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Abstract

Ring origami has emerged as a robust strategy for designing foldable and deployable structures
due to its impressive packing abilities achieved from snap-folding. In general, polygonal rings with
rationally designed geometric parameters can fold into compact three-loop configurations with
curved segments which result from the internal bending moment in the folded state. Inspired by
the internal bending moment-induced curvature in the folded state, we explore how this curvature
can be tuned by introducing initial natural curvature to the segments of the polygonal rings in their
deployed stress-free state, and study how this initial curvature affects the folded configurations of
the rings. Taking a clue from straight-segmented polygonal rings that fold into overlapping curved
loops, we find that this behavior can be reversed by introducing curvature into the ring segments
in the stress-free initial state such that the rings fold into a looped straight-line configuration with
“zero” area. This strategy realizes extreme packing of the rings. In this work, by a combination of
experimental observation, finite element analysis, and theoretical modeling, we systematically
study the effect of segment curvature on folding behavior, folded configurations, and packing of
curved ring origami with different geometries. It is anticipated that curved ring origami can open
a new avenue for the design of foldable and deployable structures with simple folded

configurations and high packing efficiency.
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1. Introduction

Foldable and deployable structures have attracted great attention in recent decades due to
their capabilities of shape reconfiguration and significant size change, which have found
widespread engineering applications such as deployable aerospace structures [1, 2], shape-
morphing soft robots [3-5], and foldable medical devices [6]. Among the different folding
strategies, mechanical instability has been intensively explored by utilizing the buckling and snap-
through behaviors of structures for self-guided shape reconfiguration and size change [7-9]. Ring
origami, a folding approach based on snap-through instability, has been demonstrated as a robust
method for folding closed-loop rods of different geometries (such as polygons) under bending or
twisting loads [10-12]. The snap-folding of well-designed ring origami can achieve a high packing
efficiency. For example, a hexagonal ring can snap-fold into a three-loop overlapping peach core-
shaped configuration with only 10.6% of its initial area [13]. Additionally, it was recently found
that introducing geometric modifications and residual strains to the ring can facilitate the folding
of ring origami by only a point load or a localized twist with much reduced required energy input
[14]. The packing of ring origami can be further enhanced by assembling multiple rings into two-
dimensional (2D) tessellations or three-dimensional (3D) structures [15]. Due to these merits, ring
origami is an ideal candidate to serve as the basis for foldable and deployable functional structures
such as foldable solar panel devices [15], deployable space structures [16], flexible electronics
[17], and foldable tents [18].

In general, polygonal rings with straight segments and rationally designed geometric
parameters (cross-section shape, aspect ratio, span of the ring, etc.) can fold into three-loop

configurations with curved segments (see Fig. Al in Appendix A) which result from the internal
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bending moments in the folded state. The curvature of the folded ring can be fully predicted by the
Kirchhoff rod model and finite element analysis (FEA) [10, 19]. Inspired by the internal bending
moment-induced curvature at the folded state, we have recently explored how this curvature can
be tuned by introducing segments with initial natural curvature into the polygonal rings in their
deployed stress-free state, and how this initial curvature affects the folded configurations of the
rings. Although polygonal segments with both initial natural curvature and initial bending stress
could be considered, only the role of initial natural curvature is studied here. Thus, in this paper,
all the deployed rings are stress-free. An exciting discovery, which will be illustrated for several
ring geometries, is that it is possible to choose an initial natural segment curvature such that the
folded state is a pattern of straight loops with an idealized area of zero. In the remainder of this
Introduction, several illustrations of the experimental observations explored later in the paper will
be previewed to indicate the nature of the study and to whet the appetite of the reader for what
follows.

In Fig. 1(a), a depiction of a straight-segmented hexagonal ring that can fold into a three-
loop fully overlapping peach core configuration is given. Then, in Fig. 1(b), we show how a
hexagon with segments having a particular natural curvature (defined later in the paper) folds into
a nearly straight-sided three-loop ring. The photographs in Fig. 1 are of experimental realizations
of the rings (See Movie 1 in Supplementary Materials for the bistable elastic folding process and
see Appendix B for details on the ring fabrication). In principle, the packing ratio (area of the
folded state to area of the deployed state) of the curved ring can decrease to zero if the corner
radius is negligible and the segment thickness is ignored. In our specimens, the corner radius,
normalized by the segment radius (Rn), is 0.045 and the folded configuration of the curved

hexagonal ring is 4.1% of its initial area, which is about 2.5 times smaller than the packing ratio
3
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of a hexagonal ring with straight segments (10.6%) [13]. A folded configuration with straight
segments can also be obtained from a double-layer square ring (See Fig. A2 in Appendix B for
fabrication details). As shown in Fig. 1(c), the double-layer square ring folds into a four-loop
straight-line geometry, with a packing ratio of 9.4% with respect to the initial double-layer ring.
Additionally, a single-loop straight-line configuration can be achieved by folding a single-layer
“8”-shaped ring [20], which has a packing ratio of 11.9% (Fig. 1(d)). Motivated by such examples,
the current work aims to study curved ring origami by investigating the effect of segment curvature

on their folded configurations, snap-folding behaviors, and corresponding packing abilities.
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Fig. 1 Folding of ring origami with straight segments and curved segments that enables a high packing
efficiency. (a) Single-layer hexagonal ring folds into a three-layer fully overlapping peach core shape with
segment radius of R,. (b) Single-layer curved hexagonal ring folds into a three-loop straight-line geometry.
Note that the curved hexagonal ring has the same segment length and the same segment curvature, 1/R,, as

4
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the folded configuration of a straight-segmented hexagonal ring. (¢) Double-layer curved square ring folds
into a four-loop straight-line geometry. (d) Single-layer “8”-shaped ring folds into a single-loop straight-
line geometry. The initial and folded configurations on the left are obtained from FEA simulations, while
the bistable elastic folding processes on the right are from experiments. The red dots denote the locations
on the ring where bending moments are applied. Scale bars: 5 cm.

