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Abstract—Opportunistic Physics-mining Transfer Mapping
Architecture (OPTMA) is a hybrid architecture that combines
fast simplified physics models with neural networks in order
to provide significantly improved generalizability and explain-
ability compared to pure data-driven machine learning (ML)
models. However, training OPTMA remains computationally
inefficient due to its dependence on gradient-free solvers or
back-propagation with supervised learning over expensively pre-
generated labels. This paper presents two extensions of OPTMA
that are not only more efficient to train through standard
back-propagation but are readily deployable through the state-
of-the-art library, PyTorch. The first extension, OPTMA-Net,
presents novel manual reprogramming of the simplified physics
model, expressing it in Torch tensor compatible form, thus
naturally enabling PyTorch’s in-built Auto-Differentiation to be
used for training. Since manual reprogramming can be tedious
for some physics models, a second extension called OPTMA-
Dual is presented, where a highly accurate internal neural net is
trained apriori on the fast simplified physics model (which can
be generously sampled), and integrated with the transfer model.
Both new architectures are tested on analytical test problems
and the problem of predicting the acoustic field of an unmanned
aerial vehicle. The interference of the acoustic pressure waves
produced by multiple monopoles form the basis of the simplified
physics for this problem statement. An indoor noise monitoring
setup in motion capture environment provided the ground truth
for target data. Compared to sequential hybrid and pure ML
models, OPTMA-Net/Dual demonstrate several fold improvement
in performing extrapolation, while providing orders of magnitude
faster training times compared to the original OPTMA.

Impact Statement—The new physics-informed machine learn-
ing (PIML) architecture presented in this paper provides in-situ
transformation of input or estimation of latent parameters via
a neural network, allowing a fast interpretable physics model to
make accurate predictions. More specifically, this paper presents
two extensions of the original underlying PIML architecture
that significantly improves its training efficiency and scope of
applicability. The latter is enabled by making OPTMA deployable
as an end-to-end neural architecture within PyTorch. Classes of
applications where OPTMA is expected to be particularly benefi-
cial include problems where simplified (computationally efficient)
physics model(s) are available, and they involve tunable param-
eters (which are otherwise user-prescribed). Such applications
are abound in engineering problems, such as flow/aerodynamic
analysis, materials characterization, robot dynamics and so on.
Broadly speaking, the OPTMA architecture can thus be applied
to a wide range of prediction problems in engineering, with end-
uses being systems analysis, design and control.

Index Terms—Acoustics, Auto-Differentiation, Extrapolation,
Physics-infused machine learning, unmanned aerial vehicle

I. INTRODUCTION
A. Data Driven Modeling of Complex Systems

Data driven machine learning (ML) models are utilized
regularly for predicting the behavior of complex systems in
different fields such as biological [1], engineering [2], [3],
robotics [4]-[6], and energy forecasting [7] systems. While
data driven models are seen to generate predictions of a
competitive nature [8], [9], they under-perform in generalizing
[10], [11] when trained with small or sparse datasets [12]
(which is often the case in engineering analyses, design and
controls problems), and usually fail at extrapolating [13].
Further, they exhibit sensitivity to noisy inputs [14] and
are difficult to interpret [15] due to their black-box nature.
For instances where a high fidelity (more complete) physics
model is computationally expensive to evaluate and /or data
collection by physical experiments is expensive and tedious,
lower fidelity simplified physics or “partial physics” models
(e.g., kinematics vs. full-dynamics, or a vortex lattice model
vs. full CFD simulation) are also used as another alternative.
However, these partial physics models, although interpretable
and physics-conforming, are often inaccurate, fail to capture
critical phenomena underlying the system behavior, and cannot
be directly improved with available high-fidelity data. Hybrid
surrogate models, a principal class of Physics-Informed Ma-
chine Learning (PIML) architectures that mix computationally
efficient partial physics models with purely data-driven ML
models in some form have been reported as one of the
answers to these challenges [16]-[19]. This paper presents
important extensions of one such recent type of hybrid model,
resulting in the advancement of its training efficiency, testing
performance and adaptability. For performance demonstration,
we present one of the first known applications of hybrid
models to successfully generalize and extrapolate acoustic
fields generated by a quadcopter unmanned aerial vehicle
(UAV). The remainder of this section briefly reviews related
PIML work and outlines the research objectives of this paper.

B. Physics-Infused Machine Learning (PIML)

While hybrid ML architectures exist in various forms,
Javed [20] provides a basic classification of them, namely
as serial [21]-[24] and parallel [20], [25], [26] architectures.
The data-driven model is either set in sequence with the



partial physics model or used to tune the partial physics model
parameters in serial architectures, while parallel architectures
usually present additive or multiplicative ensembles of partial
physics and data-driven ML models; the latter typically be-
ing artificial neural networks (ANN) or Gaussian Processes
(GP) [27]. Several such hybrid PIML architectures have been
reported in the literature in the past few years [24], [28]-
[45], spanning over a wide range of applications such as in
modeling dynamic systems, cyber-physical systems, robotic
systems, flow systems and materials behavior, among others.
A more comprehensive review of reported work on hybrid
PIML models can be readily found in some of this above-
cited literature, as well as in the review article by Rai and
Sahu [19].

Two other well-known strategies constructing physics-
informed ML models for prediction are by introduction of
observational and inductive biases. Observational bias can
be readily introduced into an ML model by gathering and
utilizing data that encompass the implicit physics of the
problem [46]-[49]. The drawback of this approach is the
need for a fairly large amount of data to cover the entire
input domain of a learning task [50]. Hence application of
this strategy is challenging when training data comes from
expensive simulations or limited physical experimental mea-
surements or observations. Introducing inductive bias on the
other hand enables imposing inherent physical restrictions
on the prediction process [50]. Any prior information and
inductive biases connected with a specific predicting objective
are inherently incorporated within the network architecture
in this case [51]-[53]. However, implicitly encoding physical
laws in a neural network architecture [50] is often challenging,
especially under the constrained expressibility of an assumed
neural network structure and underlying activation functions.

Our PIML architectures are structurally closer to a se-
rial architecture, with implementations mostly using ANN
as the ML component. More specifically, we identify and
present critical solutions to limitations of a recent hybrid
PIML architecture that otherwise has already shown enhanced
generalizability performance over pure data-driven models,
with applications to dynamic, robotic, and flow systems [54],
[55]. This original hybrid architecture from our earlier work,
known as the “Opportunistic Physics-mining Transfer Map-
ping Architecture” (OPTMA) [54], leverages partial physics
to process transformed inputs or estimated latent parameters
given by a transfer ANN or GP model acting on the original
input vector, and produce final output quantity of interest. The
goal is to match this output value as closely as possible to the
ground truth given by high-fidelity experimental or simulation
data. An illustration of the original OPTMA architecture is
shown in Fig. 1(I) (top left).

However, the integration of partial physics models that
are not readily differentiable limited the choice of training
approaches in the original OPTMA. This issue remains an
Achilles heel in similar other hybrid PIML architectures that
uses the constituent partial physics model in such a manner
where differentiating it is necessary to propagate the training

error and compute the updates to the constituent ML model pa-
rameters (e.g., ANN weights and biases) for back-propagation
to be viable. To go around this issue, the original OPTMA
was trained using a gradient-free Particle Swarm Optimizer
(PSO) [56] for dynamics problems, and using precomputed
intermediate labels directly at the output node of the con-
stituent transfer ML model for the flow problem. Both of these
training approaches are expensive compared to direct (one-
step) back-propagation based training. Moreover, this form of
the original architecture limits its deployment through state-
of-the-art open-source ML libraries, due to dependencies on
the form and language used for the partial physics implemen-
tation (which is application-dependent), thereby limiting its
adoptability by a wider community of end-users who could
potentially benefit from its generalization performance.

C. Research Objectives of this Paper

To solve the above-stated issues with the original OPTMA
architecture while preserving — or potentially further enhanc-
ing its generalizability and even extrapolability performance
by virtue of improved training — in this paper, we contribute
two new auto-differentiable variations of OPTMA that are
readily deployed using one of the most widely used state-
of-the-art open source ML library, aka PyTorch. The new
variations are: i) OPTMA-Net'; and ii) OPTMA-Dual.

OPTMA-Net presents the ability to represent the partial
physics program (when available as a set of algebraic equa-
tions) as tensorial expressions that can be directly incorporated
within PyTorch or similar Torch-tensor based ML libraries
[13]. Thus the partial physics becomes a direct part of the
end-to-end network, as shown in Fig. 1(II) (bottom left).
This allows standard back-propagation to be used for training
the OPTMA model through the in-built auto-differentiation
capabilities of the concerned ML library, here PyTorch. The
caveat here is the need for re-programming the partial physics
model in the specific tensorial form expressed in Python
language, which could be tedious.

