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A B S T R A C T   

Hexagonal ring origami is a type of foldable structure that has impressive packing abilities and 
can be tessellated into two-dimensional or three-dimensional surfaces without any gap or overlap. 
It can be folded under bending or twisting loads into a peach core-shaped configuration with only 
10.6% of its initial area. However, in applications of large-scale foldable structures, folding by 
bending or twisting is usually technically difficult. Here, we propose strategies to facilitate easy 
snap-folding of the hexagonal ring by a simple point load or localized twist or squeeze. This is 
enabled by two geometric modifications made to the hexagonal ring: introducing residual strain 
and creating pre-twisted edges. By combining theoretical modeling, finite element simulations, 
and experiments, we systematically investigate the snap-folding behaviors of modified hexagonal 
rings with residual strain and pre-twisted edges. It is found that the geometric modifications 
promote easy snap-folding of the hexagonal ring by different mechanisms: introducing residual 
strain can significantly decrease the energy barrier and thus reduce the required moment to snap- 
fold the ring, while creating pre-twisted edges allows for easy out-of-plane deformation which is a 
necessary condition for a ring to fold. Combining the two methods further enables the snap- 
folding of the hexagonal ring by a point load or localized twist or squeeze. To demonstrate the 
easy folding of large assemblies of the modified rings, we construct various structures that can be 
snap-folded from their initial three-dimensional states to significantly lower-volume final states 
by a simple compression at the corners of the rings. We envision that the proposed geometric 
modification strategies can provide a new perspective on the rational design of easy-to-fold ring 
origami-based foldable functional structures with extremely high packing ratios.   

1. Introduction 

Ring origami is a class of foldable structures having closed-loop configurations with different geometries, such as two-dimensional 
(2D) rings with different shapes, three-dimensional (3D) ring trusses, toroidal tubes, and any ring-like geometries (Gan and Pellegrino, 
2006; Ishida et al., 2015; Mouthuy et al., 2012; Sharma and Upadhyay, 2022; Wu et al., 2021; You and Pellegrino, 1997). Ring origami 
provides effective strategies to design deployable and reconfigurable functional structures with impressive packing abilities. Pertinent 
examples of functional reconfigurable structures include emergency shelters (Melancon et al., 2021), stadium covers (Filipov et al., 
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2015), solar panels (Chen et al., 2019; Zirbel et al., 2013), flexible electronics (Fu et al., 2018; Luan et al., 2021; Yan et al., 2022; Zhang 
et al., 2021), medical stents (Kuribayashi et al., 2006; Zhao et al., 2012), deployable antennas (Han et al., 2019; Santiago-Prowald and 
Baier, 2013), and space habitats (Cadogan et al., 1999; Chen et al., 2021). Among different ring origami systems, there is a type of ring 
formed by closed-loop rods that can snap-fold, triggered by the mechanical instability of the rod under external loads. It has been 
shown that the ring with rationally designed geometric parameters can fold, in a self-guided manner, to a small-volume configuration 
by harnessing the snap-through instability induced by either bending or twisting loads (Sun et al., 2022a; Wu et al., 2021; Yoshiaki 
et al., 1992). Among various types of rings, the hexagonal ring exhibits promising functional features including its high packing ratio 
from deployed to folded state and its ability to form gapless 2D and 3D tessellations (Leanza et al., 2022; Wu et al., 2022). These 
features make the hexagonal ring an ideal candidate to serve as building blocks of large foldable structures in engineering applications. 
As shown in Fig. 1(a), when subjected to a pair of sufficiently large bending or twisting loads, the hexagonal ring can be snap-folded 
into three overlapping loops with a peach core-shaped configuration that is only 10.6% of the initial area. Further, the packing ratio 
can be even more significant when folding assemblies of rings, such as a planar tessellation of multiple hexagonal rings (Fig. 1(a)). 

However, in applications where hexagonal rings are assembled into large-scale foldable structures, it is usually technically difficult 
to fold the whole structure, mainly due to two reasons: (i) to fold a single ring, it always requires two loading points to initiate either 
bending or twisting deformation; (ii) the required moment is relatively large. To enhance the feasibility and versatility of hexagonal 
ring-based large-scale functional structures, hexagonal rings that facilitate easy folding upon a much-reduced load magnitude and 
simplified loading method, such as localized loading through a point load, are desired. Motivated by this goal, geometric modifications 
of the regular hexagonal ring are explored in this work for easy snap-folding of the hexagonal ring. A regular hexagonal ring is formed 
by reshaping a straight steel ribbon to the hexagonal shape. Fig. 1(b) shows the deformation process of a regular ring under a point 
load, during which the ring only exhibits in-plane contraction and does not fold (see Movie 1 in Supplementary Materials for details). 
Since the hexagonal ring requires out-of-plane deformation to fold and its internal energy needs to overcome a certain energy barrier to 
trigger snapping, ring systems with rational design that promote both conditions could potentially lead to easy folding with low 
required load and simple loading methods. Here, we explore the easy folding of rings by making design modifications, namely by 
introducing residual strain and pre-twisted edges (see Fig. 2(a)). The residual strain provides internal strain energy, which can favor 
easy snapping. The pre-twisted edges are created by twisting the two ends of each straight edge, which can break the symmetry of the 
hexagonal ring and induce out-of-plane deformation when under a point load. As demonstrated in experimental implementations in 
Fig. 2(b) and (c), the modified hexagonal ring with residual strain and slightly pre-twisted edges (around 5◦ at both ends of each edge) 
can easily snap-fold to the peach core shape under a point load or a localized twist at one corner (see Movies 1 and 2 in Supplementary 
Materials for details and additional easy folding methods). The modification of the hexagonal ring opens the way to design easy-to-fold 
2D or 3D functional structures by assembling the rings, such as the orthogonally assembled rings, which fold under a point load as 
shown in Fig. 2(d) (see Movie 1 in Supplementary Materials). Motivated by this finding, the present work aims to provide theoretical 
understanding of the influences of residual strain and pre-twisted edges on the snap-folding behaviors of hexagonal rings, and thus 
guide the rational design of easy-to-fold ring origami-based functional structures with high packing ratio. 

Instabilities of slender structures (such as rods, rings, strips, and ribbons) have been intensively studied during the past decades due 

Fig. 1. Folding of regular hexagonal ring and its tessellation. (a) Snap-folding of a regular hexagonal ring under a pair of bending or twisting loads 
and a foldable hexagonal ring tessellation. (b) Deformation process of an un-foldable regular hexagonal ring under a point load. Scale bar: 50 mm. 
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Fig. 2. Snap-folding of modified hexagonal ring and its assembly. (a) Geometric modifications of hexagonal ring by introducing residual strain and 
pre-twisted edges. (b,c) Snap-folding of a modified hexagonal ring under a point load (b), or a localized twist at one corner (c). (d) Snap-folding of 
orthogonally assembled modified hexagonal rings under a point load. Scale bars: 50 mm. 
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to their rich nonlinear structural behaviors and widespread applications. Diverse examples can be found in nature and engineering 
applications, such as growth-induced instabilities of biological filaments (Kaczmarski et al., 2022; Lessinnes et al., 2017;Moulton et al., 
2013; Moulton et al., 2020), swelling induced-instabilities of embedded cylindrical inclusions (Hutchinson, 2020), bending instability 
of rod-shaped bacteria (Qiu et al., 2022), buckling of hard-magnetic rods (Barreto et al., 2022; Sano et al., 2022), curvature-induced 
instability of curved origami (Dias and Audoly, 2014; Dias et al., 2012), bifurcations of bigon rings (Yu et al., 2021) and pre-buckled 
bands (Huang et al., 2020; Yu and Hanna, 2019), and snap-instabilities of constraint strips (Gomez et al., 2017; Liu et al., 2021; Sano 
and Wada, 2019). In addition to understanding these fantastic phenomena, researchers have also focused on the instabilities of twisted 
slender structures (Audoly and Neukirch, 2021; Coleman and Swigon, 2004; Dinh et al., 2016; Domokos and Healey, 2001; Goriely, 
2006; Korte et al., 2011; Manning and Maddocks, 1999; Neukirch et al., 2002). By using the twisted slender structures, some novel 
phenomena and applications have been uncovered. For example, a twisted ribbon under tension can trigger diverse instability modes 
by simply controlling the tension and the twist angle, ranging from helicoid, buckled helicoid, and creased helicoid to localized loop 
(Chopin and Kudrolli, 2013). Pre-twisted ribbons can serve as compliant joints to create shape-morphing structures due to their 
preferred bending directions along the lengths (Celli et al., 2020). Residual stress is another factor that can significantly affect the 
instabilities of slender structures. One typical example is the overcurved ring (Mouthuy et al., 2012), in which the residual stress 
triggers the buckling of an initial planar ring to a saddle shape. Another example includes growing filamentary structures (Moulton 
et al., 2020), in which the growth-induced residual stress can alter both the stiffness and the intrinsic curvature of the filament. 
Although there have been some studies on rings with residual stress or pre-twist (Domokos and Healey, 2001; Goriely, 2006; Manning 
and Maddocks, 1999;Moulton et al., 2013; Mouthuy et al., 2012), they are only limited to the instabilities of circular rings. 

