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A B S T R A C T   

Single-loop elastic rings can be folded into multi-loop equilibrium configurations. In this paper, the stability of 
several such multi-loop states which are either circular or straight are investigated analytically and illustrated by 
experimental demonstrations. The analysis ascertains stability by exploring variations of the elastic energy of the 
rings for admissible deformations in the vicinity of the equilibrium state. The approach employed is the con-
ventional stability analysis for elastic conservative systems based on the second variation of the system energy 
which differs from most of the analyses that have been published on this class of problems, as will be illustrated 
by reproducing and elaborating on several problems in the literature. In addition to providing solutions to two 
basic problems, the paper analyses and demonstrates the stability of six-sided rings, curved-sided hexagrams, 
that fold into straight configurations.   

1. Introduction 

Slender elastic rods formed into rings can assume a surprising variety 
of equilibrium shapes other than the basic single-looped configuration. 
For example, a single-looped circular ring formed from a uniform 
straight rod can be twisted to form a ring having three equal sized cir-
cular loops with essentially no twist in the circular 3-loop state. More-
over, for rod cross-sectional geometries that have an out-of-plane 
bending stiffness large enough compared to the in-plane bending stiff-
ness, both the 1-loop state and 3-loop state can be stable. The transition 
between the 1- and 3- loop configurations is three-dimensional, 
involving twist and out-of-plane displacements. This phenomenon has 
been known and exploited for many years, but other phenomena of this 
type are currently being uncovered and explored as illustrated by the 
recent articles by Wu et al. (2021, 2022), Lu et al. (2023), and Yu et al. 
(2023). The three-dimensional behavior of slender rod systems is of 
interest to a wide audience of scientists and mathematicians dealing 
with applications in mechanical and biological arenas. The motivation 
of the authors of the present paper derives primarily from structural 
applications of lightweight collapsible, or foldable, structures (Mouthuy 
et al. (2012); Leanza et al. (2022); Sun et al. (2022); Lachenal et al. 
(2012); Mhatre et al. (2021)). 

In the nineteenth century, Kirchhoff laid out the three-dimensional 
theory of elastic rods, generalizing Euler’s two-dimensional elastica. 

Much of the work on this class of problems has been conducted within 
the framework Kirchhoff developed, including that presented in this 
paper. The main problem addressed in this paper is the stability of 
curved-sided hexagrams, six-sided planar rings, formed by joining six 
rods in the shape of 120o or 240o circular arcs into a complete ring. Each 
of the six arc segments has a uniform natural curvature κn in the plane of 
the ring (which is perpendicular to the 3-axis) when unloaded. The rods 
are bent into 120o or 240o circular arcs of radius R0 and joined to form a 
ring as depicted in Fig. 1. Each rod segment joins its neighbor at a cusp. 
This 1-loop ring can be folded into a 3-loop ring with straight sides. In 
any physical realization, each loop of the 3-loop ring is a narrow lens 
formed from two of the rods, as depicted in Fig. 1. The loops are stacked 
on top of one another with essentially no twist, as will be discussed in 
more detail later. The bending stresses in each of the six segments in any 
of the configurations in the upper half of Fig. 1 are uniform. They 
depend on the difference between the curvature of the rod in this state, 
R0−1, and the natural curvature, κn, in proportion to R0−1 − κn. In the 3- 
loop line configurations in the lower half of Fig. 1, the bending stresses 
are also uniform and depend only on κn. The bending stresses in a given 
state drive the instability. In this paper, the stability of the straight 
folded state is determined and, specifically, the natural curvature at 
which the straight state becomes unstable is obtained. Experimental 
demonstrations of the behavior of the rings will be presented. The reader 
should be aware that the transition between equilibrium states is not 
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considered in this paper, and stability of the two 1-loop rings in the 
upper half of Fig. 1 will not be examined in this paper. Both aspects will 
be considered in a subsequent paper. 

Many of the stability studies of three-dimensional rod structures, 
going back to some of the earliest papers, e.g., Michell (1889), are based 
on investigations of the vibration spectrum of the structure. These 
studies identify the load or residual stress level at which at least one 
natural frequency becomes zero. This approach is a natural choice 
because Kirchhoff rod theory is a Eulerian-type formulation with the 
variables describing the rod defined in the deformed state. For certain 
problems, such as those illustrated in this paper, an equivalent, but 
alternative, Lagrangian approach based on Kirchhoff theory may have 
advantages and may provide a more direct and less complicated 
pathway to ascertaining stability. In Section 2, equations are presented 

for the investigation of the stability of configurations that are either 
circular or straight. In Section 3, three problems previously analyzed in 
the literature will be re-analyzed to illustrate application of the 
approach adopted in this paper and to establish its validity. One of the 
three problems in Section 3 is the maximum curvature that can be 
imposed on a uniformly curved rod arc that is clamped at its ends. The 
importance of this problem will be emphasized, and detailed results not 
previously available in the literature will be presented. A model problem 
for a pre-stressed bi-rod is analyzed in Section 4 providing basic insights, 
and the stability of the 3-loop folded states of the six-sided rings are 
analyzed in Section 5. 

2. Equations governing ring behavior for circular and straight 
reference configurations 

The equations associated with deformations and strains based on 
Kirchhoff rod theory from circular reference states are first presented 
and then specialized to straight reference states. The procedures 
employed to derive these equations are the same as those given in many 
papers and books in the literature (Antman, 1995), and thus the present 
presentation will be as brief as possible. As seen in Fig. 2, the right hand 
set of unit vectors in the reference state, (ir, iθ, i3), have iθ tangent to the 
reference circle, ir perpendicular to the circle, and i3 normal to the plane 
of the circle. The embedded set of unit vectors in the deformed state is 

denoted by (e1, e2, e3) with e2 tangent to the rod and (e1, e3) rotating 
with the cross-section. The set (e1, e2, e3) coincides with (ir, iθ, i3) when 
the ring is in the reference state. 

Euler angles are employed to describe the change of deformation of 
the rod for departures from the circular reference state. The two Euler 
angles that define the geometry of the axis of the rod are shown in 
Fig. 2b with no rotation of the embedded unit vectors about the axis. The 
third angle is the accumulated rotation of the cross-section about the 
e2-axis, α, occurring during the motion from the circular state (Fig. 2c). 
Attention in this paper will be limited to inextensional rods, and the 
distance along the rod measured from some reference point and 
increasing with the circumferential angle θ is denoted by s. A Lagrangian 
description will be employed in the analyses in this paper. With R as the 
radius of the ring, or rings, in the reference state, the unit vectors 
introduced above, (ir(θ), iθ(θ), i3), and the Euler angles, (α, β, γ), are 
functions of θ or s. The relations between the two sets of unit vectors are:   

The direction cosines between the axes are lij = ii • ej such that ei =
ljiij, with (ir, iθ)→(i1, i2) for notational convenience, and ii = lijej. These 
are provided in the Supplementary Materials. 

Denote the displacement components of the centerline from the 
circular reference state by u = urir + uθiθ + u3i3 such that position vector 
of the centerline is r = R ir + u. A vector tangent to the centerline axis 
pointing in the direction of e2, t = dr/ds, is 
t =

(

dur

/

ds − R−1uθ

)

ir +
(

1 + duθ

/

ds + R−1ur

)

iθ + du3

/

ds i3

≡ −φ3ir + (1 + εθ)iθ + φri3.

