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Abstract
We consider a Markov decision process subject to model uncertainty in a Bayesian
framework, where we assume that the state process is observed but its law is unknown
to the observer. In addition,while the state process and the controls are observed at time
t , the actual cost that may depend on the unknown parameter is not known at time t .
The controller optimizes the total cost by using a family of special riskmeasures, called
risk filters, that are appropriately defined to take into account the model uncertainty
of the controlled system. These key features lead to non-standard and non-trivial risk-
averse control problems, for which we derive the Bellman principle of optimality.
We illustrate the general theory on two practical examples: clinical trials and optimal
investment.

Keywords Markov decision processes · Model uncertainty · Dynamic measures of
risk · Dynamic programming

1 Introduction

We study a risk-averse Markov decision problem (MDP) subject to uncertainty about
the underlying dynamics as well as uncertainty about the risk-averse criterion. The
uncertainty about the underlying dynamics, that is the lack of perfect knowledge of
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the form of the controlled underlying dynamical system, is the type of uncertainty that
is referred to as the Knightian uncertainty (after Frank Knight). In the present paper,
we additionally face the uncertainty about the control criterion. Accordingly, here,
we understand by Knightian uncertainty both the uncertainty about the underlying
dynamics as well as uncertainty about the risk-averse criterion.

The literature concerning risk-averse MDPs is rather abundant, and we refer to e.g.
Fan and Ruszczyński (2022, 2018) and references therein. Similarly, there is a vast
literature on MDPs subject to uncertainty about the model dynamics, and we refer to
(Bielecki et al., 2019) for an overview of the classical methodologies on this topic.
MDPs subject to model dynamics uncertainty have been studied using both the robust
methodology and the Bayesian methodology (see e.g. Wolff et al. (2012), Lin et al.
(2021) and references therein). However, to the best of our knowledge, the present
study is the first systematic study of risk-averse MDPs subject to model uncertainty.
An earlier effort to deal with a risk-averse MDP subject to model uncertainty in Lin
et al. (2021) focuses on the CVaR criterion that has an equivalent expected value
formulation and is only addressing the uncertainty about model dynamics. As already
said above, we are not only concerned with uncertainty regarding the underlying
dynamics, but also uncertainty about the optimization criterion, which is a novel and
important practical feature, as Examples 3.17, 3.18, and 3.19 below show. While
frequent in machine learning literature, although mainly concerned with the expected
value criterion [cf. Lattimore and Szepesvári (2020); Sutton and Barto (2018)], that
has not been addressed in the risk-averse case.

TheKnightianuncertainty thatwe consider is parametric in nature, andour approach
to tackling the respective MDP is rooted in the Bayesian methodology. This means
that we treat the unknown parameter as a random variable, denoted by � below, and a
part of the hybrid state that leads to the evaluation of the control policy is the posterior
distribution of this randomvariable [cf equation (5.1)], which is updated via an explicit
recursion given in Proposition 5.2. It came to us as quite a surprise that accounting for
possible uncertainty about the optimization criterion leads to rather intricate conceptual
ideas and technical manipulations. In order to avoid measurability and integrability
issues that are notorious and intrinsic in MDPs on general state and action spaces,
and that would quite likely burden the main takeaways from this study, we decided to
work with discrete state, action, and parameter spaces. However, morally, the results
should hold true in muchmore generality, which will be addressed in future works.We
chose to use integral notation with respect to the state variables, which is much more
pleasing to the eye and lighter than the summation notation. We keep the summation
with respect to the time variable though, whenever needed.

The solution to the considered risk-averse MDP hinges on the key and new con-
cepts of dynamic risk filters and recursive dynamic risk filters, as well as the notions
of parameter consistency and time consistency for dynamic risk filters. These, in par-
ticular, allow to derive a version of the dynamic programming routine suited to the
needs of our uncertain risk-averse MDP.
The main contributions of and takeaways from this paper are the following:
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1. To the best of our knowledge the present study is the first systematic study of
risk-averse MDPs subject to model uncertainty encompassing both the uncertainty
about the model dynamics as well as uncertainty about the performance criterion.

2. The concepts of parameter-consistency and time-consistencyof dynamic riskfilters.
3. Theorem 3.14 that characterizes the dynamic risk filters satisfying conditions stated

in Definition 3.3.
4. Explicit recursion for the posterior distribution (belief state) for �, given in Propo-

sition 5.2.
5. Theorem 5.6 that provides a solution to our risk-averse control of Markovian sys-

tems subject to model uncertainty.

The paper is organized as follows. In Sect. 2 we set the stage and define MDP
and the model uncertainty framework. Also here we introduce a series of probabil-
ity measures and some of their properties used frequently in the sequel. Section3 is
devoted to risk filters, starting with the definition and some fundamental properties of
these objects. The key concept of parameter consistency of risk filters is introduced in
Sect. 3.2, while the time consistency of risk filters is studied in Sect. 3.3. In this Sect.
we provide a characterization of parameter-consistent and time-consistent risk filters;
cf. Theorem 3.14. Also here we discuss two important examples of risk filters: the
expectation of an additive functional, Example 3.17, and risk-sensitive criteria in the
context of clinical trials, Example 3.18. The structure Theorem 3.14 leads to the nota-
tion of recursive risk filters, introduced in Sect. 4. Sect. 5.3 is devoted to the risk-averse
control problem. In Sect. 5.1 we derive the Bayes kernel for the posterior distribution
of the parameter of interest. Then, we derive the dynamic programming backward
recursion for the classical additive reward case; Sect. 5.2. Here, as a particular case,
we briefly discuss the optimal investment and consumption problem,when the investor
faces Knightian uncertainty and unknown risk-aversion parameter; Example 3.19. We
conclude with the solution to the optimal control problem for a general recursive risk
filer: Theorem 5.6.

Finally, we want to mention that while writing this manuscript we strove to keep
a balance between heavy notations and rigor. Nevertheless, some formulas still may
appear overwhelming, which is typically the case for MDPs.

2 Markov decision processes withmodel uncertainty

We consider an observed, controlled random process X = {Xt }t=1,...,T . The corre-
sponding state space is a finite set X . The underlying probability space that we will
work with is canonical. It includes the space of paths of X : Ω = X × · · · × X

︸ ︷︷ ︸

T times

=

(X )T , endowed with the canonical product σ -field F = 2X ⊗ · · · ⊗ 2X
︸ ︷︷ ︸

T times

. The ele-

ments of � are ω = (ω1, . . . , ωT ). We use xt to denote the canonical projections at
time t , so that Xt (ω) = xt = ωt . We let {F X

t }t=1,...,T to denote the canonical filtration
generated by the process X , so that F X

t = 2X ⊗ · · · ⊗ 2X
︸ ︷︷ ︸

t times

⊗ {�,∅} ⊗ · · · ⊗ {�,∅}
︸ ︷︷ ︸

T−t times

.

We will make use of the notations T = {1, . . . , T } and Tt = {t, . . . , T }.
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The control space is given by a finite set U , and the set of admissible controls at step
t is given by a set-valued function (or a multifunction) Ut : X ⇒ U with nonempty
values. We consider a parametric family of transition kernels Kθ : X × U → P(X ),
where P(X ) is the space of probability measures on X , and θ ∈ ̂� represents an
unknown parameter. Here, ̂� is a finite set. The unknown true value of the parameter
θ is θ∗.

We will consider the Bayesian setting, and therefore, we consider the product space
̂Ω = Ω × ̂� endowed with product σ -algebra ̂F := F ⊗ 2̂�. We denote ω̂ = (ω, θ)

and ω̂t = (ωt , θ). In accordance with the Bayesian setting we denote by � a random
variable on ( ̂Ω, ̂F) with values in ̂�, and with �(ω̂) = θ . We also assume that some
prior distribution ξ1 of � (supported in ̂�) is available.

Remark 2.1 We chose to work with finite sets X , U , and ̂� so to avoid dealing with
technical and delicate issues of measurability of various functions that we encounter
throughout the analysis, as well as the issues of existence and nature of measurable
selectors. These technical problems will be tackled in the future.

The process {Xt }t∈T considered as a process on ( ̂Ω, ̂F) is denoted as ̂X = {̂Xt }t∈T ,
and ̂Xt (ω̂) = ̂Xt (ω, θ) = Xt (ω) = ωt . Accordingly, the canonical filtration generated
by the process ̂X is given as {F̂X

t = F X
t ⊗ {∅, ̂�}, t ∈ T }.

At time t , the history of observed states is ht = (x1, x2, . . . , xt ), while all the
information available for making a decision is gt = (x1, u1, x2, u2, . . . , xt ). We use
Ht := X t = X × · · · × X

︸ ︷︷ ︸

t times

to denote the spaces of possible state histories ht . We

make distinction of gt and ht because we should make the decision of ut based on gt
as the past controls u1, . . . , ut−1 are also taken into consideration when estimating the
conditional distribution of θ . We write Ht for (X1, . . . , Xt ) and ̂Ht for (̂X1, . . . , ̂Xt ).

A history-dependent admissible policyπ = (π1, . . . , πT ) is a sequence of functions
πt (gt ) such that πt (gt ) ∈ Ut (xt ) for all possible gt . One can easily prove that for such
an admissible policy π , each πt reduces to a function of ht = (x1, x2, . . . , xt ),1 as
us = πs(x1, . . . , xs) for all s = 1, . . . , t − 1. Therefore the set of admissible policies
is

Π = {

π = (π1, . . . , πT ) : πt (x1, . . . , xt ) ∈ Ut (xt ), t ∈ T
}

.

Any policy π ∈ Π defines the control process, also denoted by π = {πt }t∈T , with
πt = πt (X1, . . . , Xt ). We make a distinction between ut = πt (x1, . . . , xt ) and πt =
πt (X1, . . . , Xt ).

As said in the Introduction, even though we work with discrete spacesX and ̂�, we
are using the more convenient integral notation, rather than the summation notation.

1 We are still using πs to denote the decision rule; it will not lead to any misunderstanding.
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For a fixed initial state x1, every policy π ∈ Π , and every θ ∈ ̂�, a probability
measure Pπ

θ on (Ω,F) is uniquely defined by:

Pπ
θ (A1 × A2 × . . . × AT−1 × AT )

=
∫

A1

∫

A2

· · ·
∫

AT−1

Kθ (AT |xT−1, πT−1(x1, . . . , xT−1))

× Kθ (dxT−1|xT−2, πT−2(x1, . . . , xT−2)) × · · ·
× Kθ (dx2|x1, π1(x1))δx1(dy), At ⊂ X , t ∈ T , (2.1)

where, as usual, δx denotes the Dirac measure concentrated at x . In particular,

Pπ
θ (A) = Pπ

θ (X ∈ A) = Pπ
θ ({ω ∈ � : X(ω) ∈ A}), A ⊂ �.

The true but unknown measure under the policy π is Pπ
θ∗ . This measure gives the

true law of the canonical process X subject to the control strategy π .
Given the prior distribution ξ1, a probability measure Pπ on ( ̂Ω, ̂F) is defined as

well:

Pπ (A × D) =
∫

D
Pπ

θ (A) ξ1(dθ), A ⊂ �, D ⊂ ̂�. (2.2)

In particular,

Pπ (A × D) = Pπ ({ω̂ ∈ ̂� : ̂X(ω̂) ∈ A, �(ω̂) ∈ D}).

Clearly, ξ1 is the marginal of Pπ , that is ξ1(D) = Pπ (�×D). To simplify the ensuing
study, we assume that for any t ∈ T and ht ∈ Ht we have Pπ ( ̂Ht = ht ) > 0. This
assumption is of course an assumption about the kernels Kθ , θ ∈ ̂�.

Furthermore, for each t = 1, . . . , T − 1 and for each history ht ∈ Ht , we define
the set of tail control strategies

�t,ht = {π t,ht : π
t,ht
t = πt (ht ), π t,ht

s (xt+1, . . . , xs)

= πs(ht , xt+1, . . . , xs), s ∈ Tt+1, π ∈ �}.

In addition, for t = 1, . . . , T − 1, and for each θ ∈ ̂�, ht ∈ Ht , and π t,ht ∈ �t,ht we
construct a probability measure Pπ t,ht

θ,t+1,T on X T−t in analogy to (2.1). Specifically,
we put

Pπ t,ht

θ,t+1,T (At+1 × · · · × AT )

=
∫

At+1

∫

At+2

· · ·
∫

AT−1

Kθ (AT |xT−1, πT−1(ht , xt+1, . . . , xT−1))

· Kθ (dxT−1|xT−2, πT−2(ht , xt+1, . . . , xT−2)) · · · Kθ (dxt+2|xt+1, πt+1(ht , xt+1))

· Kθ (dxt+1|xt , πt (ht )), As ⊂ X , s ∈ Tt+1. (2.3)
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Weproceedwith three technical results that are rather straightforward consequences
of the above set-up.

