
Auto-differentiable Transfer Mapping Architecture

for Physics-infused Learning of Acoustic Field

Rayhaan Iqbal∗, Amir Behjat†, Revant Adlakha‡, Jesse Callanan§, Mostafa Nouh¶, Souma Chowdhury∥

Department of Mechanical & Aerospace Engineering

University at Buffalo (SUNY), Buffalo, NY, 14260-4400

Email: ∗rayhaani@buffalo.edu, †amirbehj@buffalo.edu, ‡revantad@buffalo.edu, §jessecal@buffalo.edu, ¶mnouh@buffalo.edu,
∥soumacho@buffalo.edu

AbstractÐOpportunistic Physics-mining Transfer Mapping
Architecture (OPTMA) is a hybrid architecture that combines
fast simplified physics models with neural networks in order
to provide significantly improved generalizability and explain-
ability compared to pure data-driven machine learning (ML)
models. However, training OPTMA remains computationally
inefficient due to its dependence on gradient-free solvers or
back-propagation with supervised learning over expensively pre-
generated labels. This paper presents two extensions of OPTMA
that are not only more efficient to train through standard
back-propagation but are readily deployable through the state-
of-the-art library, PyTorch. The first extension, OPTMA-Net,
presents novel manual reprogramming of the simplified physics
model, expressing it in Torch tensor compatible form, thus
naturally enabling PyTorch’s in-built Auto-Differentiation to be
used for training. Since manual reprogramming can be tedious
for some physics models, a second extension called OPTMA-
Dual is presented, where a highly accurate internal neural net is
trained apriori on the fast simplified physics model (which can
be generously sampled), and integrated with the transfer model.
Both new architectures are tested on analytical test problems
and the problem of predicting the acoustic field of an unmanned
aerial vehicle. The interference of the acoustic pressure waves
produced by multiple monopoles form the basis of the simplified
physics for this problem statement. An indoor noise monitoring
setup in motion capture environment provided the ground truth
for target data. Compared to sequential hybrid and pure ML
models, OPTMA-Net/Dual demonstrate several fold improvement
in performing extrapolation, while providing orders of magnitude
faster training times compared to the original OPTMA.

Impact StatementÐThe new physics-informed machine learn-
ing (PIML) architecture presented in this paper provides in-situ
transformation of input or estimation of latent parameters via
a neural network, allowing a fast interpretable physics model to
make accurate predictions. More specifically, this paper presents
two extensions of the original underlying PIML architecture
that significantly improves its training efficiency and scope of
applicability. The latter is enabled by making OPTMA deployable
as an end-to-end neural architecture within PyTorch. Classes of
applications where OPTMA is expected to be particularly benefi-
cial include problems where simplified (computationally efficient)
physics model(s) are available, and they involve tunable param-
eters (which are otherwise user-prescribed). Such applications
are abound in engineering problems, such as flow/aerodynamic
analysis, materials characterization, robot dynamics and so on.
Broadly speaking, the OPTMA architecture can thus be applied
to a wide range of prediction problems in engineering, with end-
uses being systems analysis, design and control.

Index TermsÐAcoustics, Auto-Differentiation, Extrapolation,
Physics-infused machine learning, unmanned aerial vehicle

I. INTRODUCTION

A. Data Driven Modeling of Complex Systems

Data driven machine learning (ML) models are utilized

regularly for predicting the behavior of complex systems in

different fields such as biological [1], engineering [2], [3],

robotics [4]±[6], and energy forecasting [7] systems. While

data driven models are seen to generate predictions of a

competitive nature [8], [9], they under-perform in generalizing

[10], [11] when trained with small or sparse datasets [12]

(which is often the case in engineering analyses, design and

controls problems), and usually fail at extrapolating [13].

Further, they exhibit sensitivity to noisy inputs [14] and

are difficult to interpret [15] due to their black-box nature.

For instances where a high fidelity (more complete) physics

model is computationally expensive to evaluate and /or data

collection by physical experiments is expensive and tedious,

lower fidelity simplified physics or ªpartial physicsº models

(e.g., kinematics vs. full-dynamics, or a vortex lattice model

vs. full CFD simulation) are also used as another alternative.

However, these partial physics models, although interpretable

and physics-conforming, are often inaccurate, fail to capture

critical phenomena underlying the system behavior, and cannot

be directly improved with available high-fidelity data. Hybrid

surrogate models, a principal class of Physics-Informed Ma-

chine Learning (PIML) architectures that mix computationally

efficient partial physics models with purely data-driven ML

models in some form have been reported as one of the

answers to these challenges [16]±[19]. This paper presents

important extensions of one such recent type of hybrid model,

resulting in the advancement of its training efficiency, testing

performance and adaptability. For performance demonstration,

we present one of the first known applications of hybrid

models to successfully generalize and extrapolate acoustic

fields generated by a quadcopter unmanned aerial vehicle

(UAV). The remainder of this section briefly reviews related

PIML work and outlines the research objectives of this paper.

B. Physics-Infused Machine Learning (PIML)

While hybrid ML architectures exist in various forms,

Javed [20] provides a basic classification of them, namely

as serial [21]±[24] and parallel [20], [25], [26] architectures.

The data-driven model is either set in sequence with the

partial physics model or used to tune the partial physics model

parameters in serial architectures, while parallel architectures

usually present additive or multiplicative ensembles of partial

physics and data-driven ML models; the latter typically be-

ing artificial neural networks (ANN) or Gaussian Processes

(GP) [27]. Several such hybrid PIML architectures have been

reported in the literature in the past few years [24], [28]±

[45], spanning over a wide range of applications such as in

modeling dynamic systems, cyber-physical systems, robotic

systems, flow systems and materials behavior, among others.

A more comprehensive review of reported work on hybrid

PIML models can be readily found in some of this above-

cited literature, as well as in the review article by Rai and

Sahu [19].

Two other well-known strategies constructing physics-

informed ML models for prediction are by introduction of

observational and inductive biases. Observational bias can

be readily introduced into an ML model by gathering and

utilizing data that encompass the implicit physics of the

problem [46]±[49]. The drawback of this approach is the

need for a fairly large amount of data to cover the entire

input domain of a learning task [50]. Hence application of

this strategy is challenging when training data comes from

expensive simulations or limited physical experimental mea-

surements or observations. Introducing inductive bias on the

other hand enables imposing inherent physical restrictions

on the prediction process [50]. Any prior information and

inductive biases connected with a specific predicting objective

are inherently incorporated within the network architecture

in this case [51]±[53]. However, implicitly encoding physical

laws in a neural network architecture [50] is often challenging,

especially under the constrained expressibility of an assumed

neural network structure and underlying activation functions.

Our PIML architectures are structurally closer to a se-

rial architecture, with implementations mostly using ANN

as the ML component. More specifically, we identify and

present critical solutions to limitations of a recent hybrid

PIML architecture that otherwise has already shown enhanced

generalizability performance over pure data-driven models,

with applications to dynamic, robotic, and flow systems [54],

[55]. This original hybrid architecture from our earlier work,

known as the ªOpportunistic Physics-mining Transfer Map-

ping Architectureº (OPTMA) [54], leverages partial physics

to process transformed inputs or estimated latent parameters

given by a transfer ANN or GP model acting on the original

input vector, and produce final output quantity of interest. The

goal is to match this output value as closely as possible to the

ground truth given by high-fidelity experimental or simulation

data. An illustration of the original OPTMA architecture is

shown in Fig. 1(I) (top left).

However, the integration of partial physics models that

are not readily differentiable limited the choice of training

approaches in the original OPTMA. This issue remains an

Achilles heel in similar other hybrid PIML architectures that

uses the constituent partial physics model in such a manner

where differentiating it is necessary to propagate the training

error and compute the updates to the constituent ML model pa-

rameters (e.g., ANN weights and biases) for back-propagation

to be viable. To go around this issue, the original OPTMA

was trained using a gradient-free Particle Swarm Optimizer

(PSO) [56] for dynamics problems, and using precomputed

intermediate labels directly at the output node of the con-

stituent transfer ML model for the flow problem. Both of these

training approaches are expensive compared to direct (one-

step) back-propagation based training. Moreover, this form of

the original architecture limits its deployment through state-

of-the-art open-source ML libraries, due to dependencies on

the form and language used for the partial physics implemen-

tation (which is application-dependent), thereby limiting its

adoptability by a wider community of end-users who could

potentially benefit from its generalization performance.

C. Research Objectives of this Paper

To solve the above-stated issues with the original OPTMA

architecture while preserving ± or potentially further enhanc-

ing its generalizability and even extrapolability performance

by virtue of improved training ± in this paper, we contribute

two new auto-differentiable variations of OPTMA that are

readily deployed using one of the most widely used state-

of-the-art open source ML library, aka PyTorch. The new

variations are: i) OPTMA-Net1; and ii) OPTMA-Dual.

OPTMA-Net presents the ability to represent the partial

physics program (when available as a set of algebraic equa-

tions) as tensorial expressions that can be directly incorporated

within PyTorch or similar Torch-tensor based ML libraries

[13]. Thus the partial physics becomes a direct part of the

end-to-end network, as shown in Fig. 1(II) (bottom left).

This allows standard back-propagation to be used for training

the OPTMA model through the in-built auto-differentiation

capabilities of the concerned ML library, here PyTorch. The

caveat here is the need for re-programming the partial physics

model in the specific tensorial form expressed in Python

language, which could be tedious.

To alleviate the above-described need in OPTMA-Net, we

present OPTMA-Dual that completely substitutes the partial

physics model with an internal neural network, as shown in

Fig. 1(III) (right). It separately trains a PyTorch ANN model

on the partial physics, where the latter could occur in any

programmatic or even closed-source form. The premise here

is that, as the partial physics model is inexpensive, it can

be generously sampled to train a highly accurate ANN-based

surrogate of the partial physics. Once trained, this internal

network acts as the second network that now processes the

output (e.g., transformed inputs) given by the transfer network

in OPTMA, resulting in a unified end-to-end composite neural

structure. Note that, since the trained model resulting from

OPTMA-Dual no more contains the partial physics model, it

does lead to a slight reduction in explainability compared to

1The prior version of this OPTMA-Net was presented and published in
the proceedings of the AIAA Scitech 2022 conference [13]. This journal
manuscript both summarizes that work and further extends it with another
new architecture and comprehensive results analyses and comparisons.

𝑝𝑛 𝑟 = 𝑈𝑛𝑟𝑛 cos 𝜔𝑟𝑛𝑐 +𝜙𝑛
Transfer Network

Transfer

Features

Partial Physics
Train Internal

Network𝑝𝑛 𝑟 = 𝑈𝑛𝑟𝑛 cos 𝜔𝑟𝑛𝑐 + 𝜙𝑛
Partial Physics

I. OPTMA

II. OPTMA-Net

III. OPTMA-Dual

Inputs

Output

Output

Retrievable Transfer FeaturesInput vector may also be passed on as is

Inputs
Transfer Network

Transfer

Features

Trained Internal

Network

Fully Connected PyTorch Network

Auto-differentiable Back-propagation

Output

Retrievable Transfer FeaturesInput vector may also be passed on as is

𝑝𝑛 𝑟 = 𝑈𝑛𝑟𝑛 cos 𝜔𝑟𝑛𝑐 + 𝜙𝑛
Tensorial Expression of

Partial Physics

Transfer

Features
Transfer Network

Inputs

Fully Connected PyTorch Network

Auto-differentiable Back-propagation

Figure 1 Model architectures: (I) OPTMA model. (II) OPTMA-Net with transfer model and tensorially expressed partial physics. (III)
OPTMA-Dual with a transfer model and an internal physics based surrogate network.

OPTMA-Net, especially if one intends to track the sensitivity

from transformed inputs to the final output when the hybrid

model is tested (or used for model-based analyses, design

or controls). Having said that, since the output nodes of the

transfer network, which serve as input nodes of the following

internal network, represent meaningful physical parameters

(shifted inputs and/or intermediate parameters such as phys-

ical coefficients or conditions), OPTMA-Dual still provides

increased interpretability compared to a standard pure data-

driven end-to-end ANN model.

While these newer variations of OPTMA have a structural

analogy to architectures that adopt an observation bias and

induction bias strategy respectively, the direct torch-tensorial

implementation makes it easier and more efficient to train.

However, as in the induction bias strategy, one would still be

somewhat limited in what physical model descriptions can be

expressed in the torch tensorial form for an assumed neural

structure; further research is needed to break down this barrier.