To alleviate the above-described need in OPTMA-Net, we
present OPTMA-Dual that completely substitutes the partial
physics model with an internal neural network, as shown in
Fig. 1(III) (right). It separately trains a PyTorch ANN model
on the partial physics, where the latter could occur in any
programmatic or even closed-source form. The premise here
is that, as the partial physics model is inexpensive, it can
be generously sampled to train a highly accurate ANN-based
surrogate of the partial physics. Once trained, this internal
network acts as the second network that now processes the
output (e.g., transformed inputs) given by the transfer network
in OPTMA, resulting in a unified end-to-end composite neural
structure. Note that, since the trained model resulting from
OPTMA-Dual no more contains the partial physics model, it
does lead to a slight reduction in explainability compared to

The prior version of this OPTMA-Net was presented and published in
the proceedings of the AIAA Scitech 2022 conference [13]. This journal
manuscript both summarizes that work and further extends it with another
new architecture and comprehensive results analyses and comparisons.
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Figure 1 Model architectures: (I) OPTMA model. (II) OPTMA-Net with transfer model and tensorially expressed partial physics. (III)
OPTMA-Dual with a transfer model and an internal physics based surrogate network.

OPTMA-Net, especially if one intends to track the sensitivity
from transformed inputs to the final output when the hybrid
model is tested (or used for model-based analyses, design
or controls). Having said that, since the output nodes of the
transfer network, which serve as input nodes of the following
internal network, represent meaningful physical parameters
(shifted inputs and/or intermediate parameters such as phys-
ical coefficients or conditions), OPTMA-Dual still provides
increased interpretability compared to a standard pure data-
driven end-to-end ANN model.

While these newer variations of OPTMA have a structural
analogy to architectures that adopt an observation bias and
induction bias strategy respectively, the direct torch-tensorial
implementation makes it easier and more efficient to train.
However, as in the induction bias strategy, one would still be
somewhat limited in what physical model descriptions can be
expressed in the torch tensorial form for an assumed neural
structure; further research is needed to break down this barrier.

The objectives of this paper are thus: 1) describe the
two newly contributed variations of the OPTMA architecture;
2) test these new architectures on analytical problems with
comparisons to the original OPTMA and other baselines (pure
ML and sequential hybrid models); and 3) develop implemen-
tations of OPTMA-Net and OPTMA-Dual for predicting the
acoustic field of a UAV where the partial physics model is
given by a monopole based acoustic model and ground-truth
is collected from physical experiments reported in Callanan et
al. [57]. The outcomes of OPTMA-Net and OPTMA-Dual’s
performance on this complex real-world problem are expected
to inform the design of quieter UAVs in the future [58].

The remainder of this paper is structured as follows: the next

section describes the architecture and training of OPTMA-
Net and OPTMA-Dual. Section III reports the performance of
OPTMA-Net and OPTMA-Dual on an analytical test problem.
Section IV describes the UAV acoustic modeling problem,
with results on this problem and further analyses presented
in Section V. Conclusions are given in Section VI.

II. OPTMA-NET AND OPTMA-DUAL ARCHITECTURE
A. OPTMA as a PIML model

Figure 1(I) shows the concept of OPTMA [59]. The transfer
model takes the original inputs. It outputs the optimal trans-
ferred features that the computationally inexpensive partial
physics model requires as input. This dynamically tuned
partial physics model outputs the final quantities of interest.
The transferred features could be shifted input values and/or
intermediate parameters that serve as key coefficients and
constants in simplified physics models. In implementations
where the transferred features solely represent intermediate
(coefficient) parameters of the partial physics model (and not
shifted inputs), then the original input vector is also fed into
the partial physics model as additional input features. The
resulting physics-aware hybrid model is expected to provide
improved generalization [54] and interpretability. The overall
hybrid model loss is computed on how the output of the
second portion, namely the partial physics model, deviates
from the observed ground truth (high-fidelity output). Hence,
in order to back-propagate the model loss, both the partial
physics model and the ANN-based transfer model must be
auto-differentiable. Very few partial physics models provide
an auto-differentiable implementation, and even when it is
available, it may not be amenable to interfacing with standard



ML libraries. Hence, a more straight-forward optimization
based training was originally used, where the overall hybrid
model loss is simply treated as an objective function to
be minimized by a gradient-free solver. A Particle Swarm
Optimization algorithm [56] was adopted for this purpose,
which also helped in dealing with the observed multi-modality
of the loss function (further explained in [59]).

B. OPTMA-Net

OPMTA-Net [13] is proposed to address the training process
limitations of the original OPTMA architecture. Fig 1(II)
shows the architecture of OPTMA-Net. It utilizes a PyTorch
structure. Specifically, the partial physics model — a set of
algebraic equations in our target problems — is represented
as PyTorch compatible tensorial expressions. This model thus
expressed is connected at the output end of the transfer model,
where the latter is a feedforward ANN for our case studies.
However, this transfer model could be any other standard
ANN such as recurrent networks (RNN), Long Short-Term
Memory networks (LSTM), convolutional networks (CNN),
graph neural networks (GNN) and so on, as suited to the nature
of the input space for the concerned application. The resulting
hybrid model now occurs as a fully connected PyTorch net-
work, allowing usage of PyTorch’s automatic differentiation
for back-propagation over the entire network.

Additionally, the transfer features in the network have
physical relevance with respect to the partial physics equations.
This is because the tensorial physics layers in OPTMA-Net are
an exact representation of the physics equations being used. A
summary description of the implementation of OPTMA-Net is
provided in the Supplementary Material. Preferably, OPTMA-
Net must be used in problem statements where the partial
physics is simple to express in Torch-tensorial form.

C. OPTMA-Dual: Framework

In OPTMA-Dual, the manually programmed partial physics
layers are replaced by a separate neural network, which we
call the internal network here onward. This internal surrogate
network is trained apriori on a large dataset generated using the
inexpensive partial physics model. Thus the internal network is
considered to very closely embody the partial physics model.
Once trained, the internal network is added at the output end
of the transfer network in the forward propagation loop of
OPTMA-Dual, as shown in Figure 1(II). The first part of
OPTMA-Dual represents the transfer model and outputs the
transfer features which are inferred as the parametric inputs to
the partial physics model. But, in this case, these parametric
inputs or transferred features are fed directly to the internal
network. The output of the internal network is the desired
output of interest to be compared with high-fidelity ground
truth for computing the model loss of OPTMA-Dual.

OPTMA-Dual: Internal network: The goal of introducing a
separately trained neural network inside OPTMA architecture
is twofold: 1) enable an end-to-end neural network whose
model complexity is less dependent on that of the partial
physics; and 2) alleviate the need for end-users to manually

re-program partial physics models into Pytorch amenable
tensorial forms. Note that such re-programming might not
be practically viable when the partial physics model involves
non-differentiable evaluations. A basic example would be any
partial physics function involving sorting or ranking evalu-
ations, which are known to be problematic for end-to-end
automatically differentiable pipelines [60]. While there might
be differentiable approximations available (e.g., differentiable
approximate sorting [61]), they are not guaranteed to be
available for all such scenarios. Implementation of differen-
tiable approximation modules in an existing workflow is also
challenging and time-consuming if at all viable.

OPTMA-Dual’s substituted internal neural network offers
a flexible yet familiar alternative to such partial physics
functions, which is easy to incorporate. Again note that, any
standard type of networks (DNN, LSTM, RNN, CNN and
GNN) can be used as the internal network depending on the
input space and numerical nature of the partial physics model.

Therefore, the prediction of the OPTMA-Dual model on
any given input = can be expressed as:

YOPTMA—D(CU) = FIN([xvxTF])a
where zpp = Fry(x)

(D

where Fy and Fry respectively represent the output of the
internal (IN) and transfer (TN) networks. Note that in ap-
plication scenarios where the transferred features (xpp) are
simply shifted values of the input vector x as opposed to
model coefficients/constants in the partial physics, the input
to the internal network does not need to separately include x.
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transfer network) training architecture.

D. OPTMA-Dual: Training and Application

OPTMA-Dual is trained in a 2-stage process, shown in
Fig. 2. In the first stage (Fig. 2(I)) we train the internal
network over partial physics samples. Here, sampling is done
over the entire input feature space of the partial physics
as in its assumed role within the original OPTMA, which
includes the transferred features (X1 r), as well as the original



input vector (X) if they have not been shifted. Labels for
training the internal network are generated by passing these
input samples through the partial physics model at this stage,
i.e., Fpp([X,Xrr]). The internal network obtained thereof
is then tested over unseen partial physics samples, as a
sanity check, to ensure reasonable accuracy in substituting
the partial physics. Both the training and testing data set
are separately generated using Latin Hypercube Sampling
or LHS [62] by default, unless a problem-specific design
of experiments (DOE) is available or required. The criteria
used in LHS is centering of the points within the sampling
intervals. The internal network is then infused in the forward
propagation of OPTMA-Dual, shown in Figure 1(II). Now,
we freeze the (trained) internal network parameters using
model_params.requires_grad=False. Hence, in the
second training stage, shown in Fig. 2(II), only the transfer
network parameters get updated. At this second stage, the
loss function is computed based on the samples of the full
physics function (i.e., X, Y¢p(X)). The input portion of these
training samples is also generated using LHS by default, unless
a problem-specific DOE is required. In some applications these
samples might simply be given to us, resulting from a physical
or simulation experiment that we did not necessarily have the
liberty to design.