Lemma 2.2 For any ht ∈ Ht , and As ⊂ X , s ∈ Tt+1, π ∈ �, and the corresponding
π t,ht ∈ �t,ht we have that

Pπ t,ht

θ,t+1,T (At+1 × . . . × AT ) = Pπ
θ (Xt+1 ∈ At+1, . . . , XT ∈ AT |Ht = ht ). (2.4)

Proof First, note that2

Pπ
θ (X1 = x1, . . . , Xt = xt )

= Kθ (x2|x1, π1(x1)) Kθ (x3|x2, π2(x1, x2)) · · ·
Kθ (xt |xt−1, πt−1(x1, . . . xt )).

On the other hand,

π
θ (Xt+1 ∈ At+1, . . . , XT ∈ AT , Ht = ht )

= Pπ
θ (X1 = x1, . . . , Xt = xt , Xt+1 ∈ At+1, . . . , XT ∈ AT )

=
∫

{x1}
. . .

∫

{xt }
Pπ t,h̄t

θ,t+1,T (At+1 × · · · × AT )

Kθ (dx̄t |x̄t−1, πt−1(h̄t−1)) · · · Kθ (dx̄2|x̄1, π1(x̄1))δx1(y)

= Pπ t,ht

θ,t+1,T (At+1 × · · · × AT )Kθ (xt |xt−1, πt−1(ht−1)) · · · Kθ (x2|x1, π1(x1)).

Combining the above we immediately have (2.4). �	

For future reference we denote by Pπ t,ht

θ,t+1 a measure on (X , 2X ) defined as

Pπ t,ht

θ,t+1(B) = Pπ t,ht

θ,t+1,T (B × X T−t−1).

(2.5)

Thus, we have that, for t ≤ T − 1,

Pπ t,ht

θ,t+1(B) =
∫

B
Kθ (dxt+1 | xt , πt (ht )) = Kθ (B | xt , πt (ht ))

= Pπ
θ (Xt+1 ∈ B|Ht = ht ). (2.6)

Next, we construct a probability measure Pπ t,ht

t+1,T on X T−t × ̂� as

Pπ t,ht

t+1,T (A × D) =
∫

D
Pπ t,ht

θ,t+1,T (A) ξ
π,ht
t (dθ), A ∈ 2X ⊗ · · · ⊗ 2X

︸ ︷︷ ︸

T−t times

, D ∈ 2
̂�,

(2.7)

2 To further simplify the notationwewrite Kθ (x |...) in place of Kθ ({x}|...). In a similarway, for a probability
measure Q onQ, and y ∈ Q, we may write Q(y) instead of Q({y}).
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where ξ
π,ht
t ∈ P(̂�), is given as

ξ
π,ht
t (D) = Pπ (� ∈ D | ̂Ht = ht ), for t = 2, . . . , T , and ξ

π,h1
1 (D) = ξ1(D).

(2.8)

With some abuse of terminology, we define a conditional measure

Pπ t,ht

t+1,T (A | � = θ) := Pπ t,ht

t+1,T (A × {θ})
Pπ t,ht
t+1,T (X T−t × {θ}) , θ ∈ �, A ∈ 2X ⊗ · · · ⊗ 2X .

(2.9)

Then, clearly,

Pπ t,ht

t+1,T (A | � = θ) = Pπ t,ht

θ,t+1,T (A), θ ∈ �, A ∈ 2X ⊗ · · · ⊗ 2X . (2.10)

Occasionally, in what follows we will use a simplified notation Pπ t,ht

t+1,T | θ (A) for

Pπ t,ht

t+1,T (A | � = θ)

Lemma 2.3 Let A ∈ 2X ⊗ · · · ⊗ 2X
︸ ︷︷ ︸

T−t times

, D ∈ 2̂�, ht ∈ Ht , and π ∈ �. Then

Pπ t,ht

t+1,T (A × D) = Pπ
(

(̂Xt+1, ̂Xt+2, . . . , ̂XT−1, ̂XT ) ∈ A, ̂� ∈ D
∣

∣ ̂Ht = ht
)

.

(2.11)

Proof First, in view of (2.8) and (2.2) we note that

ξ
π,ht
t (D) =

∫

D Pπ
θ (Ht = ht ) ξ1(dθ)

Pπ ( ̂Ht = ht )
.

Thus,

Pπ t,ht

t+1,T (A × D) =
∫

D Pπ t,ht

θ,t+1,T (A)Pπ
θ (Ht = ht ) ξ1(dθ)

Pπ ( ̂Ht = ht )
. (2.12)
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On the other hand, using (2.2) and Lemma 2.2, we have

Pπ ((̂Xt+1, ̂Xt+2, . . . , ̂XT−1, ̂XT ) ∈ A,� ∈ D| ̂Ht = ht )

=
∫

D Pπ
θ ((Xt+1, . . . , XT ) ∈ A, Ht = ht ) ξ1(dθ)

Pπ ( ̂Ht = ht )

=
∫

D Pπ
θ ((Xt+1, . . . , XT ) ∈ A | Ht = ht )Pπ

θ (Ht = ht ) ξ1(dθ)

Pπ ( ̂Ht = ht )

=
∫

D Pπ t,ht

θ,t+1(A)Pπ
θ (Ht = ht ) ξ1(dθ)

Pπ ( ̂Ht = ht )
.

This, combined with (2.12) concludes the proof of part (i). �	
Remark 2.4 Formally, taking T = t + 1 in (2.10) we obtain

Pπ t,ht

t+1,t+1|θ (A) = Pπ t,ht

θ,t+1,t+1(A) = Pπ t,ht

θ,t+1(A), (2.13)

where in the last equality we used (2.5).

Lemma 2.5 Let t ∈ {1, . . . , T − 1}, and let F be a function on X T−t × ̂�. Then, for
each ht ∈ Ht we have

E
π [F(̂Xt+1, ̂Xt+2, . . . , ̂XT−1, ̂XT ,�) | ̂Ht = ht ] =

∫

̂�

∫

X T−t
F(xt+1, . . . , xT , θ)PπT−1,hT−1

θ,T (dxT ) · · · Pπ t,ht

θ,t+1(dxt+1)ξ
π,ht
t (dθ),

(2.14)

where E
π denotes the expectation with respect to probability Pπ .

Proof In view of Lemma 2.3, we have

Pπ (dxt+1, . . . , dxT ; dθ | ̂Ht = ht ) = Pπ t,ht

t+1,T (dxt+1, . . . , dxT ; dθ).

Consequently, by (2.7), we continue

Pπ t,ht

t+1,T (dxt+1, . . . , dxT ; dθ) = Pπ t,ht

θ,t+1,T (dxt+1, . . . , dxT )ξπ t,ht

t (dθ).

This combined with (2.3) and (2.6) yields the identity (2.14). �	
For future reference we denote by Pπ t,ht

t+1 the measure on X × ̂� defined as

Pπ t,ht

t+1 (B × D) = Pπ t,ht

t+1,T (B × X T−t−1 × D) = Pπ (̂Xt+1 ∈ B,� ∈ D | ̂Ht = ht ),

(2.15)

for t = 1, . . . , T − 1, with the convention, employed throughout, that B ×X 0 × D =
B × D. The second equality in (2.15) follows from (2.11).

123



Risk filtering and risk-averse control of Markovian…

For t = T and hT ∈ HT we construct a measure PπT ,hT
T+1,T on ̂� as

PπT ,hT
T+1,T (D) = Pπ (� ∈ D | ̂HT = hT ) = ξ

π,hT
T (D).

Given that a strategy π is used, then at each time t ∈ T a random cost Zπ
θ∗,t is

incurred, with

Zπ
θ,t = ct (Xt , πt , θ),

where ct : X × U × ̂� → R+.

Remark 2.6 It is important to note that even though Xt and πt are observed at time t ,
the actual cost ct (Xt , πt , θ

∗) is not known (or observed) at time t as θ∗ is not known.
The dependence of both the transition kernel and the accrued costs on the unknown
parameter is an important practical situation, leading to non-standard and non-trivial
risk-averse Markov decision problems.

To proceed, for each t ∈ T and each history ht ∈ Ht we denote

Zπ,ht
θ,t,t = ct (xt , πt (ht ), θ), (2.16)

and for each s = t + 1, . . . , T we put

Zπ,ht ,xt+1,...,xs
θ,t,s = cs(xs, π

t,ht
s (xt+1, . . . , xs), θ). (2.17)

Note that, for a fixed strategy π and a fixed ht ∈ Ht , we have that ct (xt , πt (ht ), ·)
is a function on ̂�, and cs(·, π t,ht

s (·, . . . , ·), θ) is a function on X s−t × ̂�.

3 Risk filters for MDPs withmodel uncertainty

An underlying feature of our approach is a desire to assess the riskiness of the uncer-
tain costs induced by any policy π in a time-consistent way. This desire is fulfilled via
the concept of a time-consistent dynamic risk filter, also satisfying additional prop-
erties of normalization, monotonicity, translation invariance, support, and parameter
consistency.

3.1 Dynamic risk filters

For t = 1, . . . , T − 1 and s = t, . . . , T , we denote by ZX
t and Zt,s the spaces

of real valued functions on X t and X s−t × ̂�, respectively, where X 0 × ̂� := ̂�,
so that Zt,t is the space of real valued functions on ̂�. For Zt,s,Wt,s ∈ Zt,s , the
comparison between these functions is understood point-wise; Zt,s ≤ Wt,s means that
Zt,s(xt+1, . . . , xs, θ) ≤ Wt,s(xt+1, . . . , xs, θ) for all (xt+1, . . . , xs, θ) ∈ X s−t × ̂�.
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For any policy π ∈ Π , our objective is to evaluate at each time t ∈ T , the riskiness
of the sequence of costs Zπ,ht

�,t , Zπ,ht ,Xt+1
�,t,t+1 , . . . , Zπ,ht ,Xt+1,...,XT

�,t,T , given history ht , in

such a way that the evaluation is F X
t -measurable. We denote by

Z t,T = Zt,t × Zt,t+1 × · · · × Zt,T

the space of conditional cost functions3 in periods t, . . . , T .
For t = 1, . . . , T and s = t, . . . , T , we also use Pt,s to denote the space of

probability measures on the space of paths starting at time t and ending at time s, and
on realizations of the parameter θ , that is on the space X s−t+1 × ̂�. Additionally, we
understandPT+1,T asP(̂�), because no future paths are possible. Note, in particular,

that Pπ t,ht

t+1,T ∈ Pt+1,T , for t ∈ T , and Pπ t,ht

t+1,t+1 ∈ Pt+1,t+1.
Observe that at time t = 1, . . . , T − 1 we know the history ht , and, for any policy

π ∈ Π (in principle), we can evaluate the distribution of (Xt+1, . . . , XT ,�) under
the measure Pπ t,ht

t+1,T .
We proceed with stating three key definitions.

Definition 3.1 For a fixed t ∈ T , a mapping ρt : Z t,T × Pt+1,T → R, is called a
conditional risk filter.

It should be stressed that the concept of a conditional risk filter is substantially different
than that of a conditional measure of risk, discussed in the risk theory literature, such
as, inter alia, Scandolo (2003); Frittelli and Scandolo (2006); Cheridito et al. (2006);
Ruszczyński and Shapiro (2006); Artzner et al. (2007); Ch et al. (2007); Shapiro et al.
(2021), because it is real-valued and admits the probability measure as its second
argument, which is pertinent to our setting. It is closely related to the concept of a
risk form recently introduced in Dentcheva and Ruszczyński (2020). Note that, in
particular, for any (Zt,t , . . . , Zt,T ) ∈ Z t,T and π ∈ � we have

ρt (Z
π,ht
θ,t,t , . . . , Z

π,ht ,xt+1,...,xT
θ,t,T ; Pπ t,ht

t+1,T ) = R(ht ), for all ht ∈ X t ,

for some function R : X t → R. This explains the term conditional in the conditional
riskfilter.Also, it needs to be stressed that conditional riskfilters should not be confused
with the linear or non-linear filters that are studied in the filtering theory (see e.g.
Krishnamurthy (2016)).

