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The earth’s orbit is becoming increasingly crowded with debris that poses significant safety
risks to the operation of existing and new spacecraft and satellites. The active tether-net
system, which consists of a flexible net with maneuverable corner nodes launched from a small
autonomous spacecraft, is a promising solution for capturing and disposing of such space debris.
The requirement of autonomous operation and the need to generalize over scenarios with
debris scenarios in different rotational rates makes the capture process significantly challenging.
The space debris could rotate about multiple axes, which, along with sensing/estimation and
actuation uncertainties, calls for a robust, generalizable approach to guiding the net launch and
flight – one that can guarantee robust capture. This paper proposes a decentralized actuation
system combined with reinforcement learning for planning and controlling this tether-net
system. In this new system, four microsatellites with cold gas type thrusters act as the corner
nodes of the net and can thus help control or correct the flight of the net after launch. The
microsatellites pull the net to complete the task of approaching and capturing the space debris.
The proposed method uses a RL framework that integrates a proximal policy optimization to
find the optimal solution based on the dynamics simulation of the net and the microsatellites
performed in Vortex Studio. The RL framework finds the optimal trajectory that is both
fuel-efficient and ensures a desired level of capture quality.

I. Introduction
Earth’s orbit is becoming increasingly dangerous for current and future space missions since the growing amount

of space debris threatens operational safety [1]. Active Debris Removal (ADR) is one of the solutions to mitigate
the problem. Among the multiple methods studied, tether-net systems have been proposed for their high flexibility
and good capturing range [2]. Previous studies [3–5] have shown that tether-net systems are effective for capturing
uncooperative debris. Among others, the research of Botta et al. [6–8] examined the dynamics of the deployment
and capture phase of the debris removal tasks using net-based systems. Chen et al. analyzed the system’s robustness
to errors in a sample mission scenario in which the second stage of the Zenit-2 launch vehicle is the target debris of
interest [9]. Additionally, Zeng et al. [10] conducted research on the closing mechanism with uncertainties, which
applies Reinforcement Learning (RL) [11] to ensure debris capture.

Studies [12] have shown that using space robots is effective in increasing the efficiency and reliability of capturing
uncooperative space debris. Meng et al. [13] proposed the Autonomous Maneuverable Space Net (AMSN) system,
which consists of a flexible net and several Maneuverable Units (MUs). The AMSN has a greater effective net deployment
range than the traditional tether-net systems, and the MUs allow the AMSN to perform more flexible operations. A
chaser satellite brings the AMSN to rendezvous with the target in orbit around the Earth. The chaser then releases
the AMSN with an initial velocity, and the MUs on the AMSN control the shape and movement of the net. The net
closes, and locks after the target is in the net mouth. The AMSN then drags the captured target into the atmosphere to be
incinerated or to a graveyard orbit. In this process, the trajectory and shape of the net are essential for a successful
mission [13].

In intelligent autonomous systems, Artificial Neural Networks (ANN) have become a promising analysis tool
for decision-support models [14]. An ANN can map states to actions in a policy model, and various ANN learning
methods have already been applied to robotics and control applications. Besides RL [11], learning methods such as
Neuroevolution [15] and Supervised Learning [16] are also popular in similar scenarios. For the tether-net systems, the
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launching and wrapping control is compatible with the advanced RL [17] and neuroevolution [18] methods. Due to
various debris characteristics, the system uncertainties and selecting optimal actions could be challenging without these
learning methods.

Most previous studies are based on the assumption that the launching phase is under ideal conditions. However,
in reality, the perfect launching conditions are challenging due to uncertainties and hardware limitations for both the
launch equipment and the determination of the target pose. The deployment trajectory of the net is one of the most
critical components for a successful capture, especially when considering that a relaunch of the system is not possible,
so a method to overcome the effect of potential error and discover more reliable trajectories for the MUs to follow needs
to be developed.

Meanwhile, most of the designs of tether-net systems are centralized [13], which works well in a short deployment
distance and in an ideal environment where the uncertainties in the mission are kept to the minimum, and the target is
rotating slowly. A semi-decentralized system offers more flexibility and robustness in this complex environment for
a long-range deployment, with a target having more complex movement, such as spinning about multiple axes, and
environmental uncertainty. Therefore, instead of focusing on the control of the system in a centralized method, focusing
on learning the corner nodes’ trajectory to design a semi-decentralized system can be a different approach to capturing
the target.

The succeeding sections of this paper are arranged as the following: Section II describes the machine learning
framework utilized in the studies conducted within this paper. Section III details the dynamics modeling of the
maneuverable tether-net system. Section IV examines the design optimization approach taken for the maneuverable
tether-net system configuration.

II. Overall Framework for Learning Corner Node Control
The trajectory is one of the key elements for controlling the capture process, and finding the optimal trajectory for the

corner nodes can lead to a successful capture. This paper proposes a semi-decentralized reinforcement-learning-based
maneuverable space net (RMSN) inspired by the design of Meng et al. [13], and the extensive dynamics research
of Botta et al. [6, 7]. The machine learning framework is inspired by the study of Zeng et al. [10]. Compared to
non-autonomous tether-net systems, RMSN has a further capture distance and more flexible maneuverability like the
AMSN. Meanwhile, RMSN is even more flexible than AMSN due to its semi-decentralized property and is more robust
for capturing a target with more complex movement. The machine-learning-based policy optimization of this robotics
system makes RMSN more adaptable and robust under uncertainties. The process is split into two phases for the case
study: approaching and capturing. The approaching phase starts with the net launching and ends when the net is just
about to contact the target debris. The capturing phase follows the approaching phase and ends when the net is closed
and the debris is captured.

