (2.16)
and foreachs =t +1,..., T we put
Zg::f;’xprl ..... » =GCs ('xS’ n;’ht ('xl+l LI xx)v 0) (217)

Note that, for a fixed strategy m and a fixed h; € H;, we have that ¢; (x,, 7, (hy), -)
is a function on @ and ¢, (-, g h’( ,), 0) is a function on X7 x 0.

3 Risk filters for MDPs with model uncertainty

An underlying feature of our approach is a desire to assess the riskiness of the uncer-
tain costs induced by any policy 7 in a time-consistent way. This desire is fulfilled via
the concept of a time-consistent dynamic risk filter, also satisfying additional prop-
erties of normalization, monotonicity, translation invariance, support, and parameter
consistency.

3.1 Dynamic risk filters

Fort =1,....,T —lands =1¢,...,T, we denote by Z and Z, ; the spaces
of real Valued functlons on X' and X st x O, respectively, Where X0 % @ = =0,
so that Z;; is the space of real valued functions on ®. For Zis, Wis € 2, the
comparison between these functions is understood point-wise; Z; ; < W; ; means that
Zis(Xig1y oo X5, 0) < Wy s(X41, -0, x5, 0) forall (41, ..., x5,0) € X5 x 0.
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For any policy = € IT, our objective is to evaluate at each time ¢ € 7, the riskiness
T[,ht n,h[,X[+l ﬂ,ht,X[+1 ..... XT . . .
of the sequence of costs Z®J , Z®,t,t+1 e Z(;)J’T , given history A, in

such a way that the evaluation is .7-',X -measurable. We denote by
2t = Ziy X Zppp1 X ooo X 2y

the space of conditional cost functions’ in periods t, ..., T.

Fort = 1,...,T ands = ¢,..., T, we also use P to denote the space of
probability measures on the space of paths starting at time ¢ and ending at time s, and
on realizations of the parameter 6, that is on the space X*~/+1 x e. Additionally, we
understand Pz 7 as 73((:5), because no future paths are possible. Note, in particular,
that P} € Prar 7. fort € T,and P, € Prot s,

Observe thatattime ¢t = 1,..., T — 1 we know the history %;, and, for any policy
m € I (in principle), we can evaluate the distribution of (X;41, ..., X7, ®) under

ﬂr.h,
the measure P, LT

We proceed with stating three key definitions.

Definition 3.1 For a fixed t € 7, a mapping p; : Z°7 x Pry1.r — R, is called a
conditional risk filter.

It should be stressed that the concept of a conditional risk filter is substantially different
than that of a conditional measure of risk, discussed in the risk theory literature, such
as, inter alia, Scandolo (2003); Frittelli and Scandolo (2006); Cheridito et al. (2006);
Ruszczyniski and Shapiro (2006); Artzner et al. (2007); Ch et al. (2007); Shapiro et al.
(2021), because it is real-valued and admits the probability measure as its second
argument, which is pertinent to our setting. It is closely related to the concept of a
risk form recently introduced in Dentcheva and Ruszczynski (2020). Note that, in

particular, for any (Z;;, ..., Z; 1) € ZtT and 7 € I1 we have
zmh L zm e ex iy Ry forall by € AT
Pi(Zgys s Lyl T s PRy r) = R(hy), forall hy € X7,

for some function R : X’ — R. This explains the term conditional in the conditional
risk filter. Also, it needs to be stressed that conditional risk filters should not be confused
with the linear or non-linear filters that are studied in the filtering theory (see e.g.
Krishnamurthy (2016)).

Definition 3.2 Let ¢ € 7. A conditional risk filter p;

i is normalized if p;(0,0,...,0; Py 7) =O0forall P17 € Pry1.75

ii is monotonic it p;(Zs ¢, ..., Zt.1; Pry1,1) < Wiy, ..., Wi s Pryy, ) for all
P11 € Prvrr.andall (Z;;, ..., Z;.7)and (W, 4, ..., W, 7)in Z"T such that
Zis < W, foralls € 7y;

3 The term conditional refers to the fact that at any time ¢ we consider cost functions that depend on a
history #;.
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iii is translation invariant if for all (Z;;,...,Z; 1) € ZtT all V e R, and all
Pyt € Prars

o \V+Zit, Zogwrs s Zors Pam) =V +00(Ze gy Zipits oo Zes Pry11)s

iv has the support property, if

0i(Zits s Zers Pepr,1) = 0(Zit L supp, (P )+« - -+ Z0.7 L suppy (Pt 1) Prs1.7),s

forall(Z;;, ..., Z; 1) € ZbT andall Pi1 € 73t+/1\,7,andwhere supp, (Pr+1,7)
denotes the projection of supp(P,+1.7) on X*~ ' x @, for s > r.

Remark3.3 Lets =t,..., T andlet {Z; ;, y € Y} be a family of functions parame-
terized by y, for some non-empty set ). Then, by the normalization property, for any
AcC)Y,ye )Y, and P € Piy1 1, we have that

LA Z, 1o s Zy 73 P) = pr(LaWZ] v .. LA Z7 43 P).

Definition 3.4 A dynamic risk filter p = {p:},_1 is a sequence of conditional risk

filters p, : 257 x Pry1.,7 — R. We say that it is normalized, monotonic, translation
invariant, or has the support property, if all p;, ¢ € 7, satisfy the respective conditions
of Definition 3.2.

3.2 Parameter consistency

Lett=1,...,T —lands =t¢,..., T.For any Rrobability measure P; s € P; 5, we
denote by P; 5o (-, -), the stochastic kernel from @ to X’ s=1+1 defined as*

Prs (A x {6}

L Acxtl peo. 3.1
P x o) C G-D

P 500, A) =

The corresponding marginal on © is denoted by P; .0, so that
P se(D)= P (X' x D), DcC@. (3.2)

Clearly, the measure P; ; admits the disintegration

P; (A X B) = / P 519(A) Py 5 0(d0) =: Py 0 ® P s0(A X B),
B

where we use a simplified notation

Pis519(A) == P00, A). (3-3)

4 Note that (2.9) is an example of the above.
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We note that for any stochastic kernel « ; (-, -) from © to X~ and for any probability

measure 1 on 2€ one can construct a unique probability measure on the product space
57 @ as

mi (A x B) = / k1,5 (0, A) u(db) =: n ® K; 5(A X B).
B

In particular, with u = 8¢ and k; y = P; 510, With P, ; € P; 5, we get
m; s(AX B) =8 ® Py 5j0(A X B) = Py 519(A)1p(0) = P 5190(A)de(B). (3.4)

Remark 3.5 Inour convention, Py 7(-) is ameasure on ©. This means that, formally,

Priir.e
= Pr41,7 and Pry1,71@ = 1, in which case (formally)

80 ® Pry1,1i0 = 9.

t,hy

Example3.6 Fixt € T, h; € H; and w € I1. Take P17 = P 1 € Piy1,7 and

t+1,

t,hy

Prite+1 = Py € Prgie41. Then,

t.hy t.hy t.hy
Pt+1,T\9 = PgrthLT» Pt+1,z+1\9 = ng[_H, Pt+1,T,® = étﬂ . (3~5)

The first equality above comes from (2.10). The second one comes from (2.13). The
third one is just (2.7) with A = XT~. Note that (3.4) and (3.5) imply that

t,hy t,hy
8o ® P\ 7 0(A x B) =89 ® P\ 7(A x B),

ot il 3.6)
8o ® Py 14110(A X B) =8 ® Py, ,11(A X B).