The objectives of this paper are thus: 1) describe the

two newly contributed variations of the OPTMA architecture;

2) test these new architectures on analytical problems with

comparisons to the original OPTMA and other baselines (pure

ML and sequential hybrid models); and 3) develop implemen-

tations of OPTMA-Net and OPTMA-Dual for predicting the

acoustic field of a UAV where the partial physics model is

given by a monopole based acoustic model and ground-truth

is collected from physical experiments reported in Callanan et

al. [57]. The outcomes of OPTMA-Net and OPTMA-Dual’s

performance on this complex real-world problem are expected

to inform the design of quieter UAVs in the future [58].

The remainder of this paper is structured as follows: the next

section describes the architecture and training of OPTMA-

Net and OPTMA-Dual. Section III reports the performance of

OPTMA-Net and OPTMA-Dual on an analytical test problem.

Section IV describes the UAV acoustic modeling problem,

with results on this problem and further analyses presented

in Section V. Conclusions are given in Section VI.

II. OPTMA-NET AND OPTMA-DUAL ARCHITECTURE

A. OPTMA as a PIML model

Figure 1(I) shows the concept of OPTMA [59]. The transfer

model takes the original inputs. It outputs the optimal trans-

ferred features that the computationally inexpensive partial

physics model requires as input. This dynamically tuned

partial physics model outputs the final quantities of interest.

The transferred features could be shifted input values and/or

intermediate parameters that serve as key coefficients and

constants in simplified physics models. In implementations

where the transferred features solely represent intermediate

(coefficient) parameters of the partial physics model (and not

shifted inputs), then the original input vector is also fed into

the partial physics model as additional input features. The

resulting physics-aware hybrid model is expected to provide

improved generalization [54] and interpretability. The overall

hybrid model loss is computed on how the output of the

second portion, namely the partial physics model, deviates

from the observed ground truth (high-fidelity output). Hence,

in order to back-propagate the model loss, both the partial

physics model and the ANN-based transfer model must be

auto-differentiable. Very few partial physics models provide

an auto-differentiable implementation, and even when it is

available, it may not be amenable to interfacing with standard

ML libraries. Hence, a more straight-forward optimization

based training was originally used, where the overall hybrid

model loss is simply treated as an objective function to

be minimized by a gradient-free solver. A Particle Swarm

Optimization algorithm [56] was adopted for this purpose,

which also helped in dealing with the observed multi-modality

of the loss function (further explained in [59]).

B. OPTMA-Net

OPMTA-Net [13] is proposed to address the training process

limitations of the original OPTMA architecture. Fig 1(II)

shows the architecture of OPTMA-Net. It utilizes a PyTorch

structure. Specifically, the partial physics model ± a set of

algebraic equations in our target problems ± is represented

as PyTorch compatible tensorial expressions. This model thus

expressed is connected at the output end of the transfer model,

where the latter is a feedforward ANN for our case studies.

However, this transfer model could be any other standard

ANN such as recurrent networks (RNN), Long Short-Term

Memory networks (LSTM), convolutional networks (CNN),

graph neural networks (GNN) and so on, as suited to the nature

of the input space for the concerned application. The resulting

hybrid model now occurs as a fully connected PyTorch net-

work, allowing usage of PyTorch’s automatic differentiation

for back-propagation over the entire network.

Additionally, the transfer features in the network have

physical relevance with respect to the partial physics equations.

This is because the tensorial physics layers in OPTMA-Net are

an exact representation of the physics equations being used. A

summary description of the implementation of OPTMA-Net is

provided in the Supplementary Material. Preferably, OPTMA-

Net must be used in problem statements where the partial

physics is simple to express in Torch-tensorial form.

C. OPTMA-Dual: Framework

In OPTMA-Dual, the manually programmed partial physics

layers are replaced by a separate neural network, which we

call the internal network here onward. This internal surrogate

network is trained apriori on a large dataset generated using the

inexpensive partial physics model. Thus the internal network is

considered to very closely embody the partial physics model.

Once trained, the internal network is added at the output end

of the transfer network in the forward propagation loop of

OPTMA-Dual, as shown in Figure 1(III). The first part of

OPTMA-Dual represents the transfer model and outputs the

transfer features which are inferred as the parametric inputs to

the partial physics model. But, in this case, these parametric

inputs or transferred features are fed directly to the internal

network. The output of the internal network is the desired

output of interest to be compared with high-fidelity ground

truth for computing the model loss of OPTMA-Dual.

OPTMA-Dual: Internal network: The goal of introducing a

separately trained neural network inside OPTMA architecture

is twofold: 1) enable an end-to-end neural network whose

model complexity is less dependent on that of the partial

physics; and 2) alleviate the need for end-users to manually

re-program partial physics models into Pytorch amenable

tensorial forms. Note that such re-programming might not

be practically viable when the partial physics model involves

non-differentiable evaluations. A basic example would be any

partial physics function involving sorting or ranking evalu-

ations, which are known to be problematic for end-to-end

automatically differentiable pipelines [60]. While there might

be differentiable approximations available (e.g., differentiable

approximate sorting [61]), they are not guaranteed to be

available for all such scenarios. Implementation of differen-

tiable approximation modules in an existing workflow is also

challenging and time-consuming if at all viable.

OPTMA-Dual’s substituted internal neural network offers

a flexible yet familiar alternative to such partial physics

functions, which is easy to incorporate. Again note that, any

standard type of networks (DNN, LSTM, RNN, CNN and

GNN) can be used as the internal network depending on the

input space and numerical nature of the partial physics model.

Therefore, the prediction of the OPTMA-Dual model on

any given input x can be expressed as:

YOPTMA-D(x) = FIN([x, xTF]),

where xTF = FTN(x)
(1)

where FIN and FTN respectively represent the output of the

internal (IN) and transfer (TN) networks. Note that in ap-

plication scenarios where the transferred features (xTF) are

simply shifted values of the input vector x as opposed to

model coefficients/constants in the partial physics, the input

to the internal network does not need to separately include x.

I. Internal Network Training

Testing
Samples

Training
Samples

II. OPTMA-Dual Training

Transferred

Features
Transfer

Network Trained Internal

Network

Input𝑋 Predicted

Output𝑌OPTMA−D(𝑋)

Full Physics Output, 𝑌FP(𝑋)

Loss

Training

Data Set
(input,output)(𝑋, 𝑌FP)

Input Loss

Partial

Physics

For testing the

trained model

Internal
Network

Parameters are frozen

Predicted

Output𝑌IN(𝑋, 𝑋𝑇𝐹)
Partial Physics Output 𝑌PP(𝑋, 𝑋𝑇𝐹)

(𝑋, 𝑋𝑇𝐹)
(𝑋, 𝑋𝑇𝐹)

𝑋𝑇𝐹

Input vector may also be passed on as is

Figure 2 OPTMA-Dual training and application architecture. I)
Internal network training architecture, II) OPTMA-Dual (mainly
transfer network) training architecture.

D. OPTMA-Dual: Training and Application

OPTMA-Dual is trained in a 2-stage process, shown in

Fig. 2. In the first stage (Fig. 2(I)) we train the internal

network over partial physics samples. Here, sampling is done

over the entire input feature space of the partial physics

as in its assumed role within the original OPTMA, which

includes the transferred features (XTF), as well as the original

input vector (X) if they have not been shifted. Labels for

training the internal network are generated by passing these

input samples through the partial physics model at this stage,

i.e., FPP([X,XTF]). The internal network obtained thereof

is then tested over unseen partial physics samples, as a

sanity check, to ensure reasonable accuracy in substituting

the partial physics. Both the training and testing data set

are separately generated using Latin Hypercube Sampling

or LHS [62] by default, unless a problem-specific design

of experiments (DOE) is available or required. The criteria

used in LHS is centering of the points within the sampling

intervals. The internal network is then infused in the forward

propagation of OPTMA-Dual, shown in Figure 1(II). Now,

we freeze the (trained) internal network parameters using

model_params.requires_grad=False. Hence, in the

second training stage, shown in Fig. 2(II), only the transfer

network parameters get updated. At this second stage, the

loss function is computed based on the samples of the full

physics function (i.e., X,YFP(X)). The input portion of these

training samples is also generated using LHS by default, unless

a problem-specific DOE is required. In some applications these

samples might simply be given to us, resulting from a physical

or simulation experiment that we did not necessarily have the

liberty to design.

The hybrid model in OPTMA-Dual is essentially a com-

posite of two networks that is readily trainable with in-built

Auto-differentiation based solvers (e.g., SGD and Adam) in

PyTorch. This structure makes OPTMA-Dual agnostic to the

nature of the partial physics model, which along with the

programmatic ease of deployment significantly opens up the

applicability and adoptability of OPTMA. While OPTMA-

Dual contains pure neural network components, it still retains

a degree of interpretability, since the intermediate information,

i.e., the output of the transfer network (which is also the

input to the internal network) depicts meaningful physical

parameters, and can be readily retrieved for analyses and

interpretation of how the transfer network is helping correct the

substituted partial physics for accurate predictions. There are

several ways of retrieving these transferred parameter values,

one of which is by placing a hook on the output of the transfer

model in OPTMA-Dual.

III. DEMONSTRATIVE TEST PROBLEMS

A. Analytical Test Problem: Gramacy & Lee Function

For ease of analysis of OPTMA-Net and OPTMA-Dual, and

comparisons with baselines, we first use a simple analytical

test problem, namely the Gramacy & Lee Problem from [54].

Here, the goal is to predict the output of two different full

physics functions. To this end, OPTMA and its proposed new

variations here will use a common partial physics function.

Based on the described framework in Section II-C the trained

model using OPTMA-Dual will transfer the input features

which will be used with the partial physics model to make the

full physics predictions. The equations of the partial physics

(FPP) and the two full physics (FFP1 and FFP2) functions are

given in Section S-I-A in the Supplementary Material.

Three baseline models are used to compare the performance

of the OPTMA architectures over this analytical study: i) A

Pure Data-Driven ML Model, to highlight the benefits of par-

tial physics infusion; ii) A Sequential Hybrid Physics Infused

Model adopted from [57] and iii) The original OPTMA model,

here named as OPTMA-PSO, and illustrated in Fig. 1(I).

This is to specifically point out the advantages of the newer

variations presented in this paper, namely OPTMA-Net and

OPTMA-Dual. A more detailed description about the baseline

models is provided in Section S-I-B in the Supplementary

Material.

0 25 50 75 100 125

Actual: Partial Physics Output

0

25

50

75

100

125

P
r
e
d
ic
te
d
:

In
te

rn
a
l
D

N
N

 O
u
tp

u
t

Data

Ideal Fit

Estimated Fit

Figure 3 OPTMA-Dual internal network prediction VS Gramacy &
Lee partial physics function regression plot for the testing dataset

B. Analytical Test Problem: Numerical Settings & Results

The structure of the internal neural network in OPTMA-

Dual, the data set size and settings used to train it over PP

samples are given in Table I. To ensure an accurate capture of

the partial physics function (PP), the trained internal network

is tested on 200 unseen samples, yielding a small mean-

squared error of 0.009. The testing performance on the internal

network is shown as a comparison between the actual and

predicted in Fig. 3, illustrating the accuracy of the internal

network.

The settings and model structure used for training the

transfer model in OPTMA-PSO, OPTMA-Net and OPTMA-

Dual are given in Table II.

With each of the two full physics Gramacy & Lee functions,

we set up four cases, defined by the size of the training data

set. The OPTMA models and the baseline models are trained

for each of these cases, and tested on 200 unseen samples.

The performance of the trained models on unseen samples is

termed as generalizability in this case [54], [63]. The testing

performance is reported in terms of the root mean squared

error or RMSE. Section S-I-C in the Supplementary Material

shows how the RMSE is calculated in this paper.

The testing RMSE results are provided in Table III. As seen

from Table III, OPTMA-PSO performs the best with smaller

training samples of FP1, with OPTMA-Net performing the

best in the last case of FP1. However, the testing RMSE for

TABLE I Gramacy & Lee: OPTMA-Dual’s internal network’s training settings and testing performance on the PP function

Inputs/Outputs Train Size Test Size # Layers # Nodes/layer Dropout Learning Rate Tr. Time Test MSE

1/1 1000 200 5 50 0.6 0.00035 24.3 sec 0.009

TABLE II Gramacy & Lee: Training settings of OPTMA transfer
models and of networks in sequential hybrid and pure data-driven
models for test type FP2

Model # Layers
Nodes/

Dropout
Learning

layer Rate

OPTMA-PSO* 4 11 − −
OPTMA-Net* 2 50 0.43 2× 10−4

OPTMA-Dual* 2 50 0.43 2× 10−4

Sequential Hybrid 3 50 0.1 1× 10−5

Pure Data-Driven 3 50 0.1 1× 10−5

*Transfer network.

the OPTMA models are within the same order of magnitude.