Broadly speaking, curved ring origami encompasses slender structures with curved
geometries widely found in nature and engineering applications such as biological filaments [21],
overhand knots [22], circular rings [11], and curved crease origami [23]. In these structures,
curvature plays a significant role in their mechanical instabilities. It is worth noting that recent
papers have studied the effect of curvature on the instabilities of rings or ring-like structures and
found that curvature can induce residual stress and thus tune the stability and the folded
configurations of circular rings [18, 24, 25], buckling and post-buckling patterns of creased annular
elastic strips [26], and bistability and looping behaviors of creased annuli with discontinuities [27].
However, the focus of these previous studies is quite different from those in this paper, where the
emphasis is on the role of the initial stress-free natural curvature of the polygonal ring segments.
To our knowledge, there is no existing work that examines how the natural curvature of the
polygonal ring segments affects the instability and folding behavior of 2D curved ring origami. As
demonstrated in this paper, ring segments with stress-free natural curvature can generate a rich set
of folding configurations worthy of further study.

This work combines experiments, FEA simulations, and theoretical modeling to
systematically study the effect of natural segment curvature on the snap-folding of curved ring
origami of different geometries. In addition to the single-layer curved hexagonal ring and double-

layer curved square ring shown in Figs. 1(b) and 1(c), which can fold into straight-line loop

configurations, we also study the variety of folded configurations achieved from single-layer
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curved octagonal rings and double-layer curved hexagonal rings with initial segment curvature.
For each case, we present the initial and folded configurations, moment-bending angle curves,
energy landscapes, packing ratios, and folding paths of the ring origami. It is anticipated that the
current work will provide guidance for the design of foldable and deployable functional structures
with simple folded configurations and high packing efficiency, for potential application in
deployable aerospace structures, foldable electronics, and reconfigurable architecture.

The remainder of this paper is organized as follows. In Section 2, we describe the FEA and
theoretical modeling used to study the snap-folding of curved ring origami. In Section 3, we study
the effect of natural segment curvature on the folding behaviors and packing abilities of single-
layer curved hexagonal rings and single-layer curved octagonal rings. In Section 4, we investigate
the influence of segment curvature on the folding behaviors and packing abilities of double-layer
curved square rings and double-layer curved hexagonal rings. Finally, in Section 5, we summarize

the main findings of this work.

2. Methods and models

2.1. FEA simulations

FEA simulations for the snap-folding of both single-layer and double-layer rings are
conducted in the commercial software ABAQUS 2021 (Dassault Systémes, France). All the
simulated rings have a circumcircle radius of 200 mm, a cross-sectional thickness and height of
0.5 mm and 2 mm, respectively, and a corner radius of 5 mm. For all simulations, the C3D8R

element is used with a mesh size of 0.1 mm. The Young’s Modulus and Poisson’s ratio used are £
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=200 GPa and v= 0.3, respectively. The boundary conditions at the loading points for single-layer
and double-layer rings are not the same. For single-layer rings, a pair of bending angles are applied
to both the left and right corners . For double-layer rings, the bending rotational angles are applied
on the left corners of both layers. In addition, a small damping is used to stabilize all simulations,

which produces negligible energy dissipation (see Appendix C for details).

2.2. Theoretical modeling

(b)

Fig. 2 Schematics of (a) the rod model and (b) a curved hexagonal ring. The local basis (e1, €2, €3) is attached
to the centerlines of the rod and the ring, and the global basis (Ei, E», E3) is located at the center of the ring.

The Kirchhoff rod model has been widely used in modeling the mechanical behaviors of
slender structures [28-31], and is adopted to study the snap-folding behaviors of ring origami with
curved segments. A schematic of a naturally curved rod of length L, thickness ¢, and height 4 is
shown in Fig. 2(a). The rod is assumed to be unshearable and inextensible, which means that the
centerline of the rod is always perpendicular to the cross-section and the length of the rod remains
unchanged during deformation. The deformation of the centerline can be described by a position
vector p(s)=pi1Ei1+p2ExtpsEs in the global basis (Ei1, E2, E3), where s€[0, L] is the arc length
coordinate. Moreover, a local basis [ei(s), ex(s), e3(s)] is attached to the centerline of the rod with

e1 and e2 being unit vectors along the height direction and thickness direction, respectively, and e3
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being the unit tangent vector of the centerline, which indicates p’ = e, . Throughout the paper, a

prime denotes differentiation with respect to the arc length coordinate s, i.e., (+) =d(s)/ds. The
kinematics of the local basis is determined by e} = wxe, (i=1,2,3), where ® = ke, + ke, + ke, is

the Darboux vector, x1 and x> are the bending curvatures, and «3 is the twisting curvature. Based

on the Kirchhoff rod theory, the internal force N and moment M on the centerline of the rod satisfy

N' =0,

1
M +p'xN=0, (1

where N=Nie1+N2e2+Nse; and M=M,ei+Mhex+Mses. Projecting Eq. (1) along the local basis (e,
e2, e3) provides six equilibrium equations,

N/ —=N,x;+ N;k, =0,

N, =Nk, + Nk, =0,

N;—Nk,+ N,k =0,

M) -M,x, +M.,x,—N, =0, @
M) +Mx,— M.k, +N, =0,
M;-Mx, + M,k =0.
Considering linear constitutive relations, the internal moment can be written as
M = El (K‘l - Kfo))e] +EI, (K‘z k" )e2 + GJ(K3 —x” )e3, 3)

where £ and G are the Young’s modulus and the shear modulus of the rod, respectively.
G=E/[2(1+v)], where v is the Poisson’s ratio. /;=ht’/12 and L=h’t/12 are the moments of inertia,

and J is the rotational constant. For a rod with a rectangular cross-section, J=Ah#’/3 with [32]

A=1

1921r& 1 tanh((zk—l)nhj_ @

7 h&S Qk-1) 2t

€20z 1snbny 6| uo Jasn Aysieniun piojuels Aq ypd 9oL L-£2-Weli568.669/1.22290% L/GL L L 0L/10p/pd-ajoie/solueyoswpail|dde/Bio awse uonos|ooebipawse//:diy wouy papeojumoq



In Eq. (3), ", x”, and «.” represent the initial bending curvatures and twisting curvature of

the rod. In the present work, all rings stay in a plane without pre-twist in the initial state, and

therefore x{” =x{” =0.