We introduce the following key concept.

Definition 3.7 A conditional risk filter p, : 257 x Pi+1.r — R is parameter con-
sistent, if forall (Z; ¢, ..., Zi.1)s Wrg, ..., Wer) € 207 Jand all Pryy 7, Qi1 €
Pi+1.7 the relations

Piiir.0 = Qi41,7,0

and

0e(Zeo ooy Zeri 80 ® Prprrie) < pr(Wers oo, Wers 80 ® Qrq1,710), forall 0 € 0,
(3.7

imply that

pt(zt,u cos 2T Pt+l,T) =< pt(Wt,t» o Wers Qt+1,T)- (3.8)
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In words, if the marginal distributions of P and Q on O are the same, and the
conditional risk of Z;.r := (Z;;,...,Z; ) under P is not greater than that of
Wit :== (Wi s, ..., Wy r) under Q for every value of 6, then the risk of Z;.7 under P
should be not greater than that of W;.r under Q.

Remark 3.8 Note that parameter consistency at + = 7 follows from the support
property, translation invariance, monotonicity, and normalization of pr. Indeed, first
observe that according to Remark 3.5 the equality Pr4+1.7.0 = Or+1,7.0 = 1implies
that Pry1.7 = Qr+1,7. Thus, for any 6 € [2)

pr(Zr,7,80) < pT(Wr,7,80) &  pr(Z1,7(0),80) < o1 (W1, 7(0),80) &
Z7,1(0) + p1(0,80) < Wr 7(0)+ p7(0,80) & Z7,7(0) < Wr 1(0).

By monotonicity, we have that

pr(Zr. 1, Pry1,1) < pr(Wr. T, Pry1.1) = pr(Wr, T, O141.7).

This remark is used in Proposition 3.10 and also in Theorem 3.14.

We have the following risk decomposition formula.
Theorem3.9 Taket =1, ..., T. If a conditional risk filter p; : Z’f X Piq1r = R
is parameter consistent, then there exists a mapping p; = Z;; x P(®) — R such that
forall Z;.t and Piy1 T,
,Ot(Zt,t, VAN Pt-H,T)

= /37({/%(2;,;, o ZiTi 89 ® Piprie), 0 € e}; Pt+1,T,(-)>- (3.9

Proof Suppose two sequences Z;.r and W;.r in Z’ T and two measures Pit1,7 and
Q41,7 in Py 7 are such that Pt+1,T,(§ = Qt+1,T,@ and

0i(Zis oo os Zir: 80 ® Pryrmio) = pt(Wies ..., Wirs 80 ® Qiq1,110), VO € 0.

Then it follows from Definition 3.7 that

)Ot(Zt,tv e Zt,T§ Pt+1,T) = ,Oz(Wt,t, cees Wz,T§ Qt+1,T)~

This means that formula (3.9) is true. O

Thus, parameter consistency allows us to disintegrate the risk filtering task into two
stages. First, we evaluate the risk in a fully observed system, with the parameter 6
fixed, and then we integrate the results by using the operator p;, which we call the
marginal risk filter.

Proposition3.10 Take t = 1,...,T. If the conditional risk filter p; is parameter
consistent, normalized, monotonic, and has the translation invariant property, or the
support property, then the mapping p;(-; -) has the corresponding properties as well
(in the sense indicated in the proof below).
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Proof Indeed, consider any measure A € P(@). Then for any P41, 7 € Pry1,7 such
that Pry1. 7,0 = A, we will use the formula (3.9) to analyze the implied properties of

Pr-
1) Suppose p; is normalized. Then (the symbol 0 below denotes a function on ® that
is identically equal to zero)

70 ) =7 ((00(0. ... 0:80® Py 116). 6 € O Py 7.0)
= p,(O, e ,O, Pl‘-‘r],T) =0.

Thus, p is normalized.
2) Suppose p; is normalized and translation invariant and has the support property.
Then for any V € R, we have

oe(V.0,....0; Pyrr) =V +p,(0,0,...,0; Ppi7) = V.

Therefore, for any U € Z"! and any a € R, by the support, translation invariance,
and normalization properties of p;, we have for any 6 € O,

pr(U+a,0,...,0:8 ® Pipirie) = p(UB) +4a,0,...,0;8 ® Pry17i0)
=U@®)+a. (3.10)

Therefore,

or(U +a; A) = fJ}({pz(U +a,0,...,0;8) ® Pry17j0), 0 € O Pt+l,T,(~))
= p,(U +a,0,...,0; Pt+1.,T) =a+ ,o,(U, 0,...,0; P,+1,T)
—a+ @({p,(u, 0.....0:80® Pry17i0). 0 € O PIH,T,@)
=a+p(U; A).

Hence, p is translation invariant.
Similarly, for any U € Z"!, noting that supp, ;(Pr+1,7) = supp(A), we deduce

,(’)\[(U, A) = pt(U7 05 R 0; Pl+1,T) = ,0[(1 supp,,,(P,H‘T)Uv 05 R 0; PlJr],T)
= ,Ot(]l supp(A) U, 0,...,0; Pt+1,T) =i (1 supp(A) U, A).

Thus, p; also has the support property.
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3) Suppose p; is normalized, translation invariant, and monotonic. Then, forallU, W €
Z"! such that U < W, employing (3.10) with a = 0, we have

and this proves the monotonicity of ;.

4) If p is monotonic, normalized, parameter consistent, translation invariant, and with
support property, then p; is also normalized, monotonic, normalized, translation invari-
ant, and has the support property, and in view of Remark 3.8, p; is also parameter
consistent. O

3.3 Time consistency

We now consider the notion of time consistency of risk filters.

Definition 3.11 Lett € {1, ..., T — 1}. For any positive measure {¢;4| onAXT” x @
and for any x € X', we denote by p;41(- ||x) the measure on xT--1 4 @ given as

pi+1({x} X A X B)

1(A x B|x) = . (3.11)
e b () < X1 % ©)
Clearly, ps+1(-||x) is a probability measure.
In particular, taking ;11 = 8¢ ® Pry1.710,
3o ® Pry1.1i0({x} x A X B)
89 ® Pry1rie(A X B |lx) = L7l (3.12)

8o ® Pryrrio({x} x X711 x @)
It follows from (3.4) and (3.12) that

_ Pri1,110({x} X A)dg(B) _ Piiitio({x} x A)
Pryi,ro(fx} x XT—1=1) Pt 4110 (fx})
= Pryiio(A | 0)80(B), (3.13)

3 ® Prr1,110(A X Bl x) 39 (B)

which, in view of (3.6) gives

7.[z‘,ht

P r({x} x A)

Tht
PéT,z+1,z+1 ({xh

ﬂ[’hf

3o ® P,+1,T|@(A x Blx) =

~__t.h
89(B) =: P}, 7 (A|lx)8a(B).

(3.14)
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The next definition is a version of the dynamic conditional time consistency used
in Fan and Ruszczynski (2018), adapted to the set-up of the present paper. It is
significantly different than the standard time consistency concept, discussed, inter
alia, in Cheridito et al. (2006); Artzner et al. (2007); Cheridito and Kupper (2011);
Ruszczyniski (2010), by the explicit use of the conditional distributions, and by for-
mulating it for each fixed value of 6.

Definition 3.12 A dynamic risk filter p = {,o, }[:l 7 1s time consistent if for any ¢ =

.....