The inextensionality condition is 
2
(

duθ

/

ds + R−1ur

)

+
(

duθ

/

ds + R−1ur

)2 +
(

dur

/

ds − R−1uθ

)2 + (du3/ds)2

= 0,

(2.2)  

which also ensures that t = e2 is a unit vector. Note that εθ =
(duθ/ds + R−1ur

), φr = du3/ds and φ3 = −(dur /ds−R−1uθ) are, respec-
tively, the centerline linearized stretching strain and linearized rotations 
about ir and i3. Furthermore, solving the inextensionality condition for 
εθ in terms of the other two quantities (with φr2 + φ32 < 1) gives the 
constraint expressed as 

Fig. 1. a) A curved-sided hexagram ring formed from 120o circular arcs which 
folds into a straight 3-loop configuration of length 2πR0/3. b) A curved-sided 
hexagram ring formed from 240o circular arcs which folds into a 3-loop 
straight configuration of length 4πR0/3. 

Fig. 2. Unit vectors and Euler angles. a) Cartesian base vectors and reference 
cylindrical base vectors. b) Local cylindrical base vectors and the two Euler 
angles, β and γ, specifying the three embedded base vectors, ei, with no rotation 
about the rod axis, e2. c) Same as b) but after rotation α about e2 (dashed arrows 
denote e1 and e3 before rotation). 

e1 = (cos(α + γ) + (1 − cos β)sin α sin γ ) ir + sin α sin β iθ + ( − sin(α + γ) + (1 − cos β)sin α cos γ ) i3,
e2 = sin β sin γ ir + cos β iθ + sin β cos γ i3,

e3 = (sin(α + γ) − (1 − cos β)cos α sin γ )ir − cos α sin β iθ + (cos(α + γ) − (1 − cos β)cos α cos γ ) i3.

(2.1)   
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εθ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − φr
2 − φ3

2
√

− 1. (2.3) 
By comparing the terms in the equation for t with those for e2, the 

following exact relations are also seen: 
εθ =

(

duθ

/

ds + R−1ur

)

= cos β − 1, (2.4)  

or cos β =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅1 − φr2 − φ32√ and 

φr = du3

/

ds = sin β cos γ and φ3 = −
(

dur

/

ds − R−1uθ

)

= −sin β sin γ.

(2.5)  

If β ∕= 0, it also follows that 
tan γ = −φ3/φr. (2.6)  

With κ1 and κ3 as the curvatures about the e1 and e3 axes, respectively, 
and κ2 as the derivative of twist with respect to distance along the rod, 
one can use the Frenet-Seret formula (c.f., Champneys and Thompson, 
1996; Audoly and Seffen, 2015), 

κi =
1

2
εijk

dej

ds
• ek, (2.7) 

to compute the curvatures. The exact results are 
κ1 = cos α

(

dβ
/

ds − R−1 sin γ
)

− sin α
(

− sin β dγ
/

ds + R−1 cos β cos γ
)

,
κ2 = dα

/

ds + cos β dγ
/

ds + R−1 sin β cos γ,
κ3 = cos α

(

− sin β dγ
/

ds + R−1 cos β cos γ
)

+ sin α
(

dβ
/

ds − R−1 sin γ
)

.

(2.8) 
The curvature components are defined with respect to the embedded 

unit vector system ei in the deformed state, as reflected by the vector, 
Ω = κiei. 

For the stability bifurcation calculations to follow, the ‘natural’ un-
coiled state of the rod has length L and an initial uniform curvature κn 
about the 3-axis. Attention here is restricted to uniform rods with linear 
bending and twisting properties. The principal axes of the cross-section 
in the natural state are taken to be aligned with (e1,e3), i.e., (ir, i3) in the 
reference state, and the bending stiffnesses about these two axes are 
denoted by B1 and B3. The torsional stiffness about the e2-axis is denoted 
by B2. For all but one of the problems analyzed in this paper, the rods in 
their detached state have a uniform natural curvature, κn, about the 
i3-axis. Then, the rods are bent uniformly about the 3-axis into circular 
loops or arc segments of radius R which, in general, is different from the 
radius of the rod arc in the detached state, κn−1. Stability or lack thereof 
is investigated in this circular state. We will also investigate stability of 
straight states with R→∞. In the circular reference state, the non-zero 
curvature is κ3 = R−1, the change of curvature from the natural state 
is R−1 − κn, and the magnitude of moment in the ring in the circular state 
is M3 = B3

⃒

⃒R−1 − κn
⃒

⃒. For rods of length L in reference states that are 
either circular or straight, the strain energy in configurations displaced 
from the reference state is assumed to be governed by linear constitutive 
behavior such that 

SE = 1

2

∫ L

0

{

B1κ1
2 + B2κ2

2 + B3(κ3 − κn)2
}

ds, (2.9)  

with curvatures given by (2.8). These curvature expressions hold for 
reference states that are straight by setting the terms multiplied by R−1 

to zero. Equation (2.8) agrees with those given by Champneys and 
Thompson (1996) in their study of initially straight rods, but with 
different notation. 

2.1. Moderate rotation approximation 

For moderate rotations from the circular state (with no initial twist) 
we anticipate that α2, φr2 and φ32 are all small compared to 1. Bifur-
cation calculations of stability of the circular or straight state require the 

energy changes of the elastic system to be accurate to the second order in 
the displacements and their gradients from that state. It follows from the 
equations given above that β2 is also small compared to 1, however, in 
the circular state, γ cannot be inferred from tan γ = − φ3/φr. In the 
problems investigated here, the curvatures must vary continuously from 
those in the reference state as bifurcation proceeds from this state. When 
there is no initial torsion in reference state, the formulas for κ1 and κ3 in 
the circular state with (α= 0, β= 0) reveal that γ must be zero at 
bifurcation, and it must emerge continuously from zero given the initial 
curvatures (κ1 = 0, κ3 = R−1) and a continuous variation of the curva-
tures. Assuming (α, β, γ) are all small and expanding the curvature ex-
pressions in these quantities in a Taylor series up to and including 
quadratic terms one obtains: 

κ1 = dβ

ds
− R−1ω + O3, ​

κ2 =
dω

ds
+ R−1β + O3,

κ3 = R−1

(

1 − 1

2
ω2 − 1

2
β2

)

− β
dω

ds
+ d(αβ)

ds
+ O4, (2.10)  

with ω = α+ γ. The notations O3 and O4 signify that no terms below 
cubic and quartic order, respectively, have been neglected. Thus, the 
first two curvatures have no quadratic terms, and the third curvature has 
no cubic terms. To the same order, 

εθ =
(

duθ

ds
+ R−1ur

)

= −1

2
β2 = −1

2
(φr

2 + φ3
2),

φr =
du3

ds
= β,

φ3 =
(

dur

ds
− R−1uθ

)

= −βγ.

(2.11)  

2.2. The strain energy functional to quadratic order 

Up to and including quadratic terms, the strain energy (2.9) is 

SE = 1

2
B3(1/R − κn)2

L + P2(β,ω,M),

where 

P2 = 1

2

∫ L

0

{

B1

(

dβ

ds
− ω

R

)2

+ B2

(

dω

ds
+ β

R

)2

− B3M

(

(

β

R

)2

+
(ω

R

)2

+ 2
β

R

dω

ds

)}

ds + 2B3M
αβ

R

⃒

⃒

⃒

⃒

L

0

,

(2.12)  

with ω = α+ γ, and M = 1− Rκn, the parameter introduced by Audoly 
and Seffen (2015). Because of the symmetry of the ring or arc, and the 
accuracy of the curvature expressions noted earlier, SE has no cubic 
terms, so, in fact, (2.12) is accurate to O4. 