For FP2, OPTMA-Dual outperforms all the other models,

except in the last case where OPTMA-Net performs the best.

Overall, both OPTMA-PSO and the newer OPTMA-Net and

OPTMA-Dual perform better than the pure data-driven and

sequential hybrid baselines. Specifically, compared to the pure

data-driven model, the RMSE of OPTMA-Dual is more than

an order of magnitude smaller for FP1, and about 2 to 4-

fold smaller for FP2. The performance gains are more notable

when the training set is sparse, demonstrating the increased

usefulness of partial physics infusion in such scenarios.

Since the conceived advantage of the newer versions of

OPTMA is their training efficiency (and performance), it’s

critical to compare the training (CPU) time of OPTMA-Net

and OPTMA-Dual, with that of the original OPTMA-PSO.

These computing times of the training process for the Gramacy

& Lee problem are reported in Table IV. These computing

times correspond to execution on a 6 core Intel i7-9750H

CPU and an NVIDIA GeForce GTX 1660 Ti 2.60 workstation

(with the models running on the GPU). Table shows that

both OPTMA-Net and OPTMA-Dual trains significantly (39

to 77 times) faster than OPTMA-PSO, by virtue of the auto-

differentiability of the newer implementations. Note that in the

case of OPTMA-Dual, there’s an additional cost for training

the internal neural network, which along with the cost of

training the transfer function in OPTMA-Dual made it overall

(3 to 4 times) slower-to-train compared to OPTMA-Net.

IV. PIML MODELING OF UAV ACOUSTIC FIELD

A. Problem Statement and Experimental Data Collection

The goal here is to develop a model that can predict the

noise signature of a hovering quadcopter unmanned aerial

vehicle (UAV) in an indoor environment. Noise mitigation

has become a very significant area of R&D in UAVs, due to

the increasing usage of UAVs in a human-robot collaborative

environment such as in an indoor warehouse setting [64],

[65] or last-mile delivery [66]. Such noise can both cause

annoyance and distraction as well as have harmful cognitive

and hearing impact with long term exposure [67]. To develop

noise mitigation techniques or design quieter UAVs, there is

a critical need for frameworks to model the noise signature of

multirotor UAVs. Traditional methods to model UAV sound

fields include using Finite Element simulations, creating syn-

thetic data using real recordings [68], and software packages

like iNoise [69], [70] for industrial noise predictions leading

to the proposal of various frameworks to measure and model

the UAV sound field [71]. However, there are very few data-

driven approaches to modeling the UAV sound field. Some of

the recent efforts include our prior work with a purely data-

driven model and a sequential hybrid model [57], which this

current work improves upon.

To this end, in an earlier work [57], we developed an

experimental setup for measuring UAV noise for a small set

of scenarios, and using the data to predict the 3D noise field

of the UAV. Such experiments are not only complex but also

expensive in terms of time and money, which limits both the

distances (from source) at which such measurements can be

taken and the number of measurements. Hence, a modeling

approach that can use such a small and distance-limited data

set, and still provide a generalizable and extensible (in space)

prediction of the noise field would be uniquely helpful to

the UAV and co-robotics communities. We hypothesize that

OPTMA is well-suited to serve in this role of generating

generalizable and extrapolatable prediction models.

To test this hypothesis, data presented in our previous study

[57] is used in this paper to train and test OPTMA models

of the UAV noise field, and compare their performance with

that of the baselines. The dataset contains the root mean

square (rms) sound pressure level (SPL) measurements of

noise generated by an unconstrained hovering UAV (a popular

commercial model). This includes data points for a total of

1700 locations in a 3-dimensional space as collected by a mov-

able microphone array. A custom scanning head microphone

array called the Large Aperture Scanning Microphone Array

(LASMA) was constructed and used for this purpose. The

LASMA is capable of scanning a total area of 2.3× 1.2 m2.

The LASMA consisted of four microphones (BSWA MPA416
pre-polarized 1/4” microphones) which generate electronic

signals digitally recorded with a USB MC3522 DAQ. A

Vicon motion capture systems was utilized to capture the

locations of the microphones and the sound source (UAV)

with the help of retro-reflective markers. While the location of

microphones was precisely controllable, the hovering UAV as

usual experienced small drifts during each experiment (with

the microphone array at a particular setting). This resulted in

a series of data points representing the scalar sound pressure

level field at a set of locations distributed irregularly. Thus,

TABLE III Gramacy & Lee (GL): Testing results in terms of normalized RMSE for predicting the FP1 & FP2 functions

Train Size Pure DataDriven [13] Seq. Hybrid Model [13] OPTMA-PSO [54] OPTMA-Net [13] OPTMA-Dual

FP1

20 0.243 0.106 0.039 0.094 0.053
50 0.111 0.081 0.019 0.074 0.043
100 0.073 0.052 0.028 0.049 0.040
200 0.064 0.041 0.036 0.022 0.031

FP2

20 0.172 0.211 0.061 0.072 0.054
50 0.123 0.068 0.080 0.055 0.046
100 0.086 0.075 0.088 0.048 0.045
200 0.079 0.059 0.083 0.040 0.045

TABLE IV Computing times to train OPTMA transfer network on
the GL problem

Problem
OPTMA-PSO OPTMA-Net OPTMA-Dual*

statement

FP1 702.97 sec 9.38 sec 17.86 sec

FP2 734.42 sec 9.55 sec 13.5 sec

*Excludes time taken to train internal network which is reported in Table I.

the objective of modeling (trained on this data) is to predict

the SPL value (Lp) at any location r = [x, y, z], with the UAV

assumed to be located at the origin.

B. Partial Physics Acoustic Model

A simple wave-based acoustics model is used as the partial

physics model to characterize the noise field of the hovering

UAV. This model could be implemented with an arbitrary

number of spherical acoustic sources. The hypothesis is that

when the parameters of this model are tuned to the optimal

values, the model would be able to predict the experimentally

obtained acoustic field with high accuracy, attributed to the

constructive and destructive interference of waves generated by

different monopoles. The parameters in the acoustic function

include the amplitude, frequency, phase, and relative positions

of the arbitrary monopoles. The time-independent pressure

field generated by an individual monopole can be defined as

pn(r) =
Un

rn
cos(ωnrn/c+ ϕn) (2)

Here r is the position vector of the field point relative to the

origin; and rn = |rn| is the Euclidean distance of the field

point from the nth acoustic source, where rn = r− qn, with

qn as the position vector of the nth acoustic source relative

to the origin. The nth source has a normalized amplitude Un,

angular frequency ωn, the speed of sound defined at STP as

c = 343 m/s, and ϕn as the phase angle. The subscript (•)n is

the shorthand notation for the nth acoustic spherical source.

The net acoustic pressure field can be computed by adding

the pressure fields of all the acoustic sources as given by

P (r) =

N
∑

n=1

pn(r) (3)

where N is the total number of acoustic sources. Finally, the

sound pressure level (SPL) can be computed as

Lp(r) = 20 log10[|P (r)|/Pref] (4)

where Pref = 20 µPa and | • | is the absolute value. It is worth

noting that the parameters related to the arbitrary number

of monopoles when tuned may or may not hold physical

significance as the aim is to estimate the sound pressure

level with high accuracy for a field point and numerous

combinations in the parameter space could possibly produce

the same output (a many-to-one mapping).

It is worth noting, that the parameters of each monopole

are intrinsic properties of a theoretical sound source that

accurately predicts the time-averaged sound pressure levels

in an anechoic, i.e. reflectionless, environment and not the

physical sound source such as the UAV in this instance. The

time-averaged SPL at a given field point is not unique to a

specific source parameter configuration and can be reproduced

with infinite different combinations of source parameters and

source positions. The hybrid modeling approach presented

here aims to force the model to learn the optimal distri-

bution of the parameters of the theoretical acoustic model

to reproduce the desired SPL at the specific field point of

interest. Additionally, predicting the SPL in a reverberant

space such as a warehouse creates modeling challenges due

to the reflections and interferences caused by room acoustics,

thereby motivating the use of multiple asymmetrically located

monopoles with locations tuned to cater to predicting accurate

SPL at different measurement points.

C. OPTMA-Net Implementation: UAV Acoustic Field

To implement OPTMA-Net, the partial physics model de-

scribed in Eqs. 2 to 4 is re-programmed in torch tensorial form,

details of which are provided in the Supplementary Material.

Here, the normalized amplitude of each nth monopole, Un. is

selected to serve as the transferred feature. Hence the size of

transferred feature vector is equal to the number of monopoles

used to represent the noise source. The other parameters of this

partial physics model are kept fixed, which includes c, ω, ϕ,

and q for each of the four monopoles. Hence the OPTMA-

Net model for this problem, which predicts the SPL (Lp(r))
given the location (r = [x, y, z]) from the source (UAV), can

be mathematically expressed as:

Lp(r) = FPP-Net(r,U, [c, ω, ϕ,q])

where U = FTN(r)
(5)

where FPP-Net(•) represents exact network tensorial imple-

mentation of the acoustic partial physics model with N
monopoles. Here, the fixed values of the other parameters, c,
ω (set to be the same for all 4 monopoles), ϕ = [ϕ1, . . . , ϕN]
and q = [q1, . . . ,qN], used in computing FPP-Net are given

in Table - S - I in the Supplementary Material. Note that

each qn is a vector representing the 3D location of each

monopole source in the partial physics model. The PyTorch

implementation of the transfer and partial physics network

layers in OPTMA-Net is provided as Listings and 1 and 2

in the Supplement.

When implementing the acoustics partial physics within

Pytorch in OPTMA-Net, the choice of physics model param-

eters to be transferred must be decided apriori. If this choice

is changed, the torch tensorial implementation needs to be

partly reprogrammed, which somewhat limits the flexibility of

OPTMA-Net in problems where there are various parameter

options that could be fixed or allowed to be predicted by

the transfer network. Here, we consider four monopoles in

the partial physics implementation with their amplitude (U)

treated as the transferred feature in OPTMA-Net. Hence the

number of transferred features, i.e., the size of the output of

the transfer network, is four in this case.

D. OPTMA-Dual Implementation: UAV Acoustic Field

Since OPTMA-Dual substitutes the partial physics by a

neural network, unlike OPTMA-Net, here it is easy to change

the choice of which physics model parameters to pre-fix and

which to predict via the transfer network. When implementing

OPTMA-Dual on this UAV acoustics problem, we readily

increase the transferred feature space to include all the four

parameters, namely amplitude (Un), phase (ϕn), frequency

(ωn), and the 3D position (qn ∈ R
3), for each nth monopole.

We train the internal network on the acoustics partial physics

model implemented with four monopoles, to allow ready

comparison with OPTMA-Net. Thus in this case, for OPTMA-

Dual, the size of the transferred feature space is 24. While the

increased transferred feature space might lead to an increase

in the training effort for the transfer network, with more knobs

to tune it is expected to allow greater flexibility in matching

the ground truth.

The steps to setup OPTMA-Dual for the acoustic problem

is illustrated in Fig. - S - 1 in the Supplementary Material.

Step I: We first train the internal network on a dataset

generated by the acoustic partial physics model. By training

the internal network with the global set of partial physics

parameters treated as inputs (here 24 parameters), and the

LHS sampling covering this entire set, one can readily use

the internal network (later on in step II) with any subset

of parameters treated as the transferred features, with others

fixed at user-prescribed values if desired, thereby providing

greater modeling flexibility. Step II: This internal network is

infused at the output end of the transfer network in the forward

propagation of OPTMA-Dual. The code to incorporate a pre-

trained network has been shown in Listing 3 in Supplementary

Material. Note that this pre-trained internal network is kept

frozen during the second training step, i.e., when the transfer

network is trained.

E. Internal (Acoustic) Network: Training and Validation

Along with the global set of 24 tunable parameters in the

UAV acoustics’ partial physics model, the inputs to the internal

network also include the original problem inputs, namely the

3D location (r ∈ R
3) at which the SPL is being measured.