The reinforcement learning technique used in this paper is Proximal Policy Optimization (PPO) from stable baselines
[19]. As a state-of-the-art RL method, PPO has proved to be efficient, adaptable, and reliable. By interacting with the
environment, PPO updates the gradient based on the experience. Once the update completes, the collected experience is
no longer used, so that the next update will start with the new experience. The policy learning framework is showing in
figure 1, which is inspired by the work of Zeng et al. [10]. The neural network takes the target’s Z-axis offset as input
and generates a set of thrust angles as actions to maneuver the net. The final capture quality and fuel consumption are
evaluated to calculate rewards for updating the policy.

The machine learning framework considers environmental parameters (including geometry and states of MUs, target,
and the chaser) and uncertainties of initial distance between the chaser and the target. The framework finds the optimal
policy for each phase to maximize the probability of successful capture, which is evaluated by the Capture Quality
Index (CQI), and minimize fuel consumption. The thrust angles control the corner nodes’ trajectories, and by tuning
the thrust angles, the optimal trajectory with the highest success rate and minimum fuel cost can be found. Figure 2
shows the workflow of RL of this paper. To make the simulation reflect some realistic problems, such as errors in the
sensor readings, the angular velocity of the chaser, and inaccurate launching velocity, noises need to be added to the
simulation in the presence of uncertainty. In this paper, the target is set to have a 9 m offset on X-axis, so it is not aligned
with the centerline of the net. A noise ranging from -5 m to +5 m was also applied to the Z-axis position of the target.
After initialization, the RL policy model receives observations from the Vortex Studio-based tether-net simulator and
generates actions to be the new input to the simulator. The outputs from the simulator are used to calculate the reward,
which is then used to update the policy model.
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Fig. 1 Proposed Policy Learning Process

III. Model of Space Tether-Net
The system consists of a square-shaped net, a tether that connects the net to a chaser vehicle, and four MUs. Fig. 3

shows the structure of the net, chaser, MUs, main-tether, winch, and closing mechanism. The MUs in this proposal can
be understood as miniature satellites [20] with thrusters. The simulator used in this paper is based in Vortex Studio, a
multi-body dynamics simulation software. Inherited from the work of Botta et al. [8], the mass of the net is lumped into
multiple small spherical rigid bodies at the knots of the net and its corner MU elements, both of which are called nodes.
The axial stiffness and damping properties of the threads in the net are modeled as springs and dampers in parallel
between the nodes that cannot withstand compression.

The mass lumped in the 𝑗-th node, 𝑚 𝑗 , is defined in the following equation [5]:

𝑚 𝑗 =

{∑
𝛾𝜖 Γ 𝑗

𝑚𝛾

2 + 𝑚𝑘𝑛𝑜𝑡 𝑗 = 1 : 𝑁2
𝑠∑

𝛾𝜖 Γ 𝑗

𝑚𝛾

2 + 𝑚𝑀𝑈 𝑗 = 𝑁2
𝑠 + 1 : 𝑁2

𝑠 + 4
(1)

where 𝑚𝛾 is the mass of the threads adjacent to the 𝑗-th node belonging to set Γ 𝑗 , 𝑁2
𝑠 is the total number of nodes in the

net, 𝑚𝑘𝑛𝑜𝑡 is the mass of the knots of the net where the threads intersect, and 𝑚𝑀𝑈 is the total mass of each MU. The
equations of motion of the nodes are obtained by writing Newton’s second law:

𝑚 𝑗a 𝑗 =
∑︁
𝛾 𝜖 Γ

±T𝛾 +
𝑆 𝑗∑︁
𝑠=1

F𝑒𝑥𝑡,𝑠, 𝑗 (2)

Where a 𝑗 is the absolute acceleration of 𝑗-th node; T𝛾 is the tension forces in the thread adjacent to the 𝑗-th node;
F𝑒𝑥𝑡,𝑠, 𝑗 is each of the external forces on the 𝑗-th node. The external forces include forces generated by thrusters, contact
forces, and gravitational forces. For the scenarios within this paper, the gravitational acceleration is neglected. The
tension force is obtained by writing:

T𝛾 =

{
𝑇𝛾e𝛾 if (𝑙𝛾 > 𝑙𝛾,0)

0 if (𝑙𝛾 ≤ 𝑙𝛾,0)
(3)

The magnitude of the tension 𝑇𝛾 can be calculated with 𝑇𝛾 = 𝑘𝑎,𝛾 (𝑙𝛾 − 𝑙𝛾,0) + 𝑐𝑎,𝛾𝑣𝑟 ,𝛾 . The vector e𝛾 is axial unit
vector of the 𝛾-th thread; 𝑘𝑎,𝛾 and 𝑐𝑎,𝛾 are stiffness and damping coefficients of the 𝛾-th thread; 𝑙𝛾 is the current length
of the thread; 𝑙𝛾,0 is the unstretched length of the thread. 𝑣𝑟 ,𝛾 is the projection of the relative velocity of the thread end
nodes in the axial direction.

Each rigid body is assigned a material and a collision geometry to model contact dynamics. At each timestep, the
simulator checks for the contact between rigid bodies, and contact forces are computed when it is detected. The contact
forces rely on the constraint of no penetration between the rigid bodies and the relative velocities of the bodies in contact.
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Fig. 2 The Workflow of RL to Design Corner Node Control for the Tether-Net Capture Mission

The frictional contact forces are calculated using the scaled-box friction model – an approximation of Coulomb’s friction
modeling – while the normal contact forces and contact forces normal to the plane of contact are computed following a
modified Kelvin-Voigt model and the Hertzian theory, respectively. Interested readers should reference [5] for more
information regarding contact modeling.