Further, a unit quaternion q(s)=[qo, g1, g2, ¢3] is introduced to relate the local basis and

the global basis [33, 34], as

with

[Q]=2

[e..e,.e;] =[QI[E,.E,.E,]',

q5+4; —=

2

99>, — 4043

995 + 49049,

9.9, + 49095

1
q§+q22—5

9,95 — 404,

Based on Eq. (5) and p’=e,, one can obtain that

P =2(q,95 +909,)s
p; = 2(‘]2% _qo%)s

g5 =2(q, +q;)—1.

9,95 — 404>

4,95 t 904, |-

1
g +q; —=

2

Taking the derivative of Eq. (5) and using €, =@ xe,, we have

9y = (—a,k, — 4,5, —q:k;) 1 2,
4\ =(qok, — 4:5, + 4,K3) 1 2,
a5 = (3, + ok, —4,%3) 1 2,
45 = (—q.K, + 4, + qok;) 1 2.

©)

(6)

()

(8)
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Egs. (2), (7), and (8) provide thirteen governing equations for the rod, which include
thirteen unknowns, i.e., the internal forces (N1, N2, N3), the curvatures (k1, k2, k3), the position
vector components (p1, p2, p3), and the quaternion components (qo, g1, g2, g3). When supplemented
with appropriate boundary conditions, the differential equation system forms a well-posed
boundary value problem (BVP).

For ring origami consisting of polygons with curved segments and rounded corners, the
natural curvatures at the joints of the segments and the corners are discontinuous, and therefore
the rings have to be divided into multiple segments such that each segment can be modeled as a
Kirchhoff rod. The details of the curvature in the corner joints are not modeled, but, instead,
conditions of continuity across the joints are imposed. Such a multi-segment rod model has
recently been used to study the multi-stability of bigons and bigon rings (two-sided curved segment
polygons) [35], snap-folding of ring origami with different geometries [19], and snap-folding of
hexagonal ring origami with residual strain and pre-twisted segments [14]. For a ring divided into
m segments, there are 13m governing equations containing 13m unknown variables, which require

13m boundary conditions to produce a well-posed BVP. The variables for the j-th segment of the

rod are denoted by [N ,

i

Kijs Dyjs40;>9; ] (i=1,2,3,and j=1, 2, -, m), in which N;; and x;; are defined

in the local basis (ei, e2, €3) and p;; is defined in the global basis (Ei, E2, E3). For simplicity, we

introduce the following quantities to normalize the relevant variables,

_ N.R Dii
__ 00 (= =) _ (0) = _ Ly
Ny = GJ ’(Ki/"Kii )_(KI'J"Ki/' )Ro’pii _RTO’ )
S e, de
A ’ — oty >
! Ry, ds, ! ds,

10
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where Ry is the circumcircle radius of the curved segment ring, L; is the length of the j-th segment,
and /= Lj/Ry is a scaling factor that unifies the normalized arc length of different segments into the
same range [0, 1]. By using these normalized quantities, the 13m governing equations for the multi-

segment rod system can be written as

N, =(N, &, - N, &, ). Ny, = (N &, - N, &),
N;, (N7, - N, &),
= (&)Y +[ (B-Dic, /5, + N, |1,/ at,
f;:_[a(xl,_,c;?),c},— R+ N LB,
=k, /D), - BR,R, 1, (10)
P 2(%,61,, +qo,q2,)l,-, Dy, = Z(qz_,-%,- _qo_,qu)zj,
( +2q3] )l/.,

qo, q Kl] q2]K2] q?] »/)l /2 q]] (qul?lj_q3.i’?2.f+q2.i’?3.f)l.f/2’

(q31K11+q0/K21 q11K31)l /2, q, = ( q2>,»l?1j+q1jl?2‘,-+q0‘,-7?3‘,-)l‘,/2,

where o and f represent the bending-to-torsional rigidity ratios and are given by

:—:_ IB__

GJ GJ 24

2
El, 1+v 1, 1+V(ﬁj‘ an

For single-layer hexagonal and octagonal rings studied here, we only need to take one-
quarter of them for the analysis due to the symmetry, and then the quarter rings are sub-divided
into their curved segments (m=4 for the hexagonal ring, as shown in Fig. 2(b), and m=5 for the
octagonal ring). In the present work, we apply bending loads to fold the ring, and thus the
corresponding boundary conditions at the left boundary of the first segment s, =0 should satisfy
[14]

11
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N, =0,p,=0, p;; =0, i, =0, ¢, =0, g, =0, (12)

and at the right boundary of the m-th segment 5 =1 are

2

2 (9) V2 [9) V2 (0)
qlmz_COS 5 s q2m:_51n - |» q3m:__31n 5 .

2 2 2 2

]Vlm :09 ]\_]2m :Oﬂ 152m :OZ’ qOm :gcos(gj,
(13)

Here, 6 is the bending angle at the loading positions. Additionally, by considering the force

equilibrium and geometric compatibility at the joints of adjacent segments, we can obtain 12(n-1)

continuous boundary conditions for N,,,N,,,N;,,K,;, &y, D+ Pa;» Ps;»90;-91;+9;-95, and
(n-1) jumped boundary conditions for &,; . These boundary conditions together with those

provided by Eqgs. (12) and (13) produce a well-posed BVP for the multi-rod system, which can be
solved using various numerical continuation methods. Here, the Continuation Core and Toolboxes
(COCO) [36, 37] operated in MATLAB is used. In the numerical implementation, the bending
angle @ is set as the continuation parameter, which varies from 0 to 7. After the governing equation
systems are solved, the bending moment needed to prescribe the bending angle 8 equals the internal
moment at the loading points, which is given by