To fully take advantage of the hexagonal ring’s large packing ratio and its tessellation capability for large foldable structures, we 
explore how geometric modifications, i.e., introducing residual strain and pre-twisted edge, can be utilized to achieve the easy folding 
of hexagonal rings. In this work, we combine experiments, finite element simulations, and theoretical modeling to systematically study 
the snap-folding behaviors of modified hexagonal rings with residual strain and pre-twisted edges. In experiments, the modified 
hexagonal ring is fabricated by manually reshaping a stress-free regular stainless steel hexagonal ring. The residual strain induced in 
the ring is simulated by considering a bilayer hexagonal ring whose inner layer is under thermal contraction while the outer layer is 
under thermal expansion. Kirchhoff rod theory is used to model the rings. Our theoretical, numerical, and experimental results show 
that both introducing residual strain and pre-twisted edges can facilitate the easy snap-folding of the ring. More interestingly, we find 
that the coupling of residual strain and pre-twisted edges enables the snap-folding of the modified hexagonal ring under a point load. 
The present work provides new design strategies for easy folding of ring origami-based structures, which have broad applications in the 
fields of space structures, architecture engineering, and biomedical devices. 

The paper is organized as follows. In Section 2, we introduce the fabrication of the hexagonal ring with residual strain, and use 
finite element analysis (FEA) and theoretical modeling to study the effect of residual strain on the snap-folding behavior of the 
modified hexagonal ring. In Section 3, we investigate the influence of pre-twisted edges and its coupling with residual strain on the 
snap-folding behavior of the modified hexagonal ring. In Section 4, we present two assemblies of the modified hexagonal rings which 
can be snap-folded under a point load. In Section 5, we conclude the main findings of this work. 

2. Modified hexagonal ring with residual strain 

In this section, we investigate how residual strain affects the snap-folding and stability of the hexagonal ring under either twisting 
or bending loads. We start from introducing the fabrication of a modified hexagonal ring with residual strain. FEA simulations and 
theoretical modeling are then conducted to study the snap-folding behavior of the modified hexagonal ring. Finally, we perform a 
parametric study on residual strain magnitude, loading position, and loading method to qualitatively and quantitatively discuss the 
effect of residual strain on the snap-folding behavior of the modified hexagonal ring. 

2.1. Fabrication of the hexagonal ring with residual strain 

As shown in Fig. 3(a), our hexagonal ring is fabricated by manually reshaping a regular stress-free stainless steel hexagonal ring, 
which has edge length a = 100 mm and corner radius r = 5 mm. The ring has a rectangular cross-section with height h = 2 mm and 
thickness t = 0.5 mm. We first disconnect the stress-free hexagonal ring and plastically deform the ring by winding it inward to obtain 
the natural state of the modified ring. Different natural states can be achieved by controlling the plastic deformation in the ring. Then, 
we reconnect the ring back to the hexagonal shape by applying bending moments to the two ends to unwind it (see Movie 3 in 
Supplementary Materials). In this way, the residual strain equivalent to an internal moment is introduced in the ring. Note that the 
residual strain is elastic, as no plastic deformation is induced during the reconnection of the ring. 

2.2. Finite element simulations 

Next, we study the snap-folding behavior of the modified hexagonal ring with residual strain using FEA simulations. To account for 
the residual strain, we consider a disconnected bilayer hexagonal ring with the same geometric parameters as the fabricated ring, as 
shown in Fig. 3(b). The two layers are perfectly bounded and have the identical Young’s moduli E. The coefficients of thermal 
expansion (CTE) in the two layers are equal in magnitude but opposite in sign. In particular, the inner layer has a negative CTE − αT, 
while the outer layer has a positive αT, such that the inner layer tends to shrink while the outer layer tends to expand when subjected to 
a temperature rise ΔT. As a result, the strain mismatch between the two layers triggers the disconnected ring to deform by winding 
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Fig. 3. Fabrication and FEA simulation strategies of the modified hexagonal ring with residual strain. (a) Fabrication process of the modified hexagonal ring with controlled residual strain. Scale bar: 50 
mm. (b) A disconnected bilayer ring considered in FEA simulations, whose inner layer is under thermal contraction and outer layer is under thermal expansion. (c) Natural states of the disconnected 
hexagonal ring in FEA simulations driven by increasing the thermal strain. 
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inward. By increasing the thermal strain εT (=αTΔT), we obtain a series of multi-loop configurations (see Fig. 3(c) and Movie 3 in 
Supplementary Materials). Once the deformed bilayer hexagonal ring reaches the same configuration as the natural state of the 
disconnected ring in the experiment, the corresponding thermal strain can be assigned to an initially stress-free connected hexagonal 
ring in the simulation to replicate the residual strain in the fabricated hexagonal ring. The snap-folding behavior of the ring is then 
simulated by applying bending or twisting loads. In the simulation, the Young’s modulus is taken as E = 200 GPa, Poisson’s ratio is 0.3, 
and the CTE is set as αT = 0.002 K− 1. 

2.3. Theoretical modeling 

To understand the underlying mechanism of how residual strain affects the snap-folding of the modified hexagonal ring, we employ 
the Kirchhoff rod theory to model the modified hexagonal ring and then compare the results with the FEA simulations, which are 
further validated by experiments. The geometry of the hexagonal ring with rectangular cross-section is defined in Fig. 4(a), in which a 
and r represent the edge length and the corner radius, respectively, and h and t denote the height and the thickness of the cross-section, 
respectively. To quantify the residual strain introduced in the experiment, a Cartesian coordinate system (x, y, z) is established at the 
centerline of the ring’s bottom edge, in which x and y axes are aligned with the thickness and longitudinal directions of the edge, 
respectively, and the z axis is along the height direction (pointing out of the plane). Since only a small deformation is induced in the 
ring during the reconnection of the ring by bending, the residual strain is elastic (validated by reversible configurations of the con
nected and disconnected ring in Movie 3 in Supplementary Materials) and linearly distributed along the thickness, as shown in Fig. 4 
(b). Here, we define ε0 as the maximum residual strain, which is on the surface of the ring. Details on determination of the residual 
strain in a ring with a specific natural state are provided in Appendix A. 

Kirchhoff rod model is the most commonly used theoretical tool to study the mechanical behaviors of slender structures (Audoly 
and Pomeau, 2010; Dill, 1992; Grandgeorge et al., 2022; Miller et al., 2014;Moulton et al., 2013; Patil et al., 2020; Starostin and Van 
Der Heijden, 2007). Here, we adopt the Kirchhoff rod model while making necessary modifications such that it can capture the effect of 
residual strain introduced in our hexagonal ring. Consider a naturally curved inextensible and unshearable rod shown in Fig. 4(c). The 
centerline of the rod is parameterized by a position vector r(s) in the global orthonormal basis (E1, E2, E3), where s ∈ [0, L] is the arc 
length and L is the total length of the rod. Due to the inextensible assumption, L remains unchanged during the deformation. Moreover, 
a local orthonormal basis [e1(s), e2(s), e3(s)] obeying the right-hand convention (i.e., e1 × e2=e3) is attached to the centerline, in which 
e1(s) and e2(s) are two unit vectors along the height and the thickness directions of the rod, and e3(s) is a unit vector along the tangent 
direction of the centerline. By introducing the local basis, the kinematic equations of the rod can be obtained as 

e3(s) =
dr(s)

ds
, (1)  

dei(s)

ds
= ω(s) × ei(s), i = 1, 2, 3, (2)  

in which ω(s) = κ1(s)e1(s) + κ2(s)e2(s) + κ3(s)e3(s) is the Darboux vector with κ1(s) and κ2(s) being the bending curvatures, and κ3(s) 
being the twisting curvature. 