The quadratic functional P2 determines the second variation of SE 
about the reference state and governs its stability. Consider either 
complete rings, for which α, γ and β are continuous across s = 0 and s =
L, or circular arcs clamped at both ends (α = β = 0). For these entities, 
αβ|L0 = 0. The functional P2 defines an eigenvalue problem with M = 1 −
Rκn as the eigenvalue. To the order relevant to the bifurcation problem, 
the inextensionality condition requires εθ = (duθ /ds + ur /R) = 0. 
Additional conditions imposed on the Euler angles by displacement 
constraints may have required, as will be illustrated. If M = 0, P2 ≥ 0 for 
all non-zero variations (β,ω). P2 only vanishes for non-zero variations 
having ω = β

′ and ω′ + β = 0 which correspond to linearized rigid-body 
rotations. In other words, if M = 0, P2 > 0 for all non-zero admissible 
variations that are not rigid-body motions. For complete rings, the Euler 
angles and their associated displacements in the bifurcation problem are 
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required to be continuous and differentiable with period L = 2πNR 
where N is the number of loops, and continuity of displacement around 
the ring requires ∫ L

0 βds = 0. For either complete rings or arcs, we seek 
the range of M such that P2 > 0 for all non-zero admissible variation 
(excluding rigid-body motions). The circular state is stable within this 
range and unstable for M outside this range. For complete rings, the class 
of deformations involving a uniform axisymmetric twist, i.e., α = ω in-
dependent of θ with β = γ = 0, deserves special attention. The integrand 
of P2 for this class of deformations is simply (B1 /B3 − M)α2, and thus 
the ring is unstable against uniform axisymmetric twist if M > B1/ B3 
and stable for uniform axisymmetric twist if M < B1/B3. Further dis-
cussion of this mode will be given later. 

3. Three solved problems in the literature 

In this section we use the standard quasi-static approach to the sta-
bility, or buckling, of elastic conservative systems outlined above to 
reproduce solutions to three problems previously analyzed and solved in 
the literature. The Lagrangian quasi-static method employed here, in 
some cases, generates results more directly. In the case of the second 
problem, the stability of pure bending of clamped circular and straight 
arcs, we will provide more complete and extensive results than are 
available in the literature and follow up in Sections 4 and 5 by discussing 
the relevance of this fundamental problem. 

3.1. The stability of circular rings untwisted in 1-loop or 3-loop states 

The remarkable property of a 1-loop elastic circular ring to deform 
into multi-loop circular rings without twist when the number of loops is 
odd (N = 3,5,...) has been known for years (Goto et al., 1992; Stojanoska 
and Stoytchev, 2008), but this phenomena is evidently not widely 
known to the community concerned with the buckling of structures. Two 
papers have provided a rather complete analysis of multi-state rings 
within the framework of Kirchhoff rod theory dealing with both the 
stability of the circular states and the transitional behavior linking them 
(Manning and Hoffman, 2001; Audoly and Seffen, 2015). The present 
paper will analyze the stability of circular and straight states but not the 
transition between the states. Our results reproduce some of those in the 
studies of Audoly and Seffen and those still earlier by Manning and 
Hoffman. This section serves the purpose of presenting and validating 
the present approach for a solved problem. 

We seek the critical eigenvalues, M−C and M+
C , and the associated 

modes, that define the range of stability of the ring subject to the con-
dition that β(θ) and ω(θ), with θ = s/R, have periodicity 2πN with 
continuous derivatives. The eigenvalue equations are obtained from 
rendering the variations of P2 stationary with respect to the variables (β,
ω). The ordinary differential equations (ODEs) governing the eigenvalue 
problem are 
b2ω’’ + (M − b1)ω + ( − M + b1 + b2)β’ = 0,
b1β’’ + (M − b2)β − ( − M + b1 + b2)ω’ = 0,

(3.1)  

with b1 = B1/B3, b2 = B2/B3, and ()′ = d()/dθ. These equations do not 
involve φ3 or the in-plane displacements, ur and uθ. From (2.11), ur and 
uθ are of second order and play no role in the first order bifurcation 
problem, which involves a combination of the out-of-plane displace-
ment, u3

′ = Rβ, and twist. Continuity of u3 requires ∫ 2Nπ

0 βdθ = 0. 
A central concern of Audoly and Seffen (2015) is ribbon-like rods 

with high aspect ratio cross-sections for which the bending-torsional 
behavior can be nonlinear due to developable deformations of the rib-
bon. Throughout this paper the emphasis will be on rods with linear 
bending-torsional constitutive behavior. The height to thickness ratio of 
the cross section is assumed to be in the range such that ribbon-like 
nonlinear behavior does not occur. Consider modes of the form 
ω = A cos(jθ/N), ​ β = B sin(jθ/N), (3.2)  

where j is any non-negative integer. The modal displacement is 
u3 = −B(RN /j)cos(jθ /N) for j > 0 and these all satisfy ∫ 2Nπ

0 βdθ = 0. 
(Potential modes of the form β = const. are periodic but they are 
excluded by the condition ∫ 2Nπ

0 βdθ = 0.) The algebraic eigenvalue 
problem is 

A
[

b1 + b2(j/N)2 − M
]

− B[(b1 + b2 − M)(j/N) ] = 0,

−A[(b1 + b2 − M)(j/N) ] + B
[

b1(j/N)2 + b2 − M
]

= 0,

leading to 
(

M2 − M(b1 + b2) + b1b2

(

1 − (j/N)2
))(

1 − (j/N)2
)

= 0,

whose solutions are j/N = 1 for any M (rigid-body modes), and 

(M+,M−) = 1

2
(b1 + b2) ±

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1

4
(b1 − b2)2 + b2(j/N)2

√

, (3.3)  

for all other j and N. This agrees with the solution of Audoly and Seffen 
(2015) and Manning and Hoffman (2001). 

For demonstrating and validating the present method, in this sub-
section we will consider only rings with an isotropic cross-section made of 
an isotropic elastic material. For circular cross-sections, solid or annular, 
these have b1 = 1 and b2 = 1/(1+ν) with ν as Poisson’s ratio. The uni-
form axisymmetric twisting mode for any integer number of loops, 
corresponding to j = 0, with ω = A, β = 0, M+ = 1 and M− = b2 has 
been discussed earlier. Rods with cross-sections having b1 = 1 are un-
stable in the uniform twisting mode if M > M+ = 1− Rλn > 1, i.e., 
λn < 0. If the rod in the natural state is straight, i.e., λn = 0, it is easy to 
see that strain energy of the ring does not change subject to uniform 
axisymmetric twist. The ring has neutral stability with respect to this 
class of deformations. Any such rod with an initial curvature λn < 0 
would immediately undergo a 180o uniform axisymmetric twist when 
shaped into a ring, thus effectively switching the sign of the initial 
natural curvature. In other words, the uniform axisymmetric twisting 
mode rules out the necessity of further consideration of rings of isotropic 
bending stiffness formed from rods with a negative natural curvature. 
The shape of the ring is unchanged by uniform axisymmetric twist, but 
the material of which it is composed undergoes deformation changes. 
The second eigenvalue, M− = b2, is spurious because it is associated 
with the trivial eigenmode, β = ω = 0. 