Definition 3.2 Let t ∈ T . A conditional risk filter ρt

i is normalized if ρt (0, 0, . . . , 0; Pt+1,T ) = 0 for all Pt+1,T ∈ Pt+1,T ;
ii is monotonic if ρt (Zt,t , . . . , Zt,T ; Pt+1,T ) ≤ ρt (Wt,t , . . . ,Wt,T ; Pt+1,T ) for all

Pt+1,T ∈ Pt+1,T , and all (Zt,t , . . . , Zt,T ) and (Wt,t , . . . ,Wt,T ) inZ t,T , such that
Zt,s ≤ Wt,s for all s ∈ Tt ;

3 The term conditional refers to the fact that at any time t we consider cost functions that depend on a
history ht .
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iii is translation invariant if for all (Zt,t , . . . , Zt,T ) ∈ Z t,T , all V ∈ R, and all
Pt+1,T ∈ Pt+1,T ,

ρt (V + Zt,t , Zt,t+1, . . . , Zt,T ; Pt+1,T ) = V + ρt (Zt,t , Zt,t+1, . . . , Zt,T ; Pt+1,T );

iv has the support property, if

ρt
(

Zt,t , . . . , Zt,T ; Pt+1,T
) = ρt

(

Zt,t1 suppt (Pt+1,T ), . . . , Zt,T1 suppT (Pt+1,T ); Pt+1,T
)

,

for all (Zt,t , . . . , Zt,T ) ∈ Z t,T , and all Pt+1,T ∈ Pt+1,T , andwhere supps(Pt+1,T )

denotes the projection of supp(Pt+1,T ) on X s−t × ̂�, for s ≥ t .

Remark 3.3 Let s = t, . . . , T and let {Z y
s,T , y ∈ Y} be a family of functions parame-

terized by y, for some non-empty set Y . Then, by the normalization property, for any
A ⊂ Y , y ∈ Y , and P ∈ Pt+1,T , we have that

1A(y)ρt (Z
y
t,T , . . . , Z y

T ,T ; P) = ρt (1A(y)Z y
t,T , . . . ,1A(y)Z y

T ,T ; P).

Definition 3.4 A dynamic risk filter ρ = {

ρt
}

t∈T is a sequence of conditional risk
filters ρt : Z t,T × Pt+1,T → R. We say that it is normalized, monotonic, translation
invariant, or has the support property, if all ρt , t ∈ T , satisfy the respective conditions
of Definition 3.2.

3.2 Parameter consistency

Let t = 1, . . . , T − 1 and s = t, . . . , T . For any probability measure Pt,s ∈ Pt,s , we
denote by Pt,s|�(·, ·), the stochastic kernel from ̂� to X s−t+1 defined as4

Pt,s|�(θ, A) = Pt,s(A × {θ})
Pt,s(X s−t+1 × {θ}) , A ⊂ X s−t+1, θ ∈ ̂�. (3.1)

The corresponding marginal on ̂� is denoted by Pt,s,�, so that

Pt,s,�(D) = Pt,s(X s−t+1 × D), D ⊂ ̂�. (3.2)

Clearly, the measure Pt,s admits the disintegration

Pt,s(A × B) =
∫

B
Pt,s|θ (A)Pt,s,�(dθ) =: Pt,s,� � Pt,s|�(A × B),

where we use a simplified notation

Pt,s|θ (A) := Pt,s|�(θ, A). (3.3)

4 Note that (2.9) is an example of the above.
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We note that for any stochastic kernel κs,t (·, ·) from ̂� toX s−t and for any probability
measureμ on 2̂� one can construct a unique probability measure on the product space
X s−t+1 × � as

mt,s(A × B) =
∫

B
κt,s(θ, A) μ(dθ) =: μ � κt,s(A × B).

In particular, with μ = δθ and κt,s = Pt,s|�, with Pt,s ∈ Pt,s , we get

mt,s(A × B) = δθ � Pt,s|�(A × B) = Pt,s|θ (A)1B(θ) = Pt,s|θ (A)δθ (B). (3.4)

Remark 3.5 In our convention, PT+1,T (·) is ameasure on ̂�. Thismeans that, formally,
PT+1,T ,�

= PT+1,T and PT+1,T |� ≡ 1, in which case (formally)

δθ � PT+1,T |� = δθ .

Example 3.6 Fix t ∈ T , ht ∈ Ht and π ∈ �. Take Pt+1,T = Pπ t,ht

t+1,T ∈ Pt+1,T and

Pt+1,t+1 = Pπ t,ht

t+1,t+1 ∈ Pt+1,t+1. Then,

Pt+1,T |θ = Pπ t,ht

θ,t+1,T , Pt+1,t+1|θ = Pπ t,ht

θ,t+1, Pt+1,T ,� = ξπ t,ht

t . (3.5)

The first equality above comes from (2.10). The second one comes from (2.13). The
third one is just (2.7) with A = X T−t . Note that (3.4) and (3.5) imply that

δθ � Pπ t,ht

t+1,T |�(A × B) = δθ ⊗ Pπ t,ht

θ,t+1,T (A × B),

δθ � Pπ t,ht

t+1,t+1|�(A × B) = δθ ⊗ Pπ t,ht

θ,t+1,t+1(A × B).
(3.6)

We introduce the following key concept.

Definition 3.7 A conditional risk filter ρt : Z t,T × Pt+1,T → R is parameter con-
sistent, if for all (Zt,t , . . . , Zt,T ), (Wt,t , . . . ,Wt,T ) ∈ Z t,T , and all Pt+1,T , Qt+1,T ∈
Pt+1,T the relations

Pt+1,T ,� = Qt+1,T ,�

and

ρt
(

Zt,t , . . . , Zt,T ; δθ � Pt+1,T |�
) ≤ ρt

(

Wt,t , . . . ,Wt,T ; δθ � Qt+1,T |�
)

, for all θ ∈ ̂�,

(3.7)

imply that

ρt
(

Zt,t , . . . , Zt,T ; Pt+1,T
) ≤ ρt

(

Wt,t , . . . ,Wt,T ; Qt+1,T
)

. (3.8)
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In words, if the marginal distributions of P and Q on ̂� are the same, and the
conditional risk of Zt :T := (Zt,t , . . . , Zt,T ) under P is not greater than that of
Wt :T := (Wt,t , . . . ,Wt,T ) under Q for every value of θ , then the risk of Zt :T under P
should be not greater than that of Wt :T under Q.

Remark 3.8 Note that parameter consistency at t = T follows from the support
property, translation invariance, monotonicity, and normalization of ρT . Indeed, first
observe that according to Remark 3.5 the equality PT+1,T ,� = QT+1,T ,� = 1 implies
that PT+1,T = QT+1,T . Thus, for any θ ∈ ̂�

ρT (ZT ,T , δθ ) ≤ ρT (WT ,T , δθ ) ⇔ ρT (ZT ,T (θ), δθ ) ≤ ρT (WT ,T (θ), δθ ) ⇔
ZT ,T (θ) + ρT (0, δθ ) ≤ WT ,T (θ) + ρT (0, δθ ) ⇔ ZT ,T (θ) ≤ WT ,T (θ).

By monotonicity, we have that

ρT (ZT ,T , PT+1,T ) ≤ ρT (WT ,T , PT+1,T ) = ρT (WT ,T , QT+1,T ).

This remark is used in Proposition 3.10 and also in Theorem 3.14.

We have the following risk decomposition formula.

Theorem 3.9 Take t = 1, . . . , T . If a conditional risk filter ρt : Z t,T × Pt+1,T → R

is parameter consistent, then there exists a mapping ρ̂t : Zt,t ×P(̂�) → R such that
for all Zt :T and Pt+1,T ,

ρt
(

Zt,t , . . . , Zt,T ; Pt+1,T
)

= ρ̂t

(

{ρt
(

Zt,t , . . . , Zt,T ; δθ � Pt+1,T |�
)

, θ ∈ ̂�}; Pt+1,T ,�

)

. (3.9)

Proof Suppose two sequences Zt :T and Wt :T in Z t,T , and two measures Pt+1,T and
Qt+1,T in Pt+1,T are such that Pt+1,T ,̂� = Qt+1,T ,̂� and

ρt
(

Zt,t , . . . , Zt,T ; δθ � Pt+1,T |�
) = ρt

(

Wt,t , . . . ,Wt,T ; δθ � Qt+1,T |�
)

, ∀ θ ∈ ̂�.

Then it follows from Definition 3.7 that

ρt
(

Zt,t , . . . , Zt,T ; Pt+1,T
) = ρt

(

Wt,t , . . . ,Wt,T ; Qt+1,T
)

.

This means that formula (3.9) is true. �	
Thus, parameter consistency allows us to disintegrate the risk filtering task into two

stages. First, we evaluate the risk in a fully observed system, with the parameter θ

fixed, and then we integrate the results by using the operator ρ̂t , which we call the
marginal risk filter.

Proposition 3.10 Take t = 1, . . . , T . If the conditional risk filter ρt is parameter
consistent, normalized, monotonic, and has the translation invariant property, or the
support property, then the mapping ρ̂t (·; ·) has the corresponding properties as well
(in the sense indicated in the proof below).
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Proof Indeed, consider any measure Λ ∈ P(̂�). Then for any Pt+1,T ∈ Pt+1,T such
that Pt+1,T ,� = Λ, we will use the formula (3.9) to analyze the implied properties of
ρ̂t .
1) Suppose ρt is normalized. Then (the symbol 0 below denotes a function on ̂� that
is identically equal to zero)

ρ̂t (0;Λ) = ρ̂t

(

{ρt
(

0, . . . , 0; δθ � Pt+1,T |̂�
)

, θ ∈ ̂�}; Pt+1,T ,�

)

= ρt
(

0, . . . , 0; Pt+1,T
) = 0.

Thus, ρ̂ is normalized.
2) Suppose ρt is normalized and translation invariant and has the support property.
Then for any V ∈ R, we have

ρt
(

V , 0, . . . , 0; Pt+1,T
) = V + ρt

(

0, 0, . . . , 0; Pt+1,T
) = V .

Therefore, for any U ∈ Z t,t and any a ∈ R, by the support, translation invariance,
and normalization properties of ρt , we have for any θ ∈ �,

ρt
(

U + a, 0, . . . , 0; δθ � Pt+1,T |�
) = ρt

(

U (θ) + a, 0, . . . , 0; δθ � Pt+1,T |�
)

= U (θ) + a. (3.10)

Therefore,

ρ̂t (U + a;Λ) = ρ̂t

(

{ρt
(

U + a, 0, . . . , 0; δθ � Pt+1,T |�
)

, θ ∈ ̂�}; Pt+1,T ,�

)

= ρt
(

U + a, 0, . . . , 0; Pt+1,T
) = a + ρt

(

U , 0, . . . , 0; Pt+1,T
)

= a + ρ̂t

(

{ρt
(

U , 0, . . . , 0; δθ � Pt+1,T |�
)

, θ ∈ ̂�}; Pt+1,T ,�

)

= a + ρ̂t (U ;Λ).

Hence, ρ̂ is translation invariant.
Similarly, for any U ∈ Z t,t , noting that suppt,t (Pt+1,T ) = supp(�), we deduce

ρ̂t (U ,Λ) = ρt
(

U , 0, . . . , 0; Pt+1,T
) = ρt

(

1 suppt,t (Pt+1,T )U , 0, . . . , 0; Pt+1,T
)

= ρt
(

1 supp(Λ)U , 0, . . . , 0; Pt+1,T
) = ρ̂t (1 supp(Λ)U ,Λ).

Thus, ρ̂t also has the support property.
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3)Supposeρt is normalized, translation invariant, andmonotonic. Then, for allU ,W ∈
Z t,t such that U ≤ W , employing (3.10) with a = 0, we have

ρ̂t (U ;Λ) = ρ̂t

(

{ρt
(

U , 0, . . . , 0; δθ � Pt+1,T |�
)

, θ ∈ ̂�}; Pt+1,T ,�

)

= ρt
(

U , 0, . . . , 0; Pt+1,T
)

≤ ρt
(

W , 0, . . . , 0; Pt+1,T
)

= ρ̂t

(

{ρt
(

W , 0, . . . , 0; δθ � Pt+1,T |�
)

, θ ∈ ̂�}; Pt+1,T ,�

)

= ρ̂t (W ;Λ),

and this proves the monotonicity of ρ̂t .
4) If ρ is monotonic, normalized, parameter consistent, translation invariant, and with
support property, then ρ̂t is also normalized,monotonic, normalized, translation invari-
ant, and has the support property, and in view of Remark 3.8, ρ̂t is also parameter
consistent. �	

3.3 Time consistency

We now consider the notion of time consistency of risk filters.