The stress acting on the cross-section of the rod at r(s) produces a resultant force F(s) and a resultant moment M(s) attached to the 
centerline. According to the Kirchhoff rod theory, the balance of linear and angular momenta associated with F(s) and M(s) gives 

dF(s)

ds
+ f(s) = 0, dM(s)

ds
+

dr(s)

ds
× F(s) + m(s) = 0, (3)  

where f(s) and m(s) are the body force and couple per unit length, such as gravity, viscous force, or interaction force between different 
parts of the rod. In the present work, there is no body force or couple, i.e., f(s) = 0 and m(s) = 0. With the consideration of the resultant 
moment MR of the residual stress in Eq. (A.5), F(s) and M(s) are given by 

F(s) = F1(s)e1(s) + F2(s)e2(s) + F3(s)e3(s), (4)  

M(s) = [M1(s) + MR]e1(s) + M2(s)e2(s) + M3(s)e3(s), (5)  

in which Fi(s) and Mi(s) (i = 1, 2, 3) are the components of F(s) and M(s). Then, the linear constitutive relations for the moments are 
considered, which are written as 

M(s) = {EI1[κ1(s) − κ01(s)] + MR}e1(s) + EI2[κ2(s) − κ02(s)]e2(s) + GJ[κ3(s) − κ03(s)]e3(s). (6)  

Here, κ01(s), κ02(s), and κ03(s) are the two bending curvatures and the twisting curvature in the initial configuration, which also defines 
the natural state of the rod. E represents the Young’s modulus of the rod, and G = E/[2(1+ν)] denotes the shear modulus with ν being 
the Poisson’s ratio. I1 and I2 are the moments of inertia with respect to the height direction and thickness direction, respectively, and J 
is the rotational constant. For the hexagonal ring with rectangular cross section, these quantities are given by Timoshenko and Goodier 
(1951) 
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I1 =
ht3

12
, I2 =

h3t
12

, J =
ht3

3

{

1 −
192
π5

t
h
∑∞

n=1

1
(2n − 1)5

tanh
[

(2n − 1)πh
2t

]}

. (7)  

Note that there are no constitutive relations for the resultant force F(s) since the rod is assumed to be inextensible and unshearable. By 
projecting Eq. (3) along the local basis [e1(s), e2(s), e3(s)] and using Eq. (6), one can obtain six equilibrium equations as follows: 

dF1
ds

− F2κ3 + F3κ2 = 0, (8)  

dF2
ds

− F3κ1 + F1κ3 = 0, (9)  

dF3
ds

− F1κ2 + F2κ1 = 0, (10)  

EI1
(

dκ1
ds

−
dκ01
ds

)

− EI2(κ2 − κ02)κ3 + GJ(κ3 − κ03)κ2 − F2 = 0, (11)  

EI2
(

dκ2
ds

−
dκ02
ds

)

+ [EI1(κ1 − κ01) + MR]κ3 − GJ(κ3 − κ03)κ1 + F1 = 0, (12)  

GJ
(

dκ3
ds

−
dκ03
ds

)

− [EI1(κ1 − κ01) + MR]κ2 + EI2(κ2 − κ02)κ1 = 0. (13)  

For simplicity, the arc length s is omitted from all the variables in the governing equations and from the subsequent section unless 
otherwise stated. 

In order to relate the local basis to the global basis and solve the equilibrium equations, a unit quaternion q(s) = [q0(s), q1(s), q2(s), 
q3(s)] with q2

0 + q2
1 + q2

2 + q2
3 = 1 is introduced (Healey and Mehta, 2005; Yu and Hanna, 2019), which gives 

⎡

⎣
e1
e2
e3

⎤

⎦ = 2

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

q20 + q21 −
1
2

q1q2 + q0q3 q1q3 − q0q2

q1q2 − q0q3 q20 + q22 −
1
2

q2q3 + q0q1

q1q3 + q0q2 q2q3 − q0q1 q20 + q23 −
1
2

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎣
E1
E2
E3

⎤

⎦. (14)  

Substituting e3 from Eq. (14) into Eq. (1), the kinematic equations of the centerline expressed by the quaternion components are given 
by 

dr1
ds

= 2(q1q3 + q0q2), (15)  

dr2
ds

= 2(q2q3 − q0q1), (16) 

Fig. 4. Schematics of the hexagonal ring and the rod model. (a) Geometric parameters of the hexagonal ring. (b) Distribution of the residual strain 
along the thickness of the hexagonal ring in the theoretical model. (c) Local basis (e1, e2, e3) and global basis (E1, E2, E3) of the Kirchhoff rod model. 
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dr3
ds

= 2
(

q20+ q23 −
1
2

)

, (17)  

where ri (i = 1, 2, 3) is the component of the position vector r(s), and r(s) = r1E1+r2E2+r3E3. Taking the derivative of Eq. (14) with 
respect to s and then inserting it into Eq. (2), the kinematic equations describing the orientation of the cross-section can be rewritten as 

dq0
ds

=
1
2

( − q1κ1 − q2κ2 − q3κ3), (18)  

dq1
ds

=
1
2

(q0κ1 − q3κ2 + q2κ3), (19)  

dq2
ds

=
1
2

(q3κ1 + q0κ2 − q1κ3), (20)  

dq3
ds

=
1
2

( − q2κ1 + q1κ2+ q0κ3). (21) 

Eqs. (8)–(13) and (15)–(21) provide 13 first-order ordinary differential equations for the rod, which contain 13 unknown variables 
[Fi, κi, ri, q0, qi] (i = 1, 2, 3), producing a well-posed boundary value problem when equipped with appropriate boundary conditions. 

For the hexagonal ring, only one quarter of the ring is needed for the analysis due to its symmetry. However, the natural curvatures 
of the hexagonal ring are discontinuous at the joints of the straight edge and the rounded corner, so the quarter ring is further divided 
into four segments (see Fig. B1), with each segment modeled as a Kirchhoff rod. Thus, we have 52 governing equations in terms of 52 
variables, i.e., [F(j)

1 , F(j)
2 , F(j)

3 , κ(j)
1 , κ(j)

2 , κ(j)
3 , r(j)

1 , r(j)
2 , r(j)

3 , q(j)
0 , q(j)

1 , q(j)
2 , q(j)

3 ] (j = 1, 2, 3, 4), for the hexagonal ring. To establish a general 
framework, the following nondimensional quantities are introduced, 

s̄(j) =
s(j)

aℓ(j), r̄(j)
i =

r(j)
i

a
,
(

κ̄(j)
i , κ̄(j)

0i

)
=

(
κ(j)

i , κ(j)
0i

)
a, F̄(j)

i = F(j)
i

a2

GJ
, M̄R =

MRa
GJ

,
d( • )

ds(j) =
d( • )

ds̄(j)
1

aℓ(j). (22)  

Here, ℓ(j)
= L(j)/ais a scaling factor unifying the dimensionless arc lengths of different segments into a same range, i.e., s̄(j) ∈ [0,1], 

where L(j) is the segment length. By using Eq. (22), the dimensionless form of the governing equations for the jth segment can be 
obtained, which are presented in Appendix B. In the present theoretical modeling, we consider three different loading methods to fold 
the hexagonal ring, which are twisting load, bending load, and point load. The boundary conditions for the hexagonal ring under these 
different loading methods are provided in Appendix B. For each case, 52 boundary conditions are given, which equals the number of 
the governing equations and unknown variables, leading to a well-posed boundary value problem. To solve it, Continuation Core and 
Toolboxes (COCO) (Dankowicz and Schilder, 2011, 2013), a numerical continuation package operated in MATLAB, is adopted. In the 
numerical solution procedure, the twisting angle Φ, the bending angle Θ, and the displacement δ are respectively chosen as the 
continuation parameters for the three loading methods considered. Note that we use Poisson’s ratio ν = 0.3, and geometric parameters 
of the fabricated ring with h/t = 4, r/a = 0.05 and r/t = 10 for all theoretical and FEA studies in this work. 

2.4. Effect of residual strain 

In this subsection, we use the theoretical model combined with FEA simulations and experiments to study the effect of residual 
strain on the snap-folding behavior of the modified hexagonal ring under twisting or bending loads. For each loading method, four 
different residual strains are considered (ε0 = 0, 0.0026, 0.0052, and 0.0069), and the corresponding natural states of the connected 
rings and their disconnected counterparts are depicted in Fig. 5(a). We first study the snap-folding behavior of the modified hexagonal 
ring subjected to a pair of twisting moments at corners (see Fig. 5(b)). By using the rod model and FEA, we obtain the normalized 
moment-twisting angle curves of the modified hexagonal ring during the folding process, as illustrated in Fig. 5(c). It is seen that the 
results predicted by the rod model are in excellent agreement with the FEA simulations, and both results show that the hexagonal ring 
without residual strain is un-foldable. However, when introducing a small residual strain (e.g., ε0 = 0.0026 or 0.0052), the hexagonal 
ring becomes foldable via the snap-through instability. Also, we can observe that as the residual strain increases, the required moment 
to fold the ring reduces, and the snapping point appears at smaller twisting angles. When the residual strain reaches a critical value (ε0 
= 0.0069), the initial state of the ring is no longer stable, and snap-back occurs when applying external twisting moments at corners. In 
this case, FEA is unable to capture the complete snap-back process due to the displacement-controlled loading process. 