The direction of deployment is the negative Z direction on the coordinates chosen. The net’s MUs are given an
initial velocity with a magnitude of 𝑣𝑒, their components in the X and Y directions have the same magnitude and are
defined by the following expressions:

𝑣𝑥, 0 = 𝑣𝑦, 0 = 𝑣𝑒 sin (𝜃𝑒)/
√

2 (4)

The shooting angle, denoted by 𝜃𝑒, is defined as the angle between the initial velocity vector of each MU and the
direction of deployment. The magnitude of the initial velocity vector in the direction of deployment can be expressed as:

𝑣𝑧,0 = 𝑣𝑒 cos (𝜃𝑒) (5)

A cubic chaser spacecraft with a side length of 𝐿𝑐ℎ and mass 𝑚𝑐ℎ is utilized to bring the tether-net system close to
the target and to move debris into a disposal orbit. The chaser spacecraft is allowed to float freely without any control in
the scenarios considered. The main tether, modeled using multiple slender rigid bodies attached via relaxed prismatic
joints that accommodates the simulation of axial, bending, and torsional stiffness, connects the center node of the net to
a winch with mass 𝑚𝑤 and radius 𝑟𝑤 . The winch is set to be free to spool during deployment and locked when the
closing mechanism is activated and located on one side of the chaser. For the scenarios considered in this paper, as
mentioned in [5], torsional stiffness is deemed negligible and is therefore not included. The main tether has a density,
Young’s modulus, cross-sectional radius, and length of 𝜌𝑡 , 𝐸𝑡 , 𝑟𝑡 , and 𝐿𝑡 , respectively. The axial stiffness is computed
with the following expression per unit length:

𝐸𝐴 = 𝐸𝑡𝜋𝑟
2
𝑡 (6)

Meanwhile, the bending stiffness per unit length 𝐸𝐼 is written as:

𝐸𝐼 =
𝐸𝑡𝜋 𝑟4

𝑡

4
(7)

A set of threads is used for the closing mechanism, which passes through the four MUs and eight nodes on the net’s
perimeter. In the current design, the closing mechanism is activated by four winches placed in each of the MUs to allow
for independence from the main tether. The activation of the closing mechanism is represented by applying a constant
force between the attachment points of the closing mechanism until distances between adjacent points become less than
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Fig. 3 Sketch of the Modeled Tether-net System

a desired distance [8], chosen to be 2.0 m for the scenarios of interest. Once the desired adjacent length is achieved, a
constraint is applied to lock adjacent pairs of attachment points. As such, there can be a maximum of 𝑁𝐿 = 12 locked
pairs for the net geometry used in this paper. In future designs, the MU’s themselves may be used to close the mouth of
the net. However, this will require the development of a complex movement coordination algorithm between the MUs.

Each MU is modeled as a spherical rigid body with radius 𝑟𝑀𝑈 , which is attached to the net proper by corner threads
with radius 𝑟𝐶𝑇 and length 𝑙𝐶𝑇 . To control the MUs, open-loop thrust forces F𝑇ℎ𝑟𝑢𝑠𝑡 ,𝑖 are applied. The thrusters are
activated at 𝑡 = 15.0 s after ejection to allow the net to be sufficiently open and are switched off when the center of
mass of the net and the target are a set distance from each other. Each 𝑖-th thruster is assigned a constant magnitude of
𝐹𝑇ℎ𝑟𝑢𝑠𝑡 = 8.9 N and a constant propellant consumption rate of 0.0121 kg/s based on the cold gas thruster datasheet of
VACCO [21]. The components of the thrust in the X, Y, and Z directions are defined as:

F𝑇ℎ𝑟𝑢𝑠𝑡𝑖 = 𝐹𝑇ℎ𝑟𝑢𝑠𝑡𝑖 ,𝑥 î + 𝐹𝑇ℎ𝑟𝑢𝑠𝑡𝑖 ,𝑦 ĵ + 𝐹𝑇ℎ𝑟𝑢𝑠𝑡𝑖 ,𝑧k̂ (8a)
𝐹𝑇ℎ𝑟𝑢𝑠𝑡𝑖 ,𝑥 = 𝐹𝑇ℎ𝑟𝑢𝑠𝑡 sin(𝜃𝑇ℎ𝑟𝑢𝑠𝑡 ) cos(𝜓𝑇ℎ𝑟𝑢𝑠𝑡𝑖 ) (8b)
𝐹𝑇ℎ𝑟𝑢𝑠𝑡𝑖 ,𝑦 = 𝐹𝑇ℎ𝑟𝑢𝑠𝑡 sin(𝜃𝑇ℎ𝑟𝑢𝑠𝑡 ) sin(𝜓𝑇ℎ𝑟𝑢𝑠𝑡𝑖 ) (8c)

𝐹𝑇ℎ𝑟𝑢𝑠𝑡𝑖 ,𝑧 = 𝐹𝑇ℎ𝑟𝑢𝑠𝑡 cos(𝜃𝑇ℎ𝑟𝑢𝑠𝑡 ) (8d)

where the angles 𝜓𝑇ℎ𝑟𝑢𝑠𝑡 ,𝑖 in the X-Y plane and 𝜃𝑇ℎ𝑟𝑢𝑠𝑡 Z-Y are visualized in the diagram in Fig 4. Each thrust has a
unique angle in the X-Y plane but a common angle in the Z-Y plane. This work assumes that the MUs have the attitude
control capability to direct the thrusters in the desired directions throughout their activation. The physical parameters of
the system, particularly those for the chaser, main tether, and winch, as well as properties of the net except for the thread
radius and initial conditions, are inherited from previous work [22] and are summarized in Table 1.