The hybrid model in OPTMA-Dual is essentially a com-
posite of two networks that is readily trainable with in-built
Auto-differentiation based solvers (e.g., SGD and Adam) in
PyTorch. This structure makes OPTMA-Dual agnostic to the
nature of the partial physics model, which along with the
programmatic ease of deployment significantly opens up the
applicability and adoptability of OPTMA. While OPTMA-
Dual contains pure neural network components, it still retains
a degree of interpretability, since the intermediate information,
i.e., the output of the transfer network (which is also the
input to the internal network) depicts meaningful physical
parameters, and can be readily retrieved for analyses and
interpretation of how the transfer network is helping correct the
substituted partial physics for accurate predictions. There are
several ways of retrieving these transferred parameter values,
one of which is by placing a hook on the output of the transfer
model in OPTMA-Dual.

III. DEMONSTRATIVE TEST PROBLEMS

A. Analytical Test Problem: Gramacy & Lee Function

For ease of analysis of OPTMA-Net and OPTMA-Dual, and
comparisons with baselines, we first use a simple analytical
test problem, namely the Gramacy & Lee Problem from [54].
Here, the goal is to predict the output of two different full
physics functions. To this end, OPTMA and its proposed new
variations here will use a common partial physics function.
Based on the described framework in Section II-C the trained
model using OPTMA-Dual will transfer the input features
which will be used with the partial physics model to make the
full physics predictions. The equations of the partial physics
(Fpp) and the two full physics (Frp; and Frp,) functions are
given in Section S-I-A in the Supplementary Material.

Three baseline models are used to compare the performance
of the OPTMA architectures over this analytical study: i) A
Pure Data-Driven ML Model, to highlight the benefits of par-
tial physics infusion; ii) A Sequential Hybrid Physics Infused
Model adopted from [57] and iii) The original OPTMA model,
here named as OPTMA-PSO, and illustrated in Fig. 1(I).
This is to specifically point out the advantages of the newer
variations presented in this paper, namely OPTMA-Net and
OPTMA-Dual. A more detailed description about the baseline
models is provided in Section S-I-B in the Supplementary
Material.
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B. Analytical Test Problem: Numerical Settings & Results

The structure of the internal neural network in OPTMA-
Dual, the data set size and settings used to train it over PP
samples are given in Table I. To ensure an accurate capture of
the partial physics function (PP), the trained internal network
is tested on 200 unseen samples, yielding a small mean-
squared error of 0.009. The testing performance on the internal
network is shown as a comparison between the actual and
predicted in Fig. 3, illustrating the accuracy of the internal
network.

The settings and model structure used for training the
transfer model in OPTMA-PSO, OPTMA-Net and OPTMA-
Dual are given in Table IIL.

With each of the two full physics Gramacy & Lee functions,
we set up four cases, defined by the size of the training data
set. The OPTMA models and the baseline models are trained
for each of these cases, and tested on 200 unseen samples.
The performance of the trained models on unseen samples is
termed as generalizability in this case [54], [63]. The testing
performance is reported in terms of the root mean squared
error or RMSE. Section S-I-C in the Supplementary Material
shows how the RMSE is calculated in this paper.

The testing RMSE results are provided in Table III. As seen
from Table III, OPTMA-PSO performs the best with smaller
training samples of FP1, with OPTMA-Net performing the
best in the last case of FP1. However, the testing RMSE for



TABLE I Gramacy & Lee: OPTMA-Dual’s internal network’s training settings and testing performance on the PP function

# Inputs/Outputs  Train Size Test Size # Layers

# Nodes/layer

Dropout Learning Rate Tr. Time Test MSE

171 1000 200 5)

50 0.6 0.00035 24.3 sec 0.009

TABLE II Gramacy & Lee: Training settings of OPTMA transfer
models and of networks in sequential hybrid and pure data-driven
models for test type FP2

Model # Layers # Nodes/ Dropout Learning
layer Rate
OPTMA-PSO* 4 11 — —
OPTMA-Net* 2 50 043 2x107¢
OPTMA-Dual* 2 50 043 2x107*
Sequential Hybrid 3 50 0.1 1x107°
Pure Data-Driven 3 50 0.1 1x1073

*Transfer network.

the OPTMA models are within the same order of magnitude.
For FP2, OPTMA-Dual outperforms all the other models,
except in the last case where OPTMA-Net performs the best.
Overall, both OPTMA-PSO and the newer OPTMA-Net and
OPTMA-Dual perform better than the pure data-driven and
sequential hybrid baselines. Specifically, compared to the pure
data-driven model, the RMSE of OPTMA-Dual is more than
an order of magnitude smaller for FP1, and about 2 to 4-
fold smaller for FP2. The performance gains are more notable
when the training set is sparse, demonstrating the increased
usefulness of partial physics infusion in such scenarios.

Since the conceived advantage of the newer versions of
OPTMA is their training efficiency (and performance), it’s
critical to compare the training (CPU) time of OPTMA-Net
and OPTMA-Dual, with that of the original OPTMA-PSO.
These computing times of the training process for the Gramacy
& Lee problem are reported in Table IV. These computing
times correspond to execution on a 6 core Intel 17-9750H
CPU and an NVIDIA GeForce GTX 1660 Ti 2.60 workstation
(with the models running on the GPU). Table shows that
both OPTMA-Net and OPTMA-Dual trains significantly (39
to 77 times) faster than OPTMA-PSO, by virtue of the auto-
differentiability of the newer implementations. Note that in the
case of OPTMA-Dual, there’s an additional cost for training
the internal neural network, which along with the cost of
training the transfer function in OPTMA-Dual made it overall
(3 to 4 times) slower-to-train compared to OPTMA-Net.

IV. PIML MODELING OF UAV ACOUSTIC FIELD
A. Problem Statement and Experimental Data Collection

The goal here is to develop a model that can predict the
noise signature of a hovering quadcopter unmanned aerial
vehicle (UAV) in an indoor environment. Noise mitigation
has become a very significant area of R&D in UAVs, due to
the increasing usage of UAVs in a human-robot collaborative
environment such as in an indoor warehouse setting [64],
[65] or last-mile delivery [66]. Such noise can both cause

annoyance and distraction as well as have harmful cognitive
and hearing impact with long term exposure [67]. To develop
noise mitigation techniques or design quieter UAVs, there is
a critical need for frameworks to model the noise signature of
multirotor UAVs. Traditional methods to model UAV sound
fields include using Finite Element simulations, creating syn-
thetic data using real recordings [68], and software packages
like iNoise [69], [70] for industrial noise predictions leading
to the proposal of various frameworks to measure and model
the UAV sound field [71]. However, there are very few data-
driven approaches to modeling the UAV sound field. Some of
the recent efforts include our prior work with a purely data-
driven model and a sequential hybrid model [57], which this
current work improves upon.

To this end, in an earlier work [57], we developed an
experimental setup for measuring UAV noise for a small set
of scenarios, and using the data to predict the 3D noise field
of the UAV. Such experiments are not only complex but also
expensive in terms of time and money, which limits both the
distances (from source) at which such measurements can be
taken and the number of measurements. Hence, a modeling
approach that can use such a small and distance-limited data
set, and still provide a generalizable and extensible (in space)
prediction of the noise field would be uniquely helpful to
the UAV and co-robotics communities. We hypothesize that
OPTMA is well-suited to serve in this role of generating
generalizable and extrapolatable prediction models.

To test this hypothesis, data presented in our previous study
[57] is used in this paper to train and test OPTMA models
of the UAV noise field, and compare their performance with
that of the baselines. The dataset contains the root mean
square (rms) sound pressure level (SPL) measurements of
noise generated by an unconstrained hovering UAV (a popular
commercial model). This includes data points for a total of
1700 locations in a 3-dimensional space as collected by a mov-
able microphone array. A custom scanning head microphone
array called the Large Aperture Scanning Microphone Array
(LASMA) was constructed and used for this purpose. The
LASMA is capable of scanning a total area of 2.3 x 1.2 m2,
The LASMA consisted of four microphones (BSWA MPA416
pre-polarized 1/4” microphones) which generate electronic
signals digitally recorded with a USB MC3522 DAQ. A
Vicon motion capture systems was utilized to capture the
locations of the microphones and the sound source (UAV)
with the help of retro-reflective markers. While the location of
microphones was precisely controllable, the hovering UAV as
usual experienced small drifts during each experiment (with
the microphone array at a particular setting). This resulted in
a series of data points representing the scalar sound pressure
level field at a set of locations distributed irregularly. Thus,



TABLE IIT Gramacy & Lee (GL): Testing results in terms of normalized RMSE for predicting the FP1 & FP2 functions

Train Size Pure DataDriven [13] Seq. Hybrid Model [13] OPTMA-PSO [54] OPTMA-Net [13] OPTMA-Dual

FP1
20 0.243 0.106 0.039 0.094 0.053
50 0.111 0.081 0.019 0.074 0.043
100 0.073 0.052 0.028 0.049 0.040
200 0.064 0.041 0.036 0.022 0.031
FP2
20 0.172 0.211 0.061 0.072 0.054
50 0.123 0.068 0.080 0.055 0.046
100 0.086 0.075 0.088 0.048 0.045
200 0.079 0.059 0.083 0.040 0.045

TABLE IV Computing times to train OPTMA transfer network on
the GL problem

Problem b1\ 1A-PSO OPTMA-Net OPTMA-Dual*
statement
FP1 702.97 sec 9.38 sec 17.86 sec
FP2 734.42 sec 9.55 sec 13.5 sec

*Excludes time taken to train internal network which is reported in Table I.

the objective of modeling (trained on this data) is to predict
the SPL value (L,) at any location r = [z, y, z|, with the UAV
assumed to be located at the origin.