To understand how residual strain facilitates snap-folding of the ring, we investigate the energy landscape during folding by 
constructing the normalized strain energy-twisting angle curves of the modified hexagonal ring with different residual strains, as 
shown in Fig. 5(d). The theoretical derivation of the strain energy of the modified hexagonal ring is provided in Appendix C. As can be 
seen, the energy curve of the un-foldable ring (ε0 = 0) has only one local minimum, corresponding to the zero-energy stable state in its 
initial configuration. The energy curves of the two foldable rings (ε0 = 0.0026 and 0.0052) both have two local minima, corresponding 
to their two stable states in the initial configuration and the folded configuration, respectively. For each foldable ring, the energy 
difference between the initial state and the maximum-energy state is denoted as the energy barrier for snap-folding. For the ring with a 
higher residual strain (ε0 = 0.0052), it has a larger initial strain energy, and thus its energy barrier (ΔŪ5.2) is much smaller than that of 
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the ring with lower residual strain (ΔŪ2.6 with ε0 = 0.0026), indicating that the ring with larger residual strain requires less energy 
input from the external load to overcome the energy barrier and achieve the snap-folding. In other words, the residual strain can 
significantly decrease the energy barrier to fold the hexagonal ring. Fig. 5(e) compares the folding processes of the modified hexagonal 
ring with residual strain ε0 = 0.0026 obtained by the FEA simulation and the experiment. The results show good agreement by 
demonstrating the modified hexagonal ring folding into a peach core-shaped structure after undergoing a series of intermediate 
configurations. 

We next study the snap-folding behavior of the modified hexagonal ring with residual strain under a pair of twisting moments at the 
middle of the edges (see Fig. 6(a)). The same residual strains as above are studied here. Fig. 6(b) illustrates the normalized moment- 

Fig. 5. Snap-folding of the modified hexagonal ring with residual strain under twisting loads at corners. (a) Geometric configurations of the 
connected rings with different residual strains and their natural states when being disconnected. (b) Schematic of the modified hexagonal ring under 
a pair of twisting moments at corners. (c) Normalized moment and (d) normalized strain energy versus twisting angle for the modified hexagonal 
ring with different residual strains. The dots in (c) correspond to the snapping points. (e) Folding processes of the modified hexagonal ring with 
residual strain (ε0 = 0.0026) obtained by the FEA simulation and experiment, with the dots corresponding to the loading points. Scale bar: 50 mm. 
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twisting angle curve of the modified hexagonal ring predicted by the rod model and FEA. Again, our theoretical results agree with the 
FEA simulations very well. Moreover, it can be observed that the hexagonal ring without residual strain is foldable in this case, which 
means that snap-folding of the hexagonal ring is easier to achieve by twisting at edges than at corners. Similar to the previous example, 
the required moment to snap-fold the ring reduces with the increasing residual strain. The same critical value of the residual strain (ε0 
= 0.0069) is observed for the initial state of the modified hexagonal ring to be unstable. The normalized strain energy-twisting angle 
curves of the modified hexagonal ring with various residual strains are plotted in Fig. 6(c). It is shown in all the three cases that the 
energy curves have two energy minima, which correspond to the initial stable state and the folded stable state, respectively. Mean
while, the residual strain largely decreases the energy barrier (ΔŪ2.6 and ΔŪ5.2) of the modified hexagonal ring, making it easier to 
fold. Fig. 6(d) presents the folding process of the modified hexagonal ring with residual strain ε0 = 0.0026 under a pair of twisting 
moments at the middle of the edges. It is seen that the FEA simulation nicely predicts the folding process of the ring in the experiment. 

Additionally, results for the snap-folding of the modified hexagonal ring with different residual strains under a pair of bending 
moments at corners or at edges are presented in Fig. D1 in Appendix D. Similar conclusions can be drawn from the bending cases. As a 
conclusion, introducing residual strain is demonstrated to fold the ring effectively and easily, as it decreases the energy barrier and thus 
reduces the required moment to trigger snap-folding, while bringing the onset of snapping to an earlier stage. 

3. Modified hexagonal ring with pre-twisted edges 

Creating pre-twisted edges has been found to have a considerable influence on the instabilities of rod-like or ring-like structures 
(Goriely, 2006; Neukirch et al., 2002). In this section, we will investigate how pre-twisted edges change the snap-folding of the 
hexagonal ring, and conduct FEA simulations and theoretical modeling to quantitatively study the effects of pre-twisted edges as well 
as its coupling with residual strain on the snap-folding of the modified hexagonal ring. 

3.1. Finite element simulations 

In the current work, the pre-twisted edges of the modified hexagonal ring are created by applying a pair of torques to each straight 
edge of a regular hexagonal ring. As shown in Fig. 7(a), the red and blue dots are the applied torque locations, which are at the two ends 
of the straight edges. The torques are along the longitudinal direction of each straight edge. Following the right-hand rule, the positive 
torque direction is defined as the direction of the torsion axis perpendicular to and outward from the ring’s cross-section, as shown in 
Fig. 7(b). To simulate the snap-folding behavior of the modified hexagonal ring with pre-twisted edges (Fig. 7(c)), we first prescribe a 
pair of pre-twisted angles (γ) at the two ends of each straight edge (Fig. 7(b)) and obtain its deformed configuration. Then, the 
deformed configuration is exported without stress to serve as the initial geometry of the modified hexagonal ring. Finally, the folding of 
the modified hexagonal ring is simulated by applying twisting or bending loads. 

3.2. Theoretical modeling 

In the theoretical modeling, the Kirchhoff rod model derived in Section 2 still applies, while the initial bending curvatures and 
twisting curvatures which define the initial configuration of the hexagonal ring need to be modified to precisely describe the geometric 
modification of the ring. To achieve this, we first find the analytical description of the bending curvatures and the twisting curvature of 
the modified hexagonal ring with pre-twisted edges. For the straight edges, the pre-twisted angle linearly varies along the longitudinal 
direction when subjected to a constant torque at the two ends. At the rounded corners, it is difficult to give an accurate analytical 
description for the twisting angle variation along the arc length. However, since the size of the rounded corner is much smaller than 
that of the straight edge, the variation of the pre-twisted angle at the rounded corner has little effect on the snap-folding behavior of the 
modified hexagonal ring. For convenience, we assume that the pre-twisted angle also linearly changes along the arc length at the 
rounded corners. In this way, when the bending or twisting loads are applied at corners of the modified hexagonal ring (see Fig. B1(a)), 
variation of the pre-twisted angle in the jth (j = 1, 2, 3, 4) segment can be written as 

φ(j) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
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−
2γ
c
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[
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c
2

]

6γ
πr
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πr
3

]

−
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s(4) − γ, s(4) ∈
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6

]

(23)  

Here, γ is the pre-twisted angle which is applied at the two ends of the straight edge, c is the length of the straight edge, and c = a − 2r 
/

̅̅̅
3

√
. When the bending or twisting loads are applied at edges of the modified hexagonal ring (see Fig. B1(b)), variations of the pre- 

twisted angle in different segments can be obtained in a similar way. With the analytical description of the pre-twisted angle, the initial 
bending curvatures and twisting curvature of the modified hexagonal ring at each segment can be calculated as follows: 
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Fig. 6. Snap-folding of the modified hexagonal ring with residual strain under twisting loads at edges. (a) Schematic of the modified hexagonal ring under a pair of twisting moments at edges. (b) 
Normalized moment and (c) normalized strain energy versus twisting angle for the modified hexagonal ring with different residual strains. The dots in (b) correspond to the snapping points. (d) Folding 
processes of the modified hexagonal ring with residual strain (ε0 = 0.0026) obtained by the FEA simulation and the experiment, with the dots corresponding to the loading points. Scale bar: 50 mm. 
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(
κ(j)
01 , κ

(j)
02 , κ

(j)
03

)
=

(

κ(j)cosφ(j), − κ(j)sinφ(j), τ(j) +
dφ(j)

ds(j)

)

, (24)  

in which κ(j) and τ(j) are the Frenet curvature and torsion (Moulton et al., 2013) of the regular hexagonal ring. Particularly, for straight 
edges, we have κ(j) = 0 and τ(j) = 0, which means the pre-twist in the longitudinal direction does not affect the bending curvature in the 
other two directions, while at rounded corners, we have κ(j) = 1/r and τ(j) = 0, which indicates the pre-twist has influence on the other 
two curvatures. With the initial curvature information, the Kirchhoff rod model is then ready to provide the fundamental insight into 
the snap-folding behavior of the modified hexagonal ring with pre-twisted edges under different loading methods. It should be 
mentioned that when using the bending method to fold the modified hexagonal ring with pre-twisted edges, one quarter of the ring is 
no longer sufficient for the analysis, as the ring is geometrically antisymmetric while the external load is symmetric about the bending 
axis. Theoretical framework of the bending cases can be obtained using the rod model by considering a whole hexagonal ring being 
divided into 14 segments (4 segments for the edges or corners where the bending loads are applied, and 10 segments for the remaining 
unloaded edges and corners). 