IV. Formulation of the Optimization Baselines and RL Problems

A. Simulation Setup and the CQI
The interactions with and modifications of the Vortex Studio-based simulator are done through a C++ Application

Programming Interface (API). The user defines net and target parameters, such as net thread radius, shooting angle, and
the rotation speed of the target debris, in multiple .txt files as the inputs into the simulator. This work uses the Python
programming language to implement the RL component, while MATLAB implements the optimization component.

To determine the effectiveness of the system in a scenario in which a great number of simulations is necessary for
the optimization and RL task, a quantitative metric referred to as the CQI is utilized [23, 24]. The CQI value considers
the similarity between the convex hull shape of the net and the target and net-target center of mass distance (COM) and
is mathematically defined as:
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Fig. 4 Thrust angles 𝜓𝑇ℎ𝑟𝑢𝑠𝑡 ,𝑖 and 𝜃𝑇ℎ𝑟𝑢𝑠𝑡 for the MUs.

Table 1 Simulation Parameters.

Parameter Value
Chaser, Tether, and Winch

Chaser Side Length 𝐿𝑐ℎ, m 1.5
Chaser Mass 𝑚𝑐ℎ, kg 1600
Chaser and Net Initial Distance 𝑑𝑐ℎ, m 0.1
Winch Radius 𝑟𝑤 , m 0.05
Winch Height ℎ𝑤 , m 0.02
Winch Mass 𝑚𝑤 , kg 0.1
Tether Radius 𝑟𝑡 , m 0.002
Tether Density 𝜌𝑡 , kg/m3 1390
Tether Young’s Modulus 𝐸𝑡 , GPA 70
Tether Axial Damping Ratio 𝑐𝑡 0.106

Parameter Value
Net, Corner Threads, and MU

Side Length 𝐿𝑛𝑒𝑡 , m 22.0
Mesh Length 𝑙𝑛𝑒𝑡,0, m 1.0
Thread Radius 𝑟𝑛𝑒𝑡 , m 0.0011
Thread Density 𝜌𝑛𝑒𝑡 , kg/m3 1390.0
Net Young’s Modulus 𝐸𝑛𝑒𝑡 , GPA 70
Net Axial Damping Ratio 𝑐𝑛𝑒𝑡 0.106
Corner Thread Length 𝑙𝐶𝑇,0, m 1.4142
Corner Thread Radius 𝑟𝐶𝑇 , m 0.0007
MU radius, 𝑟𝑀𝑈 , m 0.0605

Parameter Value
Initial Conditions and Timestep

MU Ejection Speed 𝑣𝑒, m/s 2.5
MU Shooting Angle 𝜃𝑒, deg 36.87
Net Stowed Side Length 𝐿𝑛𝑒𝑡,0, m 1.1
Simulation Time Step Δt, s 10−2

𝐽𝑛 = 0.1
|𝑉𝑛 −𝑉𝑡 |

𝑉𝑡

+ 0.1
|𝑆𝑛 − 𝑆𝑡 |

𝑆𝑡
+ 0.8

|𝑞𝑛 |
𝐿𝑐

(9)

where the CQI at the 𝑛-th time-step, the convex hull (CH) volume of the net at the 𝑛-th time-step, the volume of the
target, the CH surface area of the net at the 𝑛-th time-step, the surface area of the target, the distance from the center
of mass of the target to the net’s COM at the 𝑛-th time-step, and the characteristic length of the target, defined as the
shortest distance from the target’s COM to its surface and represented as 𝐽𝑛, 𝑉𝑛, 𝑉𝑡 , 𝑆𝑛, 𝑆𝑡 , 𝑞𝑛, and 𝐿𝑐 respectively.
Barnes and Botta’s version of the CQI has been shown to effectively classify successful and unsuccessful captures
[24]. The target chosen for this paper is the second stage of the Zenit 2 launch vehicle (see Fig. 5), which was also the
subject of previous works utilizing Vortex Studio [24, 25]. The target has a mass of 9000 kg and dimensions of 3.9 m in
diameter and 11.0 m long. As such, the values 𝑉𝑡 , 𝑆𝑡 , and 𝐿𝑐 associated with the target are 125.3 m3, 159.9 m2, and
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1.95 m respectively.

Fig. 5 Model of the second stage of the Zenit 2 launch vehicle

The simulation scenario includes two phases: deployment and capture. In the deployment phase, the net leaves the
chaser with an initial velocity and takes approximately 15.0 s to reach an almost fully-expanded state. When the near
fully-expanded configuration is reached, the thrusters are activated. Thrusters remain activated until the net’s center
of mass reaches the closing distance from the target’s center of mass, set to be 2.5 m. Once the distance is reached,
the system enters the capture phase. The closing mechanism is triggered at the beginning of this phase, which applies
constant forces on each pair of adjacent nodes of the closing threads, thus closing the net mouth. This phase is set to last
20.0 s after closing mechanism activation, and in the end, a settled CQI 𝐼∗

𝐶𝑄𝐼
, and the number of locked node pairs

of the closing mechanism 𝑁𝐿 are returned. After the simulation, a .txt file containing the two output values and fuel
consumed during the mission is generated. The trajectory of the net can be established and observed by creating an
animation based on saved screenshots from the simulation.

B. Defining the Optimization Task
As previously mentioned, problems regarding realism need to be considered. For example, because sensing and

observation cameras cannot be placed at the exact center on the face of the chaser where the net is launched due to
the net ejection mechanisms, the axis of the launch and the target debris may not be perfectly aligned. Therefore, an
offset of the target’s position should be considered. In the RMSN model, the thrusters on the MUs can correct the
trajectory of the net to address the offset mid-deployment. During this mission, the thruster angles must be considered.
An optimization case study is designed with the angles as action variables. The objective is to successfully capture the
target with minimal fuel consumption with varying action variables. To test the capability of the design to capture a
target with a nonzero offset, the target’s initial position is set to have a 9.0 m offset on the X-axis. The value of 9.0 m is
much greater than expected in reality. However, it is chosen to demonstrate the system’s adaptability with thrusters on
each MU.