1,...,
T — 1, forany P17, Q1,7 € Pry1,7, such that Py i1 = Qry1,41)0, and
for any functions’ ZisCs—ts 1), Wi sCs—to01) € 25,8 =t +1,..., T, the inequal-
ities
P41 (Zeir1 i1, 1), oo Zer (Kegets - T—1—1, 13 80 ® Pry1,r10 (- 1Xi41))
< Pt (Wei 1 Grets 1) ooy Wer gt - 7—i—1, 1) 80 ® Qppr, 710 (- l1xi41)),
VO e®, Vi, eX, (3.15)

imply that for any function f; € Z;

oe(fiCD)s Zegs1 Gy D) oo o Zew (1=t 1)): 89 ® Pryi 710))
< (i) Weis1 CrooD)s oo, Wor Cr—r1)): 80 ® Qry1,710)), V0 € ©.
(3.16)

In words, if the risk of the system starting at time 7 + 1 from any possible next state
x¢+1 and any possible parameter value 6 is lower for Z than for W (if the one-step
conditional measures of P and Q coincide), and if Z and W are equal at time ¢, then
the risk at time ¢ is also lower for Z than for W, no matter what the value of 6 is.

Lemma 3.13 Suppose a dynamic risk filter { ,0,} is normalized, translation

t=1,..T N
invariant, has the support property, and is time consistent. Let 0 € O be fixed. Then
the function on Z; ;11 % PXT-t x ®) given as

p0(0, w,0,...,0;8 & Pry1,7i0) (3.17)

depends only on the probability measure P, 410 and on the function w(-, 9).

Proof For any P,41 7 and x € X, the support property of p;+1 implies that

pr+1(w(x,),0,...,0: 80 ® Pry17i0(]x))
= ,0[+] (w(x5 9)7 05 D) 0; 89 @ Pl‘Jrl,Tl@('”'x))'

Then, by the translation invariance and the normalization properties of p,41 we obtain

pra1(w(x, ),0,...,0;80 ® Pryrrj0(Ix) = w(x,6),

5 The notation - « is a place-holder for k variables.
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which does not depend on P, 7|¢. Hence, for any Q11,7 € P;y1,7 we have

pra1(w(x,),0,...,0;8 ® Py rio(- X))
= p[+1(W(x, ')7 09 s 07 89 ® Qf+1,T|@( : ”x))

If in addition, Piy1 /+1j@ = Qr+1,1+10, then, by the time consistency,
10[(03 w, 09 ceey O; 89 ® Pf+1,T|@) = pl(ov w, 07 R 0; 89 ® Qt-l—l,Tl@)'

which proves that only the conditional measure P11 ,41)@ matters in this calculation.
The fact that the knowledge of w(:, #) is sufficient, follows from the support property.
This concludes the proof. O

In accordance with the above lemma we define the functions
oI X PX) >R, t=1,....,T -1,

as

0 (V; Prgri4110) = pe(0, w, 0,...,0; 89 ® Pry1.710). (3.18)

where w(-, 0) = v(-) and can be arbitrary otherwise. We refer to these functions as
transition risk mappings.

Note that if p, is normalized, monotonic, translation invariant and has support
property, then so is o;.

Theorem 3.14 A dynamic risk filter p = {,0, }t:] T is normalized, monotonic, trans-
lation invariant, has the support property, is parameter consistent, and time consistent,
if and only if the following conditions are satisfied:

1) Marginal risk mappings p; : 24 ¥ P(@) — R, t € T, exist, which are normal-
ized, monotonic, translation invariant, and have the support property;
2) Transition risk mappings given in (3.18) are such that

(i) Forallt = 1,...,T — 1, o;(-; -) is normalized, monotonic, translation
invariant, and has the support property;
(ii) Forany Piy11 € Pryrr, t = 1,..., T — 1, and for any functions Z; ;s €

Z 5,8 €Ty, we have that®

ot Ziyy Zigsrs ooy ZeT Pii11)
= @([ZT,T(Q) + Ot(pt+1 (Zl,l+1(<>’ '1)7 DRI ZT,T(Oy ‘T—t—1, .]);

86 ® Pri11i0(- 19)); Pryri41p6). 0 € @}; Pt+1,T,®)- (3.19)

6 Recall Definition 3.11. The notation oy (pr11(Zss41(0,8), .., Zr (0, T—1—1,6); 89 &
Pri1ri0( 10));

Pi41,14+1)9). where we use ¢ as place holder, means that Py 1 ;41j9 acts on w(x, 0) = py41(Z; 141(x, ),
s Jrr (e r—4-1,0); 80 @ Pryr 110 (- Hx)) as a function of x.
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For any function Zt v € Zr. 1 and any Pry1. 17 € P(©)

or(Zr,1; Pry1,1) = Pr (ZT,T, PT+1,T>~ (3.20)

Proof We fix P17 € Piy17 and Z, s € Z; 5,5 = t,...,T. Since ¢ is fixed, to
alleviate the notations we simply write Z;, instead of Z; s in this proof.

Since the risk filter is parameter consistent, Theorem 3.9 yields the existence of
mappings p; such that

ot(Ze, Zog1s oo, Z1s Proar)
= ﬁr([pz(Zr, Zists.. s 27389 ® Piyi710), 0 € 9}; Pt+1,T,®)~

It follows from Proposition 3.10 that 5 is normalized, monotonic, translation invari-
ant, has the support property.

Next, we derive an equivalent expression for the first argument of p; that will prove
(3.19). Define the function

w(xs 9) = pf"rl(zl-‘rl('xs '1)7 ceey ZT(-x» T—t—1> l)a 89 ® Pt+1,T|@(. ”-x))v X € X,
0 c®.

Then, for any fixed x € X and 6 € @, we use the support, translation invariance, and
the normalization properties in the chain of equations below:

prat(w(x, ), 0,...,0;8 ® Pry1ri0(- X))
= pi+1(w(x,0),0,...,0;8 ® Pr1.710(- X))
=w(x,0) + p41(0,0,...,0;80 ® Prry70(- X)) = w(x, 6)
= Pt (Zeg1 (0, D)5 Zr (T 21, 1) 80 @ Py e (- [1X)).

In view of the assumed time consistency of p, the above implies that for every Z; ; €
ZI ts

00(Zes Zis1, . Z7: 89 ® P i) = pi(Ze, w, 0,...,0; 8 ® Pry11i0) =: 11

Thus, by using the translation invariance and the support properties again, we conclude
that, forall 6 € O,

It = pi(Z:(0), w,0,...,0;8 ® Pry1.710)
= Zt(@) + IOI(O9 w, 07 ) 0; 89 @ Pt+1,T|®)'

Using (3.18), we get
I =Z0) + o1 (w(-, 0), Pry1,419)-
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Finally, from here, note that by support property

w(x,0) = pr1(Zis1(x,0), ..., Zr(x, .7—-1,0); 8 ® Pry1,710(- X)),
xeX, 0€0O, (3.21)

we obtain the representation (3.19). The representation (3.20) follows from the defi-
nition of pr and the form of p7.

Next, we prove the converse statement by backward induction in time. For t = T,
the conditional risk filter (3.20) has all the postulated properties, with the exception
of the time consistency, because py does (see Proposition 3.10).