3.3. Effect of pre-twisted edges 

In the following, we use the theoretical model and FEA to investigate the effect of pre-twisted edges on the snap-folding behavior of 
the modified hexagonal ring under twisting loads. Following the right-hand rule, we define the twisting direction with its axis pointing 
inward to the center of the ring as “negative twisting”, as shown in Figs. 8(a) and 9(a), and pointing outwards as “positive twisting”, as 
shown in Figs. 8(b) and 9(b). Moreover, to avoid confusion, we define the twisting angle and the pre-twisted angle as follows: the 
twisting angle corresponds to the angle change at the loading points when the twisting loads are applied, while the pre-twisted angle 
denotes the longitudinal twist at the two ends of straight edges (geometric modification) of the ring in its initial state. 

The modified hexagonal ring with pre-twisted edges subjected to a pair of negative twisting moments at corners (see Fig. 8(a)) is 
first studied by the theoretical model and FEA simulations. Fig. 8(c) shows the normalized moment-twisting angle curves of the 
modified hexagonal ring with different pre-twisted angles of the edges (γ = 0◦, 15◦, 30◦, and 45◦), and the corresponding folding 
processes are shown in Fig. D2 in Appendix D. One can find that the un-foldable regular ring (γ = 0◦) under twisting loads at corners 
becomes foldable when inducing pre-twisted edges by a small angle (e.g., γ = 15◦), indicating that pre-twisted edges facilitate the 
folding of the modified hexagonal ring. However, as the pre-twisted angle increases, the snapping point tends to appearlater, while the 
required twisting moments to snap-fold the ring remain the same. The normalized strain energy-twisting angle curves are shown in 
Fig. 8(d). It is seen that the strain energy of the un-foldable regular ring monotonically increases with the twisting angle. On the other 
hand, for the modified hexagonal rings with pre-twisted edges, their energy curves first increase and then reach their plateaus when 
snap-folding takes place. In particular, when the pre-twisted angle γ equals 15◦, the energy curve has two energy minima, corre
sponding to the two stable states at the initial and folded configurations. However, as the pre-twisted angle increases (e.g., γ = 30◦ or 
45◦), the ring is still foldable, but it is no longer stable at the folded state. This suggests that inducing only a slight pre-twist to the edges 
helps with snap-folding of the ring, while a larger pre-twist can affect the stability of the folded ring. We further examine the folding 
behavior of the modified hexagonal ring with pre-twisted edges under a pair of positive twisting moments at corners (see Fig. 8(b)), 
and show the normalized moment and strain energy versus the twisting angle curves for different pre-twisted angles in Fig. 8(e) and (f), 
respectively. In this case, the initially un-foldable hexagonal ring is still un-foldable after introducing the pre-twisted edges (see Fig. D3 
in Appendix D for the deformation configurations of the folding processes). However, lower moment and strain energy are observed for 
the modified hexagonal ring with larger pre-twisted angles of the edges. 

Next, snap-folding behavior of the modified hexagonal ring with pre-twisted edges under a pair of twisting moments at edges is 
studied in Fig. 9. We consider the same twisting directions, i.e., negative twisting (Fig. 9(a)) and positive twisting (Fig. 9(b)). The 
normalized moment-twisting angle curves for different pre-twisted angles in these two cases are given in Fig. 9(c) and Fig. 9(e), and the 

Fig. 7. FEA simulations and theoretical modeling of the modified hexagonal ring with pre-twisted edges. (a) Regular hexagonal ring with two ends 
of each edge highlighted by the blue and red dots. (b) A pair of torques is applied to the two ends of each straight edge to plastically pre-twist the 
edge. The positive torque directions are illustrated by the arrows. (c) Schematic of the modified hexagonal ring with pre-twisted edges. 
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Fig. 8. Snap-folding of the modified hexagonal ring with pre-twisted edges under a pair of twisting moments at corners. (a,b) Schematics of the modified hexagonal ring under negative (a) and positive 
(b) twisting loads at corners. (c,e) Normalized moment versus twisting angle for the modified hexagonal ring with different pre-twisted angles under negative (c) and positive (e) twisting loads at 
corners. (d,f) Normalized strain energy versus twisting angle for the modified hexagonal ring with different pre-twisted angles under negative (d) and positive (f) twisting loads at corners. 

L. Lu et al.                                                                                                                                                                                                               



JournaloftheMechanicsandPhysicsofSolids171(2023)105142

14

Fig. 9. Snap-folding of the modified hexagonal ring with pre-twisted edges under a pair of twisting moments at edges. (a,b) Schematics of the modified hexagonal ring under negative (a) and positive (b) 
twisting loads at edges. (c,e) Normalized moment versus twisting angle for the modified hexagonal ring with different pre-twisted angles under negative (c) and positive (e) twisting loads at edges. (d,f) 
Normalized strain energy versus twisting angle for the modified hexagonal ring with different pre-twisted angles under negative (d) and positive (f) twisting loads at edges. 
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corresponding deformation configurations during folding processes are provided in Figs. D4 and D5. It is seen that when the twisting 
loads are applied at edges, the hexagonal ring is always foldable, regardless of the twisting direction and the magnitude of the pre- 
twisted angle. Moreover, increasing the pre-twisted angle slightly delays the snapping point. The normalized strain energy-twisting 
angle curves for the modified hexagonal ring under negative and positive twisting loads are presented in Fig. 9(d) and Fig. 9(f), 
respectively. From the energy landscape, we can see that both the regular ring (γ = 0◦) and the modified ring with pre-twisted angle γ 
= 15◦ have stable folded states due to their local energy minimum at the folded configuration. For large pre-twisted angle γ = 30◦ or 
45◦, the folded configuration of the ring is no longer stable. FEA results for snap-folding of the modified hexagonal ring with pre- 
twisted edges under a pair of bending moments are provided in Fig. D6 in Appendix D. In this case, the bending direction has no 
influence on the folding behavior of the modified hexagonal ring. It is shown that the modified rings with different pre-twisted angles 
of the edges are all foldable when bending loads are applied at either corners or edges, but the snapping points slightly delay and the 
required moments to fold slightly increase with the increasing pre-twisted angles. 

3.4. Effect of coupled residual strain and pre-twisted edges 

So far, we have shown that, when the hexagonal ring is subjected to a pair of twisting or bending moments, introducing residual 
strain and pre-twisted edges can both facilitate folding. However, the ability of modified rings to enable folding under easier loading 
methods is not yet exploited. In this subsection, we will demonstrate that, by introducing the residual strain and pre-twisted edges 
simultaneously, the snap-folding of the hexagonal ring can be achieved either by no external mechanical loads or by just applying a 
point load. 

Without any external load, we first show the snap-folding behavior of the modified hexagonal ring with pre-twisted edges under 
increasing residual strain. In this case, the pre-twisted angle is prescribed (i.e., γ = 15◦, 30◦, 45◦), while the residual strain continuously 
increases from 0 by increasing the corresponding thermal strain in FEA simulations. Fig. 10(a) shows the normalized strain energy 
versus the residual strain for rings with different pre-twisted angles of the edges predicted by FEA simulations. As expected, the strain 
energy first increases with the increasing residual strain. When the residual strain reaches a critical value, the strain energy drops 
suddenly, which corresponds to the snap-folding behavior. The geometric configurations of the modified hexagonal ring during 
snapping are shown in Fig. 10(b). Points A, C, and E correspond to the incipient states of snapping, and points B, D, and F correspond to 
the folded states at the local energy minima. For the three pre-twisted angles considered, the deformation configurations of the rings 
during snap-folding are similar to one another. It is shown that the rings barely deform before the snapping point, but rapidly collapse 
to the peach core shape at the snapping point. To better illustrate this, a complete folding process corresponding to γ = 15◦ is provided 
in Movie 4 in Supplementary Materials. This result demonstrates that a modified hexagonal ring with pre-twisted edges can snap-fold 
just from a gradual increase in the residual strain without the need for external twisting or bending moments. The increasing of residual 
strain can potentially be experimentally achieved by manufacturing rings with active materials such as thermally responsive materials 
that provide strain upon temperature change (Bae et al., 2014; Peng et al., 2022; Roach et al., 2022; Sun et al., 2022b; Ze et al., 2020). 
Furthermore, we can find from Fig. 10(a) that the modified ring with larger pre-twisted angles requires a smaller critical residual strain 
to trigger the snap-folding, as large pre-twisted angles are more easily able to induce out-of-plane deformation. 