During this mission, three parameters must be considered: thruster angles, thrust magnitude, and the initial mass of
the MUs. Three optimization case studies are designed with these three parameters as action variables. All three case
studies aim to successfully capture the target with minimal fuel consumption with varying action variables. The target’s
initial position is set to have a 9.0 m offset on the X-axis to test the capability of the design to capture a target with a
nonzero offset.

The optimization method used in this paper is Bayesian Optimization [25], which has been successfully applied in
various fields, including hyperparameter tuning for machine learning models, robotics, and experimental design. The
acquisition function used for Bayesian Optimization in this research was Expected Improvement Plus. Compared to
the vanilla version of the Expected Improvement [26] acquisition function, it can modify behaviors when an area is
over-exploiting.

Case Study 1: Minimizing Fuel Consumption with Thrust Angles. In this study, the objective is to find the minimum
fuel consumption of the thrusters by only controlling the thruster angles 𝜓𝑇ℎ𝑟𝑢𝑠𝑡𝑠𝑖 and 𝜃𝑇ℎ𝑟𝑢𝑠𝑡𝑠 . The initial mass is set
to be 2.5 kg. The objective function is shown in Eq. (10).
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min
X

𝑓1 (X) = 𝑚𝑝 (X)

𝑠.𝑡. X ∈ [X𝐿 ,X𝑈]
𝑔1 = 𝐼∗𝐶𝑄𝐼 ≤ 2.5

𝑔2 = 𝑁𝐿 ≥ 8
𝑔3 = 𝑚 𝑓 ≥ 2.0

where : X = [𝜓𝑇ℎ𝑟𝑢𝑠𝑡1 , 𝜓𝑇ℎ𝑟𝑢𝑠𝑡2 , 𝜓𝑇ℎ𝑟𝑢𝑠𝑡3 , 𝜓𝑇ℎ𝑟𝑢𝑠𝑡4 , 𝜃𝑇ℎ𝑟𝑢𝑠𝑡 ]

(10)

Where 𝑚𝑝 is the mass of the fuel consumed in each MU for each simulation, X represents the action variables picked
from Table 2, in which only the thrust angles 𝜓𝑇ℎ𝑟𝑢𝑠𝑡𝑖 and 𝜃𝑇ℎ𝑟𝑢𝑠𝑡 were chosen in this case study, 𝑚 𝑓 represents the final
mass of each MU when the thrusters shut down, which also equals to the mass of each MU at the end of the simulation.
In this research, a successful capture threshold is set to be 𝐼∗

𝐶𝑄𝐼
as 2.5, 𝑁𝐿 to be 8, and the mass of each MU at the end

of the simulation, 𝑚 𝑓 needs to be greater than 2.0 kg.
Case Study 2: Minimizing Fuel Consumption with Thrust Angles and Initial MU Mass. This study follows the

previous case study’s framework, but the initial mass of each MU is also used as one of the action variables. This case
study aims to explore the optimal design of the initial mass and the thrust angles to minimize fuel consumption. The
objective function is shown in Eq. (11):

min
X

𝑓1 (X) = 𝑚𝑝 (X)

𝑠.𝑡. X ∈ [X𝐿 ,X𝑈]
𝑔1 = 𝐼∗𝐶𝑄𝐼 ≤ 2.5

𝑔2 = 𝑁𝐿 ≥ 8
𝑔3 = 𝑚 𝑓 ≥ 2.0

where : X = [𝜓𝑇ℎ𝑟𝑢𝑠𝑡1 , 𝜓𝑇ℎ𝑟𝑢𝑠𝑡2 , 𝜓𝑇ℎ𝑟𝑢𝑠𝑡3 , 𝜓𝑇ℎ𝑟𝑢𝑠𝑡4 , 𝜃𝑇ℎ𝑟𝑢𝑠𝑡 , 𝑚0]

(11)

where 𝑚0 is the initial mass of each MU.
Case Study 3: Minimizing Fuel Consumption with Thrust Angles, Magnitude, and Initial MU Mass. This case

study chooses the magnitude of the thrust force as an additional action variable. The fuel consumption rate is set to be
proportional to the magnitude of the thrust force. This case study explores the optimal design of the initial mass, thrust
magnitude, and thrust angles to minimize fuel consumption. The objective function is shown in Eq. (12):

min
X

𝑓1 (X) = 𝑚𝑝 (X)

𝑠.𝑡. X ∈ [X𝐿 ,X𝑈]
𝑔1 = 𝐼∗𝐶𝑄𝐼 ≤ 2.5

𝑔2 = 𝑁𝐿 ≥ 8
𝑔3 = 𝑚 𝑓 ≥ 2.0

where : X = [𝜓𝑇ℎ𝑟𝑢𝑠𝑡1 , 𝜓𝑇ℎ𝑟𝑢𝑠𝑡2 , 𝜓𝑇ℎ𝑟𝑢𝑠𝑡3 , 𝜓𝑇ℎ𝑟𝑢𝑠𝑡4 , 𝜃𝑇ℎ𝑟𝑢𝑠𝑡 , 𝑚0, 𝐹𝑇ℎ𝑟𝑢𝑠𝑡 ]

(12)

where 𝐹𝑇ℎ𝑟𝑢𝑠𝑡 is the magnitude of the thrust force.
Table 2 summarizes the action variables and their bounds for the optimization tasks. The values for 𝜓𝑇ℎ𝑟𝑢𝑠𝑡𝑖 for 𝑖 =

1, 2, 3, 4 and 𝜃𝑇ℎ𝑟𝑢𝑠𝑡 are assigned a bound after initial manual tuning. This allows the optimization algorithm to search
for optimal values close to what is already known to yield a feasible solution. The range of possible 𝑚0 values for each
MU is chosen to be approximately the same as the mass of a 2U CubeSat [27], which has a similar size to what each
MU is envisioned to possess. Meanwhile, the range of 𝐹𝑇ℎ𝑟𝑢𝑠𝑡 is chosen to be ±3 N from the nominal thrust value.