— MR, M, R _
= . 1

3. Snap-folding of single-layer curved rings
In this section, the influences of segment curvature on folded configurations of single-layer

curved polygonal rings and their corresponding packing ratios are studied based on FEA
12
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simulations and the rod model. We first study single-layer curved hexagonal rings that can fold
into fully overlapping configurations. Fig. 3(a) shows the initial and folded configurations of
single-layer hexagonal rings with different segment curvatures (see Movie 2 in Supplementary

Materials for the folding processes). The normalized segment curvature is defined as Ro/R,, where

Ro is the radius of the circumcircle of the ring and R, is the natural radius of the ring segment in

the deployed, unstressed state, with R, being negative or positive. From here on, rings with
negative R, will be referred to as concave (curved inwards) while those with positive R, will be
referred to as convex (curved outwards). Note that the use of the terminology concave or convex
does not refer to the convexity of the ring itself. Here, single-layer hexagonal rings with six
normalized natural curvatures (with the same Ry) ranging from —2.1 to 3 are studied. The rings
with Ro/R, = —2.1 and 3 are two extreme cases where the adjacent segments of the rings merge
with a common tangent or cusp. When Ro/R, = 0, the hexagonal ring with straight segments
(corresponding to R,=0) folds into a three-loop overlapping peach core structure, which has been
reported in our previous work [13, 15]. Interestingly, for concave cases, as the segment curvature
decreases from 0 to a critical value of —1.8, the folded state gradually transforms from a peach
core shape to a three-loop straight-line configuration which has the smallest area among all folded
states of the curved hexagonal rings studied here. This critical segment curvature (Ro/R, =—1.8) is
equal to the segment curvature of the peach core-shaped configuration folded from a hexagonal
ring with straight segments (Ro/Rn = 0). Continuing to decrease the segment curvature results in a
folded configuration whose top and bottom segments intersect with each other (e.g., Ro/R, =—2.1).
For convex cases, the folded states change from a peach core shape to a peanut shape (e.g., Ro/Rn

= 2) upon increasing the segment curvature from Ro/R, = 0. Interestingly, we find that the

13
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hexagonal ring with Ro/R, = 3 no longer folds into an overlapping configuration. Instead, it inverts
via torsional rotation around the entire ring from a ring with convex segments to a ring with
concave segments. Note that a three-loop configuration of this ring is still achievable by imposing
additional constraints on the ring during folding. This multistable behavior is worth further

investigation but will not be the focus of this paper.
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Fig. 3 Snap-folding of single-layer hexagonal rings with different segment curvatures under bending
applied at corners. (a) Initial states and folded states of single-layer hexagonal rings with different segment
curvatures. The blue dots denote the bending locations. FEA and theoretical results of (b) normalized
moment-bending angle curves and (c) normalized strain energy-bending angle curves for single-layer
hexagonal rings. (d) Packing ratios of single-layer hexagonal rings with different segment curvatures.

Variations of the normalized moment (MRo/GJ) with respect to the bending angle () for a
series of hexagonal rings, predicted by the FEA simulations and the rod model, are plotted in Fig.

3(b). The theoretical results match the FEA results to good accuracy. The peak of each curve is

the snapping point, i.e., the point where snap-folding is triggered. Upon applying a bending angle,

14
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0, and after reaching the snapping point, the ring folds to its final configuration in a self-guided
manner. It can be observed that the maximum moment for the ring with Ro/R, = 3 is the lowest
among various hexagonal rings. This is because it merely needs to invert, or ‘turn inside out’,
instead of folding to a multiloop overlapping state. Fig. 3(c) shows the relationship between the
normalized strain energy (URo/GJ) and the bending angle (0) for single-layer hexagonal rings with
different segment curvatures during the folding process. We find that the strain energy obtained
from FEA agrees well with that evaluated by the rod model. Specifically, each energy curve of the
hexagonal rings shows two local minimum points: one is located at € = 0, corresponding to the
initial state, and the other is near 6 = m, corresponding to the folded state, indicating a bistable
elastic folding behavior. Fig. 3(d) compares the calculated packing ratios of hexagonal rings with
different segment curvatures. Here, the packing ratio is defined as the area ratio of the folded
configuration to the initial configuration. Benefitting from its straight-line folded configuration,
the hexagonal ring having concave segments with Ro/R, = —1.8 exhibits the best packing with a
packing ratio of 4.1%, which is 2.5 times smaller than that of the hexagonal ring with straight
segments (10.6%). By contrast, the hexagonal ring having convex segments with Ro/R, =3 (whose
segments meet at a cusp) has a packing ratio of 43.9% since its folded configuration is still a single-
loop geometry. As the segment curvature varies from —1.8 to 2, the packing ratio increases from
4.1% to 11.3%. Therefore, the packing efficiency of a hexagonal ring can be improved by
introducing concave segments with appropriate curvature. Folding paths of hexagonal rings with
several different segment curvatures under bending loads are illustrated in Fig. 4. It is seen that
the rings rapidly reduce in size after the snapping point is reached. For the hexagonal ring with

Ro/Rn = 3, unlike the other rings that fold into a three-loop overlapping configuration, it inverts
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into a single-loop geometry that is similar to the concave hexagonal ring. As mentioned above, the

three-loop configuration is achievable by imposing additional constraints during folding.

Folding path
Ro/R, >

-1_8 X X = =

0.35m 0.56m 0.65m 0.72m 0.8m m
Snapping point

TR x = e

0.35m 0.6m 0.7m 0.75m 0.8m m
Snapping point
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2 _ .- _ O E % {g} _ @ _
o 0.7t
o

0.351 0.621 0.751 0.8m m
Snapping point

0.35m 0.54m
Snapping point

3 -
0.65m 0.71m

Fig. 4 Snap-folding paths of single-layer hexagonal rings with different segment curvatures. The blue and
orange dots denote the bending locations.