This brings the total size of the input vector to 27 for the

internal network. LHS is used to sample this 27 dimensional

space, with the range of each physical input parameter given

in Table II in the Supplementary Material. The corresponding

SPL value for each sample is computed from the acoustic

partial physics model, which form the labels to train the

internal network. We generate 10000 samples using LHS [62]

in the input space and use 80% of the data for training the

model. The inputs and outputs are normalized using the range

of data. Since the inputs to the internal surrogate network

are in the normalized range, the transfer feature analysis

of OPTMA-Dual would correlate to the normalized latent

space of the transfer features; analysis of the output transfer

features is explained in Section VI-C. Note that the same SPL

normalization limits must be used in both the internal network

training as well as the complete OPTMA-Dual training for

meaningful application.

Prior to use in Step II, we first test the quality of the

trained internal network on the remaining 20% partial physics

samples. A normalized mean square error of 0.009 is observed

in testing, showing that the internal network provides an

acceptable substitute of the acoustic partial physics model. The

training settings, network structure and testing performance of

the internal (acoustics) network are summarized in Table V.

F. Sequential Hybrid Model Baseline: UAV Acoustic Field

The sequential hybrid model is adopted from [57]. Here,

along with the spatial inputs r (i.e., location vector w.r.t. noise

source), SPL outputs of 5 different instances of the partial

physics model (operating on r) are passed as additional input

features into a neural network. The five different instances

of the acoustics partial physics model corresponds to five

different combinations of physical parameters (with variations

in U, keeping q, ϕ and ω fixed) in the partial physics model.

Here the partial physics model was implemented with four

monopoles, i.e., n = 1, 2, 3, 4. The neural network then

predicts the final output of interest, the SPL value Lp at

location r.

TABLE V UAV Acoustic Field: OPTMA-Dual’s internal network’s training settings and testing performance on the PP function

Inputs/Outputs Train Size Test Size # Layers # Nodes/layer Dropout Learning Rate Tr. Time Test MSE*

27/1 8000 2000 6 600 0.01 8× 10−4 25.1 sec 0.0097

*The MSE is reported on the range normalization of the dataset.

V. MODEL TESTING CASES: UAV ACOUSTIC FIELD

For this UAV acoustics problem, we will compare OPTMA-

Net and OPTMA-Dual with the sequential hybrid PIML

model (described in Section IV-F) and a pure data driven

network network model. The last one simply uses a single

neural network that takes as input a 3D location and outputs

the SPL value at that location. In order to test the generaliza-

tion and extrapolation performance of the models generated by

the stated methods, we set up three case studies: i) Percentage

split testing; ii) Quadrant split testing; and iii) Radial split

testing. These case studies follow different approaches to split

the overall data from the experiment [57] into training and test

sets, which are further described below. Mean Square Error

(MSE) and Relative Error (RE) are the testing metrics used

(Equations S-V and S-VI in the Supplementary Material).

A. Percentage Split Testing

This approach randomly splits the whole experimental

(ground truth) data set into training and test sets, such that

the distribution of data is similar between these two sets. Four

sub-cases are created, which vary the ratio of train vs. test

points as follows: 90%/10%, 70%/30%, 50%,50%, 30%/70%

and 10%/90%. The progressive reduction in training samples

used is designed to analyze model performance under growing

sparsity of data. Figure 4 (a) gives an illustration of the

percentage splitting for 10% training dataset sub-case. To have

a fair comparison, the same dataset samples, created by the

apriori splits, are used for training and testing each method.

B. Quadrant Split Testing

The quadrant split testing is devised to analyze model

performance when the testing samples come from a region

that did not contribute any training samples, although both

regions have overlapping range in terms of their input vector

(albeit very different data distribution by virtue of the split).

More specifically, here we use points only from the first

quadrant of the y-z plane for training, whereas points from the

three other unseen quadrants are used for testing. This data

split is expected to be challenging to address with standard

regression modeling due to the induced asymmetry in the

acoustic field being used to train the models. For instance, due

to the geometry of the quad-rotor and its asymmetry along

the z-axis caused by the spinning propellers, it is expected

to have higher SPL values in the lower two quadrants in

2D space, or the four octants in 3D space with negative z-

value. Conversely the symmetry of the UAV in the x-y plane

will probably lead to relatively symmetric distribution of SPL

values in the x-y space. Note that radial distance between

the measurement point and UAV will decrease the SPL value,

leading to a relatively symmetric radial distribution. Due to

these effects, successful prediction of the output in unseen

testing quadrants requires more meaningful capture of the

physics of the problem. Figure 4 (b) gives an illustration of the

quadrant splitting case study, where the models are trained on

the first quadrant and tested on the remaining three quadrants.

C. Radial Split Testing

Figure 4 (c) illustrates the radial splitting case study. This

case is designed to particularly test the (radial) extrapolation

capability of each model. Here the data is split into training

and testing sets purely based on the radial distance of the point

in space w.r.t. the noise source (UAV) that is located at the

origin. To implement this split, the entire experimental data

set is sorted based on their Euclidean distance from the UAV.

The most distant point is identified and its distance from the

UAV is used as reference. The sample points within 50% of

this reference distance are used for training; thus the training

envelope represents a sphere centered at the UAV with a radius

equal to the 50% of the reference distance. The points outside

of this sphere are used for testing.

TABLE VI UAV Acoustic Field: Training settings of OPTMA
transfer models and of networks in sequential hybrid and pure data-
driven models for percentage split testing with 70% (1209) of the
data used for training

Model # Layers
Nodes/

Dropout
Learning

layer Rate

OPTMA-PSO* 4 10 − −
OPTMA-Net* 3 50 0.1 1× 10−4

OPTMA-Dual* 3 50 0.1 1× 10−4

Sequential Hybrid 3 100 0.1 1× 10−4

Pure Data-Driven 3 100 0.1 1× 10−4

*Transfer network.

VI. RESULTS: UAV ACOUSTICS MODELING

A. Training settings

The settings of the transfer network in the OPTMA archi-

tectures and those for the networks in the sequential hybrid

and pure data-driven models are summarized in Table VI,

using the example of the 70%/30% percentage split case.

With each method, we train a total of seven models, one

each for the five percentage split cases, the quadrant split case

and the radial split case. Note that the original OPTMA-PSO

architecture proved to be too inefficient to be trained for this

problem (taking multiple hours even for small improvement in

the loss function), and hence only one representative training

Training Dataset Testing Dataset UAV Training Sphere

y [m]

z
 [
m

]

-2 20

0

-1

-2

1

(a)

z
 [
m

] 0

-1

-2

1

(c)y [m]

z
 [
m

]

-2 20

0

-1

-2

1

(b)

y [m]

-2

2

0

x [m]

0
-1

-2

Figure 4 UAV Acoustic Field Train-Test Splitting Case Studies: (a) Scatter plot for Percentage splitting in the y-z plane. This case is for
10% training data. (b) Scatter plot for Quadrant splitting in the y-z plane. The data points in the first quadrant are used to train the model.
(c) Radial splitting case, where the data points inside the sphere are used for training, and those outside are used for testing.

TABLE VII UAV Acoustic Field: Testing results in terms of normalized MSE

Test Type Train Size Pure DataDriven [13] Seq Hybrid [13] OPTMA-Net [13] OPTMA-Dual Partial Phys

Generalization

Percent 1555 (90%) 0.0083 0.0095 0.0083 0.0088 4.981
Percent 1209 (70%) 0.0083 0.0089 0.0086 0.0089 4.766
Percent 864 (50%) 0.0083 0.0085 0.0083 0.0085 4.701
Percent 518 (30%) 0.0087 0.0091 0.0090 0.0088 4.632
Percent 172 (10%) 0.0095 0.0239 0.0097 0.0095 4.643

Extrapolation

Quadrant* 347 0.129 0.089 0.034 0.026 5.472
Radial** 238 0.055 0.041 0.013 0.017 5.067

*Quadrant uses training data only from the first quadrant in the extruded y − z plane. Tests on data from the other three quadrants.

**Radial uses training data only within a 114cm sphere centered on the UAV location. Tests on data outside this sphere (extending radially till ZZZ cm)

instance of OPTMA-PSO is included to specifically allow the

comparison of training costs later in this paper.

TABLE VIII Computation times for training OPTMA transfer
network models on the UAV Acoustic Field problem for percentage
split testing with 70% (1209) of the data used for training.

Model Computation Time Error Reduction

OPTMA-PSO* 5, 047 sec 13%

OPTMA-Net 19.3 sec 82.4%

OPTMA-Dual** 9.4 sec 84.1%

*Due to very slow training, OPTMA-PSO was not run until convergence.

**Excludes time to train internal network which is reported in Table V.

B. Testing Performance

The testing results of the pure data-driven, the sequential

hybrid, OPTMA-Net and OPTMA-Dual models for the UAV

acoustics problem is given in Table VII, in the form of range-

normalized MSE. This includes results for the percentage split,

quadrant split and radial split case studies. The prediction

performance of the partial physics model, with fixed user-

prescribed parameter settings, over the corresponding testing

data sets is also included. This is to illustrate that the superior

performance of the PIML models is not simply an artifact of

the (included) partial physics model’s prediction capacity.

Percentage split cases: Table VII show that the testing

performance of OPTMA-Net and OPTMA-Dual is close to

that of the pure data-driven model for the percentage split

testing cases, which essentially encapsulate generalizability.

This is attributed to the training set being sufficient to allow a

pure data-driven neural network model to accurately capture

the acoustic field, as long as data points (even if sampled

sparsely) from the entire input space is used for training

± i.e., when the training and testing data distributions are

similar. Interestingly, the sequential hybrid model is found to

offer the poorest generalizability performance, which is likely

due to it dependence on the fixed (untuned) partial physics

implementation, where the latter is quite inaccurate when not

adaptively tuned (as seen from the last column of Table VII).

Quadrant split case: The quadrant test case is expected

to be more challenging to predict compared to percentage

testing, since training occurs solely on data points in one of

the quadrants, and the trained model is required to predict

the SPL values in other quadrants. In this test, both OPTMA-

Net and OPTMA-Dual perform substantially better than the

baseline models. More specifically, OPTMA-Dual provides

the smallest testing errors, which is about 3.4 times and 5

times smaller than the testing errors given by the pure data-

driven and sequential hybrid models, respectively. For physical

clarity, the relative errors in the predicted SPL values for this

case are also plotted in Fig. 5, where both the color and circle

size represent the magnitude of error. Figure 5 shows that

compared to OPTMA-Dual, the baseline models suffer from

high prediction error for locations in the second and third

quadrant visualized in the y-z projection plane. This drop in

performance of the baseline models can be attributed to the

non identical distributions of the training and testing datasets.

These datasets were generated using measurements from dif-

ferent parts of the room at varying distances. For instance,

the first quadrant represents the areas closer to the ceiling of

the room and the third quadrant represents the areas closer to

the floor of the room creating unique acoustic signatures in the

various quadrants attributed to the geometric characteristics of

the room. On the other hand, spatial adaptation of the partial

physics parameters in OPTMA-Net and OPTMA-Dual allows

capturing these differences, lending them a higher prediction

accuracy in the quadrant split test.

Radial split case: This test directly assesses each model’s

extrapolation ability. Table VII shows that OPTMA-Net and

OPTMA-Dual again provide remarkably better extrapolation

performance compared to the baselines. Here OPTMA-Net

gives the smallest testing errors (slightly smaller than that of

OPTMA-Dual), which is found to be ∼ 4 times and 3 times

smaller than the testing errors given by the pure data-driven

and sequential hybrid models, respectively. The relative error

(RE) for OPTMA-Dual and the baselines in the radial split

case is also visualized vs. increasing distance of the testing

points from the source (UAV) in Fig. 6. This figure shows

that OPTMA-Dual’s extrapolation performance in this case

is agnostic to the distance from the source (UAV), while both

baselines suffer from higher errors at points farther away from

source. The pure data-driven model even exhibits high error

regions closer to the source.

Both the quadrant split and radial split testing cases

clearly demonstrate the advantage of not only using partial

physics, but also adaptively tuning it, as unqiuely performed

in OPTMA-Net and OPTMA-Dual. This advantage is par-

ticularly apparent when predicting test data that is from a

distribution or spatial region different from those used in

training, or is completely outside of the regions used for

training (true extrapolation). To provide further insights into

how the adaptive tuning of the acoustic partial physics pa-

rameters enable this several fold improvement in prediction

performance, next we provide further statistical analyses of

the transferred features in OPTMA-Dual.