C. Defining the Learning Task
RL models the actions as Markov Decision Processes (MDP) [28]. The objective is to capture the target debris and

minimize fuel consumption successfully. The actions in this model are the thrust angles, which activate at the time
step of 15.0 s. The simulation shuts down the thrusters when the closing condition is met. To test the generalization
of the design, a uniformly distributed noise with the range of (-5.0, 5.0) m is added to the target’s Z-direction initial
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Table 2 Bounds of Optimization Action Variables

Action Variables Data Type Bounds Step Size

𝜓𝑇ℎ𝑟𝑢𝑠𝑡1 Scalar 70 to 90 deg 0.1 deg
𝜓𝑇ℎ𝑟𝑢𝑠𝑡2 Scalar 35 to 55 deg 0.1 deg
𝜓𝑇ℎ𝑟𝑢𝑠𝑡3 Scalar 70 to 90 deg 0.1 deg
𝜓𝑇ℎ𝑟𝑢𝑠𝑡4 Scalar 35 to 55 deg 0.1 deg
𝜃𝑇ℎ𝑟𝑢𝑠𝑡 Scalar 35 to 55 deg 0.1 deg
𝑚0 Scalar 2.0 to 2.5 kg 0.001 kg
𝐹𝑇ℎ𝑟𝑢𝑠𝑡 Scalar 5 to 12 N 0.0001 N

Table 3 Parameters of State Space

Target Parameters Data Type Bounds

Z-axis Offset Scalar -45 to -55 m

position. Therefore, the MDP of this problem can be simplified, where the target parameters define the state space, and
the thrusters’ angles define the action space. The details are shown in Table 3 and Table 4. The state space in the current
framework has five parameters, but only Z-axis Offset is the changing parameter. The rest four parameters are fixed
and kept in the framework for future study of RL by adding more complexity to the target’s position, orientation, and
angular velocity magnitude.

The actions and states are sent to the simulator, and the results of the simulation are used for the calculation of the

Table 4 Parameters of Action Space

Thrusters Parameters Data Type Bounds

𝜓𝑇ℎ𝑟𝑢𝑠𝑡 ,1 Scalar 70 to 90 deg
𝜓𝑇ℎ𝑟𝑢𝑠𝑡 ,2 Scalar 35 to 55 deg
𝜓𝑇ℎ𝑟𝑢𝑠𝑡 ,3 Scalar 70 to 90 deg
𝜓𝑇ℎ𝑟𝑢𝑠𝑡 ,4 Scalar 35 to 55 deg
𝜃𝑇ℎ𝑟𝑢𝑠𝑡 Scalar 35 to 55 deg
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reward function:
max

Q
𝑅 = 𝑟fuel + 𝑟CQI + 𝑟NL + 𝑟mass + 𝑟end

where: 𝑟fuel = 𝑚0 − 𝜆 · 1.2 · (𝑡sim − 15 − 20)

𝑟CQI =

{
− ln((𝐼∗

𝐶𝑄𝐼
− 2.5)2 + 1), if 𝐼∗

𝐶𝑄𝐼
> 2.5

0, otherwise

𝑟NL =

{
− ln((𝑁𝐿 − 8)2 + 1), if 𝑁𝐿 < 8
0, otherwise

𝑟mass =

{
− ln((𝑚 𝑓 − 2)2 + 1), if 𝑚 𝑓 < 2
0, otherwise

𝑟end =

{
10, if 𝐼∗

𝐶𝑄𝐼
≤ 2.5 and 𝑁𝐿 ≥ 8 and 𝑚 𝑓 ≥ 2

0, otherwise

(13)

Where Q represents the policy model; 𝑅 represents the reward in every episode; 𝑟fuel represents the reward based on
fuel consumption on each thruster; 𝑚0 and 𝑚 𝑓 are the initial and end mass of each MU; 𝜆 is the fuel burning rate; the
constant 1.2 is to add twenty-percent more consumption of the fuel as a safety factor; the constant 15 and 20 are the
fixed time cost to wait for the net to expand fully and for the CQI to settle; 𝑡sim is the total simulation time; 𝑟𝐼∗

𝐶𝑄𝐼
, 𝑟NL,

𝑟mass are the rewards based on the CQI, number of locked pairs, and MUs at the end of the simulation, which act as the
logarithmic penalty function to penalize the reward if the constraints are violated; 𝑟end is the terminal reward.

In this paper, the objective of RL is to find the optimal trajectory of the corner MUs and the energy cost to capture
the target. The thrust angles determine the trajectory and the energy cost, defined as fuel consumption during the
approaching phase. The reward received is defined to be the mass of the remaining fuel after the approaching phase
ends. The conditional formulations in the reward function, 𝑟CQI, 𝑟NL and 𝑟mass, ensure essential penalties for missing
the target (too large settled CQI), insecure capture (too few locked pairs) and consuming too much fuel (remaining
mass is less than the dry mass). The logarithmic penalty functions also ensure the penalty is not too large, which could
jeopardize the learning, because the settled CQI can reach a value of several hundreds for a failed capture. The bonus
terminal state reward, 𝑟end, is for the capture that does not reach any of the penalty states, which can prevent the policy
model from exploiting only one of the penalty states, such as minimizing the settled CQI or only maximizing the number
of locked pairs.