The modes associated with j/N = 1 for any M are rigid-body rota-
tions about axes in the plane of the ring. For the form assumed, B = A 
such that ω = A cos θ, φr = β = A sin θ, φ3 = 0, u3 = − AR cos θ, and 
ur = uθ = 0. The one exception is the additional possibility of a mode 
involving deformation of the ring if M = M+ = 1+ b2, but this will not 
be consequential because the associated natural curvature, Rκn = − b2, 
is negative and superseded by uniform axisymmetric twist. 

For 1-loop rings (N = 1) and j ≥ 2, the range of stability for the jth 

mode is M− < M < M+. All the values of M+ given by (3.3) satisfy M+ >

1 and thus the upper limit of the stability range is determined by uniform 
axisymmetric torsion and M+

C = 1. The largest value of M− is associated 
with j = 2 and (3.3) gives M−C = −0.861 for circular cross-sections with 
ν = 1/3. Thus for 1-loop rings, the stability range is − 0.861 < M < 1. 
Consider rings formed from a rod of length L with natural curvature κn 
with either one or multiple loops such that R = L/(2πN). This is the 
relevant normalization for rings formed from a rod with a given length 
and natural curvature that assumes one or more loops. The stability 
limits of the natural curvature are given by 
L

2π
κ−n = N

(

1 − M+
C

)

and
L

2π
κ+n = N

(

1 − M−
C

)

.

For the 1-loop ring, the range of the natural curvature for which the 
circular state is stable is 
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0 < (Lκn/2π)〈1.86 (N = 1).

Determination of stability of the circular state for the same ring with 
multiple loops requires an additional consideration. For each of the 
modes with j/N > 1, the stability range is again given by M− < M < M+, 
but for each of the modes with 0 < j/N < 1, the stability range is M <

M−, with M+ playing no role. This is easily established by showing that 
for M < M−, P2 ≥ 0 for all A and B, while negative values of P2 exist for 
some combinations of A and B for every M if M > M−. For the 3-loop ring 
(N = 3), the largest value of M for stability is set by j = 2 and given by 
M− = 0.284. The largest lower stability limit of M is determined by 
M−

C = −0.286 for j = 4. Thus, the stability range for N = 3 is − 0.286 <

M < 0.284 such that 
2.15 < (Lκn/2π)〈3.86 (N = 3).

The stability ranges of the 1- and 3- loop rings do not overlap for 
circular cross-sections. If the natural state of the rod is straight, the 1- 
loop circular state is marginally stable (susceptible to uniform axisym-
metric torsion), however the 3-loop state is not. While it is possible to 
deform a stable 1-loop ring into the 3-loop circular state, that state 
would not be stable. Conversely, if the natural curvature is such that the 
3-loop ring is stable, it would not transition to a circular ring with one 
loop when dislodged from the 3-loop state. Rods with cross-section 
having sufficiently large out-of-plane bending stiffness compared to in- 
plane stiffness have overlapping stability ranges for 1- and 3-loop 
rings. The modal displacement, u3 = − B(RN /j)cos(jθ /N), with the 
associated twist (3.2), is a progressive separation of the loops around the 
ring which does not bring the ring into contact with itself. 

3.2. Stability of pure bending of straight or naturally curved rods clamped 
at their ends 

Consider another problem analyzed by Audoly and Seffen (2015): 
the stability of pure bending about the i3-axis of rods with natural cur-
vature. We will see in Sections 4 and 5 that this basic problem is 
fundamental to more complex structural stability phenomena. Here, 
reasonably complete results for rods with circular or rectangular 
cross-sections will be presented. As depicted in Fig. 3, the natural state of 
the rod is a uniform curvature, κn > 0, and the deformed state can be 
either curved (κ = 1/R) or straight (κ = 1/R = 0). The rod is inexten-
sional and of length L. Take s = Rθ measured from the center of the rod 
such that its ends are at s = ±L/2. The rod is subject to pure bending by 

equal and opposite end moments of magnitude B3|κ −κn| with κ = 1/R as 
the curvature in the deformed state. In this state, the ends of the beam 
are clamped against further rotation. The stability of this state requires 
P2 > 0 in (2.12) for all non-zero admissible variations from the current 
circular state. Due to the clamped end conditions, αβ|L0 = 0. To remove 
the constraint imposed by the requirement ∫ L/2

−L/2 βds = 0, substitute β =
du3/ds in P2. With (u3,ω) as unknowns, the boundary conditions at each 
clamped end of the rod are u3 = du3/ds = ω = 0. 

With x = s/L, u = u3/L, M = 1− Rκn, and L = L/R, the ODEs ob-
tained by rendering P2 in (2.12) stationary are 
b1(u

′′′′ − Lω’’) − b2L(ω’’ + Lu’’) + ML(Lu’’ + ω’’) = 0,
b1L(u’’ − Lω) + b2(ω’’ + Lu’’) + ML(Lω − u’’) = 0.

(3.4) 

For this analysis, take s = 0 in the center of the rod such that −
1/2 ≤ x ≤ 1/2. The general solution to (3.4) can be split into symmetric 
(c1, c2, c3) and anti-symmetric (c4, c5, c6) parts as 
u = c1 + c2 cos(Lx) + c3 cos(λLx) + c4x + c5 sin(Lx) + c6 sin(λLx),
ω = −L(c2 cos(Lx) + c3q cos(λLx) + c5 sin(Lx) + c6q sin(λLx) ), (3.5)  

with (anticipating (b1 − M)(b2 − M) > 0) 

λ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(b1 − M)(b2 − M)
b1b2

√

, ​ q = b2 − M

b2

. (3.6) 

The eigenvalue equations obtained by satisfying the boundary con-
ditions at x = 1/2, u = u′ = ω = 0, are 
λ sin(λL/2)cos(L/2) − q cos(λL/2)sin(L/2) = 0 (symmetric), (3.7)  

2(1 − q)sin(L/2)sin(λL/2) − λLsin(L/2)cos(λL/2) + qLcos(L/2)sin(λL/2)
= 0 (anti-symmetric).

(3.8) 
Before discussing some details of this solution, we first present the 

results for what will prove to be an important limiting case—the limit 
when the clamped rod is straight, R→∞ and L = L/R→0. To the order 
relevant to the bifurcation analysis, u2 = 0, and the combination of 
inextensionality and fully clamped conditions at both ends of the rod is 
still applicable in this limit. Obviously, a straight rod that is inexten-
sional and clamped in this manner could not deflect from its straight 
state. However, if, for example, the support condition at the right end of 
the rod is modified slightly so that the rod displacement is unconstrained 
in the 2-direction but otherwise constrained against rotation and 
displacement, the rod could undergo buckling displacements at the 
critical condition. The present analysis is equally applicable with this 
slight modification (similarly, if in the circular state one end of the rod is 
free to displace in the circumferential direction, the analysis in this 
section still applies). The results for the rod in the straight state can be 
obtained either by taking the limit of the above equations or by starting 
from scratch using the ODEs (3.4) with L = 0, noting that ML→− Lκn. 
One finds that the critical mode is symmetric and the maximum natural 
curvature for which the straight clamped rod is stable is 

Lκn = 2π

̅̅̅̅̅̅̅̅̅̅

B1B2

√

B3

. (3.9) 

The associated mode is a combination of displacement and rotation 
given by 

u3 = cL(1 + cos(2πs/L) ),
ω = −2πc

̅̅̅̅̅̅̅̅̅̅̅̅̅

B1/B2

√

(1 + cos(2πs/L) ).
(3.10) 

The dimensionless combination of bending and twisting stiffnesses, 
̅̅̅̅̅̅̅̅̅̅B1B2