Suppose the conditional risk filters pg, s = ¢t 4+ 1, ..., T are normalized, mono-
tonic, translation invariant, have the support property, are parameter consistent, and
time consistent. We will verify these properties for p; given by formula (3.19). The
translation invariance follows from the translation invariance of p;. The normalization
and the monotonicity follow immediately from the normalization and the monotonicity
of o7, py11 and p;.

We now verify the support property. For every 6, and x define pp (-) = g ®
Pri1,119Cl1x), A(O) = supp(Pry1,i4119) C X, B = supp(Pr+1,7,0) C ©O. Then, by
(3.19), (3.21), the support property of p, and o;, and by Remark 3.3 applied to o;, we
deduce that

puZes Zivt, oo 215 Prnr) = ([ 200) + 0100, 0); Prsrisn0): 0 € ©): Privro)
({18020 + 150)0w (0, 0); Pri1111100:6 € O} Py 7.0

A ({1220 + 0118 La) @00, 0); Prsr 11000 € ©): Pravro).
(3.22)

By the assumed support property of p;+1, and in view of Remark 3.3 applied to o+ 1,
we obtain, using (3.21) again,

La@y () L@ w(x, 0) = pry1(La@) () Lp(O) Zi11(x, 0),
La) (X)L (O) Lsupp, 5 (g.0) Ze+2(x, -, 0), . . -,
T4y ) L) Lsuppy (o) 27 (X5 =1 -1, 0); Me,x),

for every x € X and 6 € ©. From here and (3.22), combined with the normalization
property of p,11, and the fact that 1 4g)(x)15(0) Lsupp, (o) < lsupp,(Pis17)s § =
t,..., T, we obtain the support property of p;.

_ Next we prove the parameter consistency. Assume that (3.7) is satisfied for a fixed
0 € ©, and denote by P17 = 65 ® Prr1,710 and Qr1,7 = 85 ® Ory1,710.- We
note that’

Pyt i10 = Py i11d - 1500), P10 =385 Pry1rpCllx)
= Py raClx)150).

7 We use the convention that % = 0 when considering f’,_,_l’t_,_”g and 151)6+1,T|9('”x)'
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_ Using this, and in view of (3.19), we can write (3.7) as follows (with measures
Pry1,r and Q1,7 in place of Py 7 and Qry1,7):

A ([2® + o1 (Zisr 0.0, .. Zr (o, 71, 0
85(VP1 g (- 19)150); Py 140i515(60)), 0 € @]; 35)
= (| W + oo (Wi 0,00, ... Wr (o, 7121, 0);

8500 Q1,76 10)15(0): Oy yy 4411915()). 6 € @]z 3@)-

By the support property of g, and o;, and by the normalization and monotonicity of
0:, we obtain that

Zi0) + 01(pr1(Zi41(0,0), .o, Zr (0, 7121, 0); §5() Py y 1 (193 Pryy i)
=< Wz(é) +o; (ﬂz-H (WH—I(O’ 9_), s W (o, r—— 1, é)? 59‘(')Q,+1,T|§(' l1©); Q;+1,;+1|9‘),

for any § € ©. From here, applying /; to both sides, since we assumed that
P i17.6 = Q/41.1.6> employing monotonicity of Or, we obtain (3.8), and the param-
eter consistency of p; is proved.

Finally, let us verify the time consistency at time ¢. If the inequalities (3.15) are
satisfied, then it follows from the monotonicity of o; with respect to its first argument
that for all 6 € ©

G10) =01 (pr41(Zi41(0,0), ..., Z1 (0, - 7—1-1,6): 89 ® Prr1,710C110)); Prg1.14106)
<oi(pr1(Wigr1(0,0), ..., Wr (o, - 7—1—1,0); 89 ® Q11,710 (110)); Prg1i4100) =: G2(0).

Then, from the monotonicity of p; we get, for any function f; € 2, ;,

pr(fi + G1;80) < pr(fi + G23 89), 6 €O.

From here, using the support property of 0;, o; and p;+1, along (3.19), we obtain
(3.16), and thus time consistency at ¢ is verified.
By induction, all properties hold true fort =1, ..., T. O

Remark 3.15 Note that even though we have proved the existence of the conditional
risk mappings 0y, the specific form of these mappings depends on the given dynamic
risk filter.

Example 3.16 We consider a very special conditional risk filter, given as the expectation
of an additive functional under the measure P, 7. Specifically, we let

T

p,<z,,,,...,z,,7;P,+1,r>=fT[ > Zik ity Xk, O) Pyt 7 (@dXegn, -, dxy, d6)
X1IxO
k=t

T
= ]EPrJrl.T Z Zf,k'
k=t
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Clearly, this p; is normalized, monotonic, translation invariant, and has the support
property (cf. Definition 3.2).
Next, note that for this p; the inequality (3.7) becomes (cf. (3.4))

T

/;(r_, > ZiGiix, O) Py rip(dxigr, -+ . dxr)
k=t

T
< /;{Tﬂ Z Zl,k(-xl+11k, G)QHI,T\G(dsz, e de)’
k=t

for any 6 € ©. Assuming that Piy1 7.0 = Q+1.7,0, multiplying the last inequality
by P+1.7,0(6), and summing up with respect to 6 € O, the inequality (3.8) follows,
and hence the parameter consistency is true.

The time consistency follows by similar arguments. Indeed, (3.15) becomes (cf.
(3.13))

T
/T 1 > ZiaGeigr xiy2. 0) Prarip(@xisa, - dxr|xig)
XT—1-

k=t+1

T
Sf Z Zt k(X415 X142:k, 0) Orr1,119(dXp42, -+, dxr || Xi41),
AT

for any x;41 € X and 6 € ©. Assuming that P11 ;41110 = Qr+1,1+1j0, multiplying
both parts by P;41,,41)6(x/+1), and noting that (cf. (3.13))

Py, 110 Cllxe 1) Prt,e4110 (1) = Prg1, 11 (Ko 15 +),

for any function f; € Z;, we have (cf. (3.13))

T
f1(0) +/ > Zikigts X4 0) Prprrio, (g} dxiga, -+ dacr)
XT-1-1
k=t+1
T
= f1(0) +/XT+1 > ZiaGeigrs X2, 0) Qryr g}, dxia, -+, dxr).
k=t+1

After summing up with respect to x,+ we obtain (3.16), and thus the time consistency
is proved.

We complete this example by observing that in the this case we have that
o:(f, Py =Ep/(f), for f € Z,; and P’ € P(O®), and that o, (v; P”) = Epr(v), for
ve ZY¥ and P" € P(X). O
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Example 3.17 Let us cast Example 3.16 in the setup of Sect. 2. For this, we fix a history
h; = (x1,...,x;) € Hy; and w € I, and we take

Zi1(0) := Z2M = ¢ (xs, 71, (hy). 6),

0,1t

. TR X150 X
Zf,S('xl+ls "'s-xsve) = Z@,[,S !