B. Partial Physics Acoustic Model

A simple wave-based acoustics model is used as the partial
physics model to characterize the noise field of the hovering
UAV. This model could be implemented with an arbitrary
number of spherical acoustic sources. The hypothesis is that
when the parameters of this model are tuned to the optimal
values, the model would be able to predict the experimentally
obtained acoustic field with high accuracy, attributed to the
constructive and destructive interference of waves generated by
different monopoles. The parameters in the acoustic function
include the amplitude, frequency, phase, and relative positions
of the arbitrary monopoles. The time-independent pressure
field generated by an individual monopole can be defined as

Pn (I‘) = % COS(wn'r'n/C + ¢n) )

n

Here r is the position vector of the field point relative to the
origin; and 7, = |r,| is the Euclidean distance of the field
point from the n'" acoustic source, where r,, = r — qy,, with
d. as the position vector of the nt? acoustic source relative
to the origin. The n'" source has a normalized amplitude U,,,
angular frequency w,,, the speed of sound defined at STP as
¢ = 343 m/s, and ¢,, as the phase angle. The subscript (e),, is
the shorthand notation for the n'" acoustic spherical source.

The net acoustic pressure field can be computed by adding

the pressure fields of all the acoustic sources as given by

N
P(r) = pu(r) 3)
n=1
where N is the total number of acoustic sources. Finally, the
sound pressure level (SPL) can be computed as

Ly(r) = 201ogio[|P(r)|/ Pret] “)

where Pt = 20 uPa and |e| is the absolute value. It is worth
noting that the parameters related to the arbitrary number
of monopoles when tuned may or may not hold physical
significance as the aim is to estimate the sound pressure
level with high accuracy for a field point and numerous
combinations in the parameter space could possibly produce
the same output (a many-to-one mapping).

It is worth noting, that the parameters of each monopole
are intrinsic properties of a theoretical sound source that
accurately predicts the time-averaged sound pressure levels
in an anechoic, i.e. reflectionless, environment and not the
physical sound source such as the UAV in this instance. The
time-averaged SPL at a given field point is not unique to a
specific source parameter configuration and can be reproduced
with infinite different combinations of source parameters and
source positions. The hybrid modeling approach presented
here aims to force the model to learn the optimal distri-
bution of the parameters of the theoretical acoustic model
to reproduce the desired SPL at the specific field point of
interest. Additionally, predicting the SPL in a reverberant
space such as a warehouse creates modeling challenges due
to the reflections and interferences caused by room acoustics,
thereby motivating the use of multiple asymmetrically located
monopoles with locations tuned to cater to predicting accurate
SPL at different measurement points.

C. OPTMA-Net Implementation: UAV Acoustic Field

To implement OPTMA-Net, the partial physics model de-
scribed in Egs. 2 to 4 is re-programmed in torch tensorial form,
details of which are provided in the Supplementary Material.
Here, the normalized amplitude of each nh monopole, U,. is
selected to serve as the transferred feature. Hence the size of
transferred feature vector is equal to the number of monopoles



used to represent the noise source. The other parameters of this
partial physics model are kept fixed, which includes ¢, w, ¢,
and q for each of the four monopoles. Hence the OPTMA-
Net model for this problem, which predicts the SPL (L,(r))
given the location (r = [z,y, z]) from the source (UAV), can
be mathematically expressed as:

Lp(r) = FPP—Net (I‘, U7 [67 w, ¢7 q])

U = Fry(r) ©)

where
where Fpp_yet(®) represents exact network tensorial imple-
mentation of the acoustic partial physics model with N
monopoles. Here, the fixed values of the other parameters, c,
w (set to be the same for all 4 monopoles), ¢ = [d1, ..., PN]
and q = [q1,...,qy], used in computing Fpp_yer are given
in Table - S - 1 in the Supplementary Material. Note that
each q, is a vector representing the 3D location of each
monopole source in the partial physics model. The PyTorch
implementation of the transfer and partial physics network
layers in OPTMA-Net is provided as Listings and 1 and 2
in the Supplement.

When implementing the acoustics partial physics within
Pytorch in OPTMA-Net, the choice of physics model param-
eters to be transferred must be decided apriori. If this choice
is changed, the torch tensorial implementation needs to be
partly reprogrammed, which somewhat limits the flexibility of
OPTMA-Net in problems where there are various parameter
options that could be fixed or allowed to be predicted by
the transfer network. Here, we consider four monopoles in
the partial physics implementation with their amplitude (U)
treated as the transferred feature in OPTMA-Net. Hence the
number of transferred features, i.e., the size of the output of
the transfer network, is four in this case.

D. OPTMA-Dual Implementation: UAV Acoustic Field

Since OPTMA-Dual substitutes the partial physics by a
neural network, unlike OPTMA-Net, here it is easy to change
the choice of which physics model parameters to pre-fix and
which to predict via the transfer network. When implementing
OPTMA-Dual on this UAV acoustics problem, we readily
increase the transferred feature space to include all the four
parameters, namely amplitude (U,), phase (¢,), frequency
(wp), and the 3D position (q,, € R3), for each nh monopole.
We train the internal network on the acoustics partial physics
model implemented with four monopoles, to allow ready
comparison with OPTMA-Net. Thus in this case, for OPTMA-
Dual, the size of the transferred feature space is 24. While the
increased transferred feature space might lead to an increase
in the training effort for the transfer network, with more knobs
to tune it is expected to allow greater flexibility in matching
the ground truth.

The steps to setup OPTMA-Dual for the acoustic problem
is illustrated in Fig. - S - 1 in the Supplementary Material.
Step I: We first train the internal network on a dataset
generated by the acoustic partial physics model. By training
the internal network with the global set of partial physics
parameters treated as inputs (here 24 parameters), and the

LHS sampling covering this entire set, one can readily use
the internal network (later on in step II) with any subset
of parameters treated as the transferred features, with others
fixed at user-prescribed values if desired, thereby providing
greater modeling flexibility. Step II: This internal network is
infused at the output end of the transfer network in the forward
propagation of OPTMA-Dual. The code to incorporate a pre-
trained network has been shown in Listing 3 in Supplementary
Material. Note that this pre-trained internal network is kept
frozen during the second training step, i.e., when the transfer
network is trained.

E. Internal (Acoustic) Network: Training and Validation

Along with the global set of 24 tunable parameters in the
UAV acoustics’ partial physics model, the inputs to the internal
network also include the original problem inputs, namely the
3D location (r € R3) at which the SPL is being measured.
This brings the total size of the input vector to 27 for the
internal network. LHS is used to sample this 27 dimensional
space, with the range of each physical input parameter given
in Table II in the Supplementary Material. The corresponding
SPL value for each sample is computed from the acoustic
partial physics model, which form the labels to train the
internal network. We generate 10000 samples using LHS [62]
in the input space and use 80% of the data for training the
model. The inputs and outputs are normalized using the range
of data. Since the inputs to the internal surrogate network
are in the normalized range, the transfer feature analysis
of OPTMA-Dual would correlate to the normalized latent
space of the transfer features; analysis of the output transfer
features is explained in Section VI-C. Note that the same SPL
normalization limits must be used in both the internal network
training as well as the complete OPTMA-Dual training for
meaningful application.

Prior to use in Step II, we first test the quality of the
trained internal network on the remaining 20% partial physics
samples. A normalized mean square error of 0.009 is observed
in testing, showing that the internal network provides an
acceptable substitute of the acoustic partial physics model. The
training settings, network structure and testing performance of
the internal (acoustics) network are summarized in Table V.

F. Sequential Hybrid Model Baseline: UAV Acoustic Field

The sequential hybrid model is adopted from [57]. Here,
along with the spatial inputs r (i.e., location vector w.r.t. noise
source), SPL outputs of 5 different instances of the partial
physics model (operating on r) are passed as additional input
features into a neural network. The five different instances
of the acoustics partial physics model corresponds to five
different combinations of physical parameters (with variations
in U, keeping q, ¢ and w fixed) in the partial physics model.
Here the partial physics model was implemented with four
monopoles, ie., n = 1,2,3,4. The neural network then
predicts the final output of interest, the SPL value L, at
location r.