C. Acoustic Transfer Feature Analysis

As previously mentioned, the space of tunable parame-

ters includes six parameters per spherical acoustic source

(monopole) in the OPTMA-Dual implementation on this prob-

lem. Thus the design space of tunable parameters become

twenty four dimensional D ∈ R
24, where D is the design

space. Moreover, by virtue of its architecture, OPTMA-Dual

allows us to retrieve the intermediately predicted values of

these parameters for any given spatial location r. Leveraging

this capability, we retrieve these parameter values for the

10%/90% percentage split case, and analyze their statistical

distribution over the testing data set. These distributions are

also illustrated as boxplots in Fig. - S - 2 in the Supplementary

Material. From this figure, we notice a variation of the median

value of each monopole property across the four monopoles,

with the third monopole being the closest and the fourth one

being the farthest from the source. This is likely attributed to

the need to capture the asymmetric nature of the acoustic field

generated by the hovering UAV.

To understand the spatial adaptation of the monopole prop-

erties (tunable parameters) achieved by the transfer network

in OPTMA-Dual, we analyze their predicted values over 3D

(r-vector) space (illustrated in Fig.- S - 3 in the Supple-

mentary Material). Here, each row represents one tunable

parameter and each column represents one monopole. The

parameters plotted are Amplitude, Phase, Frequency, X, Y,

and Z coordinates of the monopole ranging from the first

row to the last respectively. We observe that the amplitude

of the first monopole stays consistently low compared to the

other monopoles for various field points which show more

variation in the as the field point location is varied. From this

figure, we make the following key physical observations: The

amplitude of the second monopole shows higher sensitivity to

the field points in the upper octant of the 3D space (denoted in

light green) while the third and fourth monopoles show lesser

sensitivity in lower octants (denoted in blue). Another example

is variation in phase (second row) where the first monopole

shows higher sensitivity towards the field points with hotter

marker color while the fourth monopole shows an inverted

behavior. Similar trends could be identified in the different

parameters as shown in Fig. - S - 3 in the Supplementary

Material. As explained in section IV-E, the parameters act as

the normalized latent space values of the acoustic physical

parameters which yield a highly accurate predicted value.

D. Training (Computing) Cost Analysis of OPTMA

Lastly, to again highlight the improved training efficiency

of OPTMA-Net and OPTMA-Dual, compared to the original

OPTMA-PSO, we analyze the computing time invested in

training the transfer network in each of these architectures,

taking the exaple of the 70%/30% percentage split case study

of the UAV acoustics problem. These computing times are

listed in Table VIII. Here OPTMA-PSO run was stopped

prematurely due to its inefficiency, during which it achieved

just a 13% reduction in error. On the other hand, OPTMA-

Net and OPTMA-Dual both converge with more than 80%

error reduction in two orders of magnitude less computing

time compared to OPTMA-PSO. This significantly improved

efficiency further strengthens the benefit of the direct Py-

Torch network implementation used in both OPTMA-Net

and OPTMA-Dual, allowing the use of state-of-the-art auto-

differentiation for training the transfer network.

Figure 5 UAV Acoustic Field Testing Results: the relative error (RE) in the quadrant split case shown on the y-z plane for the following
models: (a) Pure data-driven model, (b) Sequential hybrid model, and (c) OPTMA-Dual model. Size of the circles are directly proportional
to the magnitude of error.

Figure 6 UAV Acoustic Field Testing Results: the relative error (RE) in the radial split case for the following models: (a) Pure data-driven
model, (b) Sequential hybrid model, and (c) OPTMA-Dual model. RE is plotted vs. the index of points sorted in the increasing order of
their Euclidean distance from the source (UAV), with color and size of the circles being proportional to the error magnitude. The red dashed
cut-off line marks the radius of the sphere within which lies the data points used for training.

VII. CONCLUSION

OPTMA is a recently reported physics-infused ML (PIML)

architecture that transfers the original inputs (via a transfer

neural network) into a feature space that informs a simplified

partial physics model; this physics model, thus tuned input-

adaptively, then makes accurate predictions of the output of

interest. This paper presented two advanced variations of

OPTMA, called OPTMA-Net and OPTMA-Dual, both of

which are end-to-end PIML architectures, fully implemented

in a state-of-the-art ML framework (PyTorch). OPTMA-Net

incorporates the partial physics model into PyTorch by repro-

gramming it in the torch tensorial form. OPTMA-Dual instead

trains a separate internal neural network as a surrogate for

the partial physics, which is then connected at the output end

of the transfer network. This approach alleviates the need for

reprogramming the partial physics which could be both tedious

and challenging depending on the nature of the functions

embodying the partial physics. Both advancements retain the

ability to retrieve physically meaningful transferred features

for increased explainability, while offering a substantially

faster training process (compared to original OPTMA) by

enabling the use of in-built auto-differentiation capabilities in

PyTorch. Note that fundamentally OPTMA is a competitive

choice of prediction or surrogate modeling architecture in

any problem scenario where a fast partial physics model with

tunable parameters or terms are available. Now, whether to use

OPTMA-Dual or OPTMA-Net to solve a particular problem

depends on the programmability of the partial physics in

PyTorch. In situations where the partial physics is viable to

reprogram in PyTorch, OPTMA-Net should be preferred since

an exact mathematical representation of the partial physics can

be achieved and greater interpretability of the overall hybrid

model is retained. On the other hand, when the partial physics

is non-differentiable or challenging to re-program for any

other reason (e.g., proprietary model), OPTMA-Dual should

be used. In cases where reprogramming the partial physics

in PyTorch or other Torch-tensorial ML libraries is time-

consuming, the model selection is at the user’s discretion.

To test the performance of OPTMA-Net and OPTMA-Dual,

we compare it with the original OPTMA and two baselines,

a pure data-driven model and a sequential hybrid model,

over benchmark functions. Results demonstrate that the new

versions of OPTMA continue to provide 10-fold improved

generalizability performance compared to pure data-driven

baselines over sparse to dense sampling scenarios.

The OPTMA architectures and baselines are also applied

to a real-world problem of predicting the acoustic field of

a quadrotor UAV, by learning from experimental data on

sound pressure levels (SPL) at various 3D locations w.r.t. the

UAV at the origin. To this end, we specifically implement

a multi-monopole based simplified acoustic model, serving

as the partial physics, within PyTorch ± first reprogrammed

in tonsorial form for OPTMA-Net, and later surrogated by

the internal network in OPTMA-Dual. To test the prediction

performance of various models on this problem, we create

three case studies that respectively assess generalizability,

predictability over out-of-distribution testing set, and extrapo-

lability. The latter two capabilities are particularly important in

this problem since the acoustic environment around a hovering

UAV is asymmetric, and experiments are practically feasible

only within smaller spatial envelopes while predictions are

needed beyond that envelop for research on design and control

of quieter UAVs. In our tests, the generalizability performance

of all the models appear to be close to each other. More

importantly, for out-of-distribution predictions and extrapo-

lations, both OPTMA-Net and OPTMA-Dual are found to

be around 4-times more accurate than the pure data-driven

model and over 2-times more accurate than the sequential

hybrid model. Further analyses of the transferred features

showed that OPTMA-Dual (for example) is able to achieve

this significantly improved performance by asymmetrically

locating the four monopoles and adapting their properties (e.g.,

amplitude and frequency) w.r.t. different inputs, i.e., locations

where the SPL is being predicted.

Lastly, in both the benchmark problem and the UAV

acoustics problem, OPTMA-Net and OPTMA-Dual presented

orders of magnitude faster training processes compared to

the original OPTMA-PSO, thereby supporting our primary

premise behind developing these newer OPTMA implemen-

tations as end-to-end PyTorch based architectures. In their

current form, these newer OPTMA architectures still require

the specification of which partial physics parameters to be used

as transferred features; this prescription could be alleviated

in the future by exploring inclusion of classification layers

allowing the transfer model to self select the best sub-set of

physics parameters to use as transfer features. This capability,

along with the ability to use multiple (multi-fidelity) partial

physics models, could further expand the use and adoption of

the OPTMA PIML architecture.

ACKNOWLEDGMENTS

Assistance by Chen Zeng in operating the UAV during

testing is gratefully acknowledged. Partial support of this work

by the "SMART Start Phase II" program, from the Sustainable

Manufacturing & Advanced Robotic Technologies Center of

Excellence at the University at Buffalo is also gratefully ac-

knowledged. Support from the NSF Award CMMI-2128578 is

gratefully acknowledged. Any opinions, findings, conclusions,

or recommendations expressed in this paper are those of the

authors and do not necessarily reflect the views of the NSF.

REFERENCES

[1] Nagesh Shukla, Markus Hagenbuchner, Khin Than Win, and Jack Yang.
Breast cancer data analysis for survivability studies and prediction.
Computer methods and programs in biomedicine, 155:199±208, 2018.

[2] Mohammad Bataineh, Timothy Marler, Karim Abdel-Malek, and Jasbir
Arora. Neural network for dynamic human motion prediction. Expert

Systems with Applications, 48:26±34, 2016.

[3] Gowtham Garimella, Joseph Funke, Chuang Wang, and Marin Kobi-
larov. Neural network modeling for steering control of an autonomous
vehicle. In Intelligent Robots and Systems (IROS), 2017 IEEE/RSJ

International Conference on, pages 2609±2615. IEEE, 2017.

[4] Mark Pfeiffer, Michael Schaeuble, Juan Nieto, Roland Siegwart, and
Cesar Cadena. From perception to decision: A data-driven approach
to end-to-end motion planning for autonomous ground robots. In 2017

ieee international conference on robotics and automation (icra), pages
1527±1533. IEEE, 2017.

[5] Lin Shao, Fabio Ferreira, Mikael Jorda, Varun Nambiar, Jianlan Luo,
Eugen Solowjow, Juan Aparicio Ojea, Oussama Khatib, and Jeannette
Bohg. Unigrasp: Learning a unified model to grasp with n-fingered
robotic hands. arXiv preprint arXiv:1910.10900, 2019.

[6] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giulia Vezzani,
John Schulman, Emanuel Todorov, and Sergey Levine. Learning
complex dexterous manipulation with deep reinforcement learning and
demonstrations. arXiv preprint arXiv:1709.10087, 2017.

[7] Payam Ghassemi, Kaige Zhu, and Souma Chowdhury. Optimal surrogate
and neural network modeling for day-ahead forecasting of the hourly
energy consumption of university buildings. In International Design

Engineering Technical Conferences and Computers and Information in

Engineering Conference, volume 58134, page V02BT03A026. American
Society of Mechanical Engineers, 2017.

[8] Dawn An, Nam H Kim, and Joo-Ho Choi. Practical options for select-
ing data-driven or physics-based prognostics algorithms with reviews.
Reliability Engineering & System Safety, 133:223±236, 2015.

[9] Emre Artun. Characterizing interwell connectivity in waterflooded
reservoirs using data-driven and reduced-physics models: a comparative
study. Neural Computing and Applications, 28(7):1729±1743, 2017.

[10] Pamela J Haley and DONALD Soloway. Extrapolation limitations of
multilayer feedforward neural networks. In Neural Networks, 1992.

IJCNN., International Joint Conference on, volume 4, pages 25±30.
IEEE, 1992.

[11] Radford M Neal. Bayesian learning for neural networks, volume 118.
Springer Science & Business Media, 2012.

[12] D Solomatine, Linda M See, and RJ Abrahart. Data-driven modelling:
concepts, approaches and experiences. In Practical hydroinformatics,
pages 17±30. Springer, 2009.

[13] Rayhaan Iqbal, Amir Behjat, Revant Adlakha, Jesse Callanan, Mostafa
Nouh, and Souma Chowdhury. Efficient training of transfer mapping in
physics-infused machine learning models of uav acoustic field. In AIAA

SCITECH 2022 Forum, page 0384, 2022.

[14] Davood Karimi, Haoran Dou, Simon K Warfield, and Ali Gholipour.
Deep learning with noisy labels: Exploring techniques and remedies in
medical image analysis. Medical Image Analysis, 65:101759, 2020.

[15] Feng-Lei Fan, Jinjun Xiong, Mengzhou Li, and Ge Wang. On inter-
pretability of artificial neural networks: A survey. IEEE Transactions

on Radiation and Plasma Medical Sciences, 5(6):741±760, 2021.