= (g, M gty o x),0), s =141, T

and

"
Pt =P

The conditional risk filter of Example 3.16 becomes the conditional expectation (cf.
Lemma 2.3)

t,hy
Pt <Cl(xt7 T[l‘(ht)v .)’ Cr+1 (" 7T[+](h[, ')5 ')7 T CT(" T[T(hl‘a e ')7 ')5 P[Z_]’T)

T

=E" {q(xt,m(h,), O+ Y Xy, w M (Xiqa, ..., X),0) | Hy = h} ,
s=t+1

(3.23)

fort = 1,..., T, where we use the standard convention that an empty sum is zero
(i.e. ZstTH -+~ = 0in our case).
In view of (2.7) we also have

i et o), ) o G a0, e Comr ()0, P )
= 7i(fer 7). 0) + 01 (pro (crr 0. 71 ey 00,9 €riaC ma e, 0,), ),
er (e 0, )08 © B (- 19)): PV )0 € B 677)
= 7i(fer e 7). 0) 4 01 (prt (cra (0, 71 i, 00, ), conaC maa (e, 0,), ),

(om0, ) )i B (0} X 9800 )i PRI )0 € O 67 ),
(3.24)

where in the last equality we used (3.5) and (3.14), where

A({r©.0 € Okg") =pi(f:5") = f@ F©) &7 @0) = E e (),

(3.25)
and where, for a function v on X', we have (cf. (3.5), (3.18), and (3.6))
o (v P ) = [ v P dx) =E _on (v) (3.26)
t\Vs Ly i41) = " 0,141 = ng‘ﬂ’ . .
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Example 3.18 In the previous example we proceeded from p to o (via p). Here, we
will do the opposite.

In clinical trials, the potency of a drug is characterized by an unknown parameter
0. The purpose of the trials is to estimate 6 and to determine the optimal dose. Let
us assume for simplicity that 6 is the optimal dose. If a dose u; is administered to a
patient, a response X is observed (the subscript 2 indicates that X» is not known when
u1 is determined). X is a Bernoulli random variable, with X, = 1 representing toxic
response, and X» = 0 nontoxic. The probability of toxic response is a function of 6
and u1, thatis, P[X> = 1] = W (0, u1). The “cost” is c(0, u1); it depends on both the
applied and best doses. The cost is not observed; we only know whether the patient
was toxic or not. In the second stage, the dose u is administered to the next patient,
the patient’s response X3 observed, and cost c(6, u3) incurred. The process continues
for T stages, with ur being the final dose recommendation, whose cost is equal to
c(0, ur). For example, the cost may have the form c(0, u) = |u — 6] to penalize for
the over- and under-dosage. It is never observed.

The problem can be cast to our setting. The state space X is {0, 1}, while the
unknown parameter space © is an interval of the real line or “a finite subset of the real
line. Given the set-up adopted in this paper, we assume that @ is a finite subset of the
real line. The transition kernel does not depend on X at all; the distribution of the next
X:+1 depends on 6 and u:

KoOlx,u) =1—-W0,u), Ko(llx,u) =V¥(0,u).

Thus, we have

t.h
I O) = Kol (k)
= Loy (1 = WO, 7w (h))) + L=y W (O, 7w (h)), v € {0, 1}.
There is considerable freedom to choose the form of o; in a way consistent with our

set-up. For example, one can choose o; by generalizing the entropic risk measure to
allow for dependence on the probability measure:

1
o:(v; P) = ;ln/;(e’”(y)P(dy),

for a function v on X, P € P(X), and a constant »c > 0. Consequently, for t =
1,..., T — 1, using (2.5) and (2.10) we obtain

t.hy

th 1
1w, 0); P =~ In /X U9 Pt (ay)

s

1
=—1In ((1 — v, m(ht)))e”w(o’(’) + W, m(h,))e”w(l’e)>,
x

with oy = 0.
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Now, for a function f on ©® and a measure £ € P(@), let
A7 ©.0c8)e)=tfio = [ Vewn), reT.
Given the above, we obtain fort = T
ﬁT<{f(9),9 c®); s”’”) - }l{ln[@e”f@)g;"“(de), (3.27)
andfort=1,..., T — 1,

({f(9)+0t(w( 0); P71\, 0 € ©); g;“hf)
- _1“[ [ @m0 b e ao)

_ 1n E" [e 72 (f(©)+w(Xri1, 0))|H =1,

where the last equality follows from Lemma 2.5.

We will now derive a generic formula for p;, resulting from (3.19) and o, and o,
as above, in case of the generic cost functions, as in (2.16) and (2.17). Let us fix an
admissible strategy . For r = T we have

e

S
prerGer, wr(hr), ), PR = Br(fer (vr, mr (h), 6),6 € ©); PELT o)

- T, ~
= pr(cr(xr, 7 (hr), -); P}T_H,TT,@) = pr(cr(xr, w7 (hr), ); ST’h7)

1 . 1 9), 5
— 71n‘/; e%LT(XTa”T(hT)ﬂ)‘;;:;E*hT (dO) = - InE™ (e%CT(xT,ﬂT(hT),O”HT = hr).
(C]

»

Now, note that

pr(cr(xr, wp(ht), ), 8¢) = cr(x7, mwr(hr), 0),

and thus

T—1,hp_
or—1(pr(cr (o, mr(hr-1.9).0); 8); PT |6 ! l)
T— lhT 1
=or_1(cr(o, mr(hr-1,0),0); Pf g )
1

T—Lh
— ;ln//Ye%CT(XT o (hr—1,x7), 9)P7T r- '(de)_
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So, fort =T — 1, we have

T—1,hp_
pr—1(cr—1(xr—1, ir—1(hr=1), ), cr ¢, wr (hr—1, ), -), Pr )

=pr—1 ({CT—I(XT—ls mr-1(hr=1),0) + or_1(pr (cr (0, Tr (h7-1,9), ); 86); P}’qr{‘;hq ).

=pr-1 ({CTfl(fol, mr_1(hr-1),0) + or—1(pr (cr (o, wr (hr—1,9), ); 89);
T—Lhy_ ~ o
P )0 e B)iert )
— iln‘/@/ e%(CT—l(XT—l,HT—l(hT—I),9)+CT(xT,7TT(hT—1q-’CT),Q))PéT,;fI'hT*I (dXT)Sj;;hlrfl(dG)
X

_ i]nE”(e%(CT—](-VT—IJTT—](hT—l)-(“))+CT(XT»7TT(hT—]»XT)q@))‘ﬁT_l =hr_1)
x

where we used (2.5) and (2.10) for the second to the last equality, and where the last
equality follows from Lemma 2.5.
Proceeding in the analogous way fort = 7 — 2, ..., 1 we finally obtain

1,h
pl,T(Cl(xlvnl(hl)v')v ceey CT(',ﬂT(hl, Ty eeey ')7 ')7 P271:T I)

_ L aE (e%ZkT:l X )).0) | ;= hl), (3.28)
4

which gives us the risk-sensitive criterion with the entropic utility (cf. Bauerle and
Rieder (Feb 2014); Davis and Lleo (2014)).

Example 3.19 A prominent example that can be cast in our framework is the classical
optimal investment and consumption problem subject to model uncertainty. Namely,
consider an investor with initial capital X1, who can invest in d assets, with X ¢ denoting
the portfolio value at time 7, which of course is observed by the investor. The investor
rebalances the portfolio at each time ¢, following a self-financing trading strategy (pol-
icy) 7, that may satisfy additional trading constrains, such as short selling constraints,
turnover constraints, etc. The investor is also allowed to consume at each time ¢ part of
the wealth, say z;, that does not exceed X,. We postulate that the investor maximizes
the expected utility of consumptions and terminal wealth using the utility functions
VBand U, respectively, where 8, y € R stand for risk aversion parameters. We refer
the reader to [Biuerle and Rieder (2017),Section 4] for detailed formulation of this
problem in the MDP framework.