Definition 3.11 Let t ∈ {1, . . . , T − 1}. For any positive measure μt+1 on X T−t × ̂�

and for any x ∈ X , we denote by μt+1( · ‖x) the measure on X T−t−1 × ̂� given as

μt+1(A × B‖x) = μt+1({x} × A × B)

μt+1({x} × X T−t−1 × ̂�)
. (3.11)

Clearly, μt+1( · ‖x) is a probability measure.

In particular, taking μt+1 = δθ � Pt+1,T |�,

δθ � Pt+1,T |�(A × B ‖x) = δθ � Pt+1,T |�({x} × A × B)

δθ � Pt+1,T |�({x} × X T−t−1 × ̂�)
. (3.12)

It follows from (3.4) and (3.12) that

δθ � Pt+1,T |�( A × B ‖ x) = Pt+1,T |θ ({x} × A)δθ (B)

Pt+1,T |θ ({x} × X T−t−1)
= Pt+1,T |θ ({x} × A)

Pt+1,t+1|θ ({x}) δθ (B)

=: ˜Pt+1,T |θ ( A ‖ x)δθ (B), (3.13)

which, in view of (3.6) gives

δθ � Pπ t,ht

t+1,T |�(A × B‖x) = Pπ t,ht

θ,t+1,T ({x} × A)

Pπ t,ht
θ,t+1,t+1({x})

δθ (B) =: ˜Pπ t,ht

θ,t+1,T ( A ‖x)δθ (B).

(3.14)
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The next definition is a version of the dynamic conditional time consistency used
in Fan and Ruszczyński (2018), adapted to the set-up of the present paper. It is
significantly different than the standard time consistency concept, discussed, inter
alia, in Cheridito et al. (2006); Artzner et al. (2007); Cheridito and Kupper (2011);
Ruszczyński (2010), by the explicit use of the conditional distributions, and by for-
mulating it for each fixed value of θ .

Definition 3.12 A dynamic risk filter ρ = {

ρt
}

t=1,...,T is time consistent if for any t =
1, . . . ,
T − 1, for any Pt+1,T , Qt+1,T ∈ Pt+1,T , such that Pt+1,t+1|� = Qt+1,t+1|�, and
for any functions5 Zt,s(·s−t , ·1),Wt,s(·s−t , ·1) ∈ Zt,s , s = t + 1, . . . , T , the inequal-
ities

ρt+1
(

Zt,t+1(xt+1, ·1), . . . , Zt,T (xt+1, ·T−t−1, ·1); δθ � Pt+1,T |�( · ‖xt+1)
)

≤ ρt+1
(

Wt,t+1(xt+1, ·1), . . . ,Wt,T (xt+1, ·T−t−1, ·1); δθ � Qt+1,T |�( · ‖xt+1)
)

,

∀ θ ∈ ̂�, ∀ xt+1 ∈ X , (3.15)

imply that for any function ft ∈ Zt,t

ρt
(

ft (·1), Zt,t+1(·1, ·1), . . . , Zt,T (·T−t , ·1)); δθ � Pt+1,T |�)
)

≤ ρt
(

ft (·1),Wt,t+1(·1, ·1), . . . ,Wt,T (·T−t , ·1)); δθ � Qt+1,T |�)
)

, ∀ θ ∈ ̂�.

(3.16)

In words, if the risk of the system starting at time t +1 from any possible next state
xt+1 and any possible parameter value θ is lower for Z than for W (if the one-step
conditional measures of P and Q coincide), and if Z and W are equal at time t , then
the risk at time t is also lower for Z than for W , no matter what the value of θ is.

Lemma 3.13 Suppose a dynamic risk filter
{

ρt
}

t=1,...,T is normalized, translation

invariant, has the support property, and is time consistent. Let θ ∈ ̂� be fixed. Then
the function on Zt,t+1 × P(X T−t × ̂�) given as

ρt
(

0, w, 0, . . . , 0; δθ � Pt+1,T |�
)

(3.17)

depends only on the probability measure Pt+1,t+1|θ and on the function w(·, θ).

Proof For any Pt+1,T and x ∈ X , the support property of ρt+1 implies that

ρt+1
(

w(x, ·), 0, . . . , 0; δθ � Pt+1,T |�(·‖x))
= ρt+1

(

w(x, θ), 0, . . . , 0; δθ � Pt+1,T |�(·‖x)).

Then, by the translation invariance and the normalization properties of ρt+1 we obtain

ρt+1
(

w(x, ·), 0, . . . , 0; δθ � Pt+1,T |�(·‖x)) = w(x, θ),

5 The notation ·k is a place-holder for k variables.
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which does not depend on Pt+2,T |�. Hence, for any Qt+1,T ∈ Pt+1,T we have

ρt+1
(

w(x, ·), 0, . . . , 0; δθ � Pt+1,T |�( · ‖x))
= ρt+1

(

w(x, ·), 0, . . . , 0; δθ � Qt+1,T |�( · ‖x)).

If in addition, Pt+1,t+1|� = Qt+1,t+1|�, then, by the time consistency,

ρt
(

0, w, 0, . . . , 0; δθ � Pt+1,T |�
) = ρt

(

0, w, 0, . . . , 0; δθ � Qt+1,T |�
)

.

which proves that only the conditional measure Pt+1,t+1|� matters in this calculation.
The fact that the knowledge of w(·, θ) is sufficient, follows from the support property.
This concludes the proof. �	

In accordance with the above lemma we define the functions

σt : ZX
1 × P(X ) → R, t = 1, . . . , T − 1,

as

σt (v; Pt+1,t+1|θ ) = ρt
(

0, w, 0, . . . , 0; δθ � Pt+1,T |�
)

, (3.18)

where w(·, θ) ≡ v(·) and can be arbitrary otherwise. We refer to these functions as
transition risk mappings.

Note that if ρt is normalized, monotonic, translation invariant and has support
property, then so is σt .

Theorem 3.14 A dynamic risk filter ρ = {

ρt
}

t=1,...,T is normalized, monotonic, trans-
lation invariant, has the support property, is parameter consistent, and time consistent,
if and only if the following conditions are satisfied:

1) Marginal risk mappings ρ̂t : Zt,t × P(̂�) → R, t ∈ T , exist, which are normal-
ized, monotonic, translation invariant, and have the support property;

2) Transition risk mappings given in (3.18) are such that

(i) For all t = 1, . . . , T − 1, σt ( · ; · ) is normalized, monotonic, translation
invariant, and has the support property;

(ii) For any Pt+1,T ∈ Pt+1,T , t = 1, . . . , T − 1, and for any functions Zt,s ∈
Zt,s , s ∈ Tt , we have that6

ρt (Zt,t , Zt,t+1, . . . , Zt,T ; Pt+1,T )

= ρ̂t

({

Zt,t (θ) + σt
(

ρt+1
(

Zt,t+1(�, ·1), . . . , Zt,T (�, ·T−t−1, ·1);
δθ � Pt+1,T |�( · ‖�)

); Pt+1,t+1|θ
)

, θ ∈ ̂�
}

; Pt+1,T ,�

)

. (3.19)

6 Recall Definition 3.11. The notation σt
(

ρt+1
(

Zt,t+1(�, θ), . . . , Zt,T (�, ·T−t−1, θ); δθ �
Pt+1,T |�( · ‖�)

);
Pt+1,t+1|θ

)

, where we use � as place holder, means that Pt+1,t+1|θ acts onw(x, θ) = ρt+1
(

Zt,t+1(x, θ),

. . . , ft,T (x, ·T−t−1, θ); δθ � Pt+1,T |�( · ‖x)) as a function of x .
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For any function ZT ,T ∈ ZT ,T and any PT+1,T ∈ P(�)

ρT (ZT ,T ; PT+1,T ) = ρ̂T

(

ZT ,T , PT+1,T

)

. (3.20)

Proof We fix Pt+1,T ∈ Pt+1,T and Zt,s ∈ Zt,s , s = t, . . . , T . Since t is fixed, to
alleviate the notations we simply write Zs , instead of Zt,s in this proof.

Since the risk filter is parameter consistent, Theorem 3.9 yields the existence of
mappings ρ̂t such that

ρt (Zt , Zt+1, . . . , ZT ; Pt+1,T )

= ρ̂t

({

ρt
(

Zt , Zt+1, . . . , ZT ; δθ � Pt+1,T |�
)

, θ ∈ ̂�
}

; Pt+1,T ,�

)

.

It follows from Proposition 3.10 that ρ̂ is normalized, monotonic, translation invari-
ant, has the support property.

Next, we derive an equivalent expression for the first argument of ρ̂t that will prove
(3.19). Define the function

w(x, θ) = ρt+1
(

Zt+1(x, ·1), . . . , ZT (x, ·T−t−1, ·1); δθ � Pt+1,T |̂�( · ‖x)), x ∈ X ,

θ ∈ ̂�.

Then, for any fixed x ∈ X and θ ∈ �, we use the support, translation invariance, and
the normalization properties in the chain of equations below:

ρt+1
(

w(x, ·), 0, . . . , 0; δθ � Pt+1,T |�( · ‖x))

= ρt+1
(

w(x, θ), 0, . . . , 0; δθ � Pt+1,T |�( · ‖x))

= w(x, θ) + ρt+1
(

0, 0, . . . , 0; δθ � Pt+1,T |�( · ‖x)) = w(x, θ)

= ρt+1
(

Zt+1(x, ·1), . . . , ZT (x, ·T−t−1, ·1); δθ � Pt+1,T |�( · ‖x)).

In view of the assumed time consistency of ρ, the above implies that for every Zt,t ∈
Zt,t ,

ρt
(

Zt , Zt+1, . . . , ZT ; δθ � Pt+1,T |�
) = ρt

(

Zt , w, 0, . . . , 0; δθ � Pt+1,T |�
) =: I1.

Thus, by using the translation invariance and the support properties again, we conclude
that, for all θ ∈ ̂�,

I1 = ρt
(

Zt (θ), w, 0, . . . , 0; δθ � Pt+1,T |�
)

= Zt (θ) + ρt
(

0, w, 0, . . . , 0; δθ � Pt+1,T |�
)

.

Using (3.18), we get

I1 = Zt (θ) + σt
(

w(·, θ), Pt+1,t+1|θ
)

.
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Finally, from here, note that by support property

w(x, θ) = ρt+1
(

Zt+1(x, θ), . . . , ZT (x, ·T−t−1, θ); δθ � Pt+1,T |�( · ‖x)),
x ∈ X , θ ∈ ̂�, (3.21)

we obtain the representation (3.19). The representation (3.20) follows from the defi-
nition of ρT and the form of ρ̂T .

Next, we prove the converse statement by backward induction in time. For t = T ,
the conditional risk filter (3.20) has all the postulated properties, with the exception
of the time consistency, because ρ̂T does (see Proposition 3.10).

Suppose the conditional risk filters ρs , s = t + 1, . . . , T are normalized, mono-
tonic, translation invariant, have the support property, are parameter consistent, and
time consistent. We will verify these properties for ρt given by formula (3.19). The
translation invariance follows from the translation invariance of ρ̂t . The normalization
and themonotonicity follow immediately from the normalization and themonotonicity
of σt , ρt+1 and ρ̂t .

We now verify the support property. For every θ , and x define μθ,x (·) = δθ �
Pt+1,T |θ (·‖x), A(θ) = supp(Pt+1,t+1|θ ) ⊂ X , B = supp(Pt+1,T ,�) ⊂ �. Then, by
(3.19), (3.21), the support property of ρ̂t and σt , and by Remark 3.3 applied to σt , we
deduce that

ρt (Zt , Zt+1, . . . , ZT ; Pt+1,T ) = ρ̂t

({

Zt (θ) + σt (w(�, θ); Pt+1,t+1,|θ ); θ ∈ �
}

; Pt+1,T ,�

)

= ρ̂t

({

1B(θ)Zt (θ) + 1B(θ)σt (w(�, θ); Pt+1,t+1,|θ ); θ ∈ �
}

; Pt+1,T ,�

)

= ρ̂t

({

1B(θ)Zt (θ) + σt (1B(θ)1A(θ)(�)w(�, θ); Pt+1,t+1,|θ ); θ ∈ �
}

; Pt+1,T ,�

)

.