In applications of ring origami-based large-scale functional structures, it is usually desirable to fold the whole structure in a simple 
manner. Compared to folding by twisting or bending loads which requires two loading points, much simpler loads such as a point load 
is preferred. Here, we study how residual strain and pre-twisted edges of the modified hexagonal ring enable snap-folding under a 
simple point load. As shown in Fig. 11(a), a point load is applied to the corner of a modified hexagonal ring. The residual strain in the 
ring is set as ε0 = 0.0039, which corresponds to the 2.5-loop natural state when being disconnected. The pre-twisted angles of the edges 
are varied from 0◦ to 45◦. Fig. 11(b) shows the normalized force-displacement curves of the modified hexagonal ring under a point load 
with different pre-twisted angles of the edges predicted by the rod model and FEA. The force P is normalized by the edge length a and 

Fig. 10. Snap-folding of the modified hexagonal ring with pre-twisted edges driven by an increasing residual strain predicted by FEA simulations. 
(a) Normalized strain energy versus residual strain for rings with different pre-twisted angles. (b) Snap-folding processes of the modified hexagonal 
ring with different pre-twisted angles of the edges triggered by increasing residual strain. 
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Fig. 11. Snap-folding of the modified hexagonal ring with pre-twisted edges and residual strain under a point load. (a) Schematic of the modified 
hexagonal ring under a point load. (b) Normalized point force versus the displacement for the modified hexagonal ring with residual strain and 
different pre-twisted angles. (c) Folding processes of the modified hexagonal ring with residual strain (ε0 = 0.0039) and pre-twisted edges (γ = 15◦) 
under a point load obtained by the FEA simulation and experiment. Scale bar: 50 mm. 
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the torsional rigidity GJ, and the displacement δ is normalized by 2a. It is seen that the modified hexagonal ring with only residual 
strain but no pre-twisted edges (i.e., γ = 0◦) is un-foldable, as a point load cannot trigger out-of-plane deformation for a ring without 
pre-twist. However, when introducing pre-twisted edges (i.e., γ = 15◦, 30◦, and 45◦), the modified hexagonal ring with residual strain 
becomes foldable, and snap-folding occurs when the external force reaches a critical value. Note that the rod model captures the snap- 
back behavior of the ring during folding, which cannot be obtained by FEA simulations or experiment due to the displacement- 
controlled loading process. Fig. 11(c) shows the FEA and experimental folding processes of the modified hexagonal ring with both 
residual strain (ε0=0.0039) and pre-twisted edges (γ = 15◦) under a point load. As can be seen, both results show the same snap-folding 
process of the modified hexagonal ring. Particularly, it can be seen from the side view of the folding process in the FEA simulation that 
the modified ring initially only exhibits in-plane contraction, like that of the regular ring. However, with an increasing force, the pre- 
twisted edges facilitate the generation of out-of-plane twisting, causing the ring to snap to the peach core shape. The folding process of 
the modified hexagonal ring predicted by the rod model is provided in Fig. D7 in Appendix D. We can find that the deformed con
figurations of the modified ring before (configurations ①, ② and ③) and after (configurations ⑨ and ⑩) snapping obtained by the rod 
model are in excellent agreement with those of FEA simulation and experiment. Additionally, results shown in Fig. 11(b) indicate that 
increasing the pre-twisted angle of the edges decreases the required force to trigger snap-folding, making the snapping point appear 
earlier. It should be noted that the modified hexagonal ring with only pre-twisted edges but no residual strain, or a relatively small 
residual strain is un-foldable under a point load (see Fig. D8(a) in Appendix D for the case with pre-twisted edges only and Fig. D8(b) 
for the case with ε0=0.0026, γ = 15◦). Therefore, a sufficiently large residual strain is necessary to be coupled with the pre-twisted 
edges to decrease the energy barrier for snap-folding of the ring under a point load. 

The previous studies in this section focus on the folding of modified hexagonal rings with pre-twisted edges when the rings are 
under increasing residual strain and point load. It is also interesting to explore the snap-folding under twisting or bending loads for 
modified rings with coupled residual strain and pre-twisted edges. In Fig. 12, the normalized moment-twisting angle curves of the 
modified hexagonal rings under negative twisting at corners (Fig. 12(a)), negative twisting at edges (Fig. 12(b)), positive twisting at 
corners (Fig. 12(c)), and positive twisting loads at edges (Fig. 12(d)) are illustrated for various pre-twisted angles (γ = 0◦, 15◦, 30◦, and 
45◦). Residual strain is prescribed as ε0 = 0.0026, which corresponds to a 2-loop natural state when being disconnected. It is seen for all 
cases that the required moment to trigger the snap-folding reduces with the increase of the pre-twisted angle of the edges when residual 

Fig. 12. Normalized moment versus twisting angle for the modified hexagonal ring with residual strain (ε0 = 0.0026) and different pre-twisted 
angles under (a) negative twisting loads at corners, (b) negative twisting loads at edges, (c) positive twisting loads at corners, and (d) positive 
twisting loads at edges. 
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Fig. 13. Snap-folding of assemblies of modified hexagonal rings under point loads. (a) Folding process of a 3-ring assembly under point loads. A glass plate is placed on the top of the 3-ring assembly to 
apply point loads to the three corners simultaneously. (b) Folding process of a 5-ring assembly under a point load. The 5-ring assembly is first detached to the flat state, and then stacked to apply a point 
load. (c) Compression test of the stacked modified hexagonal rings on an Instron machine. Scale bars: 50 mm. 
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strain is added to the ring, indicating that coupled residual strain and pre-twisted edges can facilitate the snap-folding of the modified 
hexagonal ring under twisting loads regardless of the loading direction and loading position. Snap-folding of the modified hexagonal 
ring with residual strain and pre-twisted edges under bending loads at different positions is examined using FEA simulations in Fig. D9 
in Appendix D. In the case of bending, we also find that increasing the pre-twisted angle tends to decrease the required moment to fold 
the modified hexagonal ring with residual strain. 

4. Assemblies of modified hexagonal rings 

Finally, we present two assemblies of the modified hexagonal ring (with both residual strain and pre-twisted edges) to demonstrate 
its advantages in the application of 3D foldable structures. The first one is a 3-ring assembly, which is made from three modified 
hexagonal rings by connecting their edges through tape hinges. In Fig. 13(a), we show the folding process of the 3-ring assembly under 
point loads (see Movie 5 in Supplementary Materials for details). To apply the same point load at the three top corners simultaneously, 
we place a glass plate on the top of the 3-ring assembly and slowly lower the glass plate. It is observed that the rings first experience an 
overall twisting, and then snap-fold to a 3D state with only 10% (Leanza et al., 2022) of its initial volume, which demonstrates that 
pre-twisted edges indeed facilitate out-of-plane deformation to trigger the snap-folding of the ring by a point load. Fig. 13(b) shows a 
dome-like assembly composed of five modified hexagonal rings. To fold the dome, we first flatten the 3D dome by detaching one of the 
hinges, and stack the rings into five overlapping rings. Then, we apply a point load to the corner of the stacked modified hexagonal 
rings, after which they collapse into a fully folded peach core-shaped state that is only 0.4% (Leanza et al., 2022) of the initial volume 
of the dome (see Movie 5 in Supplementary Materials). The compression test of the stacked rings using an Instron machine is also 
presented in Fig. 13(c) and Movie 6 in Supplementary Materials. We can see that when applying uniaxial compression to one corner of 
the stacked rings, the rings first undergo in-plane contraction. Once the load reaches a critical value, an obvious twisting of the rings is 
observed, which is enabled by the pre-twisted edges. The twisting is immediately followed by the snapping of the rings to reach the 
close-packed folded peach core configuration. It should be stated that the modified hexagonal ring assemblies not only can be folded 
into a small volume state, but also can be re-deployed to their initial configuration with the help of bending or twisting loads. The 
success of folding the two ring assemblies under point loads demonstrates that combined residual strain and pre-twisted edges are 
effective strategies to design ring origami-based functional structures with impressive packing abilities and easy folding. 

5. Conclusion 

In this work, we studied the effects of residual strain and pre-twisted edges on the snap-folding behavior of the modified hexagonal 
ring by combining theoretical modeling, FEA simulations, and experiments. The residual strain comes from a bending moment applied 
to form the hexagonal ring, and is quantified by using the equivalent thermal strain of a bilayer disconnected hexagonal ring in FEA 
simulations. The pre-twisted edges are created by applying a pair of torques to the two ends of each edge, and characterized by 
prescribing the pre-twisted angle. The Kirchhoff rod theory is employed to model the snap-folding behavior of the modified hexagonal 
ring under different loading methods, and its reliability is validated by comparing with the FEA results. It is found that both the re
sidual strain and pre-twisted edges can facilitate the folding of the hexagonal ring. Specifically, residual strain can reduce the required 
moment to trigger the snap-folding, while pre-twisted edges can induce out-of-plane deformation to help the ring to fold. When 
introducing them into the hexagonal ring simultaneously, the modified hexagonal ring can be snap-folded by simply a point load or 
localized twist or squeeze. To demonstrate the advantages of our design strategy, we fabricate various assemblies of the modified 
hexagonal rings. Compared to assemblies composed of regular hexagonal rings whose snap-folding requires twisting or bending, as
semblies which utilize modified rings can be easily snap-folded to small-volume states just by compressing their corners. The proposed 
geometric modifications provide effective design strategies to achieve the easy folding of ring origami-based functional structures with 
extremely high packing ratio, which have broad applications in the fields of space structures, architecture engineering, and biomedical 
devices. 
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Appendix A. Quantification of the residual strain 