√
/B3, governing the critical natural curvature is plotted in Fig. 4 for 

rods with elliptical and rectangular cross-sections each having height h 
in the 3-direction and thickness t in the 1- or r-direction. Recall that for 
circular cross-sections (solid or annular), b1 = B1/B3 = 1 and 

Fig. 3. Stability range of the natural curvature for a rod of length L with either 
a circular (dashed line) or a rectangular (solid lines, depending on h/ t) cross- 
section that is bent into an arc of radius R and clamped at its ends. For natural 
curvatures greater than those plotted, the arc will buckle. Poisson’s ratio is 1/3 
in this plot. The limit in which the bent rod is straight, L/ R→ 0, is given by 
(3.9). For the bent straight rod, the result applies when there is no constraint on 
the displacement parallel to the rod at the right end. 
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b2 = B2/B3 = 1/(1+ν) so that ̅̅̅̅̅̅̅̅̅̅B1B2
√

/B3 = 1/ ̅̅̅̅̅̅̅̅̅̅̅1 + ν
√ . For elliptical 

cross-sections 
̅̅̅̅̅̅̅̅̅̅

B1B2

√

B3

= h

t

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

2

(1 + ν)(1 + (t/h)2
)

√

√

√

√
. (3.11) 

For solid rectangular cross-sections, b1 = (h/t)2, and an accurate 
approximation for b2 is obtained using Sokolnikoff’s (1956) result for 
the torsional stiffness: 

b2 =
B2

B3

= 2

1 + ν

(

1 − 192

π5

t

h
tanh

(

π

2

h

t

))

. (3.12) 

The stable range of natural curvature for rods of circular and rect-
angular cross-sections is presented in Fig. 3. For all cases plotted, the 
anticipated condition, (b1 − M)(b2 − M) > 0, is satisfied and the sym-
metric mode with eigenvalue given by (3.7) is critical. Although the 
circular cross-section and the square cross-section both have b1 = 1, b2 
is slightly smaller for the square cross-section and that is reflected in its 
slightly smaller range of stability. Not surprisingly, the aspect ratio of 
the rectangular cross-section, h/t, has a very strong influence on the 
stability range. One case for a cross-section with higher in-plane bending 
stiffness than out-of-plane stiffness, h/t = 0.75, is included in Fig. 3 
showing that rods having such cross-sections have a dramatically 
reduced stability range. When the aspect ratio is very high, e.g., h/ t≫ 1, 
(3.11) predicts a large range of stability. Such cross-sections are sus-
ceptible to the ribbon-like instabilities modeled by Audoly and Seffen 
(2015). 

The eigenvalue conditions (3.7) and (3.8) have two branches. The 
one plotted in Fig. 3 and in the formula for a straight rod in (3.9) is for 
κn > 1/R. The other branch yields values of κn < 1/R. For example, for 
the straight rod, this second branch has Lκn = − 2π

̅̅̅̅̅̅̅̅̅̅̅B1B2
√

/B3, as 
obvious from symmetry. 

Consider another fundamental problem governed by the eigenvalue 
equation (3.4): The maximum length L of a straight rod (κn = 0) that can be 
bent into a clamped arc of radius R such that the rod does not buckle. 
Equation (3.4) applies, with M = 1 and clamped conditions u = u′ = ω =
0 at the two ends of the rod. We omit the details of this analysis, which is 

similar to that already given. The mode associated with the critical value 
of L = L/R at which the bent rod loses stability is found to be symmetric 
about the center of the rod with eigenvalues given by: 
λsin(λL/2)cos(L/2) − qcos(λL/2)sin(L/2) = 0, ​ if (b1 − 1)(b2 − 1)〉0,

(3.13)  

with λ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(b1 − 1)(b2 − 1)/b1b2
√ and q = (b2 − 1)/b2, and 

λsinh(λL/2)cos(L/2) + qcosh(λL/2)sin(L/2) = 0, ​ if (b1 − 1)(b2 − 1)〈0,
(3.14)  

with λ =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

−(b1 − 1)(b2 − 1)/b1b2
√ and q = (b2 − 1)/b2. The largest 

normalized length, L/R, for which the clamped bent arc is stable is 
plotted in Fig. 5 as a function of h/t for rods of rectangular cross-section. 
Any rod with equal bending stiffnesses, i.e., b1 = 1, so that λ = 0 in 
(3.13) and (3.14), has a critical length given by L/R = 2π, with an 
associated mode that is a combination of uniform axisymmetric torsion 
and rigid body rotation such that there is no rotation where the ring is 
clamped. The critical stability limit is extremely sensitive to the cross- 
section aspect ratio for rods with in-plane and out-of-plane bending 
stiffnesses that are nearly the same. A slight increase of the out-of-plane 
bending stiffness relative to the in-plane stiffness significantly increases 
the stability limit. 

A clamped bent rod can store relatively large amounts of energy and 
remain stable. To illustrate this assertion, we compare the elastic energy 
in a clamped Euler column of length L under axial compression at the 
critical Euler buckling load (assuming elastic behavior in the compres-
sive state) with the elastic energy stored in the clamped straight rod of 
length L when the natural curvature from which it is formed is at the 
critical level (3.9). When both entities have the same circular cross- 
section of radius r and elastic properties, the ratio of these stored en-
ergies is 
SEEuler column

SEstraightened ​ rod

= (1 + ν)π2
(r

L

)2

. (3.15) 

Slender rods clamped at their ends can store enormously more 

Fig. 4. A dimensionless combination of the bending and torsional stiffnesses 
important to rod stability (see 3.9) for rectangular and elliptical cross-sections. 

Fig. 5. The stability limit for the length L of a straight rod of rectangular cross- 
section that can be bent into a clamped circular arc of radius R. The height of 
the cross-section perpendicular to the plane of bending is h, the thickness is t, 
and ν = 1/3 in this plot. For h/t = 1, L/R = 2π. 
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energy and remain stable when bent than a clamped Euler column in 
compression. Implications will be discussed later. 

3.3. Michell’s problem: stability of a circular ring with circular cross- 
section formed from a twisted straight rod 

In the natural state, the rod is straight. It is subject to a uniform initial 
twist dω/ds = ω0

′
/R, with ()′ = d()/dθ and ω0

′ as the uniform initial 
twist, and bent into a one-loop circle with radius R, and ends ‘welded’. 
The issue at hand is how much initial twist can be imposed for the cir-
cular state to remain stable. This problem was first solved by Michell 
(1889) and several other solutions were presented in the literature over 
succeeding years, including a recent elegantly economical solution by 
Goriely (2006), who also discussed the interesting history of Michell and 
this problem. Here we add another relatively economical and direct 
solution based on an investigation of the second variation of the energy. 
This example illustrates a case in which, due to the initial twist, in-plane 
and out-of-plane displacements are coupled in the bifurcation mode. 

The exact energy functional for the ring from (2.8) and (2.9) is 
SE

B3R−1
= 1

2

∫ 2π

0

{

b2(ω’ + (cos β − 1)γ’ + sin β cos γ )2 + (β’ − sin γ)2

+ (sin β γ’ − cos β cos γ)2
}

dθ,

(3.16)  

where ω = α+ γ, B1 = B3 and b2 = B2/B3. The associated connections 
are 

cos ​ β =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1 − φr
2 − φ3

2
√

, ​
εθ = R−1(uθ

’ + ur) = cos ​ β − 1,
(3.17)  

φr = R−1u3
’ = sin β cos γ, ​

φ3 = −R−1(ur
’ − uθ) = −sin β sin γ.