Next, we study the effect of segment curvature on the folded configurations and packing
ratios of single-layer curved octagonal rings. Unlike hexagonal rings, octagonal rings cannot fold
into fully overlapping three-loop configurations as their segment number are not 37, where 7 is an
integer greater than or equal to 2 [12, 15]. Initial and folded configurations of six octagonal rings
with different segment curvatures are presented in Fig. 5(a) (see Movie 3 in Supplementary
Materials for the folding processes), in which the rings with Ro/R, = —2.87 and 3.63 are the two

extreme cases where their adjacent curved segments form cusps. It is seen that the octagonal ring
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with straight segments (Ro/R, = 0) folds into a wreath shape. For the concave segments with
curvature decreasing from 0 to —1.94, the folded configurations of the curved octagonal rings
change from a wreath shape to an octagram. For the convex segments, the ring with Ro/R, = 2 folds
into a more compact wreath shape. For the two extreme cases, Ro/R, =—2.87 and 3.63, the curved
octagonal rings invert and retain their single-loop form but reverse their segment curvatures from

concave to convex and vice versa.

Figs. 5(b) and 5(c) show the normalized moment-bending angle curves and the normalized
strain energy-bending angle curves for single-layer octagonal rings with different segment
curvatures, respectively. It is seen from Fig. 5(b) that all six rings exhibit the snap-folding behavior
described earlier. Similar to what was observed for the curved hexagonal rings, the maximum
moments for the two extreme cases (Ro/Rn = —2.87 and 3.63) are much lower than those of the
other geometries. Moreover, the energy landscapes indicate that all the rings are stable at both their

initial and folded states. In other words, the rings display bistable elastic folding.
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Fig. 5 Snap-folding of single-layer octagonal rings with different segment curvatures under applied bending
loads at corners. (a) Initial states and folded states of single-layer octagonal rings with various segment
curvatures. The blue dots denote the bending locations. FEA and theoretical results of (b) normalized
moment-bending angle curves and (c) normalized strain energy-bending angle curves for single-layer
curved octagonal rings. (d) Packing ratios of single-layer octagonal rings with various segment curvatures.

The packing ratios of single-layer octagonal rings are illustrated in Fig. 5(d). Among the
six different segment curvatures considered, the curved octagonal ring with Ro/R, = 2 exhibits the
best packing with a ratio of 12.9%, which is slightly lower than that of the octagonal ring with
straight segments (13.4%). As the segment curvature decreases from 2 to —1.94, the packing ratio
of the single-layer octagonal rings gradually increase from 12.9% to 17.2%. This indicates that the
curved octagonal rings tend to have better packing when their segments are convex, contrary to
the single-layer curved hexagonal rings. The two curved octagonal rings whose tangent segments

merge as cusps (Ro/Rn = —2.87 and 3.63) have packing efficiencies much lower than the other

octagonal rings, because their inverted shapes are single looped. In Fig. 6, folding paths are
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illustrated for single-layer octagonal rings with various segment curvatures under bending loads.
It is seen that the octagonal rings with Ro/Rn, = —1.94, 0, and 2 snap-fold into much smaller sized
configurations once the bending angle passes the snapping point, while the sizes of the two curved

octagonal rings with Ro/R, = —2.87 and 3.63 change minimally during folding.
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Fig. 6 Snap-folding paths of single-layer octagonal rings with various segment curvatures. The blue and
orange dots denote the bending locations.
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4. Snap-folding of double-layer curved rings

In this section, the effects of segment curvature on folded configurations and packing ratios
of double-layer curved rings are examined based on FEA simulations. Here, double-layer rings are
continuous rods with two loops stacked on one another, which can be obtained by coiling a
disconnected ring by  and then reconnecting it (see Appendix B for details on double-layer square
rings). We first study the snap-folding behaviors of double-layer curved square rings that can fold
into fully overlapping folded configurations under bending loads. Note that the bending loads are
applied at the left corners of both layers. In Fig. 7(a), the initial and folded states of the double-
layer square rings with six different segment curvatures varying from —1.28 to 2.42 are presented
(see Movie 4 in Supplementary Materials for the folding processes), in which rings with Ro/Rn
=—1.28 and 2.42 are two extreme cases where their adjacent tangent curved segments form cusps.
It is found that the double-layer square ring with straight segments (Ro/R, = 0) can fold into a four-
loop overlapping peach core configuration. This is different than the case of a single-layer square
ring, which has a non-fully-overlapping cross-shaped folded configuration [12, 15]. As the
segment curvature decreases, the folded contiguration of the double-layer square ring with concave
segments gradually flattens. Particularly, the ring with Ro/R, =—1 folds into a highly compact four-
loop straight-line configuration with the smallest packing area. When the segment curvature
continues to decrease, the top and bottom segments of the straight-line loop begin to intersect with
each other. By contrast, when increasing the segment curvature to 1, the initial state of the double-
layer square ring turns into a double-layer circular ring, which folds into a four-loop circular ring
with half the radius of its initial configuration. With the segment curvature changing from 1 to 2,

the folded configuration gradually changes from a circle to a peanut shape. Lastly, for the convex
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ring with adjacent segments tangent to one another (Ro/Rn = 2.42), the double-layer square ring is

no longer observed to be foldable and deforms into an unstable 3D configuration.
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Fig. 7 Snap-folding of double-layer square rings with six different segment curvatures under bending loads.
(a) Initial states and folded states of double-layer square rings with different segment curvatures. The
bending loads are applied at the left corners of both layers, which are denoted by blue dots. FEA results of
(b) normalized moment-bending angle curves and (c) normalized strain energy-bending angle curves for
double-layer square rings with different segment curvatures. (d) Packing ratios of double-layer square rings
with different segment curvatures.