The residual strain used in the rod model is converted from the thermal strain applied in FEA simulations. For the bilayer ring 
considered in FEA simulations, the thermal stresses are uniformly distributed in both layers, whose resultant force and moment can be 
obtained as 

FT =

∫ h/2

− h/2

∫ 0

− t/2
σTdxdz +

∫ h/2

− h/2

∫ t/2

0
( − σT)dxdz = 0, (A.1)  

MT =

∫ h/2

− h/2

∫ 0

− t/2
σTxdxdz +

∫ h/2

− h/2

∫ t/2

0
( − σT)xdxdz = −

1
4
σTht2 = −

1
4

EεTht2, (A.2)  

in which σT represents the thermal stress induced by the thermal strain εT. 
For the hexagonal ring in the experiment, the residual strain is linearly distributed along the thickness, as shown in Fig. 4(b), with 

ε0 being the maximum residual strain, which is on the surface of the ring. Therefore, the corresponding residual stress is also linearly 
distributed in the thickness, and it equals zero along the neutral axis, which is the centerline of the rectangular cross-section. Then, the 
distribution of the residual stress along the thickness can be described by 

σR(x) = −
2σ0

t
x, −

t
2

≤ x ≤
t
2
, (A.3)  

where σ0 is the maximum residual stress, which is on the surface of the ring. In this case, the resultant force and moment of the residual 
stress can be written as 

FR =

∫

A
σRdA = −

∫ h/2

− h/2

∫ t/2

− t/2

2σ0
t

xdxdz = 0, (A.4)  

MR =

∫

A
σRxdA = −

∫ h/2

− h/2

∫ t/2

− t/2

2σ0
t

x2dxdz = −
1
6
σ0ht2 = −

1
6

Eε0ht2, (A.5)  

in which A is the cross-sectional area. By setting the two bending moments equal, i.e., MT = MR, we have 

ε0 = 1.5εT. (A.6) 

For a modified hexagonal ring with a specific natural state, the corresponding thermal strain in FEA simulations can be easily 
converted to the residual strain used in our rod model by using Eq. (A.6). 

Appendix B. Governing equations and boundary conditions 

B.1. Governing equations for the modified hexagonal ring 

Governing equations for the jth (j = 1, 2, 3, 4) segment of the hexagonal ring are given by 

dF̄(j)
1

ds̄(j) =
(

F̄(j)
2 κ̄(j)
3 − F̄(j)

3 κ̄(j)
2

)
ℓ(j)

, (B.1)  

dF̄(j)
2

ds̄(j) =
(

F̄(j)
3 κ̄(j)
1 − F̄(j)

1 κ̄(j)
3

)
ℓ(j)

, (B.2)  

dF̄(j)
3

ds̄(j) =
(

F̄(j)
1 κ̄(j)
2 − F̄(j)

2 κ̄(j)
1

)
ℓ(j)

, (B.3)  

dκ̄(j)
1

ds̄(j) =
dκ̄(j)
01

ds̄
+
[
β
(

κ̄(j)
2 − κ̄(j)

02

)
κ̄(j)
3 −

(
κ̄(j)
3 − κ̄(j)

03

)
κ̄(j)
2 + F̄(j)

2

]ℓ(j)

α , (B.4)  

dκ̄(j)
2

ds̄(j) =
dκ̄(j)
02

ds̄
−
[
α
(

κ̄(j)
1 − κ̄(j)

01

)
κ̄(j)
3 −

(
κ̄(j)
3 − κ̄(j)

03

)
κ̄(j)
1 + M̄Rκ̄(j)

3 + F̄(j)
1

]ℓ(j)

β
, (B.5)  
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dκ̄(j)
3

ds̄(j) =
dκ̄(j)
03

ds̄
+
[
α
(

κ̄(j)
1 − κ̄(j)

01

)
κ̄(j)
2 − β

(
κ̄(j)
2 − κ̄(j)

02

)
κ̄(j)
1 + M̄Rκ̄(j)

2

]
ℓ(j)

, (B.6)  

dr̄(j)
1

ds̄(j) = 2
(

q(j)
1 q(j)
3 + q(j)

0 q(j)
2

)
ℓ(j)

, (B.7)  

dr̄(j)
2

ds̄(j) = 2
(

q(j)
2 q(j)
3 − q(j)

0 q(j)
1

)
ℓ(j)

, (B.8)  

dr̄(j)
3

ds̄(j) = 2
[(

q(j)
0

)2
+
(

q(j)
3

)2
−
1
2

]

ℓ(j)
, (B.9)  

dq(j)
0

ds̄(j) =
1
2

(
− q(j)

1 κ̄(j)
1 − q(j)

2 κ̄(j)
2 − q(j)

3 κ̄(j)
3

)
ℓ(j)

, (B.10)  

dq(j)
1

ds̄(j) =
1
2

(
q(j)
0 κ̄(j)
1 − q(j)

3 κ̄(j)
2 + q(j)

0 κ̄(j)
3

)
ℓ(j)

, (B.11)  

dq(j)
2

ds̄(j) =
1
2

(
q(j)
3 κ̄(j)
1 + q(j)

0 κ̄(j)
2 − q(j)

1 κ̄(j)
3

)
ℓ(j)

, (B.12)  

dq(j)
3

ds̄(j) =
1
2

(
− q(j)

2 κ̄(j)
1 + q(j)

1 κ̄(j)
2 + q(j)

0 κ̄(j)
3

)
ℓ(j)

, (B.13)  

in which 

α =
EI1
GJ

, β =
EI2
GJ

. (B.14)  

B.2. Boundary conditions for different loading methods 

To obtain the boundary conditions for the modified hexagonal ring under different loading methods, the Euler angles are alter
natively introduced to describe the transformation between the local basis (e1, e2, e3) and the global basis (E1, E2, E3), because this 
allows for more straightforward definition of the rotational boundary conditions. Here, the Euler angles (φ, θ, ϕ) following the rotation 
convention 3-2-3 are used (Healey and Mehta, 2005; Love, 2013; Yu and Hanna, 2019), which means that the local basis (starting with 
a frame aligned with the global basis) first rotates around e3 by φ, then rotates around e2 by θ, and finally rotates around e3 by ϕ. Thus, 
we have 

⎡

⎣
e1
e2
e3

⎤

⎦ =

⎡

⎣
cosϕ sinϕ 0

− sinϕ cosϕ 0
0 0 1

⎤

⎦

⎡

⎣
cosθ 0 − sinθ
0 1 0
sinθ 0 cosθ

⎤

⎦

⎡

⎣
cosφ sinφ 0

− sinφ cosφ 0
0 0 1

⎤

⎦

⎡

⎣
E1
E2
E3

⎤

⎦. (B.15) 

By setting the coefficient matrices of Eqs. (14) and (B.15) equal, the quaternion components (q0, q1, q2, q3) are expressed by the 
Euler angles (φ, θ, ϕ) as 

q0 = cos
θ
2
cos

ϕ + φ
2

, q1 = sin
θ
2
sin

ϕ − φ
2

, q2 = sin
θ
2
cos

ϕ − φ
2

, q3 = cos
θ
2
sin

ϕ + φ
2

. (B.16) 

With the help of Eq. (B.16), the rotational boundary conditions defined by the Euler angles can be converted to those of quaternion 
components used in the Kirchhoff rod model. 

As shown in Fig. B1, we take one quarter of the hexagonal ring for analyzes in theoretical modeling, and further divide the quarter 
ring into 4 segments. When the external loading is applied at the corners (Fig. B1(a)), the half straight edge at the bottom of the ring is 
taken as the first segment. When the external loading is applied at the edges (Fig. B1(b)), half of the rounded corner at the bottom of the 
ring is taken as the first segment. There are 52 governing equations for the hexagonal ring, which requires 52 boundary conditions to 
form a well-posed boundary value problem. Here, we directly give the 13 boundary conditions at the left boundary ̄s(1) = 0 of the first 
segment and the right boundary ̄s(4) = 1 of the fourth segment for different loading methods. The remaining 39 boundary conditions at 
the joints of neighboring segments can be easily obtained by considering the equilibrium and geometric compatibility. For the deri
vation details of boundary conditions for twisting load, refer to our previous work (Sun et al., 2022a). The boundary conditions for 
bending and point loads can be derived in a similar way. Once the governing equations are solved, the external loads required to 
prescribe the twisting angle Φ, the bending angle Θ, and the displacement δ can be obtained using the corresponding internal moment 
and force at the loading points, which equal EI2k(4)

2 , GJk(4)

3 , and F(4)

2 , respectively. 
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B.2.1. Twisting load 
When the hexagonal ring is under twisting load, the boundary conditions at ̄s(1) = 0 are written as 

r̄(1)
1 (0) = 0, r̄(1)

3 (0) = 0, F̄(1)
2 (0) = 0, κ̄(1)

2 (0) = 0, q(1)
1 (0) = 0, q(1)

3 (0) = 0. (B.17) 

The boundary conditions at ̄s(4) = 1 are given by 

r̄(4)
1 (1) = 0, r̄(4)

2 (1) = 0, F̄(4)
2 (1) = 0, q(4)

0 (1) =

̅̅̅
2

√

2
cos

(Φ
2

)
,

q(4)
1 (1) =

̅̅̅
2

√

2
cos

(Φ
2

)
, q(4)
2 (1) = −

̅̅̅
2

√

2
sin

(Φ
2

)
, q(4)
3 (1) = −

̅̅̅
2

√

2
sin

(Φ
2

)
.