TABLE V UAV Acoustic Field: OPTMA-Dual’s internal network’s training settings and testing performance on the PP function

# Inputs/Outputs  Train Size Test Size # Layers

# Nodes/layer

Dropout Learning Rate Tr. Time Test MSE*

27/1 8000 2000 6

600

0.01 8 x 1074 25.1 sec 0.0097

*The MSE is reported on the range normalization of the dataset.

V. MODEL TESTING CASES: UAV AcCoOUSTIC FIELD

For this UAV acoustics problem, we will compare OPTMA-
Net and OPTMA-Dual with the sequential hybrid PIML
model (described in Section IV-F) and a pure data driven
network network model. The last one simply uses a single
neural network that takes as input a 3D location and outputs
the SPL value at that location. In order to test the generaliza-
tion and extrapolation performance of the models generated by
the stated methods, we set up three case studies: i) Percentage
split testing; ii) Quadrant split testing; and iii) Radial split
testing. These case studies follow different approaches to split
the overall data from the experiment [57] into training and test
sets, which are further described below. Mean Square Error
(MSE) and Relative Error (RE) are the testing metrics used
(Equations S-V and S-VI in the Supplementary Material).

A. Percentage Split Testing

This approach randomly splits the whole experimental
(ground truth) data set into training and test sets, such that
the distribution of data is similar between these two sets. Four
sub-cases are created, which vary the ratio of train vs. test
points as follows: 90%/10%, 70%/30%, 50%,50%, 30%/70%
and 10%/90%. The progressive reduction in training samples
used is designed to analyze model performance under growing
sparsity of data. Figure 4 (a) gives an illustration of the
percentage splitting for 10% training dataset sub-case. To have
a fair comparison, the same dataset samples, created by the
apriori splits, are used for training and testing each method.

B. Quadrant Split Testing

The quadrant split testing is devised to analyze model
performance when the testing samples come from a region
that did not contribute any training samples, although both
regions have overlapping range in terms of their input vector
(albeit very different data distribution by virtue of the split).
More specifically, here we use points only from the first
quadrant of the y-z plane for training, whereas points from the
three other unseen quadrants are used for testing. This data
split is expected to be challenging to address with standard
regression modeling due to the induced asymmetry in the
acoustic field being used to train the models. For instance, due
to the geometry of the quad-rotor and its asymmetry along
the z-axis caused by the spinning propellers, it is expected
to have higher SPL values in the lower two quadrants in
2D space, or the four octants in 3D space with negative z-
value. Conversely the symmetry of the UAV in the z-y plane
will probably lead to relatively symmetric distribution of SPL
values in the z-y space. Note that radial distance between
the measurement point and UAV will decrease the SPL value,

leading to a relatively symmetric radial distribution. Due to
these effects, successful prediction of the output in unseen
testing quadrants requires more meaningful capture of the
physics of the problem. Figure 4 (b) gives an illustration of the
quadrant splitting case study, where the models are trained on
the first quadrant and tested on the remaining three quadrants.

C. Radial Split Testing

Figure 4 (c) illustrates the radial splitting case study. This
case is designed to particularly test the (radial) extrapolation
capability of each model. Here the data is split into training
and testing sets purely based on the radial distance of the point
in space w.r.t. the noise source (UAV) that is located at the
origin. To implement this split, the entire experimental data
set is sorted based on their Euclidean distance from the UAV.
The most distant point is identified and its distance from the
UAV is used as reference. The sample points within 50% of
this reference distance are used for training; thus the training
envelope represents a sphere centered at the UAV with a radius
equal to the 50% of the reference distance. The points outside
of this sphere are used for testing.

TABLE VI UAV Acoustic Field: Training settings of OPTMA
transfer models and of networks in sequential hybrid and pure data-
driven models for percentage split testing with 70% (1209) of the
data used for training

Model # Layers # Nodes/ Dropout Learning
layer Rate
OPTMA-PSO* 4 10 — —
OPTMA-Net* 3 50 0.1 1x10*
OPTMA-Dual* 3 50 0.1 1x1074
Sequential Hybrid 3 100 0.1 1x1074
Pure Data-Driven 3 100 0.1 1x10~*

*Transfer network.

VI. RESULTS: UAV ACOUSTICS MODELING
A. Training settings

The settings of the transfer network in the OPTMA archi-
tectures and those for the networks in the sequential hybrid
and pure data-driven models are summarized in Table VI,
using the example of the 70%/30% percentage split case.
With each method, we train a total of seven models, one
each for the five percentage split cases, the quadrant split case
and the radial split case. Note that the original OPTMA-PSO
architecture proved to be too inefficient to be trained for this
problem (taking multiple hours even for small improvement in
the loss function), and hence only one representative training
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Figure 4 UAV Acoustic Field Train-Test Splitting Case Studies: (a) Scatter plot for Percentage splitting in the y-z plane. This case is for
10% training data. (b) Scatter plot for Quadrant splitting in the y-z plane. The data points in the first quadrant are used to train the model.
(c) Radial splitting case, where the data points inside the sphere are used for training, and those outside are used for testing.

TABLE VII UAV Acoustic Field: Testing results in terms of normalized MSE

Test Type Train Size Pure DataDriven [13] Seq Hybrid [13] OPTMA-Net [13] OPTMA-Dual \ Partial Phys
Generalization
Percent 1555 (90%) 0.0083 0.0095 0.0083 0.0088 4.981
Percent 1209 (70%) 0.0083 0.0089 0.0086 0.0089 4.766
Percent 864 (50%) 0.0083 0.0085 0.0083 0.0085 4.701
Percent 518 (30%) 0.0087 0.0091 0.0090 0.0088 4.632
Percent 172 (10%) 0.0095 0.0239 0.0097 0.0095 4.643
Extrapolation
Quadrant* 347 0.129 0.089 0.034 0.026 5.472
Radial** 238 0.055 0.041 0.013 0.017 5.067

*Quadrant uses training data only from the first quadrant in the extruded y — z plane. Tests on data from the other three quadrants.

**Radial uses training data only within a 114cm sphere centered on the UAV location. Tests on data outside this sphere (extending radially till ZZZ cm)

instance of OPTMA-PSO is included to specifically allow the
comparison of training costs later in this paper.

TABLE VIII Computation times for training OPTMA transfer
network models on the UAV Acoustic Field problem for percentage
split testing with 70% (1209) of the data used for training.

Model Computation Time Error Reduction
OPTMA-PSO* 5,047 sec 13%
OPTMA-Net 19.3 sec 82.4%
OPTMA-Dual** 9.4 sec 84.1%

*Due to very slow training, OPTMA-PSO was not run until convergence.
**Excludes time to train internal network which is reported in Table V.

B. Testing Performance

The testing results of the pure data-driven, the sequential
hybrid, OPTMA-Net and OPTMA-Dual models for the UAV
acoustics problem is given in Table VII, in the form of range-
normalized MSE. This includes results for the percentage split,
quadrant split and radial split case studies. The prediction
performance of the partial physics model, with fixed user-
prescribed parameter settings, over the corresponding testing
data sets is also included. This is to illustrate that the superior

performance of the PIML models is not simply an artifact of
the (included) partial physics model’s prediction capacity.

Percentage split cases: Table VII show that the testing
performance of OPTMA-Net and OPTMA-Dual is close to
that of the pure data-driven model for the percentage split
testing cases, which essentially encapsulate generalizability.
This is attributed to the training set being sufficient to allow a
pure data-driven neural network model to accurately capture
the acoustic field, as long as data points (even if sampled
sparsely) from the entire input space is used for training
— i.e., when the training and testing data distributions are
similar. Interestingly, the sequential hybrid model is found to
offer the poorest generalizability performance, which is likely
due to it dependence on the fixed (untuned) partial physics
implementation, where the latter is quite inaccurate when not
adaptively tuned (as seen from the last column of Table VII).

Quadrant split case: The quadrant test case is expected
to be more challenging to predict compared to percentage
testing, since training occurs solely on data points in one of
the quadrants, and the trained model is required to predict
the SPL values in other quadrants. In this test, both OPTMA-
Net and OPTMA-Dual perform substantially better than the
baseline models. More specifically, OPTMA-Dual provides



the smallest testing errors, which is about 3.4 times and 5
times smaller than the testing errors given by the pure data-
driven and sequential hybrid models, respectively. For physical
clarity, the relative errors in the predicted SPL values for this
case are also plotted in Fig. 5, where both the color and circle
size represent the magnitude of error. Figure 5 shows that
compared to OPTMA-Dual, the baseline models suffer from
high prediction error for locations in the second and third
quadrant visualized in the y-z projection plane. This drop in
performance of the baseline models can be attributed to the
non identical distributions of the training and testing datasets.
These datasets were generated using measurements from dif-
ferent parts of the room at varying distances. For instance,
the first quadrant represents the areas closer to the ceiling of
the room and the third quadrant represents the areas closer to
the floor of the room creating unique acoustic signatures in the
various quadrants attributed to the geometric characteristics of
the room. On the other hand, spatial adaptation of the partial
physics parameters in OPTMA-Net and OPTMA-Dual allows
capturing these differences, lending them a higher prediction
accuracy in the quadrant split test.