Additionally, we assume that the investor faces the Knightian uncertainty about the
model of the underlying assets, described in terms of a (finite) parametric set A C R,
see (Bielecki et al., 2019) for an overview of MDPs under Knightian uncertainty. Let
{ P, }r.en be aparameterized family of probability measures, and assume that the wealth
process X;, follows the dynamics

Xl‘+1:G(Xl‘5ﬁt7Zl+1)7 t:1""7T_15
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where Z, 1 is the random disturbance (e.g. the log-returns of the underlying investment
instruments), and G a deterministic function.

Moreover, we suppose that the investor is also uncertain about her risk aversion
parameters (8, ) € I' C R?. We emphasize that this additional feature of an unknown
risk aversion parameter is practically important. Generally speaking, it is difficult to
determine the investor’s risk aversion parameter, which is well documented in the
behavioral finance literature. This becomes especially relevant in the context of fast-
growing robo-advising industry that typically deals with unsophisticated investors, and
which establishes investor’s risk preferences without human intervention. At each time
t, the investor reports through process Y; her subjective degree of happiness about the
performance of her investment. For example, one can take Y; to be a Bernoulli random
variable with ¥; = 1 corresponding to happy and Y; = 0 meaning unhappy about her
investment, and then we follow a similar setup to the clinical trials Example 3.6 and
incorporate the uncertainty about (8, y) into the original MDP formulation.

Namely, we consider the observed state process X; = ()_( ¢, Y:), and we take 6 =
(B,y,A) € ® =T x A representing the model uncertainty in this model. We assume
that choosing the ‘optimal’ risk aversion parameters 77, = (vt1 , v,z) is part of the policy,
and that the robo-advisor/investor is making this choice at each time step. Overall, the
policy at time ¢ becomes 7, = (7;, ;). With this at hand we define the transition
kernels

Ko, yea1 | X, ye, 10 (hy)) = Po(G (G, 7w (hy), Zog1) = X 1)V (B s 7 (he); Ye+1),

for some function W.
Consequently, we define the cost functionals

Cr = Vﬁ(Zt(ft,ﬁt)) + F(y;, 7, B,y), t=1,...,T —1,

cr = VP (zr Gir, 7i7)) + UY Gir),

where F is a penalty for ‘deviating’ from the true risk-aversion parameters. Using
the expectation as the risk functional (cf. Example 3.16), we obtain a generalization
of the classical expected utility criteria in the context of optimal investment.

4 Recursive risk filters

Letus fixt € {1,..., T — 1}. Since ¢ is fixed, we will again simply write Z; instead
of Z; s, for s € 7;. We introduce two families of functions:

t.hy

U,”(ht) =0(Zt, Zs1s -5 215 P;:lj)
t.h,
Bﬁﬁ ((hes x191)) = Pt (Zeg1 it Do ooy Z7 (g1, T—i—141); 89 @ P,”an@b llxr41))
t.h
= o1 (Zest ot D - Zr Gt r—i— 10 D) P (gt} X 980()),

4.1

where for the last equality we used (3.14).
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The quantity v} (h;) evaluates the policy 7 at the time ¢ and with the history /4, in
the original problem.
t,hy

Recall that (cf. (3.5)) Pzﬂl,r,@ = ét" i Thus, the key equation (3.19) can be written
more compactly as follows:

o () = 51 ({Ze0) + 01 (i1 (Ziio, 0 Zr o et )
8o ® Ptii}ilT|®(’ ”0)); Ptjiiltlt+1|9)’ S 6]’ PtifT,@))
=5({21@ +oi(Zinio. 0 Zr (o, im0
8 ® P71 mio (- 19)): Porpe):60 € ©f:67")
71 ({200 + o (T G o0s P 0). 0 € B 670,

Ai({z@ + oG o P 0 € Bf: 7)., (42)

with oy given in (3.18), and where we used (2.13) in the last equality.

Note that in equation (4.2) we have T)’fjfl on the right hand side. Thus, this equation
does not provide a convenient recursion for the quantities vJ’. By convenient we mean
recursion in terms of v and v;’ e rather than in terms of v and 5,”“ . Such convenient
recursion will allow us to successfully tackle the risk-averse control problem of Sect. 5.

This leads us to the following concept.

Definition 4.1 A dynamic risk filter p is called recursive if it satisfies the properties
stated in Theorem 3.14 and

-~ t,hy ~ .
o7 () = 71 ({204 0) + 01 (075 (G 00); PR, 0 € O 67M),
fort=T—-1,...,1, with
i) =7 (|zrr©).0 € 8} 67"7),
Remark 4.2 In what follows, we will give examples of recursive dynamic risk-filters.
In problems where the corresponding dynamic risk filter p is not recursive, one will
need to tackle the risk averse control problem of Sect.5 by exploiting a recursion of

the pair of functions (v], 'i)’f’e), with use of equation (4.2) in particular. This will be
done in a follow-up work.

4.1 Examples of recursive dynamic risk filters

The common feature of the dynamic risk filters of Example 3.17 and Example 3.18 is
that in both cases we have

pi(fi &) =U"" (/@ U(f(9))€(d9)), (4.3)
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for a function f on [2) and & € P(@), and

o (v; Py =U"" ( /X U(y) P(dy)) : (4.4)

for a function v on X and P € P(X), where U is an invertible utility function. In
Example 3.17: U (a) = a, and in Example 3.18: U (a) = ¢*“. Note that in both cases
it holds that

b (f(0) +or(w(-,0); P); &) =U! (/@fx U(fO)+w,y)) P(dy)é(de)) .
(4.5)

Also note, that in both examples the function U is such that p; and o; satisfy
properties stated in Theorem 3.14.

Given a probability space (Q,F,P)a utility function U : R — R, and a real-
valued random variable Y, the quantity CE satisfying

U(CE) = Ep[U(Y)],
is called the certainty equivalent for Y relative to U and P.If U is invertible, then
CE =UY(Ep[UY))).

,,,,,

filters.

We will show here that if p = {,o, } =1 T is a certainty equivalent dynamic risk
filter, and if the function U is such that p, and o, satisfy the properties stated in
Theorem 3.14, then p is a recursive dynamic risk filter. We will do this for the only
case of interest to us, that is for case where, for h; = (x1,...,x;) € H; and & € I,

Z,4(60) = Z7) = e, (), 6).

T X4 ] seees X h
Zss(Xp41s 000, X5, 0) = ZQ,[,; s ° =C.s'(xs’ﬂyl’ (Xl e X5),0),s =1+ 1,...,T.
Thus, we get

o () = pr (e G (), ), ot o e i, 2, 0),

t.h
crra oo, 0, s erComr e, sy, PR
T
=u-! (]E” |:U (Cz(Xh i (he), ®) + Z Cs (X, g (Xyg1s ooy X5, ®)) ‘ H; = hti|> ,
s=t+1

(4.6)
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fort = 1,..., T, where again we use the standard convention that an empty sum is
zero (i.e. ZstT L= 0 in our case). Note that, in particular,

vi(hy) = U (E™ [U (cr(xr., w7 (h7), ©)) | Hr = hr))
=vu! ( f@ Ulcr (xr, mrr (hy), 9))5;,/1,([,9))
= pr(er(xr, wr (hr), ): 67°77). @7

Now, using (4.3)—(4.5), (4.6) and Lemma 2.5, combined with the tower property of
the conditional expectations, we obtain

v (Hy) = U <1E”[U (cz()?,, 7 (Hy), ©)