(3.18) 

The pre-bifurcation state has ω
′ = ω0

′ , β = 0, with SE0 =
πR−1B3(1+b2ω0

′ 2) and γ undetermined. With ω
′ = ω0

′ + Δω
′ and 

neglecting terms of order β3 and smaller, 
SE − SE0

B3R−1
=
∫ 2π

0

{b2(ω0
’Δω’ + ω0

’β cos γ) − (β sin γ)’ }dθ

+ P2(ω0
’,Δω’, β, γ), (3.19)  

where 

P2 = 1

2

∫ 2π

0

{

b2

(

(Δω’ + β cos γ)2 − ω0
’β2γ’

)

+ β’2 + β2γ’2 − β2 cos2 γ
}

dθ.

(3.20) 
The integral in (3.19) is linear in Δω

′ and β vanishes because Δω and 
β sin γ are continuous and periodic, and because β cos γ = R−1u3

′ , 
neglecting terms of order β3 in (3.18). The second integral, P2, which is 
quadratic in Δω

′ and β, determines the stability of the circular state. The 
circular state is stable for a pre-twist, ω0

′ , if P2 > 0 for all non-zero ad-
missible functions (Δω,β, γ), excluding rigid body motions. The limit of 
the stable states is determined by the smallest value of |ω0

′ | for which 
there exists a non-zero admissible (Δω, β, γ) such that P2 = 0. Because Δ 

ω appears only in the first term in (3.20), minimizing P2 with respect to 
Δω implies that Δω

′ = −β cos γ such that (3.20) reduces to 

P2 = 1

2

∫ 2π

0

{

− b2ω0
’β2γ’ + β’2 + β2γ’2 − β2 cos2 γ

}

dθ. (3.21) 

The in-plane and out-of-plane displacements are coupled through 
φ3/φr = − tan γ, where γ(θ) is unknown. 

One approach to this eigenvalue problem would be to work with the 
ODEs generated by rendering P2 stationary. Here, we will use a direct 
method by considering periodic sinusoidal displacement fields of the 

form 
ur = Rajcos jθ, ​ uθ = −Rasin jθ, ​ u3 = Rbsin jθ (j = 2,∞). (3.22) 

The phasing of the in-plane and out-of-plane components is impor-
tant: the choice u3∝cos(jθ) does not lead to bifurcation. These modes 
satisfy the lowest order inextensionality condition εθ = 0. Modes having 
j = 0 and j = 1 are excluded by inextensionality or because they are 
rigid-body modes. Neglecting terms of order β3 and smaller, one has 

βcos γ = φr = bjcos jθ, ​
βsin γ = −φ3 = −a

(

j2 − 1
)

sin jθ.
(3.23) 

It follows that the terms in the integrand of (3.21) are 
(βcosγ)2 =(bj)2(cosjθ)2,

β2 =
(

a
(

j2−1
)

sin jθ
)2+(bjcosjθ)2 =(bj)2

(

(cosjθ)2+r2(sinjθ)2
)

,

β’2 =β−2
[(

(

a
(

j2−1
))2−(bj)2

)

jsinjθcosjθ
]2

=(bj)2

((

r2−1
)

jsinjθcosjθ
)2

(cosjθ)2+r2(sinjθ)2
,

β2γ’ =−ab
(

j2−1
)

j2 =−(bj)2
jr,

(βγ’)2 =β−2
(

a
(

j2−1
)

bj2
)2 =(bj)2 j4r2

(cosjθ)2+r2(sinjθ)2
,

(3.24)  

where r = a(j2 − 1)/(bj). Integrals of the terms in (3.21) are straight-
forward except for the 2nd for which the following was used 
∫ 2π

0

(

cos2 ψ + r2 sin2 ψ
)−1

sin2 ψcos2 ψdψ = π
(

1 +
̅̅̅̅

r2
√ )−2

.

Evaluating P2, one obtains (with the same order of terms in (3.21)): 

P2 = π

2
(bj)2

{

2b2ω0
’jr + j2

(

1 −
̅̅̅̅

r2
√ )2

+ 2j2
̅̅̅̅

r2
√

− 1

}

, (3.25)  

which simplifies to 

P2 = π

2
(bj)2

{

2b2ω0
’jr + j2

(

1 + r2
)

− 1
}

. (3.26) 

The lowest non-trivial eigenvalue is associated with j = 2 and given 
by b2ω0

′ =
̅̅̅3√ with r = −

̅̅̅3√
/2 (or, by b2ω0

′ = −
̅̅̅3√ with r =

̅̅̅3√
/2), in 

agreement with the original result of Michell (1889) and others as 
described in the history of the problem by Goriely (2006). Coupling 
between the in-plane and out-of-plane displacements is essential with 
b = ±

̅̅̅3√ a depending on the sign of ω0
′ . 

The ring in a 3-loop state is expected to be unstable for any initial 
twist because, as seen in Section 3.1, such a ring would be unstable 
without any twist. This can indeed be confirmed by replacing jθ by jθ/N 
in the mode (3.20) and re-evaluating P2. The outcome is N times the 
righthand side of Eq. (3.26) with j replaced by j/N. Then, with N = 3, it 
is readily established that P2 can be negative for any value of ω0

′ when 
j = 1 or 2. 

Fig. 6. A bi-rod made of two identical rods of equal and opposite natural 
curvatures, κn = ±κ0 = ±R0−1, that are bent about the 3-axis into straight 
segments and welded at the ends. 
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4. A model problem: the stability of a straight bi-rod formed 
from two rods with equal natural curvatures 

The following problem will illustrate the approach used in the next 
section for more complicated geometries, but it is of interest on its own 
merits. The problem is defined in Fig. 6. Apart from the location of their 
openings, the rods are identical with uniform bending stiffnesses B1 and 
B3 about the 1- and 3-axes, and torsional stiffness B2 about the 2-axis. 
Denote the natural curvature of the upper rod by κn = κ0 and that of 
the lower by κn = − κ0, as defined relative to the x2-axis. The rods are 
bent until they are straight and then their ends are welded together. The 
straight configuration of the bi-rod is an equilibrium state with equal 
and opposite moments in the rods of magnitude B3κ0 about the 3-axis. 
The rods are assumed to be inextensional, each having length L =
2ψR0 where R0 = 1/κ0 and 2ψ is the angle subtended by the arc prior to 
bending. The stability of the straight bi-rod as dependent on ψ , or 
equivalently on L/R0, is analyzed. 

With the straight configuration as the reference state, the changes of 
curvature from this state are given by 
κ1 = cos α β’ + sin α sin β γ’, ​

κ2 = α’ + cos β γ’, ​
κ3 = sin α β’ − cos α sin β γ’,

(4.1)  

where now ()′ = d()/ds. The linearized strain and rotation variables are 
ε2 = u2

’ = cos β − 1, ​
φ1 = u3

’ = sin β cos γ, ​
φ3 = −u1

’ = −sin β sin γ.

(4.2) 

The strain energy in the bi-rod is 

SE = 1

2

∫ L

0

{

B1κ
(1)
1

2 + B2κ
(1)
2

2 + B3

(

κ
(1)
3 − κ0

)2
}

ds + 1

2

∫ L

0

{

B1κ
(2)
1

2

+ B2κ
(2)
2

2 + B3

(

κ
(2)
3 + κ0

)2
}

ds, (4.3)  

where the first integral is the energy in the upper rod and the second is 
that in the lower rod. 