Radial split case: This test directly assesses each model’s
extrapolation ability. Table VII shows that OPTMA-Net and
OPTMA-Dual again provide remarkably better extrapolation
performance compared to the baselines. Here OPTMA-Net
gives the smallest testing errors (slightly smaller than that of
OPTMA-Dual), which is found to be ~ 4 times and 3 times
smaller than the testing errors given by the pure data-driven
and sequential hybrid models, respectively. The relative error
(RE) for OPTMA-Dual and the baselines in the radial split
case is also visualized vs. increasing distance of the testing
points from the source (UAV) in Fig. 6. This figure shows
that OPTMA-Dual’s extrapolation performance in this case
is agnostic to the distance from the source (UAV), while both
baselines suffer from higher errors at points farther away from
source. The pure data-driven model even exhibits high error
regions closer to the source.

Both the quadrant split and radial split testing cases
clearly demonstrate the advantage of not only using partial
physics, but also adaptively tuning it, as unqiuely performed
in OPTMA-Net and OPTMA-Dual. This advantage is par-
ticularly apparent when predicting test data that is from a
distribution or spatial region different from those used in
training, or is completely outside of the regions used for
training (true extrapolation). To provide further insights into
how the adaptive tuning of the acoustic partial physics pa-
rameters enable this several fold improvement in prediction
performance, next we provide further statistical analyses of
the transferred features in OPTMA-Dual.

C. Acoustic Transfer Feature Analysis

As previously mentioned, the space of tunable parame-
ters includes six parameters per spherical acoustic source
(monopole) in the OPTMA-Dual implementation on this prob-
lem. Thus the design space of tunable parameters become
twenty four dimensional D € R?%, where D is the design

space. Moreover, by virtue of its architecture, OPTMA-Dual
allows us to retrieve the intermediately predicted values of
these parameters for any given spatial location r. Leveraging
this capability, we retrieve these parameter values for the
10%/90% percentage split case, and analyze their statistical
distribution over the testing data set. These distributions are
also illustrated as boxplots in Fig. - S - 2 in the Supplementary
Material. From this figure, we notice a variation of the median
value of each monopole property across the four monopoles,
with the third monopole being the closest and the fourth one
being the farthest from the source. This is likely attributed to
the need to capture the asymmetric nature of the acoustic field
generated by the hovering UAV.

To understand the spatial adaptation of the monopole prop-
erties (tunable parameters) achieved by the transfer network
in OPTMA-Dual, we analyze their predicted values over 3D
(r-vector) space (illustrated in Fig.- S - 3 in the Supple-
mentary Material). Here, each row represents one tunable
parameter and each column represents one monopole. The
parameters plotted are Amplitude, Phase, Frequency, X, Y,
and Z coordinates of the monopole ranging from the first
row to the last respectively. We observe that the amplitude
of the first monopole stays consistently low compared to the
other monopoles for various field points which show more
variation in the as the field point location is varied. From this
figure, we make the following key physical observations: The
amplitude of the second monopole shows higher sensitivity to
the field points in the upper octant of the 3D space (denoted in
light green) while the third and fourth monopoles show lesser
sensitivity in lower octants (denoted in blue). Another example
is variation in phase (second row) where the first monopole
shows higher sensitivity towards the field points with hotter
marker color while the fourth monopole shows an inverted
behavior. Similar trends could be identified in the different
parameters as shown in Fig. - S - 3 in the Supplementary
Material. As explained in section IV-E, the parameters act as
the normalized latent space values of the acoustic physical
parameters which yield a highly accurate predicted value.

D. Training (Computing) Cost Analysis of OPTMA

Lastly, to again highlight the improved training efficiency
of OPTMA-Net and OPTMA-Dual, compared to the original
OPTMA-PSO, we analyze the computing time invested in
training the transfer network in each of these architectures,
taking the exaple of the 70%/30% percentage split case study
of the UAV acoustics problem. These computing times are
listed in Table VIII. Here OPTMA-PSO run was stopped
prematurely due to its inefficiency, during which it achieved
just a 13% reduction in error. On the other hand, OPTMA-
Net and OPTMA-Dual both converge with more than 80%
error reduction in two orders of magnitude less computing
time compared to OPTMA-PSO. This significantly improved
efficiency further strengthens the benefit of the direct Py-
Torch network implementation used in both OPTMA-Net
and OPTMA-Dual, allowing the use of state-of-the-art auto-
differentiation for training the transfer network.
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Figure 5 UAV Acoustic Field Testing Results: the relative error (RE) in the quadrant split case shown on the y-z plane for the following
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Figure 6 UAV Acoustic Field Testing Results: the relative error (RE) in the radial split case for the following models: (a) Pure data-driven
model, (b) Sequential hybrid model, and (c) OPTMA-Dual model. RE is plotted vs. the index of points sorted in the increasing order of
their Euclidean distance from the source (UAV), with color and size of the circles being proportional to the error magnitude. The red dashed
cut-off line marks the radius of the sphere within which lies the data points used for training.

VII. CONCLUSION

OPTMA is a recently reported physics-infused ML (PIML)
architecture that transfers the original inputs (via a transfer
neural network) into a feature space that informs a simplified
partial physics model; this physics model, thus tuned input-
adaptively, then makes accurate predictions of the output of
interest. This paper presented two advanced variations of
OPTMA, called OPTMA-Net and OPTMA-Dual, both of
which are end-to-end PIML architectures, fully implemented
in a state-of-the-art ML framework (PyTorch). OPTMA-Net
incorporates the partial physics model into PyTorch by repro-
gramming it in the torch tensorial form. OPTMA-Dual instead
trains a separate internal neural network as a surrogate for
the partial physics, which is then connected at the output end
of the transfer network. This approach alleviates the need for
reprogramming the partial physics which could be both tedious
and challenging depending on the nature of the functions
embodying the partial physics. Both advancements retain the
ability to retrieve physically meaningful transferred features
for increased explainability, while offering a substantially
faster training process (compared to original OPTMA) by
enabling the use of in-built auto-differentiation capabilities in
PyTorch. Note that fundamentally OPTMA is a competitive

choice of prediction or surrogate modeling architecture in
any problem scenario where a fast partial physics model with
tunable parameters or terms are available. Now, whether to use
OPTMA-Dual or OPTMA-Net to solve a particular problem
depends on the programmability of the partial physics in
PyTorch. In situations where the partial physics is viable to
reprogram in PyTorch, OPTMA-Net should be preferred since
an exact mathematical representation of the partial physics can
be achieved and greater interpretability of the overall hybrid
model is retained. On the other hand, when the partial physics
is non-differentiable or challenging to re-program for any
other reason (e.g., proprietary model), OPTMA-Dual should
be used. In cases where reprogramming the partial physics
in PyTorch or other Torch-tensorial ML libraries is time-
consuming, the model selection is at the user’s discretion.
To test the performance of OPTMA-Net and OPTMA-Dual,
we compare it with the original OPTMA and two baselines,
a pure data-driven model and a sequential hybrid model,
over benchmark functions. Results demonstrate that the new
versions of OPTMA continue to provide 10-fold improved
generalizability performance compared to pure data-driven
baselines over sparse to dense sampling scenarios.

The OPTMA architectures and baselines are also applied



to a real-world problem of predicting the acoustic field of
a quadrotor UAV, by learning from experimental data on
sound pressure levels (SPL) at various 3D locations w.r.t. the
UAV at the origin. To this end, we specifically implement
a multi-monopole based simplified acoustic model, serving
as the partial physics, within PyTorch — first reprogrammed
in tonsorial form for OPTMA-Net, and later surrogated by
the internal network in OPTMA-Dual. To test the prediction
performance of various models on this problem, we create
three case studies that respectively assess generalizability,
predictability over out-of-distribution testing set, and extrapo-
lability. The latter two capabilities are particularly important in
this problem since the acoustic environment around a hovering
UAV is asymmetric, and experiments are practically feasible
only within smaller spatial envelopes while predictions are
needed beyond that envelop for research on design and control
of quieter UAVs. In our tests, the generalizability performance
of all the models appear to be close to each other. More
importantly, for out-of-distribution predictions and extrapo-
lations, both OPTMA-Net and OPTMA-Dual are found to
be around 4-times more accurate than the pure data-driven
model and over 2-times more accurate than the sequential
hybrid model. Further analyses of the transferred features
showed that OPTMA-Dual (for example) is able to achieve
this significantly improved performance by asymmetrically
locating the four monopoles and adapting their properties (e.g.,
amplitude and frequency) w.r.t. different inputs, i.e., locations
where the SPL is being predicted.