Variations of the normalized moment (MRo/GJ) with respect to the bending angle () for
double-layer square rings with various segment curvatures are shown in Fig. 7(b). For rings with
segment curvatures from —1.28 to 2, the normalized moment first increases to the snapping point
and then decreases below zero, revealing that these five rings undergo snap-folding behavior. For

the double-layer square ring with Ro/R, = 2.42, however, the normalized moment does not decrease

towards zero after passing the peak point, suggesting that the ring is un-foldable. Fig. 7(c)
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illustrates the relationship between the normalized strain energy (URo/GJ) and bending angle (0)
for the double-layer square rings with different segment curvatures. For the five rings exhibiting
snap-folding behavior, their energy curves have two local minima at 6 = 0 and near 6 = =, which
means both the initial and folded states of these rings are stable. However, the strain energy of the
ring with Ro/R, = 2.42 monotonically increases as the bending angle varies from 0 to z, revealing
that the ring is only stable at its initial state. The packing ratios of double-layer square rings with
different segment curvatures are shown in Fig. 7(d). As expected, the double-layer square ring
with segment curvature Ro/R, = —1 possesses the best packing ability due to its straight-line
configuration, whose packing ratio is only 9.4%. We can also see that the packing ratio of the
double-layer square ring rapidly increases from 9.4% to 24.2% as the segment curvature changes
from —1 to 0, while it nearly remains unchanged when increasing the segment curvature from 0 to
2. Therefore, the packing ability of the double-layer square ring can be effectively improved by
introducing concave segments with a relatively small curvature. For the double-layer square ring
with Ro/R, = —1.28, it has the lowest packing efficiency with a value of 34.2%. Isometrical views
of the folding paths for the double-layer square rings with various segment curvatures under
bending loads are shown in Fig. 8, where the front and back layers of the rings are denoted by
black and orange, respectively. Note that the bending loads are applied on the left corners of both
layers. During folding, the double-layer square rings with Ro/R,=—1, 0, and 2 first bend in opposite
directions and then snap-fold to different four-loop fully overlapping geometries. For the double-
layer square ring with Ro/R, = 2.42, it can only be reconfigured to an unstable 3D configuration

when the bending angle increases from 0 to 7.
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Fig. 8 Isometric views of the folding paths of the double-layer square rings with different segment
curvatures. The bending loads are applied at the left corners of both layers, and the bending locations are
denoted by blue dots.

Finally, we investigate the influence of segment curvature on the folded configurations and
packing ratios of double-layer hexagonal rings. Fig. 9(a) shows the initial and folded
configurations of double-layer hexagonal rings with different segment curvatures (see Movie 5 in
Supplementary Materials for the folding processes). Here, six different segment curvatures
varying from —2.1 to 3 are considered, with segment curvatures Ro/R, =—2.1 and 3 corresponding
to cases where adjacent segments of the rings are tangent. It is seen that the double-layer hexagonal

ring with straight segments (Ro/R, = 0) folds into a four-loop triangle with convex segments,
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instead of folding into a three-layer peach core shape like the single-layer hexagonal ring. When
the segment curvature decreases from 0 to —2, the folded configurations of the rings change from
a convex triangle (Ro/R, = 0) to an equilateral triangle (Ro/R, = —1) and then to a concave triangle
(Ro/Rn = —2). For the double-layer hexagonal ring with Ro/R, = —2.1, it folds into a triangle with
intersected adjacent segments and has the smallest area among the various folded configurations.
For double-layer hexagonal rings with convex segments, the ring folds into a geometry with three

rounded segments when Ro/R, = 2, but it appears to become un-foldable when Ro/R, = 3.
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Fig. 9 Snap-folding of double-layer hexagonal rings with different segment curvatures under bending loads.
(a) Initial states and folded states of double-layer hexagonal rings with different segment curvatures. The
bending loads are applied at the left corners of both layers, and the bending locations are denoted by blue
dots. FEA results of (b) normalized moment-bending angle curves and (¢) normalized strain energy-bending
angle curves for double-layer hexagonal rings with different segment curvatures. (d) Packing ratios of
double-layer hexagonal rings with different segment curvatures.
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Variations of the normalized moment and the normalized strain energy with respect to the
bending angle for the six different double-layer hexagonal rings during their folding processes are
presented in Figs. 9(b) and 9(c), respectively. It is seen from Fig. 9(b) that the double-layer
hexagonal rings, with segment curvatures from —2.1 to 2, fold from their initial states to the final
states via the snap-through instability. The energy curves in Fig. 9(c) show that both the initial and
folded states of these rings are stable, which implies that they experience bistable elastic folding
behaviors. Also, we can find that the double-layer hexagonal ring with Ro/R; = 3 is un-foldable, as
its normalized strain energy monotonically increases as the bending angle increases. Fig. 9(d)
compares the packing ratios of the five foldable double-layer hexagonal rings. It is seen that the
ring with tangent concave segments (Ro/R, = —2.1) shows the best packing ability, as its folded
configuration is only 11% of its initial area. As the segment curvature increases from —2.1 to —1,
the packing ratio rapidly increases from 11% to 24.1%, while it only increases slightly from 24.1%
to 25.1% when the segment curvature increases from —1 to 2. Therefore, for double-layer
hexagonal rings, introducing concave segments with a relatively large curvature can result in a
higher packing efficiency. The isometric views of the folding paths of double-layer hexagonal
rings with different segment curvatures under bending loads are shown in Fig. 10. One can find
that for Ro/R, =—1, 0, and 2, the rings undergo a similar folding process from their initial states to
the four-loop overlapping states. For Ro/R, = 3, however, the double-layer hexagonal ring with

tangent convex segments can only fold to an unstable 3D configuration.
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Fig. 10 Isometric views of the folding paths of double-layer hexagonal rings with different segment
curvatures under bending loads. The bending loads are applied at the left corners of both layers, and the
bending locations are denoted by blue dots.

5. Conclusion

In this work, we have studied the effects of segment curvature on the snap-folding and
packing abilities of curved ring origami based on a combination of experiments, finite element
analysis, and theoretical modeling. Four types of curved ring origami have been considered: single-
layer hexagonal rings and octagonal rings, as well as double-layer square rings and hexagonal

rings. The observations and associated calculations indicate that segment curvature has a
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significant influence on the folded configurations and packing abilities of curved ring origami. An
unusually rich variety of behavior has been observed in our experiments, and we readily admit that
this study has not been exhaustive. Nevertheless, we hope the reported results will prompt further
study of the phenomena and stimulate applications in relevant fields.