With γ = 0 and α = 0 in the pre-bifurcation state, we evaluate SE in 
the bifurcated state up to and including terms of order α2 and β2. (In- 
plane displacements, with γ = π/2 and u3 = 0, do not allow bifurcation.) 
To this same order of accuracy, β = u3

′ , and with this substitution the 
strain energy is  

Because the ends of the rods are welded together, α and u3 must satisfy 
α(1) = α(2), u(1)

3 = u(2)
3 and u(1)

3
′

= u(2)
3

′

at both ends of the bi-rod. 
Consequently, the two contributions in (4.4) evaluated at the ends add 
to zero and can be dropped. The energy in the straight state is B3Lκ02, 
and P2 is quadratic in α and u3. P2 is positive for all admissible non-zero 
α and u3 (excluding rigid body motions) if the straight state is stable. We 
seek the upper limit to the stability range, i.e., the minimum value of ψ 

such that there exists non-zero admissible functions α and u3 for which 
P2 = 0. The eigenvalue problem for the stability limit requires δP2 = 0 
for all admissible variations, which, in turn, requires 

B1u
(1)
3

′′′′

− B3κ0α(1)’’ = 0, ​ B2α(1)’’ + B3κ0u
(1)
3

’’ = 0,

B1u
(2)
3

′′′′

+ B3κ0α(2)’’ = 0, ​ B2α(2)’’ − B3κ0u
(2)
3

’’ = 0,
(4.5)  

on 0 ≤ x ≤ L, and at the ends, 

u
(1)
3

’’ + u
(2)
3

’’ = 0, ​ u(1)
3

’’’ + u
(2)
3

’’’ − (B3κ0/B1)
(

α(1)’ − α(2)’ ) = 0,

α(1)’ + α(2)’ + (B3κ0/B2)
(

u
(1)
3

’ − u
(2)
3

’
)

= 0, (4.6)  

in addition to α(1) = α(2), u(1)
3 = u(2)

3 and u(1)
3

′

= u(2)
3

′

. Conditions (4.6) 
are the natural, or dynamic, boundary conditions which ensure there are 
no external forces or moments applied at the ends. 

The general solution to (4.5) is 

u
(1)
3 = L

(

c
(1)
1 + c

(1)
2 x + c

(1)
3 sin λx + c

(1)
4 cos λx

)

,

α(1) = c
(1)
5 + c

(1)
6 x − K

(

c
(1)
3 sin λx + c

(1)
4 cos λx

)

,

u
(2)
3 = L

(

c
(2)
1 + c

(2)
2 x + c

(2)
3 sin λx + c

(2)
4 cos λx

)

,

α(2) = c
(2)
5 + c

(2)
6 x + K

(

c
(2)
3 sin λx + c

(2)
4 cos λx

)

,

with x = s/L, λ = B3κ0L/ ̅̅̅̅̅̅̅̅̅̅̅B1B2
√ and K = λ

̅̅̅̅̅̅̅̅̅̅̅̅̅B1/B2
√ . To exclude the 

possibility of rigid body motions, the left end of the bi-rod is constrained 
at x = 0 such that it cannot undergo displacement or rotation by 
requiring α(1) = α(2) = 0, u(1)

3 = u(2)
3 = 0 and u(1)

3
′

= u(2)
3

′

= 0. When 
these conditions, together with the three conditions (4.6), are imposed 
at x = 0, one obtains 

u
(1)
3 = L

(

c
(1)
3 (sin λx − λx) + c

(1)
4 (cos λx − 1)

)

,

α(1) = −K
(

c
(1)
3 sin λx + c

(1)
4 (cos λx − 1)

)

+ c
(1)
6 x,

u
(2)
3 = L

(

c
(1)
3 (sin λx − λx) − c

(1)
4 (cos λx − 1) + c

(1)
6 2K−1

(

x − λ−1 sin λx
)

)

,

α(2) = K
(

c
(1)
3 sin λx − c

(1)
4 (cos λx − 1)

)

+ c
(1)
6

(

x − 2λ−1 sin λx
)

.

Next, imposing u(1)
3 = u(2)

3 , u(1)
3

′

= u(2)
3

′

and α(1) = α(2) at s/L = 1 obtains 

K(cos λ − 1)c(1)4 +
(

λ−1 sin λ − 1
)

c
(1)
6 = 0,

−Kλ sin λc
(1)
4 + (cos λ − 1)c(1)6 = 0,

−K sin λc
(1)
3 + λ−1 sin λc

(1)
6 = 0.

The determinant of the system of homogeneous equations for (c(1)3 ,

c(1)4 , c(1)6 ) is K2λ(sin λ)2. 
The lowest non-zero value of λ for which the determinant vanishes is 

λ = π. With this value, the three equations imply that c(1)3 is the ampli-
tude of the eigenmode with c(1)4 = c(1)6 = 0 such that the mode is 
u
(1)
3 = u

(2)
3 = Lc

(1)
3 (sin(πs/L) − πs/L ),

​ α(1) = −α(2) = −Kc
(1)
3 sin(πs/L),

(4.7) 

SE = B3Lκ0
2 + P2,

P2 =
1

2

∫ L

0

{

B1u
(1)
3

’’2

+ B2α(1)’2

+ 2B3κ0α(1)’
u
(1)
3

’
}

ds − B3κnα(1)u
(1)
3

’
⃒

⃒

⃒

L

0
+ 1

2

∫ L

0

{

B1u
(2)
3

’’2

+ B2α(2)’2

− 2B3κ0α(2)’
u
(2)
3

’
}

ds + B3κnα(2)u
(2)
3

’
⃒

⃒

⃒

L

0
.

(4.4)   

S. Leanza et al.                                                                                                                                                                                                                                  



European Journal of Mechanics / A Solids xxx (xxxx) xxx

9

with K = π
̅̅̅̅̅̅̅̅̅̅̅̅̅B1/B2

√ . It is straightforward to verify that the three dynamic 
conditions (4.6) at s/L = 1 are satisfied by (4.7). Thus, λ = π is the 
critical eigenvalue governing bifurcation from the straight state and 
(4.7) is the associated bifurcation mode. The modal rotation at the right 
end of the bi-rod is zero but the modal displacement and slope at the 
right end are 

u
(1)
3 = u

(2)
3 = −πLc

(1)
3 , ​ u(1)

3

’ = u
(2)
3

’ = −2πc
(1)
3 .

For stability of the bi-rod, 

Lκ0 < π
̅̅̅̅̅̅̅̅̅̅

B1B2

√

/

B3, (4.8)  

which is exactly one half the limiting value of Lκn in (3.9) for stability of 
a single initially curved rod that is straightened and clamped at its ends. 
Note that λ = 2π is also an eigenvalue for the bi-rod. A bi-rod con-
strained from out-of-plane displacement at its ends will become unstable 
at twice the limit given by (4.8), with a mode having a form in each of its 
two members comprised of that for the single clamped rod (3.10). The 
bi-rod considered in this section, which is unconstrained at its right end, 
undergoes an out-of-plane displacement at that end giving rise to its 
lower critical value of Lκ0. The critical condition (4.8) implies that the 
largest value of the half-angle of the arc in the natural state such that the 
unconstrained straight bi-rod is stable is ψC = π

̅̅̅̅̅̅̅̅̅̅̅B1B2
√

/2B3. For rods 
with a circular cross-section, the limit is ψC = π/(2 ̅̅̅̅̅̅̅̅̅̅̅1 + ν

√
). 