Lastly, in both the benchmark problem and the UAV
acoustics problem, OPTMA-Net and OPTMA-Dual presented
orders of magnitude faster training processes compared to
the original OPTMA-PSO, thereby supporting our primary
premise behind developing these newer OPTMA implemen-
tations as end-to-end PyTorch based architectures. In their
current form, these newer OPTMA architectures still require
the specification of which partial physics parameters to be used
as transferred features; this prescription could be alleviated
in the future by exploring inclusion of classification layers
allowing the transfer model to self select the best sub-set of
physics parameters to use as transfer features. This capability,
along with the ability to use multiple (multi-fidelity) partial
physics models, could further expand the use and adoption of
the OPTMA PIML architecture.
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Supplementary Material

S-I. ANALYTICAL TEST PROBLEM: GRAMACY & LEE
FUNCTION

A. Partial Physics And Full Physics Functions

Gramacy & Lee function is used in this paper as an
analytical test problem to analyze the performance of
OPTMA-Net and OPTMA-Dual. Equations (S-I), (S-II), and
(S-1IT) define the partial physics function (Fpp) and the two
full physics functions (Frp; and Fypy), respectively. Note that,
the given partial physics model has a more strongly correlated
output with that of the first full physics model, while the input
space of the partial physics model and that of the second full
physics model is relatively more strongly correlated. Further
explanation of these characteristics can be found in [59].

Partial Physics Model (PP):
sin(107x)
2x
Full Physics Model 1 (FP1):

Frp1(z) =Fpp (3 — )
sin (107[3 — 2])
2(3 —x)

Fos(z) = +(z -1 ze[-2,2.5] (S-D

+(B-2]-1)"% z€05,2.5]
(S-ID)

FFPl(ﬂf) =

Full Physics Model 2 (FP2):
Feez (2) =F2: {05 + 2sin (w[o — 2]/2) }
sin (107{0.5 + 2sin (xlz — 2]/2) })
2{0.5 + 2sin (n[z — 2]/2)}

+ { 0.5+ 2sin (r(z — 2)/2)] — 1}4; z € [0.5,2.5]
(S-TIT)
where Fpp is the partial physics model, Frp; is the first full
physics model and Frp, is the second full physics model.

Frp (13) =

B. Baseline models for Comparison

1) Pure Data-Driven ML model: To firstly highlight the
benefit of infusing partial physics, the OPTMA architectures
are compared with a pure data-driven neural network baseline.
As the name suggests, this pure data-driven network simply
takes the input and directly predicts the output quantities of
interest, and is trained in the standard supervised manner over
any set of ground-truth samples.

2) Sequential Hybrid Physics Infused Model: The sequen-
tial hybrid model is adopted from [57], and represents a differ-
ent kind of PIML model that involves a front-end infusion of
physics into the ML. More specifically, in this sequential hy-
brid model, the inputs (X) to the neural network include both
the original input vector () and the output(s) of the partial
physics model acting on this same input vector (fpp(z)), i.e.,
X = [, fop(z)]. Here, any constants of coefficients within
the partial physics model are set at user-prescribed values. In
this sequential hybrid model, it is thus also possible to include
multiple instances of the partial physics model, each with a

different set of prescribed values for the coefficients. In that
case, the neural network model receives the output of each of
those partial physics instances as additional input features. For
the analytical problem, only a single instance of fpp is used
for simplicity.

C. RMSE Calcualation

The RMSE calculation for the Gramacy & Lee problem is
shown in Equation S-1V:

RMSE = \/ Sons (YFP — YMn)2

(S-IV)
ng

Here ng is the size of the test dataset, Y;*F is the full physics
output of the i*® test sample, and the generic Y}** represents
the output predictions by an ML model (OPTMA or a baseline
model) in response to the inputs of that test sample. Here all
the output values are normalized by a reference value, and
hence the RMSE provide a sense of the error as a fraction of
this reference value. The observed ranges [—1, 5] and [—3, 40]
of the full physics outputs across the training samples were
used as this reference for FP1 and FP2 respectively.

S-II. OPTMA-NET

Model Architecture

OPTMA-Net is a fully connected PIML architecture, with
an ANN based transfer model and tensorially represented
physics based expressions. The transfer model outputs the
transfer features which are fed directly to the physics layers
of the model. The physics tensorial layers are written as the
exact representation of the partial physics function. Hence, the
transfer features have real importance in relation to the partial
physics function. These can be retrieved from the model for
physics based analysis of the problem statement.

PyTorch Modelling

Being a PyTorch architecture, OPTMA-Net uses automatic
differentiation (AD) for model training. Breaking down a
code into a set of fundamental actions or primitives, whose
derivatives are established and whereby the chain rule may
be applied, is a key component of AD [72]. PyTorch uses
Operator Overloading (OO) [73], one of two of the well
known AD implementations: i) Operator Overloading (OO)
and ii) Source Code Transformation (SCT). Although each
implementation has its own merits and demerits, OO is typ-
ically simpler to implement. Comprehensive explanation on
AD is accessible here [74]-[76]. Detailed description on the
mechanism involved in computing gradients can be found
in [77]. The loss function back-propagates over the fully
connected transfer model and physics tensorial expressions.



Model Complexity

Training OPTMA-Net would be substantially slower if the
partial physics model were to be computationally expensive
when compared to a full physics model of the problem. This
embodies the trade-off between a more precise and accurate
OPTMA-Net model and the resulting increase in computation
cost due to a sophisticated partial physics function. In this case,
OPTMA-Net’s model complexity changes with modifications
to the physics based tensorial layers. The computational cost
grows with the number of training samples times the number

of training epochs times the number of new nodes for each
node that is added.

Case Study: UAV Noise problem setup

Listing 1 shows the programmatic implementation of the
fully connected network of OPTMA-Net, including both the
transfer network and the downstream partial physics model
(of UAV acoustics) that is re-programmed in torch tensorial
form. Listing 2 shows how arbitrary values can taken for the
constant parameters in this implementation.

Table - S - I Fixed physical parameters of OPTMA-Net implementation for UAV acoustic modelling

Monopole Frequency Phase angle Monopole Location (x,y,2) Speed of Sound

5 (Hz) ¢ (deg) q (m, m, m) ¢ (m/s)
Monopole 1 175 45 (0.176, 0.176, 0) 343
Monopole 2 175 45 (—0.176, 0.176, 0) 343
Monopole 3 175 45 (—0.176, —0.176, 0) 343
Monopole 4 175 45 (0.176, —0.176, 0) 343

Table - S - II Range of physical input parameters used to generate samples to train OPTMA-Dual’s internal network for UAV acoustic

modelling

Spatial Location (z,y,z) Normalized Amplitude Frequency Phase angle Monopole Location (z,y,z)

r Up,

2 (Hz) ¢ (deg) q (m)

-2to 2 -3t 3

0to 180 0 to 180 -2to0 2




I import torch
2 import configl as c #Import Partial Physics configuration

i class Fully_connected(torch.nn.Module) :

5 def __init__ (self, D_in, D_out,config):

6 super (Fully_connected, self)._ _init_ ()

7 self.layers = torch.nn.ModuleList ()

8 H = config[’hidden_layer_ size’]

9 self.norm = torch.nn.BatchNormld (D_in)

10 self.linear_in = torch.nn.Linear (D_in, H)

1 self.dropoutp = config[’dropout’ ]

12 for i in range (c.Num_layers):

13 self.layers.append(torch.nn.Linear (H,H))
14 self.drop = torch.nn.Dropout (p=self.dropoutp)
15 self.linear_out = torch.nn.Linear (H, D_out)
16 self.nll = torch.nn.RelLU()

18 def forward(self, x):

19 #Transfer Model Layers: Standard Layers of desired description
20 out = self.linear_in(self.norm(x))

21 for i in range(len(self.layers)):

2 net = self.layers[i]

23 out = self.nll (self.drop(net (out)))

2 out = self.linear_out (out)

26 #Partial Physics Layers: Custom PyTorch compatible layers

27 P = torch.zeros (out.shape[0],1,

28 dtype=torch.cfloat) .to(c.device)

29 for n in range (0,4): #Loop over N=4 monopoles

30 r=torch.sqgrt (torch.pow(x[:,0]-c.mono_loc[0,n],2)+
31 torch.pow(x[:,1]-c.mono_loc[l,n],2)+
32 torch.pow(x[:,2]-c.mono_loc[2,n],2))
33 P[:,0]=P[:,0]+(out[:,n]*torch.cos

34 (c.kappa[n]*r+c.phi[0,n]))/r

35 spl = (20* torch.loglO(torch.abs (P)/c.P_ref))

36 return spl #Normalize before returning

3 def 12_loss (input, target):
39 loss = torch.nn.MSELoss ()
10 return loss (input,target)

4 def make_train_step (model, optimizer, scheduler=None) :
13 #0ne step in the training loop