For single-layer hexagonal ring and double-layer square and hexagonal rings, the packing
can be significantly improved by introducing concave segments with appropriate segment
curvatures, due to the fully overlapping folded states achievable. Particularly, the single-layer
hexagonal rings and double-layer square rings can fold into straight-line loop configuration when
their normalized segment curvatures equal —1.8 and —1, respectively. Their unique folded
configurations also enable the highest packing efficiency for single-layer rings and double-layer
rings, with a value of 4.1% and 9.4%, respectively. Although inverting behavior is preferred over
folding for the convex hexagonal ring with large curvature, the fully overlapping folded state is
still achievable when imposing additional constraints during folding. For single-layer octagonal
rings, however, they cannot fold into fully overlapping states and their packing ability tends to
only improve slightly when convex segments are introduced. It is expected that the proposed
curved ring origami can provide a new perspective for the design of foldable and deployable
structures with simple folded configurations and high packing efficiency with great potential in
applications including deployable aerospace structures, foldable electronics, and reconfigurable

architecture.
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Appendix A. Folded configurations of polygonal rings

Fig. A1 shows the folded configurations of various polygonal rings. It is seen that
polygonal rings can only fold into three-layer fully overlapping configurations when the segment
number of the polygonal rings equals 37 (» must be an integer greater than or equal to 2).

Square Pentagon Hexagon Heptagon Octagon Enneagon

=OCO00C

mde & o O 0O O

Fig. A1 Initial and folded states of various polygonal rings.

Appendix B. Fabrication of curved rings

The rings in Fig. 1 are fabricated by manually reshaping stainless steel wires and
connecting the two ends. To create a double-layer square ring, we first disconnect a single-layer
octagonal ring, and then coil it into two loops, as shown in Fig. A2. Finally, we connect both ends

of the disconnected ring to form a double-layer square ring.
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Fig. A2 Fabrication process of a double-layer square ring coiled from a single-layer octagonal ring. The
blue color denotes the second layer.

Appendix C. Energy dissipation in FEA

For all FEA simulations in ABAQUS, a small damping factor of 1078 is added to stabilize
the buckling simulations of the rings. The corresponding energy dissipation is negligible. For
example, Fig. A3 shows the normalized energy-bending angle curves of a hexagonal ring with
straight segments during folding. It is seen that the energy dissipation is almost zero compared to

the strain energy during folding.

10F

—— Strain energy
- - - Dissipated energy

0 4 2 3m/4 m
6 (rad)

Fig. A3 Normalized strain energy and dissipated energy during folding of a hexagonal ring with straight
segments.

29

€20z 1snbny 6| uo Jasn Aysieniun piojuels Aq ypd 9oL L-£2-Weli568.669/1.22290% L/GL L L 0L/10p/pd-ajoie/solueyoswpail|dde/Bio awse uonos|ooebipawse//:diy wouy papeojumoq



References

[1] Pellegrino, S., 2001, "Deployable structures in engineering," Deployable structures, Springer, pp. 1-35.
[2] Guest, S., and Pellegrino, S., 1996, "A new concept for solid surface deployable antennas," Acta
astronautica, 38(2), pp. 103-113.

[3] Ze, Q., Wu, S., Nishikawa, J., Dai, J., Sun, Y., Leanza, S., Zemelka, C., Novelino, L. S., Paulino, G. H.,
and Zhao, R. R., 2022, "Soft robotic origami crawler," Science Advances, 8(13), p. eabm7834.

[4] Wu, S., Ze, Q., Dai, J., Udipi, N., Paulino, G. H., and Zhao, R., 2021, "Stretchable origami robotic arm
with omnidirectional bending and twisting," Proceedings of the National Academy of Sciences, 118(36), p.
€2110023118.

[5] Chen, Q., Feng, F., Lv, P., and Duan, H., 2022, "Origami spring-inspired shape morphing for flexible
robotics," Soft Robotics, 9(4), pp. 798-806.

[6] Kuribayashi, K., Tsuchiya, K., You, Z., Tomus, D., Umemoto, M., Ito, T., and Sasaki, M., 2006, "Self-
deployable origami stent grafts as a biomedical application of Ni-rich TiNi shape memory alloy foil,"
Materials Science and Engineering: A, 419(1-2), pp. 131-137.

[7] Mhatre, S., Boatti, E., Melancon, D., Zareei, A., Dupont, M., Bechthold, M., and Bertoldi, K., 2021,
"Deployable structures based on buckling of curved beams upon a rotational input," Advanced Functional
Materials, 31(35), p. 2101144,

[8] Liu, Y., Yan, Z., Lin, Q., Guo, X., Han, M., Nan, K., Hwang, K. C., Huang, Y., Zhang, Y., and Rogers,
J. A., 2016, "Guided formation of 3D helical mesostructures by mechanical buckling: Analytical modeling
and experimental validation," Advanced Functional Materials, 26(17), pp. 2909-2918.

[9] Xu, Z., Fan, Z., Zi, Y., Zhang, Y., and Huang, Y., 2020, "An inverse design method of buckling-guided
assembly for ribbon-type 3d structures," Journal of Applied Mechanics, 87(3), p. 031004.

[10] Wu, S., Yue, L., Jin, Y., Sun, X., Zemelka, C., Qi, H. J., and Zhao, R., 2021, "Ring Origami: Snap-

Folding of Rings with Different Geometries," Advanced Intelligent Systems, 3(9), p. 2100107.

30

€20z 1snbny 6| uo Jasn Aysieniun piojuels Aq ypd 9oL L-£2-Weli568.669/1.22290% L/GL L L 0L/10p/pd-ajoie/solueyoswpail|dde/Bio awse uonos|ooebipawse//:diy wouy papeojumoq



[11] Yoshiaki, G., Yasuhito, W., Toshihiro, K., and Makoto, O., 1992, "Elastic buckling phenomenon
applicable to deployable rings," International Journal of Solids and Structures, 29(7), pp. 893-909.

[12] Lu, L., Leanza, S., and Zhao, R. R., 2023, "Origami with Rotational Symmetry: A Review on Their
Mechanics and Design," Applied Mechanics Reviews, 75(5), p. 050801.

[13] Wu, S., Dai, J., Leanza, S., and Zhao, R. R., 2022, "Hexagonal ring origami—Snap-folding with large
packing ratio," Extreme Mechanics Letters, 53, p. 101713.