(3.22)

By the assumed support property of ρt+1, and in view of Remark 3.3 applied to ρt+1,
we obtain, using (3.21) again,

1A(θ)(x)1B(θ)w(x, θ) = ρt+1
(

1A(θ)(x)1B(θ)Zt+1(x, θ),

1A(θ)(x)1B(θ)1suppt+2(μθ,x )Zt+2(x, ·, θ), . . . ,

1A(θ)(x)1B(θ)1suppT (μθ,x )ZT (x, ·T−t−1, θ);μθ,x
)

,

for every x ∈ X and θ ∈ �. From here and (3.22), combined with the normalization
property of ρt+1, and the fact that 1A(θ)(x)1B(θ)1supps (μθ,x ) ≤ 1supps (Pt+1,T ), s =
t, . . . , T , we obtain the support property of ρt .

Next we prove the parameter consistency. Assume that (3.7) is satisfied for a fixed
θ̄ ∈ �, and denote by P̄t+1,T = δθ̄ � Pt+1,T |� and Q̄t+1,T = δθ̄ � Qt+1,T |�. We
note that7

P̄t+1,t+1|θ = Pt+1,t+1|θ̄ · 1θ̄ (θ), P̄t+1,T ,� = δθ̄ , P̄t+1,T |θ (·‖x)
= Pt+1,T |θ̄ (·‖x)1θ̄ (θ).

7 We use the convention that 0
0 = 0 when considering P̄t+1,t+1|θ and P̄ x

t+1,T |θ (·‖x).
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Using this, and in view of (3.19), we can write (3.7) as follows (with measures
P̄t+1,T and Q̄t+1,T in place of Pt+1,T and Qt+1,T ):

ρ̂t

({

Zt (θ) + σt
(

ρt+1
(

Zt+1(�, θ), . . . , ZT (�, ·T−t−1, θ);
δθ̄ (·)Pt+1,T |θ̄ ( · ‖�)1θ̄ (θ); Pt+1,t+1|θ̄1θ̄ (θ)

)

, θ ∈ ̂�
}

; δθ̄

)

≤ ρ̂t

({

Wt (θ) + σt
(

ρt+1
(

Wt+1(�, θ), . . . ,WT (�, ·T−t−1, θ);
δθ̄ (·)Qt+1,T |θ̄ ( · ‖�)1θ̄ (θ); Qt+1,t+1|θ̄1θ̄ (θ)

)

, θ ∈ ̂�
}

; δθ̄

)

.

By the support property of ρ̂t and σt , and by the normalization and monotonicity of
ρ̂t , we obtain that

Zt (θ̄) + σt
(

ρt+1
(

Zt+1(�, θ̄ ), . . . , ZT (�, ·T−t−1, θ̄ ); δθ̄ (·)Pt+1,T |θ̄ ( · ‖�); Pt+1,t+1|θ̄
)

≤ Wt (θ̄) + σt
(

ρt+1
(

Wt+1(�, θ̄ ), . . . ,WT (�, ·T−t−1, θ̄ ); δθ̄ (·)Qt+1,T |θ̄ ( · ‖�); Qt+1,t+1|θ̄
)

,

for any θ̄ ∈ �. From here, applying ρ̂t to both sides, since we assumed that
Pt+1,T ,̂� = Qt+1,T ,̂�, employingmonotonicity of ρ̂t , we obtain (3.8), and the param-
eter consistency of ρt is proved.

Finally, let us verify the time consistency at time t . If the inequalities (3.15) are
satisfied, then it follows from the monotonicity of σt with respect to its first argument
that for all θ ∈ ̂�

G1(θ) := σt
(

ρt+1
(

Zt+1(�, θ), . . . , ZT (�, ·T−t−1, θ); δθ � Pt+1,T |�(·‖�)
); Pt+1,t+1|θ

)

≤ σt
(

ρt+1
(

Wt+1(�, θ), . . . ,WT (�, ·T−t−1, θ); δθ � Qt+1,T |�(·‖�)
); Pt+1,t+1|θ

) =: G2(θ).

Then, from the monotonicity of ρ̂t we get, for any function ft ∈ Zt,t ,

ρ̂t ( ft + G1; δθ ) ≤ ρ̂t ( ft + G2; δθ ), θ ∈ �.

From here, using the support property of ρ̂t , σt and ρt+1, along (3.19), we obtain
(3.16), and thus time consistency at t is verified.

By induction, all properties hold true for t = 1, . . . , T . �	
Remark 3.15 Note that even though we have proved the existence of the conditional
risk mappings ρ̂t , the specific form of these mappings depends on the given dynamic
risk filter.

Example 3.16 Weconsider a very special conditional riskfilter, given as the expectation
of an additive functional under the measure Pt+1,T . Specifically, we let

ρt (Zt,t , . . . , Zt,T ; Pt+1,T ) =
∫

X T−t×̂�

T
∑

k=t

Zt,k(xt+1, . . . , xk , θ)Pt+1,T (dxt+1, · · · , dxT , dθ)

= EPt+1,T

T
∑

k=t

Zt,k .
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Clearly, this ρt is normalized, monotonic, translation invariant, and has the support
property (cf. Definition 3.2).

Next, note that for this ρt the inequality (3.7) becomes (cf. (3.4))

∫

X T−t

T
∑

k=t

Zt,k(xt+1:k, θ)Pt+1,T |θ (dxt+1, · · · , dxT )

≤
∫

X T−t

T
∑

k=t

Zt,k(xt+1:k, θ)Qt+1,T |θ (dxt+1, · · · , dxT ),

for any θ ∈ �. Assuming that Pt+1,T ,� = Qt+1,T ,�, multiplying the last inequality
by Pt+1,T ,�(θ), and summing up with respect to θ ∈ �, the inequality (3.8) follows,
and hence the parameter consistency is true.

The time consistency follows by similar arguments. Indeed, (3.15) becomes (cf.
(3.13))

∫

X T−t−1

T
∑

k=t+1

Zt,k(xt+1, xt+2:k, θ) ˜Pt+1,T |θ (dxt+2, · · · , dxT ‖xt+1)

≤
∫

X T−t−1

T
∑

k=t+1

Zt,k(xt+1, xt+2:k, θ) ˜Qt+1,T |θ (dxt+2, · · · , dxT ‖xt+1),

for any xt+1 ∈ X and θ ∈ �. Assuming that Pt+1,t+1|� = Qt+1,t+1|�, multiplying
both parts by Pt+1,t+1|θ (xt+1), and noting that (cf. (3.13))

˜Pt+1,T |θ (·‖xt+1)Pt+1,t+1|θ (xt+1) = Pt+1,T |θ (xt+1, ·),

for any function ft ∈ Zt,t we have (cf. (3.13))

ft (θ) +
∫

X T−t−1

T
∑

k=t+1

Zt,k(xt+1, xt+2:k, θ) Pt+1,T |θ,({xt+1}, dxt+2, · · · , dxT )

≤ ft (θ) +
∫

X T−t−1

T
∑

k=t+1

Zt,k(xt+1, xt+2:k, θ) Qt+1,T |θ ({xt+1}, dxt+2, · · · , dxT ).

After summing up with respect to xt+1 we obtain (3.16), and thus the time consistency
is proved.

We complete this example by observing that in the this case we have that
ρ̂t ( f , P ′) = EP ′( f ), for f ∈ Zt,t and P ′ ∈ P(�), and that σt (v; P ′′) = EP ′′(v), for
v ∈ ZX

1 and P ′′ ∈ P(X ). �
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Example 3.17 Let us cast Example 3.16 in the setup of Sect. 2. For this, we fix a history
ht = (x1, . . . , xt ) ∈ Ht and π ∈ �, and we take

Zt,t (θ) := Zπ,ht
θ,t,t = ct (xt , πt (ht ), θ),

Zt,s(xt+1, . . . , xs, θ) := Zπ,ht ,xt+1,...,xs
θ,t,s

= cs(xs, π
t,ht
s (xt+1, . . . , xs), θ), s = t + 1, . . . , T ,

and

Pt+1,T = Pπ t,ht

t+1,T .

The conditional risk filter of Example 3.16 becomes the conditional expectation (cf.
Lemma 2.3)

ρt

(

ct (xt , πt (ht ), ·), ct+1(·, πt+1(ht , ·), ·), · · · , cT (·, πT (ht , ·, . . . , ·), ·), Pπ t,ht

t+1,T

)

= E
π

[

ct (xt , πt (ht ),�) +
T

∑

s=t+1

cs(̂Xs, π
t,ht
s (̂Xt+1, . . . , ̂Xs),�) | ̂Ht = ht

]

,

(3.23)

for t = 1, . . . , T , where we use the standard convention that an empty sum is zero
(i.e.

∑T
s=T+1 · · · = 0 in our case).

In view of (2.7) we also have

ρt

(

ct (xt , πt (ht ), ·), ct+1(·, πt+1(ht , ·), ·), · · · , cT (·, πT (ht , ·, . . . , ·), ·), Pπ t,ht

t+1,T

)

= ρ̂t

({

ct (xt , πt (ht ), θ) + σt

(

ρt+1

(

ct+1(�, πt+1(ht , �), ·), ct+2(·, πt+2(ht , �, ·), ·),
· · · , cT (·, πT (ht ,�, ·, . . . , ·), ·); δθ � Pπ t,ht

t+1,T |�( · ‖�)
)

; Pπ t,ht

t+1,t+1|θ
)

, θ ∈ ̂�
}

; ξ
π,ht
t

)

= ρ̂t

({

ct (xt , πt (ht ), θ) + σt

(

ρt+1

(

ct+1(�, πt+1(ht , �), ·), ct+2(·, πt+2(ht , �, ·), ·),
· · · , cT (·, πT (ht ,�, ·, . . . , ·), ·); Pπ t,ht

θ,t+1,T ({�} × ·)δθ (·)
)

; Pπ t,ht

θ,t+1

)

, θ ∈ ̂�
}

; ξ
π,ht
t

)

,

(3.24)

where in the last equality we used (3.5) and (3.14), where

ρ̂t

(
{

f (θ), θ ∈ ̂�
}; ξ

π,ht
t

)

= ρ̂t
(

f ; ξ
π,ht
t

) =
∫

̂�

f (θ) ξ
π,ht
t (dθ) = E

ξ
π,ht
t

( f ),

(3.25)

and where, for a function v on X , we have (cf. (3.5), (3.18), and (3.6))

σt

(

v, Pπ t,ht

θ,t+1

)

=
∫

X
v(x)Pπ t,ht

θ,t+1d(x) = E
Pπ t,ht

θ,t+1
(v). (3.26)
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Example 3.18 In the previous example we proceeded from ρ to σ (via ρ̂). Here, we
will do the opposite.

In clinical trials, the potency of a drug is characterized by an unknown parameter
θ . The purpose of the trials is to estimate θ and to determine the optimal dose. Let
us assume for simplicity that θ is the optimal dose. If a dose u1 is administered to a
patient, a response X2 is observed (the subscript 2 indicates that X2 is not knownwhen
u1 is determined). X2 is a Bernoulli random variable, with X2 = 1 representing toxic
response, and X2 = 0 nontoxic. The probability of toxic response is a function of θ

and u1, that is, P[X2 = 1] = �(θ, u1). The “cost” is c(θ, u1); it depends on both the
applied and best doses. The cost is not observed; we only know whether the patient
was toxic or not. In the second stage, the dose u2 is administered to the next patient,
the patient’s response X3 observed, and cost c(θ, u2) incurred. The process continues
for T stages, with uT being the final dose recommendation, whose cost is equal to
c(θ, uT ). For example, the cost may have the form c(θ, u) = |u − θ | to penalize for
the over- and under-dosage. It is never observed.

The problem can be cast to our setting. The state space X is {0, 1}, while the
unknown parameter space ̂� is an interval of the real line or a finite subset of the real
line. Given the set-up adopted in this paper, we assume that ̂� is a finite subset of the
real line. The transition kernel does not depend on X at all; the distribution of the next
Xt+1 depends on θ and u:

Kθ (0|x, u) = 1 − �(θ, u), Kθ (1|x, u) = �(θ, u).

Thus, we have

Pπ t,ht

θ,t+1(y) = Kθ (y|xt , πt (ht ))

= 1{y=0}
(

1 − �(θ, πt (ht ))
) + 1{y=1}�(θ, πt (ht )), y ∈ {0, 1}.