44 def train_step(x, y,test=False):
45 a=model

16 if not test:

47 yhat = a(x)

48 loss = 12_1loss (yhat, vy)
49 optimizer.zero_grad()

50 loss.backward ()

51 optimizer.step ()

52 else:

53 a = model.eval ()

54 with torch.no_grad() :

55 vhat = a(x)

56 loss = 12_1loss(yhat, vy)
57 if scheduler:

58 scheduler.step(loss)
59 return loss.item()

60 #Returns the function called during training
61 return train_step

Listing 1 OPTMA-Net UAV Noise problem setup in PyTorch: Implemented transfer network and partial physics layers



> import torch
3 #Partial Physics Parameters

-0.176,
=0,178,

mono_loc=torch.cuda.FloatTensor ([[0.176,
[0.176, 0.176,
(o, 0, 0, 0I1)

comp_1i torch.tensor ([[0.0 + 1j]]) .to(device)

phi torch.cuda.FloatTensor ([ [45, 45, 45, 4511)
P_ref torch.cuda.FloatTensor ([[20e-6]1])
freg=torch.cuda.FloatTensor ([[175, 175,
pi torch.acos (torch.zeros (1)) .item() * 2
ang_freq 2xpixfreq(0, :]

kappa ang_freq/343

175, 175]11])

-0.176,
-0.176],

0.17671,

Listing 2 OPTMA-Net UAV Noise problem setup: Implemented fixed partial physics parameters

S-III. OPTMA-DUAL CASE STUDY: UAV NOISE

Architectures
The training setup of OPTMA-Dual for the UAV Noise problem is shown in Fig. - S - 1. The PyTorch implementation for

the same is shown in Listing 3

I. Internal Network Training

Training

Samples

Testing

SEWIIEY  For testing the
trained model

Il. OPTMA-Dual Training

X :r(x,y,2)
Xrr:U,qw,¢

Input R

(X, XrF)

Monopole based
Partial Physics model

Internal
Network

Predicted SPL

Partial Physics Output SPL

Output

YPP(X, Xrr)

TrANSFOITEd <o,
Transfer :;s' u?;rsed Trained Internal
Network U, q06) Network
Spatial Inputs From '
Indoor Experiment — Predicted SPL
r( ) O Output 0ss
X,¥,2 >
Ground Truth SPL

Spatial input passed on as is From Indoor Experiment

Parameters are frozen
IIl. OPTMA-Dual Application

Trained OPTMA-Dual

Transferred
Features

Trained Internal
Network

Trained Transfer
Network

Unseen Spatial 7<)
Input R ?ff#" G Predicted SPL
r(x,y,z) v IO —> Output
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y OPTMA-D (l‘)

Spatial input passed on as is Retrievable Transfer Features

Fig.-S- 1 UAV Acoustic Field Modeling by OPTMA-Dual. I) Internal network training using data generated by the 4-monopole partial
physics model. II) OPTMA-Dual training architecture using the spatial location as the input (r), and the acoustic partial physics features
(U, q, w, and ¢) as the output of the transfer network; the internal network (kept frozen during this stage) takes the original input (r) and the
output of the transfer network to predict the SPL (L) at that location, which is compared with the experimental SPL data (ground truth) to
compute the loss function. III) Acoustic OPTMA-Dual application with the spatial location (r) as input and SPL (L,) as predicted output.



import torch
import transfer_config as c #Import transfer model configuration

# Internal pretrained DNN parameters
import config_DNN as c_DNN
from network DNN import Fully_ connected_DNN

# Load the internal pre-trained DNN
cd_DNN = {
"network_size’ : c_DNN.Num_layers,
’dropout’ : c_DNN.dropout,
"hidden_layer_size’ :c_DNN.Hidden_layer_size
}
model_par =Fully_connected_DNN(c_DNN.D_in, c_DNN.D_out, cd_DNN)
model_par.to (c_DNN.device)
model_par.load_state_dict (torch.load(’internal DNN/output/trained_model_ DNN_new.pt’))
model_par.eval ()

# fixing internal network parameters
for params in model_par.parameters() :
params.requires_grad = False

3 class Fully_connected(torch.nn.Module) :

def __init_ (self, D_in, D_out,config):
super (Fully_connected, self).__init__ ()
self.layers = torch.nn.ModuleList ()
H = config[’hidden_layer_size’]
self.norm = torch.nn.BatchNormld (D_in)
self.linear_in = torch.nn.Linear (D_in, H)
self.dropoutp = config[’dropout’ ]
for i in range (c.Num_layers) :

self.layers.append(torch.nn.Linear (H,H))

self.drop = torch.nn.Dropout (p=self.dropoutp)
self.linear_out = torch.nn.Linear (H, D_out)
self.nll = torch.nn.ReLU ()

def forward(self, x):
#Transfer Model Layers
out = self.linear_in(self.norm(x))
for i in range(len(self.layers)):
net = self.layers[i]
out = self.nll(self.drop(net (out)))
out = self.linear_out (out)

#Call physics based pre-trained internal network
spl_out = model_par (torch.cat ((out,x),axis=1))
return spl_out

def 12_loss (input, target):
loss = torch.nn.MSELoss ()
return loss (input,target)

3 def make_train_step (model,optimizer, scheduler=None) :

#0ne step in the training loop
def train_step(x, y,test=False):
a=model
if not test:
yhat = a(x)
loss = 12_1loss (yhat, y)
optimizer.zero_grad()
loss.backward ()
optimizer.step ()
else:
a = model.eval ()
with torch.no_grad() :
yhat = a(x)
loss = 12_1loss (yhat, vy)
if scheduler:
scheduler.step(loss)
return loss.item()
#Returns the function called during training
return train_step

Listing 3 OPTMA-Dual: Network implementation in PyTorch



Model analysis

The predicted acoustic transfer features (monopole properties) by OPTMA-Dual are further analyzed using two plots: i)
boxplot of the acoustic transfer features’ statistical distribution over the testing data set shown in Fig. - S - 2 and ii) plotting the
acoustic transfer features’ color coded values in a 3D space as shown in Fig. -S - 3. Both of these plots report the monopole
properties predicted by OPTMA-Dual for the 10%/90% percentage split case.
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Fig.-S- 2 UAV Acoustic Field — OPTMA-Dual for 10%/90% percentage splitting case: Statistical analysis of the various transfer features
over the testing data set. Box plot for (a) amplitude (U), (b) frequency (w), (c) phase (¢), (d) z-coordinate (gz), () y-coordinate (g, ), and
(f) z-coordinate (g.), for the four different monopoles. Here, q = [¢z, ¢y, q-] . The red line in the box plots indicates the median values,
the red markers '+’ denote the outliers, the black whiskers extend to the most extreme datapoints which are not regarded as outliers, and
the lower and upper limits of the box (blue lines) indicate the 25 and 75 percentile values of the dataset.

Convergence History

The convergence histories of OPTMA-Dual and OPTMA-Net are plotted in Fig. - S - 4 for the 70%/30% percentage split
case. The MSE (Mean Square Error) is reported on the log scale on the y-axis against the epochs on the x-axis.
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Fig.-S- 3 UAV Acoustic Field — OPTMA-Dual for 10%/90% percentage splitting case: Variation of transfer features as a function of spatial
location of the testing point. The rows show the various transfer features values for various monopoles which are arranged in a columnar
format, with monopole 1 being the far left column and monopole 4 being the far right one. The plots show the values of amplitude (U),
frequency (w), phase (¢), z-coordinate (g ), y-coordinate (gy) , and z-coordinate (g.) of the monopole locations, respectively, for all field
points r € R”. The color of the data point denotes the value of the parameter as shown in the colorbars.



Validation Set Convergence

0.08 1 s OPTMA-Dual
—— OPMTA-Net

0.07 1
0.06 1

0.05
0.04 1

0.03 1

MSE (log scale)

0.02 1

0.01 1

0.00 1~ . . . . . . : .
0 5 10 15 20 25 30 35 40

epochs
Fig.-S- 4 UAV Acoustic Field: Convergence history of the transfer network training process for OPTMA-Net and OPTMA-Dual; the history
is shown in terms of the validation loss in the 70%/30% percentage split testing case.

S-IV. UAV AcoUSTIC PROBLEM: TESTING METRICS

We use the Normalized Mean Square Error (MSE) and the Relative error (RE) as the primary metrics to compare the results
of the different ML models for predicting the UAV acoustic field. These error metrics can be expressed as follows:

ng YExerm _ YMLNrm 2
MSE — Zn:l( [ 7 ) (S'V)
ns
YML _ yExP
RE; (%) = (Y]aixp) x 100 (S-VI)

where ng is the total number of samples in the testing dataset, Y;”*® is the experimentaly recorded ground truth value of a
generic i*" sample, and Y;*" is the ML model prediction for this sample. Here, Y;”**""™ and Y™™ respectively represent the
normalized values of the ground truth output and the model predicted output. Thus the MSE is calculated over the normalized

values of the SPL.
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