[14] Lu, L., Leanza, S., Dai, J., Sun, X., and Zhao, R. R., 2023, "Easy snap-folding of hexagonal ring
origami by geometric modifications," Journal of the Mechanics and Physics of Solids, 171, p. 105142.
[15] Leanza, S., Wu, S., Dai, J., and Zhao, R. R., 2022, "Hexagonal Ring Origami Assemblies: Foldable
Functional Structures with Extreme Packing," Journal of Applied Mechanics, 89(8), p. 081003.

[16] Chen, T., Bilal, O. R., Lang, R., Daraio, C., and Shea, K., 2019, "Autonomous deployment of a solar
panel using elastic origami and distributed shape-memory-polymer actuators,” Physical Review Applied,
11(6), p. 064069.

[17] Yan, Z., Wang, K., and Wang, B., 2022, "Buckling of circular rings and its applications in thin-film
electronics," International Journal of Mechanical Sciences, 228, p. 107477.

[18] Mouthuy, P.-O., Coulombier, M., Pardoen, T., Raskin, J.-P., and Jonas, A. M., 2012, "Overcurvature
describes the buckling and folding of rings from curved origami to foldable tents," Nature Communications,
3(1), pp. 1-8.

[19] Sun, X., Wu, S., Dai, J., Leanza, S., Yue, L., Yu, L., Jin, Y., Qi, H. J., and Zhao, R. R., 2022, "Phase
diagram and mechanics of snap-folding of ring origami by twisting," International Journal of Solids and
Structures, 248, p. 111685.

[20] Leanza, S., Zhao, R. R., and Hutchinson, J. W., "On the elastic stability of folded rings in circular and
straight states," preprint.

[21] Kaczmarski, B., Moulton, D. E., Kuhl, E., and Goriely, A., 2022, "Active filaments [: Curvature and

torsion generation," Journal of the Mechanics and Physics of Solids, 164, p. 104918.
31

€20z 1snbny 6| uo Jasn Aysieniun piojuels Aq ypd 9oL L-£2-Weli568.669/1.22290% L/GL L L 0L/10p/pd-ajoie/solueyoswpail|dde/Bio awse uonos|ooebipawse//:diy wouy papeojumoq



[22] Tong, D., Choi, A., Joo, J., Borum, A., and Khalid Jawed, M., 2023, "Snap buckling in overhand
knots," Journal of Applied Mechanics, 90(4), p. 041008.

[23] Dias, M. A., Dudte, L. H., Mahadevan, L., and Santangelo, C. D., 2012, "Geometric mechanics of
curved crease origami," Physical Review Letters, 109(11), p. 114301.

[24] Manning, R. S., and Hoffman, K. A., 2001, "Stability of n-covered circles for elastic rods with constant
planar intrinsic curvature," Journal of Elasticity, 62(1), pp. 1-23.

[25] Audoly, B., and Seffen, K. A., 2015, "Buckling of naturally curved elastic strips: the ribbon model
makes a difference,”" Journal of Elasticity, 119, pp. 293-320.

[26] Dias, M. A., and Audoly, B., 2014, "A non-linear rod model for folded elastic strips," Journal of the
Mechanics and Physics of Solids, 62, pp. 57-80.

[27] Yu, T., Marmo, F., Cesarano, P., and Adriaenssens, S., 2023, "Continuous modeling of creased annuli
with tunable bistable and looping behaviors," Proceedings of the National Academy of Sciences, 120(4), p.
€2209048120.

[28] Sano, T. G., Pezzulla, M., and Reis, P. M., 2022, "A Kirchhoff-like theory for hard magnetic rods
under geometrically nonlinear deformation in three dimensions," Journal of the Mechanics and Physics of
Solids, 160, p. 104739.

[29] Audoly, B., and Pomeau, Y., 2010, Elasticity and geometry: from hair curls to the non-linear response
of shells, Oxford University Press.

[30] Huang, W., Liu, M., and Hsia, K. J., 2023, "A discrete model for the geometrically nonlinear mechanics
of hard-magnetic slender structures,"” Extreme Mechanics Letters, p. 101977.

[31] Starostin, E., and van der Heijden, G., 2022, "Forceless folding of thin annular strips," Journal of the
Mechanics and Physics of Solids, 169, p. 105054.

[32] Timoshenko, S., and Goodier, J. N., 1951, Theory of Elasticity: by S. Timoshenko and JN Goodier,

McGraw-Hill.

32

€20z 1snbny 6| uo Jasn Aysieniun piojuels Aq ypd 9oL L-£2-Weli568.669/1.22290% L/GL L L 0L/10p/pd-ajoie/solueyoswpail|dde/Bio awse uonos|ooebipawse//:diy wouy papeojumoq



[33] Healey, T. J., and Mehta, P., 2005, "Straightforward computation of spatial equilibria of geometrically
exact cosserat rods," International Journal of Bifurcation and Chaos, 15(03), pp. 949-965.

[34] Yu, T., and Hanna, J., 2019, "Bifurcations of buckled, clamped anisotropic rods and thin bands under
lateral end translations," Journal of the Mechanics and Physics of Solids, 122, pp. 657-685.

[35] Yu, T., Dreier, L., Marmo, F., Gabriele, S., Parascho, S., and Adriaenssens, S., 2021, "Numerical
modeling of static equilibria and bifurcations in bigons and bigon rings," Journal of the Mechanics and
Physics of Solids, 152, p. 104459.

[36] Dankowicz, H., and Schilder, F., 2011, "An extended continuation problem for bifurcation analysis in
the presence of constraints," Journal of Computational and Nonlinear Dynamics, 6(3), p. 031003.

[37] Dankowicz, H., and Schilder, F., 2013, Recipes for continuation, Society for Industrial and Applied

Mathematics.

33

€20z 1snbny 6| uo Jasn Aysieniun piojuels Aq ypd 9oL L-£2-Weli568.669/1.22290% L/GL L L 0L/10p/pd-ajoie/solueyoswpail|dde/Bio awse uonos|ooebipawse//:diy wouy papeojumoq