There is considerable freedom to choose the form of σt in a way consistent with our
set-up. For example, one can choose σt by generalizing the entropic risk measure to
allow for dependence on the probability measure:

σt (ν; P) = 1

κ
ln

∫

X
eκν(y)P(dy),

for a function ν on X , P ∈ P(X ), and a constant κ > 0. Consequently, for t =
1, . . . , T − 1, using (2.5) and (2.10) we obtain

σt (w(·, θ); Pπ t,ht

θ,t+1) = 1

κ
ln

∫

X
eκw(y,θ)Pπ t,ht

θ,t+1(dy)

= 1

κ
ln

(

(

1 − �(θ, πt (ht ))
)

eκw(0,θ) + �(θ, πt (ht ))e
κw(1,θ)

)

,

with σT = 0.
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Now, for a function f on ̂� and a measure ξ ∈ P(̂�), let

ρ̂t

(
{

f (θ), θ ∈ ̂�
}; ξ

)

= ρ̂t ( f ; ξ) = 1

κ
ln

∫

̂�

eκ f (θ)ξ(dθ), t ∈ T .

Given the above, we obtain for t = T

ρ̂T

(
{

f (θ), θ ∈ ̂�
}; ξ

π,hT
T

)

= 1

κ
ln

∫

̂�

eκ f (θ)ξ
π,hT
T (dθ), (3.27)

and for t = 1, . . . , T − 1,

ρ̂t

(
{

f (θ) + σt (w(·, θ); Pπ t,ht

θ,t+1), θ ∈ ̂�
}; ξ

π,ht
t

)

= 1

κ
ln

∫

̂�

∫

X
eκ( f (θ)+w(y,θ))Pπ t,ht

θ,t+1(dy)ξ
π,ht
t (dθ)

= 1

κ
lnE

π [eκ( f (�)+w(Xt+1,�))| ̂Ht = ht ],

where the last equality follows from Lemma 2.5.
We will now derive a generic formula for ρt , resulting from (3.19) and σt and ρ̂t

as above, in case of the generic cost functions, as in (2.16) and (2.17). Let us fix an
admissible strategy π . For t = T we have

ρT (cT (xT , πT (hT ), ·), PπT ,hT
T+1,T ) = ρ̂T ({cT (xT , πT (hT ), θ), θ ∈ ̂�}; PπT ,hT

T+1,T ,�)

= ρ̂T (cT (xT , πT (hT ), ·); PπT ,hT
T+1,T ,�) = ρ̂T (cT (xT , πT (hT ), ·); ξ

π,hT
T )

= 1

κ
ln

∫

̂�

eκcT (xT ,πT (hT ),θ)ξ
π,hT
T (dθ) = 1

κ
lnE

π (eκcT (xT ,πT (hT ),�)| ̂HT = hT ).

Now, note that

ρT (cT (xT , πT (hT ), ·), δθ ) = cT (xT , πT (hT ), θ),

and thus

σT−1
(

ρT
(

cT (�, πT (hT−1,�), θ); δθ ); PπT−1,hT−1

T ,T |θ
)

= σT−1
(

cT (�, πT (hT−1,�), θ); PπT−1,hT−1

T ,T |θ
)

= 1

κ
ln

∫

X
eκcT (xT ,πT (hT−1,xT ),θ)PπT−1,hT−1

θ,T (dxT ).
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So, for t = T − 1, we have

ρT−1(cT−1(xT−1, πT−1(hT−1), ·), cT (·, πT (hT−1, ·), ·), PπT−1,hT−1

T ,T )

= ρ̂T−1

({

cT−1(xT−1, πT−1(hT−1), θ) + σT−1
(

ρT
(

cT (�, πT (hT−1,�), ·); δθ ); PπT−1,hT−1

T ,T |θ
))

,

θ ∈ ̂�
}

; PπT−1,hT−1

T ,T ,�

)

= ρ̂T−1

({

cT−1(xT−1, πT−1(hT−1), θ) + σT−1
(

ρT
(

cT (�, πT (hT−1,�), ·); δθ );
PπT−1,hT−1

T ,T |θ
))

, θ ∈ ̂�
}

; ξ
π,hT−1
T−1

)

= 1

κ
ln

∫

̂�

∫

X
eκ(cT−1(xT−1,πT−1(hT−1),θ)+cT (xT ,πT (hT−1,xT ),θ))PπT−1,hT−1

θ,T (dxT )ξ
π,hT−1
T−1 (dθ)

= 1

κ
lnE

π (eκ(cT−1(xT−1,πT−1(hT−1),�)+cT (XT ,πT (hT−1,XT ),�))| ̂HT−1 = hT−1),

where we used (2.5) and (2.10) for the second to the last equality, and where the last
equality follows from Lemma 2.5.

Proceeding in the analogous way for t = T − 2, . . . , 1 we finally obtain

ρ1,T (c1(x1, π1(h1),·), . . . , cT (·, πT (h1, ·, . . . , ·), ·), Pπ1,h1
2,T )

= 1

κ
lnE

π
(

eκ

∑T
k=1 ck (Xk ,πk (hk )),�)

∣

∣ ̂H1 = h1
)

, (3.28)

which gives us the risk-sensitive criterion with the entropic utility (cf. Bäuerle and
Rieder (Feb 2014); Davis and Lleo (2014)).

Example 3.19 A prominent example that can be cast in our framework is the classical
optimal investment and consumption problem subject to model uncertainty. Namely,
consider an investor with initial capital x̄1, who can invest in d assets, with X̄t denoting
the portfolio value at time t , which of course is observed by the investor. The investor
rebalances the portfolio at each time t , following a self-financing trading strategy (pol-
icy) π̄ , that may satisfy additional trading constrains, such as short selling constraints,
turnover constraints, etc. The investor is also allowed to consume at each time t part of
the wealth, say zt , that does not exceed X̄t . We postulate that the investor maximizes
the expected utility of consumptions and terminal wealth using the utility functions
V β andU γ , respectively, where β, γ ∈ R stand for risk aversion parameters. We refer
the reader to [Bäuerle and Rieder (2017),Section 4] for detailed formulation of this
problem in the MDP framework.

Additionally, we assume that the investor faces the Knightian uncertainty about the
model of the underlying assets, described in terms of a (finite) parametric set� ⊂ R

m ;
see (Bielecki et al., 2019) for an overview of MDPs under Knightian uncertainty. Let
{Pλ}λ∈� be a parameterized family of probabilitymeasures, and assume that thewealth
process X̄t , follows the dynamics

Xt+1 = G(Xt , π̄t , Zt+1), t = 1, . . . , T − 1,
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where Zt+1 is the randomdisturbance (e.g. the log-returns of the underlying investment
instruments), and G a deterministic function.

Moreover, we suppose that the investor is also uncertain about her risk aversion
parameters (β, γ ) ∈ � ⊂ R

2.We emphasize that this additional feature of an unknown
risk aversion parameter is practically important. Generally speaking, it is difficult to
determine the investor’s risk aversion parameter, which is well documented in the
behavioral finance literature. This becomes especially relevant in the context of fast-
growing robo-advising industry that typically dealswith unsophisticated investors, and
which establishes investor’s risk preferenceswithout human intervention. At each time
t , the investor reports through process Yt her subjective degree of happiness about the
performance of her investment. For example, one can take Yt to be a Bernoulli random
variable with Yt = 1 corresponding to happy and Yt = 0 meaning unhappy about her
investment, and then we follow a similar setup to the clinical trials Example 3.6 and
incorporate the uncertainty about (β, γ ) into the original MDP formulation.

Namely, we consider the observed state process Xt = (X̄t ,Yt ), and we take θ =
(β, γ, λ) ∈ � = � ×� representing the model uncertainty in this model. We assume
that choosing the ‘optimal’ risk aversion parameters π̌t = (v1t , v

2
t ) is part of the policy,

and that the robo-advisor/investor is making this choice at each time step. Overall, the
policy at time t becomes πt = (π̄t , π̌t ). With this at hand we define the transition
kernels

Kθ (x̄t+1, yt+1 | xt , yt , πt (ht )) = Pθ (G(x̄t , π̄t (ht ), Zt+1) = x̄t+1)�(β, γ, π̌t (ht ); yt+1),

for some function �.
Consequently, we define the cost functionals

ct = V β(zt (x̄t , π̄t )) + F(yt , π̌t , β, γ ), t = 1, . . . , T − 1,

cT = V β(zT (x̄T , π̄T )) +U γ (x̄T ),

where F is a penalty for ‘deviating’ from the true risk-aversion parameters. Using
the expectation as the risk functional (cf. Example 3.16), we obtain a generalization
of the classical expected utility criteria in the context of optimal investment.

4 Recursive risk filters

Let us fix t ∈ {1, . . . , T − 1}. Since t is fixed, we will again simply write Zs instead
of Zt,s , for s ∈ Tt . We introduce two families of functions:

vπ
t (ht ) = ρt (Zt , Zt+1, . . . , ZT ; Pπ t,ht

t+1,T )

ṽ
π,θ
t+1((ht , xt+1)) := ρt+1

(

Zt+1(xt+1, ·1), . . . , ZT (xt+1, ·T−t−1, ·1); δθ � Pπ t,ht

t+1,T |�( · ‖xt+1)
)

= ρt+1
(

Zt+1(xt+1, ·1), . . . , ZT (xt+1, ·T−t−1, ·1); Pπ t,ht

θ,t+1,T ({xt+1} × ·)δθ (·)
)

,

(4.1)

where for the last equality we used (3.14).
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The quantity vπ
t (ht ) evaluates the policy π at the time t and with the history ht in

the original problem.
Recall that (cf. (3.5)) Pπ t,ht

t+1,T ,� = ξ
π,ht
t . Thus, the key equation (3.19) can bewritten

more compactly as follows:

vπ
t (ht ) = ρ̂t

({

Zt (θ) + σt
(

ρt+1
(

Zt+1(�, ·1), . . . , ZT (�, ·T−t−1, ·1);
δθ � Pπ t,ht

t+1,T |�( · ‖�)
); Pπ t,ht

t+1,t+1|θ
)

, θ ∈ ̂�
}

; Pπ t,ht

t+1,T ,�

)

= ρ̂t

({

Zt (θ) + σt
(

Zt+1(�, ·1), . . . , ZT (�, ·T−t−1, ·1);
δθ � Pπ t,ht

t+1,T |�( · ‖�)
); Pπ t,ht

t+1,t+1|θ
)

, θ ∈ ̂�
}

; ξ
π,ht
t

)

= ρ̂t

({

Zt (θ) + σt
(

ṽ
π,θ
t+1((ht ,�)); Pπ t,ht

t+1,t+1|θ
)

, θ ∈ ̂�
}

; ξ
π,ht
t

)

,

= ρ̂t

({

Zt (θ) + σt
(

ṽ
π,θ
t+1((ht ,�)); Pπ t,ht

θ,t+1

)

, θ ∈ ̂�
}

; ξ
π,ht
t

)

, (4.2)

with σt given in (3.18), and where we used (2.13) in the last equality.
Note that in equation (4.2) we have ṽ

π,θ
t+1 on the right hand side. Thus, this equation

does not provide a convenient recursion for the quantities vπ
t . By convenient we mean

recursion in terms of vπ
t and vπ

t+1, rather than in terms of vπ
t and ṽπ

t+1. Such convenient
recursionwill allow us to successfully tackle the risk-averse control problem of Sect. 5.
This leads us to the following concept.

Definition 4.1 A dynamic risk filter ρ is called recursive if it satisfies the properties
stated in Theorem 3.14 and

vπ
t (ht ) = ρ̂t

({

Zt,t (θ) + σt
(

vπ
t+1((ht ,�)); Pπ t,ht

θ,t+1

)

, θ ∈ ̂�
}

; ξ
π,ht
t

)

,

for t = T − 1, . . . , 1, with

vπ
T (hT ) = ρ̂t

({

ZT ,T (θ), θ ∈ ̂�
}

; ξ
π,hT
T

)

.

Remark 4.2 In what follows, we will give examples of recursive dynamic risk-filters.
In problems where the corresponding dynamic risk filter ρ is not recursive, one will
need to tackle the risk averse control problem of Sect. 5 by exploiting a recursion of
the pair of functions (vπ

t , ṽ
π,θ
t ), with use of equation (4.2) in particular. This will be

done in a follow-up work.