[16] Vepa Atamuradov, Kamal Medjaher, Pierre Dersin, Benjamin Lam-
oureux, and Noureddine Zerhouni. Prognostics and health management
for maintenance practitioners-review, implementation and tools evalu-
ation. International Journal of Prognostics and Health Management,
8(060):1±31, 2017.

[17] Ali Mehmani, Souma Chowdhury, Weiyang Tong, and Achille Messac.
Adaptive switching of variable-fidelity models in population-based op-
timization. In Engineering and Applied Sciences Optimization, pages
175±205. Springer, 2015.

[18] Renato Giorgiani Nascimento and Felipe AC Viana. Fleet progno-
sis with physics-informed recurrent neural networks. arXiv preprint

arXiv:1901.05512, 2019.

[19] Rahul Rai and Chandan Sahu. Driven by data or derived throughphysics:
Hybrid physics guidedmachine learning approach. Ieee access, 2020.

[20] Kamran Javed. A robust & reliable Data-driven prognostics approach

based on extreme learning machine and fuzzy clustering. PhD thesis,
Université de Franche-Comté, 2014.

[21] Kumpati S Narendra and Kannan Parthasarathy. Identification and
control of dynamical systems using neural networks. IEEE Transactions

on neural networks, 1(1):4±27, 1990.

[22] Chih-Chieh Young, Wen-Cheng Liu, and Ming-Chang Wu. A physically
based and machine learning hybrid approach for accurate rainfall-runoff
modeling during extreme typhoon events. Applied Soft Computing,
53:205±216, 2017.

[23] Vahid Nourani, Mohammad T Alami, and Mohammad H Aminfar.
A combined neural-wavelet model for prediction of ligvanchai water-
shed precipitation. Engineering Applications of Artificial Intelligence,
22(3):466±472, 2009.

[24] Shubhendu Kumar Singh, Ruoyu Yang, Amir Behjat, Rahul Rai, Souma
Chowdhury, and Ion Matei. Pi-lstm: Physics-infused long short-term
memory network. In 2019 18th IEEE International Conference On

Machine Learning And Applications (ICMLA), pages 34±41. IEEE,
2019.

[25] Shunfeng Cheng and Michael Pecht. A fusion prognostics method for
remaining useful life prediction of electronic products. In Automation

Science and Engineering, 2009. CASE 2009. IEEE International Con-

ference on, pages 102±107. IEEE, 2009.

[26] Anuj Karpatne, William Watkins, Jordan Read, and Vipin Kumar.
Physics-guided neural networks (pgnn): An application in lake temper-
ature modeling. arXiv preprint arXiv:1710.11431, 2017.

[27] FRANCESCA MANGILI. Development of advanced computational
methods for prognostics and health management in energy components
and systems. 2013.

[28] Wen Li Zhao, Pierre Gentine, Markus Reichstein, Yao Zhang, Sha Zhou,
Yeqiang Wen, Changjie Lin, Xi Li, and Guo Yu Qiu. Physics-constrained
machine learning of evapotranspiration. Geophysical Research Letters,
46(24):14496±14507, 2019.

[29] SungHo Park, Ki Uhn Ahn, Seungho Hwang, Sunkyu Choi, and
Cheol Soo Park. Machine learning vs. hybrid machine learning model
for optimal operation of a chiller. Science and Technology for the Built

Environment, 25(2):209±220, 2019.

[30] Berkcan Kapusuzoglu and Sankaran Mahadevan. Physics-informed and
hybrid machine learning in additive manufacturing: application to fused
filament fabrication. Jom, 72(12):4695±4705, 2020.

[31] Dominic A Rufa, Hannah E Bruce Macdonald, Josh Fass, Marcus
Wieder, Patrick B Grinaway, Adrian E Roitberg, Olexandr Isayev, and
John D Chodera. Towards chemical accuracy for alchemical free en-
ergy calculations with hybrid physics-based machine learning/molecular
mechanics potentials. BioRxiv, 2020.

[32] Akshay Rai and Mira Mitra. A hybrid physics-assisted machine-
learning-based damage detection using lamb wave. SÅadhanÅa, 46(2):1±
11, 2021.

[33] Ion Matei, Chen Zeng, Souma Chowdhury, Rahul Rai, and Johan
de Kleer. Controlling draft interactions between quadcopter unmanned
aerial vehicles with physics-aware modeling. Journal of Intelligent &

Robotic Systems, 101(1):1±21, 2021.

[34] Zhibo Zhang, Rahul Rai, Souma Chowdhury, and David Doermann.
Midphynet: Memorized infusion of decomposed physics in neural net-
works to model dynamic systems. Neurocomputing, 428:116±129, 2021.

[35] Xinzhong Chen, Ziheng Yao, Suheng Xu, Alexander S McLeod,
Stephanie N Gilbert Corder, Yueqi Zhao, Makoto Tsuneto, Hans A
Bechtel, Michael C Martin, G Lawrence Carr, et al. Hybrid machine
learning for scanning near-field optical spectroscopy. ACS Photonics,
8(10):2987±2996, 2021.

[36] Hong-Cheol Choi, Chuhao Deng, and Inseok Hwang. Hybrid machine
learning and estimation-based flight trajectory prediction in terminal
airspace. IEEE Access, 9:151186±151197, 2021.

[37] Renato G Nascimento, Matteo Corbetta, Chetan S Kulkarni, and Fe-
lipe AC Viana. Hybrid physics-informed neural networks for lithium-ion
battery modeling and prognosis. Journal of Power Sources, 513:230526,
2021.

[38] Agastya P Bhati, Shunzhou Wan, Dario Alfè, Austin R Clyde, Mathis
Bode, Li Tan, Mikhail Titov, Andre Merzky, Matteo Turilli, Shantenu
Jha, et al. Pandemic drugs at pandemic speed: infrastructure for
accelerating covid-19 drug discovery with hybrid machine learning-and
physics-based simulations on high-performance computers. Interface

focus, 11(6):20210018, 2021.

[39] Kajetan Fricke, Renato Giorgiani do Nascimento, and Felipe Viana.
Quadcopter soft vertical landing control with hybrid physics-informed
machine learning. In AIAA Scitech 2021 Forum, page 1018, 2021.

[40] Derek Machalek, Jake Tuttle, Klas Andersson, and Kody M Powell.
Dynamic energy system modeling using hybrid physics-based and
machine learning encoder-decoder models. Energy and AI, page 100172,
2022.

[41] Yangyang Lai, Ke Pan, Yuqiao Cen, Junbo Yang, Chongyang Cai,
Pengcheng Yin, and Seungbae Park. An intelligent system for reflow
oven temperature settings based on hybrid physics-machine learning
model. Soldering & Surface Mount Technology, 2022.

[42] Brittny Freeman, Yufei Tang, Yu Huang, and James VanZwieten.
Physics-informed turbulence intensity infusion: A new hybrid approach
for marine current turbine rotor blade fault detection. Ocean Engineer-

ing, 254:111299, 2022.

[43] Abhejit Rajagopal, Andrew P Leynes, Nicholas Dwork, Jessica E
Scholey, Thomas A Hope, and Peder EZ Larson. Physics-driven deep
learning for pet/mri. arXiv preprint arXiv:2206.06788, 2022.

[44] King Ankobea-Ansah and Carrie Michele Hall. A hybrid physics-
based and stochastic neural network model structure for diesel engine
combustion events. Vehicles, 4(1):259±296, 2022.

[45] Andreas Maier, Harald Köstler, Marco Heisig, Patrick Krauss, and
Seung Hee Yang. Known operator learning and hybrid machine learning
in medical imagingÐa review of the past, the present, and the future.
Progress in Biomedical Engineering, 2022.

[46] Lu Lu, Pengzhan Jin, Guofei Pang, Zhongqiang Zhang, and George Em
Karniadakis. Learning nonlinear operators via deeponet based on
the universal approximation theorem of operators. Nature Machine

Intelligence, 3(3):218±229, 2021.

[47] Ali Kashefi, Davis Rempe, and Leonidas J Guibas. A point-cloud
deep learning framework for prediction of fluid flow fields on irregular
geometries. Physics of Fluids, 33(2):027104, 2021.

[48] Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu,
Kaushik Bhattacharya, Andrew Stuart, and Anima Anandkumar. Fourier
neural operator for parametric partial differential equations. arXiv

preprint arXiv:2010.08895, 2020.

[49] Yibo Yang and Paris Perdikaris. Conditional deep surrogate models for
stochastic, high-dimensional, and multi-fidelity systems. Computational

Mechanics, 64(2):417±434, 2019.

[50] George Em Karniadakis, Ioannis G Kevrekidis, Lu Lu, Paris Perdikaris,
Sifan Wang, and Liu Yang. Physics-informed machine learning. Nature

Reviews Physics, 3(6):422±440, 2021.

[51] Julia Ling, Reese Jones, and Jeremy Templeton. Machine learning strate-
gies for systems with invariance properties. Journal of Computational

Physics, 318:22±35, 2016.

[52] Maziar Raissi, Paris Perdikaris, and George E Karniadakis. Physics-
informed neural networks: A deep learning framework for solving
forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational Physics, 378:686±707, 2019.

[53] Jin-Long Wu, Heng Xiao, and Eric Paterson. Physics-informed machine
learning approach for augmenting turbulence models: A comprehensive
framework. Physical Review Fluids, 3(7):074602, 2018.

[54] Amir Behjat, Chen Zeng, Rahul Rai, Ion Matei, David Doermann, and
Souma Chowdhury. A physics-aware learning architecture with input
transfer networks for predictive modeling. Applied Soft Computing,
96:106665, 2020.

[55] Payam Ghassemi, Amir Behjat, Chen Zeng, Sumeet S Lulekar, Rahul
Rai, and Souma Chowdhury. Physics-aware surrogate-based optimiza-
tion with transfer mapping gaussian processes: for bio-inspired flow
tailoring. In AIAA AVIATION 2020 FORUM, page 3183, 2020.

[56] Souma Chowdhury, Weiyang Tong, Achille Messac, and Jie Zhang.
A mixed-discrete particle swarm optimization algorithm with explicit
diversity-preservation. Structural and Multidisciplinary Optimization,
47(3):367±388, 2013.

[57] Jesse Callanan, Rayhaan Iqbal, Revant Adlakha, Amir Behjat, Souma
Chowdhury, and Mostafa Nouh. Large-aperture experimental character-
ization of the acoustic field generated by a hovering unmanned aerial
vehicle. The Journal of the Acoustical Society of America, 150(3):2046±
2057, 2021.

[58] Beat Schäffer, Reto Pieren, Kurt Heutschi, Jean Marc Wunderli, and
Stefan Becker. Drone noise emission characteristics and noise effects on
humansÐa systematic review. International Journal of Environmental

Research and Public Health, 18(11):5940, 2021.

[59] Amir Behjat, Steve Paul, and Souma Chowdhury. Learning reciprocal
actions for cooperative collision avoidance in quadrotor unmanned aerial
vehicles. Robotics and Autonomous Systems, 121:103270, 2019.

[60] Marco Cuturi, Olivier Teboul, and Jean-Philippe Vert. Differentiable
ranking and sorting using optimal transport. Advances in neural

information processing systems, 32, 2019.
[61] Mathieu Blondel, Olivier Teboul, Quentin Berthet, and Josip Djolonga.

Fast differentiable sorting and ranking. In International Conference on

Machine Learning, pages 950±959. PMLR, 2020.
[62] Michael D McKay, Richard J Beckman, and William J Conover. A

comparison of three methods for selecting values of input variables in
the analysis of output from a computer code. Technometrics, 42(1):55±
61, 2000.

[63] Balaji Krishnapuram, Lawrence Carin, Mário AT Figueiredo, and
Alexander J Hartemink. Sparse multinomial logistic regression: Fast
algorithms and generalization bounds. IEEE transactions on pattern

analysis and machine intelligence, 27(6):957±968, 2005.
[64] Jesse Callanan, Payam Ghassemi, James DiMartino, Maulikkumar

Dhameliya, Christina Stocking, Mostafa Nouh, and Souma Chowdhury.
Ergonomic impact of multi-rotor unmanned aerial vehicle noise in
warehouse environments. Journal of Intelligent & Robotic Systems,
100(3):1309±1323, 2020.