T
+ U71 <En |:U( Z CS(X\Sv 7Ts(5(\1+1» cees X\S)s ®))‘I/—I\t+l:|>>

s=t+1

= U~ (E71U (e (X1, 7 (Hy), ©) + o] (Hi) | Hi)

and so, using (4.5) and Lemma 2.5 again, we obtain
T (hy) = U™ (ET[U (¢ (xr 710 (Re), ©) + 07y (e, Xis1)) | Hy = hy))
Jht t,ht
—u-! (f@ /X U (cr G 7 (he). 0) + 07y e x140)) PRor (doxeg) &7 <d9>>
~ b4 . patht ol. 7

= 71 ({erers i (), 0 + 0 (u7 (e, s P 0 € B 677, 4.8)
fort =T —1,...,1. In view of (4.8) and (4.7) the dynamic risk filter p is recursive. In
particular, the dynamic risk filters of Example 3.17 and Example 3.18 are recursive.
5 Risk-averse control problem
Let v{ be as in (4.1). The control problem is to find

min v] (hy), 5.D

as well as the optimal policy, say 7*, for which v’f* (h1) = mingcp v (h1). Note that given
our set-up, an optimal policy does exist because the set IT is finite. However, we are interested
in seeking an optimal policy in the class of quasi-Markov policies.

Definition 5.1 A policy 7 € IT is quasi-Markov (QMP) if

T (he) = (g, )

for some function ¢, : X x 77((:5) —-U,t=1,...,T.

Please see Remark 5.3 with regard to Definition 5.1.
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5.1 The Bayes Kernel

At each time ¢ and for every policy 7 and history /,, the measure Pl’ﬂrl
the conditional joint distribution of the pair (}A( (+1, @) in X x 0.

This measure admits two natural disintegrations. One of them is already obtained from
(2.7), repeated here:

(cf. (2.15)) describes

PZ (B x D)= PR'p (B x X777 x D) = f PR (B x XT7171) €7 ()
D

= P"[X,41 € B,® € D|H, = hy],

where £7" € P(@), is given as (cf. (2.8) and (2.11)) & (D) = P7[® € D| ﬁ, =h] =
pr" into its marginal on X, say® P;j_l x» and the

1+1,0
corresponding stochastic kernel, say P from X' to ©. That is, for any Bx D C X x O,

(D). One can also disintegrate P;j_l

t+1\X

otht

Jhy
Py (B x D)= (P +1 X ® P;iux)(B x D),
h th
ZA tjil\tx(D) +1rx(dx)
= P"[X,;41 € B.® € D|H, = h], (5.2)

where we used the 51mp11ﬁed notation P™ ' (D) for P +1\ X (x, D).
The kernel P™""

; +1| . 1s the Bayes kernel which describes the dynamics of the belief states,
that is the posterior distributions of ®, as documented in the next result.

t+1|x

Proposition5.2 Fort =1,...,T — 1, hy € H;, x;4+1 € X and D C @ we have

j.[t,h[
t+1 | x40

_ Jp Koo, 7 (h) 57" )

gﬂ,(ht»xr-v—l)(D) —

+1 (D)

P [{x141} x O] ©3)
where
£77(0) = £1(0). (5.4)
Proof First, note that
PV (B) = P7[R,41 € B Hy = hyl. (5.5)

Take B = {x;41}. Then, using (5.2) and (5.5), we obtain

P [X/41 =X41,0© € D| H = h/] = (D)P™ (X141 = X 41 | Hy = hy),

f+1|Xr+1

8 For simplicity of notations, we write P, +1 X instead of more coherent notation Pz +1 X . Similar remark

applies to the kernel P[ i lI X
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and thus

bt (D) = Pn[)?z-rl :xt+]s®€D|E:hl]
t+1]x41 P”[XH_] = X4 |Ht — ht]

=P[O € D|Hpy = (hy, xp41)] = €

7, (he,

X41)
t+1 " (D)7

which proves the first equality in (5.3). The second one follows from the following chain of
equalities,

L(hy, =
g 0) = PTO = 0| Hipt = (e, x041)]

P”[)?I-H = Xt+1 |@ =0, ﬁz = Iy]
P”[)?z+l = Xt+1 |ﬁz = h]

Ko (xrq11x0, 700 (hy))

PT [(xis1) x ©]

= P"[©=6|H =h]

=& @)

where in the last equality we used (2.1) and (2.2) to deduce that P”[f(\ﬁ_l = X141 | @f 0, l’-I\, =

h] = Ko (xy411x¢, 1 (hy)), and we used (2.15) to deduce that P* [ X,y = x,41 | Hy = hy] =
h P~

P [{xig1) x O], o

Remark 5.3 Note that (5.3) represents learning about the unknown parameter 0* in the sense
of updating the posterior distributions of ®. Also, in view of (5.3) one might surmise that, by
extending the canonical space by products of P(@®), the process (X;, & Hr ) would be Markov

for a Markov strategy, say (X, 5;1/’H'), and therefore one might seek an optimal strategy
in the class of Markov strategies. This however is not as straightforward as it might appear.
One of the reasons being that even though (5.3) is a deterministic recursion, it is not exactly of
Markovian type. This is why we work here with quasi-Markov policies. The issue of Markov
strategies will be investigated in a follow-up paper.

5.2 The optimal control problem corresponding to Example 3.16
In this section we will study the optimal control problem corresponding to the Example 3.16
classical additive reward case, that will serve as the base for the general case. In what follows,

we denote by (x, &) an element of the set X’ x 73(@).
Recall (4.6). Accordingly, we have fort = T

vy (hr) = PT,T(CT(sz mr(hr), ), P}rilhTT)
= /(;)cr(xr, nr(ht),0)) P;IJTrllh,TT(dG)
- /(?)CT(XT, wr(ht), 0) £7" (d6)

=& (crGar, 7 (hr), ©) | Ay = hr). (5.6)
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Thus, observing that é;*hr, does not depend on 77, letting x7 = x and S’T”hT = &, we
compute the candidate-optimal quasi-Markov control ¢7 as
bre8) =argmin [ cr(x,u.0) £, (57)
ueld ($]

We define the Bellman function at time ¢t = T':
Vr(x,§) = min /A cr(x,u,0)&(d6) =/A cr(x, ¢r(x,§),0)&(d0). (5.8)
ueld J@o o)

Now, we proceed to time r = 7" — 1. Noting that E;ff -, does not depend on 7 _1, letting

xr—1 = x and S;_th ~! = &, we compute the candidate-optimal quasi-Markov control ¢7_;

as

#ro1 ) = argmin [ (era(ru6)
(S}

ueld

+ [ Vet BT Kotdar i) £o), (5.9

where (cf. (5.3))

Ko (xr|x, u)

Tuxr,§ 0) = £(0 '
&1 (0) = &( )f@ Ko (xr|x, u) £(d0)

(5.10)

The corresponding Bellman function is
Ve = min [ (e + [ Ve BT Ko@) eao)
ueld J@ X
— [ (eredrace.0)
)
+ V- TOr—1(x.8).x7.§ Ko(d 6
N T(xT, &7 YKg(dxr|x, p7-1(x,§)) ) £(dO).