4.1 Examples of recursive dynamic risk filters

The common feature of the dynamic risk filters of Example 3.17 and Example 3.18 is
that in both cases we have

ρ̂t ( f ; ξ) = U−1
(∫

̂�

U ( f (θ)) ξ(dθ)

)

, (4.3)
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for a function f on ̂� and ξ ∈ P(̂�), and

σt (ν; P) = U−1
(∫

X
U (ν(y)) P(dy)

)

, (4.4)

for a function ν on X and P ∈ P(X ), where U is an invertible utility function. In
Example 3.17: U (a) = a, and in Example 3.18: U (a) = eκa . Note that in both cases
it holds that

ρ̂t ( f (�) + σt (w(·,�); P); ξ) = U−1
(∫

̂�

∫

X
U ( f (θ) + w(θ, y)) P(dy)ξ(dθ)

)

.

(4.5)

Also note, that in both examples the function U is such that ρ̂t and σt satisfy
properties stated in Theorem 3.14.

Given a probability space (˜�, ˜F , ˜P), a utility function U : R → R, and a real-
valued random variable Y , the quantity CE satisfying

U (CE) = E
˜P [U (Y )],

is called the certainty equivalent for Y relative to U and ˜P . If U is invertible, then

CE = U−1 (EP [U (Y )]) .

Therefore, we dub dynamic risk filters ρ = {

ρt
}

t=1,...,T given as in (3.19) and (3.20),
with ρ̂t and σt satisfying (4.3), (4.4) and (4.5), the certainty equivalent dynamic risk
filters.

We will show here that if ρ = {

ρt
}

t=1,...,T is a certainty equivalent dynamic risk
filter, and if the function U is such that ρ̂t and σt satisfy the properties stated in
Theorem 3.14, then ρ is a recursive dynamic risk filter. We will do this for the only
case of interest to us, that is for case where, for ht = (x1, . . . , xt ) ∈ Ht and π ∈ �,

Zt,t (θ) := Zπ,ht
θ,t,t = ct (xt , πt (ht ), θ),

Zt,s(xt+1, . . . , xs , θ) = Zπ,ht ,xt+1,...,xs
θ,t,s = cs(xs , π

t,ht
s (xt+1, . . . , xs), θ), s = t + 1, . . . , T .

Thus, we get

vπ
t (ht ) = ρt

(

ct (xt , πt (ht ), ·), ct+1(·, πt+1(ht , ·), ·),
ct+2(·, πt+2(ht , ·, ·), ·), · · · , cT (·, πT (ht , ·, . . . , ·), ·), Pπ t,ht

t+1,T

)

= U−1

(

E
π

[

U

(

ct (xt , πt (ht ),�) +
T

∑

s=t+1

cs(̂Xs , πs(̂Xt+1, . . . , ̂Xs),�)

)
∣

∣

∣

∣

̂Ht = ht

])

,

(4.6)
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for t = 1, . . . , T , where again we use the standard convention that an empty sum is
zero (i.e.

∑T
s=T+1 · · · = 0 in our case). Note that, in particular,

vπ
T (hT ) = U−1 (

E
π

[

U (cT (xT , πT (hT ),�)) | ̂HT = hT
])

= U−1
(∫

̂�

U (cT (xT , πT (hT ), θ))ξ
π,hT
T (dθ)

)

= ρ̂T (cT (xT , πT (hT ), ·); ξ
π,hT
T ). (4.7)

Now, using (4.3)–(4.5), (4.6) and Lemma 2.5, combined with the tower property of
the conditional expectations, we obtain

vπ
t ( ̂Ht ) = U−1

(

E
π

[

U

(

ct (̂Xt , πt ( ̂Ht ),�)

+U−1

(

E
π

[

U

( T
∑

s=t+1

cs(̂Xs, πs(̂Xt+1, . . . , ̂Xs),�)

)∣

∣

∣

∣

̂Ht+1

])
)∣

∣

∣

∣

̂Ht

])

,

= U−1 (

E
π [U (ct (̂Xt , πt ( ̂Ht ),�) + vπ

t+1(
̂Ht+1)) | ̂Ht ]

)

,

and so, using (4.5) and Lemma 2.5 again, we obtain

vπ
t (ht ) = U−1 (

E
π [U (

ct (xt , πt (ht ), �) + vπ
t+1(ht , ̂Xt+1)

) | ̂Ht = ht ]
)

= U−1
(∫

�

∫

X
U

(

ct (xt , πt (ht ), θ) + vπ
t+1(ht , xt+1)

)

Pπ t,ht

θ,t+1(dxt+1) ξπ t,ht

t (dθ)

)

= ρ̂t

({

ct (xt , πt (ht ), θ) + σt
(

vπ
t+1((ht , ·)); Pπ t,ht

θ,t+1

)

, θ ∈ ̂�
}

; ξ
π,ht
t

)

, (4.8)

for t = T − 1, . . . , 1. In view of (4.8) and (4.7) the dynamic risk filter ρ is recursive. In
particular, the dynamic risk filters of Example 3.17 and Example 3.18 are recursive.

5 Risk-averse control problem

Let vπ
1 be as in (4.1). The control problem is to find

min
π∈�

vπ
1 (h1), (5.1)

as well as the optimal policy, say π∗, for which vπ∗
1 (h1) = minπ∈� vπ

1 (h1). Note that given
our set-up, an optimal policy does exist because the set � is finite. However, we are interested
in seeking an optimal policy in the class of quasi-Markov policies.

Definition 5.1 A policy π ∈ Π is quasi-Markov (QMP) if

πt (ht ) = φt (xt , ξ
π,ht
t )

for some function φt : X × P(̂�) → U , t = 1, . . . , T .

Please see Remark 5.3 with regard to Definition 5.1.
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5.1 The Bayes Kernel

At each time t and for every policy π and history ht , the measure Pπ t,ht

t+1 (cf. (2.15)) describes
the conditional joint distribution of the pair (̂Xt+1, �) in X × ̂�.

This measure admits two natural disintegrations. One of them is already obtained from
(2.7), repeated here:

Pπ t,ht

t+1 (B × D) = Pπ t,ht

t+1,T (B × X T−t−1 × D) =
∫

D
Pπ t,ht

θ,t+1,T (B × X T−t−1) ξ
π,ht
t (dθ)

= Pπ [̂Xt+1 ∈ B,� ∈ D | ̂Ht = ht ],

where ξ
π,ht
t ∈ P(�), is given as (cf. (2.8) and (2.11)) ξ

π,ht
t (D) = Pπ [� ∈ D | ̂Ht = ht ] =

Pπ t,ht

t+1,�(D). One can also disintegrate Pπ t,ht

t+1 into its marginal on X , say8 Pπ t,ht

t+1,X , and the

corresponding stochastic kernel, say Pπ t,ht

t+1|X from X to ̂�. That is, for any B × D ⊂ X × �,

Pπ t,ht

t+1 (B × D) = (Pπ t,ht

t+1,X � Pπ t,ht

t+1|X )(B × D),

=
∫

B
Pπ t,ht

t+1|x (D)Pπ t,ht

t+1,X (dx)

= Pπ [̂Xt+1 ∈ B,� ∈ D | ̂Ht = ht ], (5.2)

where we used the simplified notation Pπ t,ht

t+1|x (D) for Pπ t,ht

t+1|X (x, D).

The kernel Pπ t,ht

t+1|x is the Bayes kernel which describes the dynamics of the belief states,
that is the posterior distributions of �, as documented in the next result.

Proposition 5.2 For t = 1, . . . , T − 1, ht ∈ Ht , xt+1 ∈ X and D ⊂ ̂�, we have

ξ
π,(ht ,xt+1)

t+1 (D) = Pπ t,ht

t+1 | xt+1
(D)

=
∫

D Kθ (xt+1|xt , πt (ht )) ξ
π,ht
t (dθ)

Pπ t,ht
t+1 [{xt+1} × ̂�] , (5.3)

where

ξ
π,x1
1 (θ) = ξ1(θ). (5.4)

Proof First, note that

Pπ t,ht

t+1,X (B) = Pπ [̂Xt+1 ∈ B | ̂Ht = ht ]. (5.5)

Take B = {xt+1}. Then, using (5.2) and (5.5), we obtain

Pπ [̂Xt+1 = xt+1,� ∈ D | ̂Ht = ht ] = Pπ t,ht

t+1|xt+1
(D)Pπ [̂Xt+1 = xt+1 | ̂Ht = ht ],

8 For simplicity of notations, wewrite Pπ t,ht
t+1,X instead ofmore coherent notation Pπ t,ht

t+1,Xt+1
. Similar remark

applies to the kernel Pπ t,ht
t+1|X .
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and thus

Pπ t,ht

t+1|xt+1
(D) = Pπ [̂Xt+1 = xt+1,� ∈ D | ̂Ht = ht ]

Pπ [̂Xt+1 = xt+1 | ̂Ht = ht ]
= Pπ [� ∈ D | ̂Ht+1 = (ht , xt+1)] = ξ

π,(ht ,xt+1)

t+1 (D),

which proves the first equality in (5.3). The second one follows from the following chain of
equalities,

ξ
π,(ht ,xt+1)

t+1 (θ) = Pπ [� = θ | ̂Ht+1 = (ht , xt+1)]

= Pπ [� = θ | ̂Ht = ht ] P
π [̂Xt+1 = xt+1 | ̂� = θ, ̂Ht = ht ]
Pπ [̂Xt+1 = xt+1 | ̂Ht = ht ]

= ξ
π,ht
t (θ)

Kθ (xt+1|xt , πt (ht ))

Pπ t,ht
t+1 [{xt+1} × ̂�] ,

where in the last equalityweused (2.1) and (2.2) to deduce that Pπ [̂Xt+1 = xt+1 | ̂� = θ, ̂Ht =
ht ] = Kθ (xt+1|xt , πt (ht )), and we used (2.15) to deduce that Pπ [̂Xt+1 = xt+1 | ̂Ht = ht ] =
Pπ t,ht

t+1 [{xt+1} × ̂�]. �	

Remark 5.3 Note that (5.3) represents learning about the unknown parameter θ∗ in the sense
of updating the posterior distributions of �. Also, in view of (5.3) one might surmise that, by
extending the canonical space by products ofP(̂�), the process (Xt , ξ

φ,Ht
t ) would be Markov

for a Markov strategy, say ψt (Xt , ξ
ψ,Ht
t ), and therefore one might seek an optimal strategy

in the class of Markov strategies. This however is not as straightforward as it might appear.
One of the reasons being that even though (5.3) is a deterministic recursion, it is not exactly of
Markovian type. This is why we work here with quasi-Markov policies. The issue of Markov
strategies will be investigated in a follow-up paper.

5.2 The optimal control problem corresponding to Example 3.16

In this section we will study the optimal control problem corresponding to the Example 3.16
classical additive reward case, that will serve as the base for the general case. In what follows,
we denote by (x, ξ) an element of the set X × P(̂�).

Recall (4.6). Accordingly, we have for t = T

vπ
T (hT ) = ρT ,T

(

cT (xT , πT (hT ), ·), PπT ,hT
T+1,T

)

=
∫

̂�

cT (xT , πT (hT ), θ)) PπT ,hT
T+1,T (dθ)

=
∫

̂�

cT (xT , πT (hT ), θ) ξ
π,hT
T (dθ)

= E
π
(

cT (xT , πT (hT ),�) | ̂HT = hT
)

. (5.6)
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Thus, observing that ξ
π,hT
T , does not depend on πT , letting xT = x and ξ

π,hT
T = ξ , we

compute the candidate-optimal quasi-Markov control φT as

φT (x, ξ) = argmin
u∈U

∫

̂�

cT (x, u, θ) ξ(dθ). (5.7)

We define the Bellman function at time t = T :

VT (x, ξ) = min
u∈U

∫

̂�

cT (x, u, θ) ξ(dθ) =
∫

̂�

cT (x, φT (x, ξ), θ) ξ(dθ). (5.8)

Now, we proceed to time t = T − 1. Noting that ξπ,hT−1
T−1 , does not depend on πT−1, letting

xT−1 = x and ξ
π,hT−1
T−1 = ξ , we compute the candidate-optimal quasi-Markov control φT−1

as

φT−1(x, ξ) = argmin
u∈U

∫

̂�

(

cT−1(x, u, θ)

+
∫

X
VT (xT ,˜ξ

u,xT ,ξ
T )Kθ (dxT |x, u)

)

ξ(dθ), (5.9)

where (cf. (5.3))

˜ξ
u,xT ,ξ
T (θ) = ξ(θ)

Kθ (xT |x, u)
∫

̂� Kθ (xT |x, u) ξ(dθ)
. (5.10)

The corresponding Bellman function is

VT−1(x, ξ) = min
u∈U

∫

̂�

(

cT−1(x, u, θ) +
∫

X
VT (xT ,˜ξ

u,xT ,ξ
T )Kθ (dxT |x, u)

)

ξ(dθ)

=
∫

̂�

(

cT−1(x, φT−1(x, ξ), θ)

+
∫

X
VT (xT ,˜ξ

φT−1(x,ξ),xT ,ξ

T )Kθ (dxT |x, φT−1(x, ξ))
)

ξ(dθ).