The learning technique used in this framework is Proximal Policy Optimization (PPO) [29] from stable baselines3
[30]. It is a RL algorithm that combines the benefits of trust region policy optimization (TRPO) [31] and traditional
policy gradient methods. It is designed to balance exploration and exploitation while training deep neural networks
for optimal policy learning. PPO builds upon gradient methods by introducing a surrogate objective function with a
clipped probability ratio, ensuring the policy updates are limited to a trust region around the old policy. This prevents
excessively large policy updates that can destabilize the training process. It also divides the data received into smaller
batches and updates the policy parameters incrementally. This approach provides a more efficient and computationally
tractable method for optimizing the policy, as it reduces the variance of gradient estimates and allows for more frequent
updates. In PPO, the policy network outputs a probability distribution over actions, which is used to sample actions
during training and evaluation. The value network estimates the expected cumulative reward from a given state, which is
used for temporal difference learning to update the value function and policy. The neural network used in this research
is a multi-layer perceptron (MLP) [32] with 2 layers and 64 neurons.

V. Simulation Results

A. Optimization Case Study 1 and Reinforcement Learning Results
For optimization Case Study 1, the hardware used is a Windows workstation with an AMD Ryzen 9 5950X 16-Core

Processor and 64 GB RAM. The time cost was 17 hours, with five action variables, 500 iterations, 200 points in
the active set, and 80 initial sampling points. The minimum fuel consumption value and the action variables at the
minimum fuel consumption are shown in the first row of Table 5. Figure 6 showcases selected instances from the
optimal Case Study 1 simulation. Figure 6(a) shows the configuration of the system in the instance the thrusters are
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activated. Meanwhile, Fig. 6(b) and (c) highlight the motion of the tether-net under propulsion as it proceeds towards
the target. Lastly, Fig. 6(d) shows the net as it wraps around the target.

(a) 𝑡 = 15.0 s (b) 𝑡 = 17.0 s

(c) 𝑡 = 20.0 s (d) 𝑡 = 28.0 s

Fig. 6 Optimization Capture Simulation at -50 m Z-axis position

Meanwhile, RL was performed on a Windows workstation with an AMD Ryzen 9 5950X 16-Core Processor and 64
GB RAM. The environment was vectorized for parallel training of 32 episodes simultaneously. The mini-batch size
was 64. The learning rate was tuned during the process of training. For the first 1600 episodes, the learning rate was
0.0001. However, the plot of average reward showed no sign of learning and still had significant fluctuations. Therefore,
the learning rate was increased to 0.001 for the next 8000 episodes, and the plot shows the average reward starts to
increase. For the last 2112 episodes, the learning rate was reduced to 0.0005. Each episode has only one step in this RL
framework. The learning process has 11712 episodes and took 511 hours to finish. As the learning progresses, the
episode takes longer because the successful capture requires more time to simulate in Vortex Studio.

Figure 7 shows that the model was learning over time but still shows strong fluctuations and has not converged at
the end. For a successful capture, the reward is over 12, and if the capture misses the target, the reward is below -12.
Figure 7 shows the average reward for every 32 and 192 episodes, and the average reward was initially around 1, and
in the end, it reached above 10. The trials with rewards in between usually violate one of the constraints, either the
settled CQI or the number of locked pairs. The trend of the rewards with the fluctuations is a sign of insufficient training.
The saved policy model was then tested with the same initial Z-axis position (-50 m) as the optimization result. The
predicted thrust angle is shown in the second row of Table 7, with total fuel consumption of 0.083 kg, and it did not
violate the constraints of settled CQI and the number of locked pairs, which made a secure capture. Figure 8 shows
instances within the capture simulation – similar to Fig. 6 – with the thrust angles defined by the policy model. This
demonstrates that the policy model can capture a target with the same fixed position as the optimization one, and the
fuel consumption of RL is only 0.004 higher.

The performance of the RL policy model and the optimization Case Study 1 – both of which only affect the thrust
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Table 5 Case Study 1 and RL Optimal Action Variables

Methods 𝜓𝑇ℎ𝑟𝑢𝑠𝑡1 , deg 𝜓𝑇ℎ𝑟𝑢𝑠𝑡2 , deg 𝜓𝑇ℎ𝑟𝑢𝑠𝑡3 , deg 𝜓𝑇ℎ𝑟𝑢𝑠𝑡4 , deg 𝜃𝑇ℎ𝑟𝑢𝑠𝑡 , deg
Optimization Case Study 1 84.7 40.8 86 43.2 37.3
RL 87.0 35.4 82.6 49.4 48.8
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Fig. 7 Average reward for the training of RL policy model

angles of the MUs – is tested with the noise in the range of -5.0 m to +5.0 m added to the target’s initial Z-axis position.
With the policy model, the predicted thrust angles change when the target’s initial Z-axis position differs. At the same
time, for the optimization Case Study 1 evaluation, they are fixed to be the values listed in the first row of Table 5. The
optimization results for this scenario were tested with 50 samples with noise added to the initial Z-axis position, and the
success rate was 46%. The RL model with the highest average reward occurs in episode 11360. The model was tested
with the same noise added as the optimization one, and the success rate of the 50 samples was 88%. The distribution of
the successful capture of the two cases is shown in Fig. 9(a) and 9(b). The plots show that the RL model has a higher
successful capture rate, and the successful captures are more evenly distributed across -45.0 m to -55.0 m for the Z-axis
position of the target. Figure 9(c) shows that the optimization result’s median successful capture Z-axis position was
-51.35 m, and the reinforcement result’s median successful capture position was -50.28 m.