(B.18)  

B.2.2. Bending load 
When the hexagonal ring is subjected to bending load, the boundary conditions at ̄s(1) = 0 can be written as 

r̄(1)
1 (0) = 0, r̄(1)

3 (0) = 0, F̄(1)
2 (0) = 0, κ̄(1)

3 (0) = 0, q(1)
1 (0) = 0, q(1)

2 (0) = 0. (B.19) 

The boundary conditions at ̄s(4) = 1 are given by 

F̄(4)
1 (1) = 0, F̄(4)

2 (1) = 0, r̄(4)
2 (1) = 0, q(4)

0 (1) =

̅̅̅
2

√

2
cos

(Θ
2

)
,

q(4)
1 (1) =

̅̅̅
2

√

2
cos

(Θ
2

)
, q(4)
2 (1) =

̅̅̅
2

√

2
sin

(Θ
2

)
, q(4)
3 (1) = −

̅̅̅
2

√

2
sin

(Θ
2

)
.

(B.20)  

B.2.3. Point load 
For the case of point load, the boundary conditions at ̄s(1) = 0 are written as 

r̄(1)
1 (0) = 0, r̄(1)

3 (0) = 0, F̄(1)
2 (0) = 0, κ̄(1)

2 (0) = 0, q(1)
1 (0) = 0, q(1)

3 (0) = 0. (B.21) 

The boundary conditions at ̄s(4) = 1 are given by 

Fig. B1. Schematics of the hexagonal ring considered in the rod model. (a) External loading applied at the corners. (b) External loading applied at 
the edges. The global basis (E1, E2, E3) is fixed at the center of the ring, and the local basis (e1, e2, e3) is attached to the centerline of the ring’s edge. 
The red dots represent the coordinate axis pointing out of the plane, the purple dots denote the loading points, and the circled numbers denote the 
segment number. 
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r̄(4)
1 (1) = 0, r̄(4)

2 (1) = 0, r̄(4)
3 (1) = (c + r − δ/2)

/
a, κ̄(4)

2 (1) = 0,

q(4)
0 (1) = q(4)

1 (1), q(4)
2 (1) = q(4)

3 (1),
[
q(4)
0 (1)

]2
+
[
q(4)
2 (1)

]2
= 1

/
2.

(B.22)  

Appendix C. Strain energy 

In the present work, the residual strain is introduced into the ring as an internal moment, thus the strain energy in the Kirchhoff rod 
model with the consideration of the residual strain is given by 

Urod =

∫

S

(M1 + MR)
2

2EI1
ds +

∫

S

M22
2EI2

ds +

∫

S

M23
2GJ

ds

=
1
2

[∫

S
EI1(κ1 − κ01)2ds +

∫

S
EI2(κ2 − κ02)2ds +

∫

S
GJ(κ3 − κ03)2ds +

∫

S
2MR(κ1 − κ01)ds +

∫

S

M2R
EI1

ds
]

.

(C.1)  

Note that the strain energy only includes the bending energy and the twisting energy without any stretching energy due to the 
inextensible assumption. By using Eq. (C.1), the normalized strain energy of the modified hexagonal ring can be written as 

Ū =
Ua
GJ

= 2
∑4

i=1

[∫

S
α
(

κ̄(j)
1 − κ̄(j)

01

)2
ℓ(j)ds̄(j) +

∫

S
β
(

κ̄(j)
2 − κ̄(j)

02

)2
ℓ(j)ds̄(j)

+

∫

S

(
κ̄(j)
3 − κ̄(j)

03

)2
ℓ(j)ds̄(j) +

∫

S
2M̄R

(
κ̄(j)
1 − κ̄(j)

01

)
ℓ(j)ds̄(j) +

∫

S

M̄2R
α ℓ

(j)ds̄(j)
]

.

(C.2) 

With the help of Eq. (C.2), variation of the normalized strain energy with respect to the twisting angle of the modified hexagonal 
ring during the folding process can be obtained. We find that the theoretical results are in excellent agreement with the FEA results 
when the residual strain is not considered (ε0 = 0). However, when incorporating the residual strain, the strain energy predicted by the 
rod model is always lower than the FEA results, but the two methods give the same trends for the energy landscapes. To identify this 
issue, we further compare the initial strain energy induced by the thermal strain and the residual strain. The initial strain energy of the 
bilayer ring considered in the FEA simulation is given by 

U1 = 2 ⋅
1
2

∫

V
σTεTdV =

∫

S
σTεTh(t / 2)ds =

1
2
σTεThtS0, (C.3)  

where S0 is the total length of the hexagonal ring. The initial strain energy of the single layer ring predicted by the rod model can be 
calculated as 

U2 =

∫

S

M2R
2EI1

ds =
M2RS0
2EI1

=
3
8
σTεThtS0 (C.4) 

Based on Eqs. (C.3) and (C.4), we have 

ΔU = U1 − U2 =
1
8

σTεThtS0 (C.5)  

As expected, the initial strain energy obtained by the rod model is lower than that of FEA simulations, which means although the 
thermal strain and the residual strain produce the same bending moment, the initial strain energy introduced into the ring are different. 
In Section 2.4, we modify the initial strain energy of the rod model by adding ΔU, and it is seen from Figs. 5(d) and 6(c) that the strain 
energy curves with residual strain evaluated by the rod model also agree with the FEA results very well. 

Appendix D. Additional results for bending, twisting, and point loads 

Additional results for folding behaviors of the modified hexagonal ring under bening, twisting, and point loads are given in Figs. D1, 
D2, D3, D4, D5, D6, D7, D8, and D9. 
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Fig. D1. Snap-folding of the modified hexagonal ring with residual strain under bending loads at different positions. (a) Schematic of the modified hexagonal ring under a pair of bending moments at 
corners or edges. (b,c) Normalized moment versus bending angle for the modified hexagonal ring with different residual strains under bending at corners (b) and at edges (c). (d,e) Folding processes of 
the modified hexagonal ring with residual strain ε0 = 0.0026 under bending loads at corners (d) and at edges (e), with the dots denoting the loading points. 
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Fig. D2. Deformation configurations during folding processes of the modified hexagonal ring with different pre-twisted angles of the edges under negative twisting loads at corners. The dots correspond 
to the loading points. 
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Fig. D3. Deformation configurations during folding processes of the modified hexagonal ring with different pre-twisted angles of the edges under positive twisting loads at corners. The dots correspond 
to the loading points. 
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Fig. D4. Folding processes of the modified hexagonal ring with different pre-twisted angles of the edges under negative twisting loads at edges. The dots correspond to the loading points.  
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Fig. D5. Folding processes of the modified hexagonal ring with different pre-twisted angles of the edges under positive twisting loads at edges. The dots correspond to the loading points.  
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Fig. D6. Snap-folding of the modified hexagonal ring with pre-twisted edges under bending loads at different positions predicted by FEA simulations. (a) Schematic of the modified hexagonal ring under 
a pair of bending moments at corners or edges. (b,c) Normalized moment versus bending angle for the modified hexagonal ring with different pre-twisted angles of the edges under bending loads at 
corners (b) and at edges (c). (d,e) Folding processes of the modified hexagonal ring with pre-twisted angle γ = 15◦ of the edges under bending loads at corners (d) and at edges (e), with the dots denoting 
the loading points. 
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Fig. D7. Folding process of the modified hexagonal ring with residual strain ε0=0.0039 and pre-twisted angle γ = 15◦ of the edges under a point load predicted by the rod model.  
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Fig. D8. Normalized force versus displacement for the modified hexagonal ring under a point load. (a) The modified hexagonal ring with only pre- 
twisted angles of the edges. (b) The modified hexagonal with residual strain and pre-twisted angle γ = 15◦ of the edges. 

Fig. D9. Snap-folding of the modified hexagonal ring with residual strain and different pre-twisted angles of the edges under bending loads pre
dicted by FEA simulations. (a) Schematic of the modified hexagonal ring under a pair of bending moments at corners or edges. (b,c) Normalized 
moment versus twisting angle for bending loads applied at corners (b) and at edges (c). 
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