[65] Zhu Chen, Xiao Liang, and Minghui Zheng. Including image-based
perception in disturbance observer for warehouse drones. arXiv preprint

arXiv:2007.02907, 2020.
[66] J. Wilke. A Drone Program Taking Flight. Amazon: Bellevue, WA,

USA, 2019.
[67] Revant Adlakha, Wansong Liu, Souma Chowdhury, Minghui Zheng, and

Mostafa Nouh. Integration of acoustic compliance and noise mitigation
in path planning for drones in human-robot collaborative environments.
Journal of Vibration and Control, pages (accepted, in press), 2022.

[68] Kurt Heutschi, Beat Ott, Thomas Nussbaumer, and Peter Wellig. Synthe-
sis of real world drone signals based on lab recordings. Acta Acustica,
4(6):24, 2020.

[69] John Kennedy, Simone Garruccio, and Kai Cussen. Modelling and
mitigation of drone noise. Vibroengineering Procedia, 37:60±65, 2021.

[70] Kai Cussen, Simone Garruccio, and John Kennedy. Uav noise emis-
sionÐa combined experimental and numerical assessment. In Acoustics,
volume 4, pages 297±312. MDPI, 2022.

[71] Tommy Langen, Vimala Nunavath, and Ole Henrik Dahle. A conceptual
framework proposal for a noise modelling service for drones in u-
space architecture. International Journal of Environmental Research

and Public Health, 19(1):223, 2021.
[72] Bart Van Merriënboer, Olivier Breuleux, Arnaud Bergeron, and Pascal

Lamblin. Automatic differentiation in ml: Where we are and where we
should be going. arXiv preprint arXiv:1810.11530, 2018.

[73] Adam Paszke, Sam Gross, Soumith Chintala, Gregory Chanan, Edward
Yang, Zachary DeVito, Zeming Lin, Alban Desmaison, Luca Antiga,
and Adam Lerer. Automatic differentiation in pytorch. 2017.

[74] Jian Su and John E Renaud. Automatic differentiation in robust
optimization. AIAA journal, 35(6):1072±1079, 1997.

[75] Andreas Griewank and Andrea Walther. Evaluating derivatives: princi-

ples and techniques of algorithmic differentiation. SIAM, 2008.
[76] Andreas Griewank. On automatic differentiation and algorithmic lin-

earization. Pesquisa Operacional, 34(3):621±645, 2014.
[77] Christian H Bischof and H Martin Bücker. Computing derivatives of

computer programs. Technical report, Argonne National Lab., IL (US),
2000.

Rayhaan Iqbal received his M.S. in Mechanical
Engineering from the University at Buffalo (SUNY)
in 2021. His contribution to this paper occurred dur-
ing his M.S. Thesis performed under the supervision
of Dr. Souma Chowdhury. His research interests
include physics-infused machine learning and design
optimization.

Amir Behjat is a Post-Doctoral Research Asso-
ciate at Purdue University. He received his Ph.D.
in Mechanical Engineering from the University at
Buffalo (SUNY) in 2021. His contributions to this
paper occurred during his Ph.D. He graduated with
his BS and MS degrees in Mechanical Engineering
from Sharif University of Technology. His research
focuses on neuroevolution, physics-Aware machine
learning, and UAV collision avoidance.

Revant Adlakha is a Ph.D. student in the De-
partment of Mechanical and Aerospace Engineering
at the University at Buffalo (SUNY). He received
his B.Tech and M.S. from Symbiosis International
University (20xx) and the University at Buffalo
(SUNY) (20xx), respectively. His research focuses
on structural dynamics, noise control, and wave
propagation in acoustic metamaterials.

Jesse Callanan received his Ph.D. from the Depart-
ment of Mechanical and Aerospace Engineering at
the University at Buffalo (SUNY) in 2022, where the
research for this paper was conducted. His research
focuses on high-precision instrumentation, materials
characterization, and advanced manufacturing.

Mostafa Nouh is an Associate Professor of Mechan-
ical and Aerospace Engineering and the Director of
the Sound and Vibrations Lab at the University at
Buffalo (SUNY). He received his M.S. and Ph.D.
in Mechanical Engineering from the University of
Maryland. His research focuses on structural dy-
namics and acoustics with applications in phononic
crystals and metamaterials, thermoacoustic energy
generation, and non-reciprocal mechanics. He is a
recipient of the NSF CAREER award, ASME’s
Gary Anderson Early Achievement award, and the

University at Buffalo’s Young Investigator award. He currently serves as the
vice-chair of the ASME Noise Control and Acoustics Division.

Souma Chowdhury is an Associate Professor of
Mechanical and Aerospace Engineering at the Uni-
versity at Buffalo (SUNY). Dr. Chowdhury received
his B.S., M.S. and Ph.D. in Mechanical Engineering,
respectively from IIT Kharagpur in India, Florida
International University in Miami and Rensselaer
Polytechnic Institute in Troy. His research interests
lie at the intersection of multi-fidelity optimization
and machine learning with applications to the design
and control of autonomous systems, swarm robotics
and energy systems. He has co-authored 145 articles

in leading journals and full-length conference proceedings in related areas. His
research has been sponsored by the NSF, DARPA, ONR, NASA and AFOSR.

Supplementary Material

S-I. ANALYTICAL TEST PROBLEM: GRAMACY & LEE

FUNCTION

A. Partial Physics And Full Physics Functions

Gramacy & Lee function is used in this paper as an

analytical test problem to analyze the performance of

OPTMA-Net and OPTMA-Dual. Equations (S-I), (S-II), and

(S-III) define the partial physics function (FPP) and the two

full physics functions (FFP1 and FFP2), respectively. Note that,

the given partial physics model has a more strongly correlated

output with that of the first full physics model, while the input

space of the partial physics model and that of the second full

physics model is relatively more strongly correlated. Further

explanation of these characteristics can be found in [59].

Partial Physics Model (PP):

FPP(x) =
sin(10πx)

2x
+ (x− 1)4; x ∈ [−2, 2.5] (S-I)

Full Physics Model 1 (FP1):

FFP1(x) =FPP(3− x)

FFP1(x) =
sin

(

10π[3− x]
)

2(3− x)
+

(

[3− x]− 1
)

4
; x ∈ [0.5, 2.5]

(S-II)

Full Physics Model 2 (FP2):

FFP2(x) =FPP

{

0.5 + 2 sin
(

π[x− 2]/2
)

}

FFP2(x) =
sin

(

10π
{

0.5 + 2 sin
(

π[x− 2]/2
)}

)

2{0.5 + 2 sin (π[x− 2]/2)}

+
{

[

0.5 + 2 sin
(

π⟨x− 2⟩/2
)]

− 1
}

4

; x ∈ [0.5, 2.5]

(S-III)

where FPP is the partial physics model, FFP1 is the first full

physics model and FFP2 is the second full physics model.

B. Baseline models for Comparison

1) Pure Data-Driven ML model: To firstly highlight the

benefit of infusing partial physics, the OPTMA architectures

are compared with a pure data-driven neural network baseline.

As the name suggests, this pure data-driven network simply

takes the input and directly predicts the output quantities of

interest, and is trained in the standard supervised manner over

any set of ground-truth samples.

2) Sequential Hybrid Physics Infused Model: The sequen-

tial hybrid model is adopted from [57], and represents a differ-

ent kind of PIML model that involves a front-end infusion of

physics into the ML. More specifically, in this sequential hy-

brid model, the inputs (X) to the neural network include both

the original input vector (x) and the output(s) of the partial

physics model acting on this same input vector (fPP(x)), i.e.,

X = [x, fPP(x)]. Here, any constants of coefficients within

the partial physics model are set at user-prescribed values. In

this sequential hybrid model, it is thus also possible to include

multiple instances of the partial physics model, each with a

different set of prescribed values for the coefficients. In that

case, the neural network model receives the output of each of

those partial physics instances as additional input features. For

the analytical problem, only a single instance of fPP is used

for simplicity.

C. RMSE Calcualation

The RMSE calculation for the Gramacy & Lee problem is

shown in Equation S-IV:

RMSE =

√

∑nS

n=1
(Y FP

i − Y ML
i)2

nS

(S-IV)

Here nS is the size of the test dataset, Y FP
i is the full physics

output of the ith test sample, and the generic Y ML
i represents

the output predictions by an ML model (OPTMA or a baseline

model) in response to the inputs of that test sample. Here all

the output values are normalized by a reference value, and

hence the RMSE provide a sense of the error as a fraction of

this reference value. The observed ranges [−1, 5] and [−3, 40]

of the full physics outputs across the training samples were

used as this reference for FP1 and FP2 respectively.

S-II. OPTMA-NET

Model Architecture

OPTMA-Net is a fully connected PIML architecture, with

an ANN based transfer model and tensorially represented

physics based expressions. The transfer model outputs the

transfer features which are fed directly to the physics layers

of the model. The physics tensorial layers are written as the

exact representation of the partial physics function. Hence, the

transfer features have real importance in relation to the partial

physics function. These can be retrieved from the model for

physics based analysis of the problem statement.

PyTorch Modelling

Being a PyTorch architecture, OPTMA-Net uses automatic

differentiation (AD) for model training. Breaking down a

code into a set of fundamental actions or primitives, whose

derivatives are established and whereby the chain rule may

be applied, is a key component of AD [72]. PyTorch uses

Operator Overloading (OO) [73], one of two of the well

known AD implementations: i) Operator Overloading (OO)

and ii) Source Code Transformation (SCT). Although each

implementation has its own merits and demerits, OO is typ-

ically simpler to implement. Comprehensive explanation on

AD is accessible here [74]±[76]. Detailed description on the

mechanism involved in computing gradients can be found

in [77]. The loss function back-propagates over the fully

connected transfer model and physics tensorial expressions.

Model Complexity

Training OPTMA-Net would be substantially slower if the

partial physics model were to be computationally expensive

when compared to a full physics model of the problem. This

embodies the trade-off between a more precise and accurate

OPTMA-Net model and the resulting increase in computation

cost due to a sophisticated partial physics function. In this case,

OPTMA-Net’s model complexity changes with modifications

to the physics based tensorial layers. The computational cost

grows with the number of training samples times the number

of training epochs times the number of new nodes for each

node that is added.

Case Study: UAV Noise problem setup

Listing 1 shows the programmatic implementation of the

fully connected network of OPTMA-Net, including both the

transfer network and the downstream partial physics model

(of UAV acoustics) that is re-programmed in torch tensorial

form. Listing 2 shows how arbitrary values can taken for the

constant parameters in this implementation.

Table - S - I Fixed physical parameters of OPTMA-Net implementation for UAV acoustic modelling

Monopole Frequency Phase angle Monopole Location (x,y,z) Speed of Sound
ω
2π

(Hz) ϕ (deg) q (m, m, m) c (m/s)

Monopole 1 175 45 (0.176, 0.176, 0) 343
Monopole 2 175 45 (−0.176, 0.176, 0) 343
Monopole 3 175 45 (−0.176, −0.176, 0) 343
Monopole 4 175 45 (0.176, −0.176, 0) 343

Table - S - II Range of physical input parameters used to generate samples to train OPTMA-Dual’s internal network for UAV acoustic
modelling

Spatial Location (x,y,z) Normalized Amplitude Frequency Phase angle Monopole Location (x,y,z)
r Un

ω

2π
(Hz) φ (deg) q (m)

-2 to 2 -3 to 3 0 to 180 0 to 180 -2 to 2

1 import torch

2 import config1 as c #Import Partial Physics configuration

3

4 class Fully_connected(torch.nn.Module):

5 def __init__(self, D_in, D_out,config):

6 super(Fully_connected, self).__init__()

7 self.layers = torch.nn.ModuleList()

8 H = config[’hidden_layer_size’]

9 self.norm = torch.nn.BatchNorm1d(D_in)

10 self.linear_in = torch.nn.Linear(D_in, H)

11 self.dropoutp = config[’dropout’]

12 for i in range(c.Num_layers):

13 self.layers.append(torch.nn.Linear(H,H))

14 self.drop = torch.nn.Dropout(p=self.dropoutp)

15 self.linear_out = torch.nn.Linear(H, D_out)

16 self.nl1 = torch.nn.ReLU()

17

18 def forward(self, x):

19 #Transfer Model Layers: Standard Layers of desired description

20 out = self.linear_in(self.norm(x))

21 for i in range(len(self.layers)):

22 net = self.layers[i]

23 out = self.nl1(self.drop(net(out)))

24 out = self.linear_out(out)

25

26 #Partial Physics Layers: Custom PyTorch compatible layers

27 P = torch.zeros(out.shape[0],1,

28 dtype=torch.cfloat).to(c.device)