Following this pattern, we arrive at the dynamic programming (DP) backward recursion:

Vt (x, ξ) = min
u∈U

∫

̂�

(

ct (x, u, θ) +
∫

X
Vt+1(xt+1,˜ξ

u,xt+1,ξ

t+1 )Kθ (dxt+1|x, u)
)

ξ(dθ), t ∈ T ,

(5.11)

where (cf. (5.3))

˜ξ
u,xt+1,ξ

t+1 (θ) = ξ(θ)
Kθ (xt+1|x, u)

∫

̂� Kθ (xt+1|x, u) ξ(dθ)
, (5.12)

and

VT+1 ≡ 0. (5.13)
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Accordingly, for t = 1, . . . , T we define the candidate-optimal quasi-Markov control φt as

φt (x, ξ) = argmin
u∈U

∫

̂�

(

ct (x, u, θ) +
∫

X
Vt+1(xt+1,˜ξ

u,xt+1,ξ

t+1 )Kθ (dxt+1|x, u)
)

ξ(dθ).

(5.14)

Recall that ξ1 is a given prior distribution for �. Also, recall that h1 = x1.
Next, define a policy π∗ as follows,

π∗
1 (h1) = φ1(x1, ξ1)

π∗
t (ht ) = φt (xt ,̂ξ

π∗,ht
t ), t = 2, . . . , T , (5.15)

where

̂ξ
π∗,h2
2 = ˜ξ

π∗
1 (h1),x2,ξ1

2 , ̂ξ
π∗,h3
3 = ˜ξ

π∗
2 (h2),x3,̂ξ

π∗,h2
2

3 , . . . (5.16)

The next result is the optimality verification theorem.

Theorem 5.4 We have,

min
π∈�

vπ
1 (h1) = vπ∗

1 (h1) = V1(x1, ξ1).

Proof Let π ∈ �. For t = T we have

vπ
T (hT ) ≥ VT (xT , ξ

π,hT
T ) =

∫

̂�

cT (xT , φT (xT , ξ
π,hT
T ), θ) ξ

π,hT
T (dθ).

For t = T − 1, using the above, the recursion in (4.8), and (5.3), we have

vπ
T−1(hT−1)

=
∫

̂�

(

cT−1(xT−1, πT−1(hT−1), θ) +
∫

X
vπ
T (hT )Kθ

(

dxT |xT−1, πT−1(hT−1)
)

)

ξ
π,hT−1
T−1 (dθ)

≥
∫

̂�

(

cT−1(xT−1, πT−1(hT−1), θ)

+
∫

X
VT (xT , ξ

π,hT
T )Kθ

(

dxT |xT−1, πT−1(hT−1)
)

)

ξ
π,hT−1
T−1 (dθ)

≥
∫

̂�

(

cT−1(xT−1, φT−1(xT−1, ξ
π,hT−1
T−1 ), θ)

+
∫

X
VT (xT ,˜ξ

φT−1(xT−1,ξ
π,hT−1
T−1 ),xT ,ξ

π,hT−1
T−1

T )Kθ

(

dxT |xT−1, φT−1(xT−1, ξ
π,hT−1
T−1 )

)

)

ξ
π,hT−1
T−1 (dθ)

= VT−1(xT−1, ξ
π,hT−1
T−1 ).
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Likewise, for t = 1, . . . , T − 2, we have

vπ
t (ht ) ≥ Vt (xt , ξ

π,ht
t ) =

∫

̂�

(

ct (xt , φt (xt , ξ
π,ht
t ), θ)

+
∫

X
Vt+1(xt+1, φt+1(xt+1,˜ξ

φt (xt ,ξ
π,ht
t ),xt+1,ξ

π,ht
t

t+1 ))Kθ

(

dxt+1|xt , φt (xt , ξ
π,ht
t )

)

)

ξ
π,ht
t (dθ).

Now, if π and ξ
π,ht
t , t ∈ T , above are replaced with π∗ and̂ξ

π∗,ht
t , t ∈ T , respectively, then

the inequalities above become equalities, proving that π∗ is an optimal strategy. �	

Recalling (3.25) and (3.26), we note that the key DP recursion (5.9) can be written as

Vt (x, ξ) = min
u∈U ρ̂t

({

ct (x, u, θ) + σt (Vt+1(·,˜ξu,·,ξ
t+1 ); Kθ (x, u)), θ ∈ ̂�

}

; ξ
)

,

subject to (5.12) and (5.13).
We remark that the solution to the optimal control problem associated with Example 3.19

is also given by Theorem 5.4. Detailed model specification and analysis of Example 3.19 is
beyond the scope of this work and will be addressed in future work.

5.3 The optimal control problem corresponding to Example 3.18

We will present the solution to the optimal control problem for the clinical trials example with
the risk-sensitive criterion. Namely, for t ∈ T , we consider

vπ
t (ht ) = ρt

(

ct (xt , πt (ht ), ·), ct+1(·, πt+1(ht , ·), ·),
ct+2(·, πt+2(ht , ·, ·), ·), · · · , cT (·, πT (ht , ·, . . . , ·), ·), Pπ t,ht

t+1,T

)

= 1

κ
lnE

π

(

exp

(

κ

(

ct (xt , πt (ht ), �) +
T

∑

k=t+1

ck(̂Xk , πk(ht , ̂Xt+1, . . . , ̂Xk), �)
)
)∣

∣

∣

∣

̂Ht = ht

)

.

(5.17)

For t = T we have

vπ
T (hT ) = 1

κ
ln

(

E
π
(

exp (κ cT (xT , πT (hT ),�))
∣

∣ ̂HT = hT
))

= 1

κ
ln

(∫

̂�

eκ cT (xT ,πT (hT ),θ)ξ
π,hT
T (dθ)

)

.

(5.18)

As above, we denote by (x, ξ) an element of the set X × P(̂�). Thus, observing that ξ
π,hT
T

does not depend on πT , and letting xT = x and ξT = ξ , we compute the candidate optimal
quasi-Markov control ϕT as

ϕT (x, ξ) = argmin
u∈U

∫

̂�

eκ cT (x,u,θ) ξ(dθ). (5.19)
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We define the Bellman function at time t = T as

VT (x, ξ) = min
u∈U

1

κ
ln

(∫

̂�

eκ cT (x,u,θ) ξ(dθ)

)

= 1

κ
ln

(∫

̂�

eκ cT (x,ϕT (x,ξ),θ) ξ(dθ)

)

. (5.20)

Now, we proceed to time t = T −1. Given xT−1 = x and ξT−1 = ξ we compute the candidate
optimal quasi-Markov control ϕT−1 as

ϕT−1(x, ξ) = argmin
u∈U

∫

̂�

∫

X
eκ cT−1(x,u,θ)VT (xT ,˜ξ

u,xT ,ξ
T )Kθ (dxT |x, u) ξ(dθ),

(5.21)

where˜ξ
u,xT ,ξ
T is given by (5.10). The corresponding Bellman function is

VT−1(x, ξ) = min
u∈U

1

κ
ln

(∫

̂�

∫

X
eκ cT−1(x,u,θ)VT (xT ,˜ξ

u,xT ,ξ
T ) Kθ (dxT |x, u) ξ(dθ)

)

= 1

κ
ln

(∫

̂�

∫

X
eκ cT−1(x,ϕT−1(x,ξ),θ)VT (xT ,˜ξ

ϕT−1(x,ξ),xT ,ξ

T ) Kθ (dxT |x, ϕT−1(x, ξ)) ξ(dθ)

)

.

(5.22)

Following this pattern, we arrive at the DP backward recursion:

Vt (x, ξ) = min
u∈U

1

κ
ln

(∫

̂�

∫

X
eκ ct (x,u,θ)Vt+1(xt+1,˜ξ

u,xt+1,ξ

t+1 ) Kθ (dxt+1|x, u) ξ(dθ)

)

, t ∈ T ,

(5.23)

whereas in the previous example˜ξ
u,xt+1,ξ

t+1 ({θ}) is given by (5.12), and VT+1 ≡ 1.
Accordingly, for t ∈ T , we define the candidate-optimal quasi-Markov control ϕt as

ϕt (x, ξ) = argmin
u

∫

̂�

∫

X
eκ ct (x,u,θ)Vt+1(xt+1,˜ξ

u,xt+1,ξ

t+1 ) Kθ (dxt+1|x, u) ξ(dθ),

(5.24)

with ξ1 being the given prior distribution for �, and h1 = x1.
The policy π∗ is defined by analogy to (5.15). The following verification theorem can

proved in a way analogous to the proof of Theorem 5.4, so we skip its proof.

Theorem 5.5 The following holds true

min
π∈�

vπ
1 (h1) = vπ∗

1 (h1) = V1(x1, ξ1).

We emphasize that the key DP recursion (5.23) may be written as

Vt (x, ξ) = min
u∈U ρ̂t

(
{

ct (x, u, θ) + σt
(

Vt+1(·,˜ξ u,·,ξ
t+1 ); Kθ (x, u)

)

, θ ∈ ̂�
}; ξ

)

,
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where for a function f on ̂�, ξ ∈ P(̂�), and a function h on X , we have

ρ̂t
({

f (θ), θ ∈ ̂�
}; ξ

) = 1

κ
ln

(∫

̂�

eκ f (θ)ξ(dθ)

)

,

and where

σt
(

h; Kθ (x, u)
) = 1

κ
ln

(∫

X
eκh(xt+1)Kθ (dxt+1|x, u)

)

.

5.4 Solution of the optimal control problem for general recursive risk filters

Let ρ be a recursive risk filter, and let

vπ
t (ht ) = ρt

(

ct (xt , πt (ht ), ·), ct+1(·, πt+1(ht , ·), ·), ct+2(·, πt+2(ht , ·, ·), ·), · · · · · · ,

cT (·, πT (ht , ·, . . . , ·), ·), Pπ t,ht

t+1,T

)

, t ∈ T . (5.25)

Consider the general problem (5.1) with vπ
t (ht ) as in (5.25).

Using reasoning analogous to the one employed in Sects. 5.2 and 5.3 one can prove the
following result, proof of which we omit here.

Theorem 5.6 There exist operators ρ̂t and σt , t ∈ T , and a function V ∗ such that for the
functions v∗

t defined recursively as

v∗
T+1(x) = V ∗(x), x ∈ X ,

v∗
t (x, ξ) = min

u∈U ρ̂t

({

ct (x, u, θ) + σt (v
∗
t+1(·,˜ξ u,·,ξ

t+1 ); Kθ (x, u)), θ ∈ ̂�
}

; ξ
)

,

t = T − 1, . . . , 1, x ∈ X , ξ ∈ P(̂�),

subject to

˜ξ
u,x ′,ξ
t+1 (θ) = ξ(θ)

Kθ (x ′|x, u)
∫

̂� Kθ (x ′|x, u) ξ(dθ)
, t ∈ T , x, x ′ ∈ X , ξ ∈ P(̂�),

we have that

min
π∈�

vπ
1 (h1) = v∗

1(x1, ξ1).

Moreover, the policy π∗ defined as in (5.15) and (5.16), with the φt ’s given as

φt (x, ξ) = argmin
u∈U

ρ̂t

({

ct (x, u, θ) + σt (v
∗
t+1(·,˜ξu,·,ξ

t+1 ); Kθ (x, u)), θ ∈ ̂�
}

; ξ
)

,

t = 1, . . . , T − 1, x ∈ X , ξ ∈ P(̂�),

is an optimal policy, that is

min
π∈�

vπ
1 (h1) = vπ∗

1 (h1). (5.26)
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The form of the operators ρ̂t and σt , t ∈ T , depends on the form of ρ, and it can be explicitly
written in terms of ρ.
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Dentcheva D, Ruszczyński A (2020) Risk forms: representation, disintegration, and application to partially

observable two-stage systems. Math Program 181(2):297–317
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