Though the total learning time of the RL model is over five hundred hours, once the policy model of RL is trained,
the execution time to predict the ideal thrust angles is only 41 milliseconds. The optimization method for one scenario
takes 17 hours. Still, to improve the capture success rate, optimization needs to run in all 50 scenarios, which will take
over eight hundred hours by estimation. Therefore, the RL method has a more efficient generalized performance.

B. Optimization Case Study 2 and 3
For Case Study 2, using the same computer as Case Study 1, the optimization time cost was 24.1 hours, with 6 action

variables, 500 iterations, 200 points in the active set, and 80 initial sampling points. This case study aims to compare
with Case Study 1 optimization. The minimum fuel consumption value and the action variables at the minimum fuel
consumption are shown in Fig. 10(b) and the first row of Table 6. The minimum objective value is smaller than that of
Case Study 1, which shows that the fuel consumption can be lower with a smaller thrust magnitude for each thruster
while the capture is still successful. Meanwhile, in Case Study 3, using the same computer as the previous two cases,
the time cost was 38.9 hours, with 7 action variables, 500 iterations, 200 points in the active set, and 80 initial sampling
points. This case study aims to find the optimal actions of each MU’s thrust angle, magnitude, and initial mass. For all
three optimization case studies, the minimum fuel consumption values over function evaluations are shown in Fig. 10,
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(a) 𝑡 = 15.0 s (b) 𝑡 = 17.0 s

(c) 𝑡 = 20.0 s (d) 𝑡 = 28.0 s

Fig. 8 RL Capture Simulation at -50 m Z-axis position

and Table 7 displays the optimal fuel consumption for the 3 cases as well as the fuel consumption of the RL policy
model with the target possessing -50 m Z-axis position. Case Study 3 obtained the lowest fuel consumption of all 3
cases, demonstrating that tuning the initial mass of each MU – in addition to the thrust angles and magnitude – leads to
additional fuel savings.

Table 7 shows the comparison of minimum fuel cost at the -50 m scenario of the three optimization cases and RL,
and the training time and execution time of optimization and RL. Though RL method has higher fuel consumption and
takes longer to train, once the RL model is trained, the execution time is much shorter than optimization cases. For the
optimization method to get the result, it has to run the optimizing process, but for RL, it only needs to input the state to
the policy model and the result can be generated less than a second.

Table 6 Case Study 2 and 3 Optimal Action Variables

Methods 𝜓𝑇ℎ𝑟𝑢𝑠𝑡1 , deg 𝜓𝑇ℎ𝑟𝑢𝑠𝑡2 , deg 𝜓𝑇ℎ𝑟𝑢𝑠𝑡3 , deg 𝜓𝑇ℎ𝑟𝑢𝑠𝑡4 , deg 𝜃𝑇ℎ𝑟𝑢𝑠𝑡 , deg 𝑚0, kg 𝐹𝑇ℎ𝑟𝑢𝑠𝑡 , N
Case Study 2 78.4 37.1 84.3 40.3 41.7 2.12 -
Case Study 3 78.8 40.9 87.9 38.2 40.8 2.07 5.12

VI. Conclusion
A semi-decentralized tether-net system was introduced with four maneuverable corner nodes (individually thrusted)

to control the trajectory of the net for increased robustness in capturing space debris – a second stage of the Zenit-2
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(a) Number of successful capture with optimization result (b) Number of successful capture with RL result
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(c) Boxplot of successful capture

Fig. 9 Case Study 1 Reinforcement Learning policy model and optimization result comparison

Table 7 Optimization and RL results comparison

Methods Fuel Consumption, kg Training Time Cost Execution Time
Optimization Case 1 0.079 17 hr 17 hr
Optimization Case 2 0.077 24.1 hr 24.1 hr
Optimization Case 3 0.058 38.9 hr 38.9 hr
RL 0.083 511 hr 41 ms

launch vehicle. A reinforcement learning (RL) based approach is proposed to shift the control system design cost to a
heavy but offline computation process, leading to fast (to execute) trained controllers that can be used online to control
the net trajectory across various scenarios. Here scenarios are defined in terms of lateral offset between the chaser
spacecraft launching the net and the target debris. The performance of the RL based trajectory controllers is compared
with optimal trajectory plans resulting from Bayesian Optimization applied to specific scenarios. The optimization based
solutions are developed for three different case study settings with increasing complexity (and thereof increasing control
authority allowed by the setting), going from controlling simply the thrust angle to additionally also controlling the
thrust force magnitude and initial fuel mass. It was shown that in Case Study 3, with the thrust angles, initial mass, and
thrust magnitude as action variables in the optimization. As expected, the third case study with the highest complexity
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(b) Case 2
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(c) Case 3

Fig. 10 Bayesian Optimization Minimum Objective Plot

achieves the lowest fuel consumption in the selected capture scenario, which also demonstrates the effectiveness of the
implemented optimization process.

The policy model generated by RL is observed to perform successful capture in the same scenario as used by the
optimization scenario, while providing a higher success rate when the lateral shift is introduced. This demonstrates
the potential generalizability of the RL based control policy, which is intractable to achieve with optimization, since a
separate expansive optimization has to be run for every offset scenario with the latter. To put this into perspective, the
trained RL policy executes in 50 milliseconds, vs. 17 hrs required by optimization for a given scenario. An immediate
next step in this research is to extend the RL approach to produce the control policies for Case Study 2 and 3, involving
increased control authority. Further future work would entail adding more features to the scenarios over which RL is
tasked to generalize, namely including the rotational rates of the debris and sensing uncertainties during flight.
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