29 for n in range (0,4): #Loop over N=4 monopoles

30 r=torch.sqrt(torch.pow(x[:,0]-c.mono_loc[0,n],2)+

31 torch.pow(x[:,1]-c.mono_loc[1,n],2)+

32 torch.pow(x[:,2]-c.mono_loc[2,n],2))

33 P[:,0]=P[:,0]+(out[:,n]*torch.cos

34 (c.kappa[n]*r+c.phi[0,n]))/r

35 spl = (20* torch.log10(torch.abs(P)/c.P_ref))

36 return spl #Normalize before returning

37

38 def l2_loss(input, target):

39 loss = torch.nn.MSELoss()

40 return loss(input,target)

41

42 def make_train_step(model,optimizer,scheduler=None):

43 #One step in the training loop

44 def train_step(x, y,test=False):

45 a=model

46 if not test:

47 yhat = a(x)

48 loss = l2_loss(yhat, y)

49 optimizer.zero_grad()

50 loss.backward()

51 optimizer.step()

52 else:

53 a = model.eval()

54 with torch.no_grad():

55 yhat = a(x)

56 loss = l2_loss(yhat, y)

57 if scheduler:

58 scheduler.step(loss)

59 return loss.item()

60 #Returns the function called during training

61 return train_step

Listing 1 OPTMA-Net UAV Noise problem setup in PyTorch: Implemented transfer network and partial physics layers

1

2 import torch

3 #Partial Physics Parameters

4 mono_loc=torch.cuda.FloatTensor([[0.176, -0.176, -0.176, 0.176],

5 [0.176, 0.176, -0.176, -0.176],

6 [0, 0, 0, 0]])

7

8 comp_1i = torch.tensor([[0.0 + 1j]]).to(device)

9 phi = torch.cuda.FloatTensor([[45, 45, 45, 45]])

10 P_ref = torch.cuda.FloatTensor([[20e-6]])

11 freq=torch.cuda.FloatTensor([[175, 175, 175, 175]])

12 pi = torch.acos(torch.zeros(1)).item() * 2

13 ang_freq = 2*pi*freq[0,:]

14 kappa = ang_freq/343

Listing 2 OPTMA-Net UAV Noise problem setup: Implemented fixed partial physics parameters

S-III. OPTMA-DUAL CASE STUDY: UAV NOISE

Architectures

The training setup of OPTMA-Dual for the UAV Noise problem is shown in Fig. - S - 1. The PyTorch implementation for

the same is shown in Listing 3

I. Internal Network Training

Testing
Samples

Training
Samples

II. OPTMA-Dual Training

Transferred

Features

(𝑈, 𝐪, 𝜔, 𝜙)Transfer

Network
Trained Internal

Network

Spatial Inputs From

Indoor Experiment𝐫(𝑥, 𝑦, 𝑧) Predicted SPL

OutputLp
Ground Truth SPL

From Indoor Experiment

Loss

III. OPTMA-Dual Application

Trained Transfer

Network

Trained Internal

Network

Predicted SPL

Output𝑌OPTMA−D(𝐫)
Unseen Spatial

Input𝐫(𝑥, 𝑦, 𝑧)
Retrievable Transfer Features

Trained OPTMA-Dual

Input Loss

Monopole based

Partial Physics modelFor testing the

trained model

Internal
Network

Parameters are frozen

Predicted SPL

Output𝑌IN(𝑋, 𝑋𝑇𝐹)
Partial Physics Output SPL 𝑌PP(𝑋,𝑋𝑇𝐹)

Spatial input passed on as is

𝑋𝑇𝐹 : 𝑈, 𝐪,𝜔,𝜙
(𝑋,𝑋𝑇𝐹)
𝑋 : 𝐫(𝑥, 𝑦, 𝑧)

Transferred

Features

(𝑈, 𝐪, 𝜔, 𝜙)

Spatial input passed on as is

Fig.-S- 1 UAV Acoustic Field Modeling by OPTMA-Dual. I) Internal network training using data generated by the 4-monopole partial
physics model. II) OPTMA-Dual training architecture using the spatial location as the input (r), and the acoustic partial physics features
(U , q, ω, and ϕ) as the output of the transfer network; the internal network (kept frozen during this stage) takes the original input (r) and the
output of the transfer network to predict the SPL (Lp) at that location, which is compared with the experimental SPL data (ground truth) to
compute the loss function. III) Acoustic OPTMA-Dual application with the spatial location (r) as input and SPL (Lp) as predicted output.

1 import torch

2 import transfer_config as c #Import transfer model configuration

3

4 # Internal pretrained DNN parameters

5 import config_DNN as c_DNN

6 from network_DNN import Fully_connected_DNN

7

8 # Load the internal pre-trained DNN

9 cd_DNN = {

10 ’network_size’ : c_DNN.Num_layers,

11 ’dropout’: c_DNN.dropout,

12 ’hidden_layer_size’:c_DNN.Hidden_layer_size

13 }

14 model_par =Fully_connected_DNN(c_DNN.D_in, c_DNN.D_out, cd_DNN)

15 model_par.to(c_DNN.device)

16 model_par.load_state_dict(torch.load(’internal_DNN/output/trained_model_DNN_new.pt’))

17 model_par.eval()

18

19 # fixing internal network parameters

20 for params in model_par.parameters():

21 params.requires_grad = False

22

23 class Fully_connected(torch.nn.Module):

24 def __init__(self, D_in, D_out,config):

25 super(Fully_connected, self).__init__()

26 self.layers = torch.nn.ModuleList()

27 H = config[’hidden_layer_size’]

28 self.norm = torch.nn.BatchNorm1d(D_in)

29 self.linear_in = torch.nn.Linear(D_in, H)

30 self.dropoutp = config[’dropout’]

31 for i in range(c.Num_layers):

32 self.layers.append(torch.nn.Linear(H,H))

33 self.drop = torch.nn.Dropout(p=self.dropoutp)

34 self.linear_out = torch.nn.Linear(H, D_out)

35 self.nl1 = torch.nn.ReLU()

36

37 def forward(self, x):

38 #Transfer Model Layers

39 out = self.linear_in(self.norm(x))

40 for i in range(len(self.layers)):

41 net = self.layers[i]

42 out = self.nl1(self.drop(net(out)))

43 out = self.linear_out(out)

44

45 #Call physics based pre-trained internal network

46 spl_out = model_par(torch.cat((out,x),axis=1))

47 return spl_out

48

49 def l2_loss(input, target):

50 loss = torch.nn.MSELoss()

51 return loss(input,target)

52

53 def make_train_step(model,optimizer,scheduler=None):

54 #One step in the training loop

55 def train_step(x, y,test=False):

56 a=model

57 if not test:

58 yhat = a(x)

59 loss = l2_loss(yhat, y)

60 optimizer.zero_grad()

61 loss.backward()

62 optimizer.step()

63 else:

64 a = model.eval()

65 with torch.no_grad():

66 yhat = a(x)

67 loss = l2_loss(yhat, y)

68 if scheduler:

69 scheduler.step(loss)

70 return loss.item()

71 #Returns the function called during training

72 return train_step

Listing 3 OPTMA-Dual: Network implementation in PyTorch

Model analysis

The predicted acoustic transfer features (monopole properties) by OPTMA-Dual are further analyzed using two plots: i)

boxplot of the acoustic transfer features’ statistical distribution over the testing data set shown in Fig. - S - 2 and ii) plotting the

acoustic transfer features’ color coded values in a 3D space as shown in Fig. -S - 3. Both of these plots report the monopole

properties predicted by OPTMA-Dual for the 10%/90% percentage split case.

-2

-1

0

1

2

-2

-1

0

1

-2

-1

0

1

2

-2

-1

0

1

2

1 2 43

Monopole

-2

-1

0

1

2 2

1 2 43

Monopole

-2

-1

0

1

2

1 2 3 4

Monopole

1 2 3 4

Monopole

1 2 3 4

Monopole

1 2 3 4

Monopole

(a) (b) (c)

(f)(e)(d)

Fig.-S- 2 UAV Acoustic Field ± OPTMA-Dual for 10%/90% percentage splitting case: Statistical analysis of the various transfer features
over the testing data set. Box plot for (a) amplitude (U), (b) frequency (ω), (c) phase (ϕ), (d) x-coordinate (qx), (e) y-coordinate (qy), and
(f) z-coordinate (qz), for the four different monopoles. Here, q = [qx, qy, qz]

T. The red line in the box plots indicates the median values,
the red markers ′+′ denote the outliers, the black whiskers extend to the most extreme datapoints which are not regarded as outliers, and
the lower and upper limits of the box (blue lines) indicate the 25 and 75 percentile values of the dataset.

Convergence History

The convergence histories of OPTMA-Dual and OPTMA-Net are plotted in Fig. - S - 4 for the 70%/30% percentage split

case. The MSE (Mean Square Error) is reported on the log scale on the y-axis against the epochs on the x-axis.

Fig.-S- 3 UAV Acoustic Field ± OPTMA-Dual for 10%/90% percentage splitting case: Variation of transfer features as a function of spatial
location of the testing point. The rows show the various transfer features values for various monopoles which are arranged in a columnar
format, with monopole 1 being the far left column and monopole 4 being the far right one. The plots show the values of amplitude (U),
frequency (ω), phase (ϕ), x-coordinate (qx), y-coordinate (qy) , and z-coordinate (qz) of the monopole locations, respectively, for all field
points r ∈ R

3. The color of the data point denotes the value of the parameter as shown in the colorbars.

epochs

M
S

E
 (

lo
g
 s

c
a
le

)

Validation Set Convergence

OPTMA-Dual

OPMTA-Net

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07
0.08

0 5 10 15 20 25 30 35 40

Fig.-S- 4 UAV Acoustic Field: Convergence history of the transfer network training process for OPTMA-Net and OPTMA-Dual; the history
is shown in terms of the validation loss in the 70%/30% percentage split testing case.

S-IV. UAV ACOUSTIC PROBLEM: TESTING METRICS

We use the Normalized Mean Square Error (MSE) and the Relative error (RE) as the primary metrics to compare the results

of the different ML models for predicting the UAV acoustic field. These error metrics can be expressed as follows:

MSE =

∑nS

n=1
(Y ExpNrm

i − Y MLNrm
i)2

nS

(S-V)

REi(%) =
(Y ML

i − Y Exp
i)

Y Exp
i

× 100 (S-VI)

where nS is the total number of samples in the testing dataset, Y Exp
i is the experimentaly recorded ground truth value of a

generic ith sample, and Y ML
i is the ML model prediction for this sample. Here, Y Exp-Nrm

i and Y MLNrm
i respectively represent the

normalized values of the ground truth output and the model predicted output. Thus the MSE is calculated over the normalized

values of the SPL.

	Introduction
	Data Driven Modeling of Complex Systems
	Physics-Infused Machine Learning (PIML)
	Research Objectives of this Paper
	OPTMA-Net and OPTMA-Dual Architecture
	OPTMA as a PIML model
	OPTMA-Net
	OPTMA-Dual: Framework
	OPTMA-Dual: Training and Application

	Demonstrative Test Problems
	Analytical Test Problem: Gramacy & Lee Function
	Analytical Test Problem: Numerical Settings & Results

	PIML Modeling of UAV Acoustic Field
	Problem Statement and Experimental Data Collection
	Partial Physics Acoustic Model
	OPTMA-Net Implementation: UAV Acoustic Field
	OPTMA-Dual Implementation: UAV Acoustic Field
	Internal (Acoustic) Network: Training and Validation
	Sequential Hybrid Model Baseline: UAV Acoustic Field

	Model Testing Cases: UAV Acoustic Field
	Percentage Split Testing
	Quadrant Split Testing
	Radial Split Testing

	Results: UAV Acoustics Modeling
	Training settings
	Testing Performance
	Acoustic Transfer Feature Analysis
	Training (Computing) Cost Analysis of OPTMA

	Conclusion
	References
	Biographies
	Rayhaan Iqbal
	Amir Behjat
	Revant Adlakha
	Jesse Callanan
	Mostafa Nouh
	Souma Chowdhury

	Analytical Test Problem: Gramacy & Lee Function
	Partial Physics And Full Physics Functions
	Baseline models for Comparison
	Pure Data-Driven ML model
	Sequential Hybrid Physics Infused Model

	RMSE Calcualation
	OPTMA-Net
	OPTMA-Dual Case Study: UAV Noise
	UAV Acoustic Problem: Testing Metrics