Following this pattern, we arrive at the dynamic programming (DP) backward recursion:

wx,s):min[A (c,<x,u,6)+f Vi Gt BT Ko @i v, w) ) £@0), 1 €T,
ueld J@ X

(5.11)
where (cf. (5.3))
T Xp41,6 0) = £(0 Ko (xp411x, u) 512
SO = O e, w E@6) >.12)
and
Vr+1 =0. (5.13)
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Accordingly, fort = 1, ..., T we define the candidate-optimal quasi-Markov control ¢, as

¢:(x, §) = argmin fA (. 0)+ f Virr G B ) Ko, w)) £(d6).
uel [©]

(5.14)
Recall that & is a given prior distribution for ®. Also, recall that 7 = x.
Next, define a policy 7* as follows,
7y (h) = ¢1(x1, §1)
7F ) = ¢ &M, =2, T, (5.15)
where
g gt grt _groaad ™ (5.16)

The next result is the optimality verification theorem.

Theorem 5.4 We have,

min vf (h)) = Uf*(h1) = Vi(x1, &1).
well
Proof Letm € Il. Fort = T we have
vi(hy) = Vr(xr, &7 Iy = f@ CT(XT,¢T(XT,§7TT’hT),9) E;’hr(cw)-
Fort = T — 1, using the above, the recursion in (4.8), and (5.3), we have

vi_i(ht—1)
- /@ (cmum,m(hpl),e)+ /X v%(hnke(dxﬂxm,nm(hm))>s” 1 ()
Zf@ (CT—I(XT—IJTT—I(hT—l)vQ)
—I—/X Vr(er, E7") Ko (dxr xr—1, tr—1 (hy— 1)))-’3”” '(d)
z/@ (LT (71 b7 (e, 5T, 0)
/ Ve BT S e g e, £2T ))s”’” ()

7,h
=VroiGr—1, 872207
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Likewise, fort =1, ..., T — 2, we have

v (hy) > Vi (xp, 70 = f@ (cf(xt,qbt(xhéf’h'),@)

=0 G &) i & Ty ) 70
+ Vit (Xr41, Prp1 (X415 §;+1 DKo (dx,+| e, @r (s, & )) & ' (d9).
X

Now, if 77 and é,” ’h’, t € T, above are replaced with 7* and E,” ’h’, t € T, respectively, then

the inequalities above become equalities, proving that 7* is an optimal strategy. O

Recalling (3.25) and (3.26), we note that the key DP recursion (5.9) can be written as
Vix &) = min 7 (fer (e 0) + 0 (Vi (L 5): Ko, ). 0 € ©)c6).

subject to (5.12) and (5.13).

We remark that the solution to the optimal control problem associated with Example 3.19
is also given by Theorem 5.4. Detailed model specification and analysis of Example 3.19 is
beyond the scope of this work and will be addressed in future work.

5.3 The optimal control problem corresponding to Example 3.18

We will present the solution to the optimal control problem for the clinical trials example with
the risk-sensitive criterion. Namely, for ¢ € 7, we consider

U,”(hz) = Pt (Ct(xu 7w (he), ) o1 Gy w1 (s 0)s ),y

2t ), erCorr e o)), PR )
1 Lo - - _
- ;ln]E”(eXp (%(c,(x,,n,(h,),@) + 3 e mih, X,+|,,..,Xk),®))> 78 :h,).
k=t+1
(5.17)
Fort = T we have
b 1 b4 7.

v (hr) = —In (E" (exp Geer (or rr (), ©)) | Hr = hr ) )

o (5.18)

= iln (f@ e%CT(XTanT(hT)ﬂ)%-;EshT(de)) .

As above, we denote by (x, &) an element of the set X' x P(@). Thus, observing that S;T’hr

does not depend on 77, and letting x7 = x and £&7 = &, we compute the candidate optimal
quasi-Markov control ¢r as

(pT(x,aE):argmin/Ae””(x'“’g)é(de). (5.19)
ueld [C]
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We define the Bellman function at time t = T as

. 1 . 0
Vr(x,&) = min — In (/A ¥ T >s;(d9)>
(C]

ueld »
~ Ll / e T er 8.0 £(qp) ) . (5.20)
7 6
Now, we proceed to timet = T — 1. Given x7_1 = x and §7_1 = § we compute the candidate

optimal quasi-Markov control ¢p7_; as

@r—1(x, ) = argmin /A f e T MO v (e BT Ky (dxr |x, u) §(d6),
ueld e0JXx

(5.21)

where §T“ 18 g given by (5.10). The corresponding Bellman function is

ueld

Vro1(x.6) = min —In (/A/ T O Yy (p FOTE) K@(dxrlx,u)é(dG))
eJx

— l In <‘[\ / e%l‘T—l(-’CsWT—l(Xf)ﬂ)VT(xT’g;f’Tfl(Xvs)-xT»E) K@(d)CT‘X, QDT—l(xv E)) &(d@)) .
< eJx
(5.22)

Following this pattern, we arrive at the DP backward recursion:

1 i ~
Vi(x, €)= min —In ( /@ f Y, (e 1) Ko (davg |, ) 5(d9)> . teT,
X

(5.23)

whereas in the previous example Pé;“ﬂ’ 18 ({0}) is given by (5.12), and V74| = 1.
Accordingly, for t € 7, we define the candidate-optimal quasi-Markov control ¢; as

¢:(x.§) = argmin f@ /X O, G, BT Ko(dx, ) £(d0),
(5.24)

with & being the given prior distribution for ®, and h| = x;.
The policy 7* is defined by analogy to (5.15). The following verification theorem can
proved in a way analogous to the proof of Theorem 5.4, so we skip its proof.

Theorem 5.5 The following holds true
min vf (h)) = Uf*(h1) = Vi(x1, &1).
mell
We emphasize that the key DP recursion (5.23) may be written as

Vie &) = min 7 ({erCro0.0) + 0 (Vin (. B9 Kox10). 0 € ©):6).
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where for a function f on @, Ee P(@), and a function 4 on X', we have

~ 1
({f©).0€®)¢) = ~n (/@ e”f<9>s(d9)> ,

and where

1
o1 (h; Ko(x,u)) = —In ( / D K (doxgr |x, u)) :
i X

5.4 Solution of the optimal control problem for general recursive risk filters

Let p be a recursive risk filter, and let

7 () = (et (), ), o e (e, ), ) €osa (sl ), )
t.hy
erGoar (e, s, Py ), 1T, (5.25)
Consider the general problem (5.1) with v] (h;) as in (5.25).

Using reasoning analogous to the one employed in Sects.5.2 and 5.3 one can prove the
following result, proof of which we omit here.

Theorem 5.6 There exist operators p; and o;, t € T, and a function V* such that for the
Sfunctions v} defined recursively as

Vi () =V*(x), x € X,
v v, §) = min 71 ({erCr.0.0) + 01071 (B9 Koxo)). 0 € B ),

t=T—1,...,1, xeX, £ eP(®),
subject to

Ko (x'|x, u)

, teT, x,x e X, £ e P(©),
Jo Ko(x'|x,u)&(d6) ¢

&) =£0)
we have that
;Ilelg vl (hy) = o] (x1, &1).
Moreover, the policy w* defined as in (5.15) and (5.16), with the ¢;’s given as

¢1(x, &) = argmin 7 ({0 1,0) + 0 07, ¢ 85150 Ko e, 0 € B 6),
ueld
t=1,....,T—1,xeX, £ PO),

is an optimal policy, that is

min o7 (h1) = o] (hy). (5.26)
mell
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The form of the operators p; and oy, t € T, depends on the form of p, and it can be explicitly
written in terms of p.
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