It is easy to establish the corresponding result if each of the rods in 
Fig. 6 before bending into the straight configuration is rotated 180◦

about the horizontal axis with the gap in the upper rod at the bottom and 
the gap of the lower rod at the top. In other words, a bi-rod with κn = −
κ0 for the upper rod and κn = κ0 for the lower rod also has the stable 
range (4.8). In terms of the natural curvature of the unconnected rods, 
the stable range of the bi-rod is 

−π
̅̅̅̅̅̅̅̅̅̅

B1B2

√

/

B3 < Lκn < π
̅̅̅̅̅̅̅̅̅̅

B1B2

√

/

B3. (4.9) 

Two experimental realizations of plastic bi-rods with circular cross- 
sections are displayed in Fig. 7, one formed from a naturally curved 
rod with ψ = π/3, which is well below the stability limit, and the other 
with ψ = π, which is about 15% above the stability limit. The ends are 
clamped by a bracket that also provides some constant separation be-
tween the ends of the individual rods. The bi-rod in Fig. 7a is clearly 
stable in the straight state and requires counter-twisting of the ends to 
deform it into an unstable twisted configuration, which returns back to 
the initial straight state when unloaded. The bi-rod in Fig. 7b is unstable 
in the folded straight state. The figure shows how, starting from a stable 

state, the bi-rod can be deformed into the straight state, which requires 
constraint to maintain its stability. When that constraint is removed, the 
bi-rod springs back to its initial stable state. Photos of the bi-rods in their 
‘natural state’ before both ends are joined are shown in Supplemental 
Fig. 1 of the Supplementary Materials. Additionally, Video 1 depicts the 
transition process between states. Based on the experimental observa-
tions, the two rods comprising the bi-rod do not make contact with one 
another during the transition between the line state and the "figure 8"  
state. This is consistent with transition simulations (not reported here) 
and the fact that the bifurcation mode does not indicate contact. 

Supplementary videos related to this article can be found at 
https://doi.org/10.1016/j.euromechsol.2023.105041 

5. Stability of six-sided rings that fold into a straight three-loop 

Now consider the ring in Fig. 1a. As described in the Introduction, 
the ring is formed from six rod segments, each with uniform natural 
curvature κn, that are bent with a uniform moment, M3 = B3(κ0 − κn), 
into a 120o arc with radius, R0 = 1/κ0, and ‘welded’ at the six joints 
where the arcs form a cusp. This 6-sided 1-loop ring can be folded into a 
3-loop ring with straight sides of length L = 2πR0/3. The 3-loop 
configuration is in equilibrium with a uniform bending moment in 
each segment alternating in sign, M3 = ±B3κn, from segment to 
segment. There is no twist in either the 1-loop state or the straight 3-loop 
state, although twist occurs in the transition from one state to another.1 

We investigate the stability of the straight 3-loop state. The numbering 
system employed in the stability analysis is shown in Fig. 8a. If the rod 
segments prior to ring formation are straight with κn = 0, there is no 
stress in the folded state, and it is clearly stable, but the unfolded one- 
loop state will have residual stress, and it may or may not be sta-
ble—the stability of the unfolded state will not be investigated here. If, 
on the other hand, the natural curvature of the rod segments is κn =
1/R0, the one-loop state is unstressed and stable, while the straight 
folded state is stressed with moments alternating in sign, M3 = ±B3κn =
±B3/R0, from segment to segment. We investigate the stability of the 
straight folded state for rings formed from rods having an arbitrary 
uniform natural curvature κn. 

Fig. 7. Experimental demonstration of bi-rods with circular cross-sections that 
are stable in a) and unstable in b) in the straight state. a) A stable straight bi-rod 
with ψ = π/3 showing the effect of twisting it out of the straight state into an 
unstable twisted state and then returning to the straight state upon unloading. 
b) A bi-rod with ψ = π that is unstable in the straight state. The sequence shows 
the initial stable non-straight state, manipulation into a constrained straight 
state, and finally, upon release, return to the initial state. Scale bars: 50 mm. 

Fig. 8. Numbering system for the segments, coordinate definition, and sche-
matic of the arrangement in the straight folded state. a) Six-sided ring with 120o 

arc segments. b) Six-sided ring with 240o arc segments. The left ends of seg-
ments 1 and 6 are connected in both cases. In the straight folded state, the left 
ends coincide with x2 = 0 and the right ends with x2 = L. 

1 The 3-loop ring is sometimes called a ‘covered ring’ (Manning and Hoffman, 
2001). In forming a 3-loop covered ring, the rod is wound around itself three 
times and the two ends are lifted slightly to cross-over the ring and joined. 
There can be a very small twist or non-uniform bending in the vicinity of the 
cross-over, but this becomes vanishingly small for thinner and thinner rods and 
is neglected in the rod model. 
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The elastic energy of the ring with the straight folded state as the 
reference is 

SE =
∑

6

i=1

1

2

∫ L

0

{

B1κ
(i)
1

2 + B2κ
(i)
2

2 + B3

(

κ
(i)
3 − Δκ

(i)
0

)2
}

ds, (5.1)  

where 
(

κ
(i)
1 , κ

(i)
2 , κ

(i)
3
)

are the curvature changes measured from the 
straight state about the imbedded unit vectors (e1, e2, e3) which coincide 
with the fixed Cartesian unit vectors (i1, i2, i3) in the straight state. 
Further, Δκ

(i)
0 = −κn in segments 1, 3 and 5 and Δκ

(i)
0 = κn in segments 2, 

4 and 6. The change in sign of Δκ
(i)
0 from one segment to the next is due 

to the flip of the orientation of the segments at each joint in the folded 
state and our use of the reference coordinate system shown in Fig. 8. 

Following the same procedure described in connection with the bi- 
rod problem, the strain energy in the ith segment is expressed in terms 
of u(i)

3 (s) and α(i)(s). It is then reduced by retaining all terms up to and 
including order u2 and α2 such that the strain energy in the ith segment is 

SE(i) = 1

2
B3Lκn

2 + 1

2

∫ L

0

{

B1u
(i)
3

’’2

+ B2α(i)’2

− 2B3

(

Δκ
(i)
0 u

(i)
3

’
α(i) ’

)}

ds

+ B3Δκ
(i)
0

(

u
(i)
3

’
α(i)
)
⃒

⃒

⃒

L

0
.

(5.2) 
The total strain energy in the ring to this order is SE = 3B3Lκn2+ P2 

where the quadratic terms (which sum to the second variation of the 
system energy about the straight state) are 

P2(u3,α, κn) =
∑

6

i=1

1

2

∫ L

0

{

B1u
(i)
3

’’2

+ B2α(i)’2

− 2B3

(

Δκ
(i)
0 u

(i)
3

’

α(i)’
)}

ds.

(5.3) 
The geometric conditions at the joints require (u3, u3

′
, α) to be 

continuous across the joints and, because of this, the terms evaluated at 
the ends of the segments in (5.2) sum to zero. As in the case of the bi-rod 
problem, the in-plane displacements decouple from u3 and α in the 
bifurcation problem, and their contribution to the second variation of 
the energy is positive (apart from rigid body motion) so that bifurcation 
is controlled by out-of-plane deformation plus twist. If the natural cur-
vature is zero such that Δκ

(i)
0 = 0, P2 is non-negative and only vanishes 

for rigid-body displacements. For the present problem, we seek the 
largest value of κn such that P2 > 0 for all admissible variations from the 
straight state, excluding rigid body motions. The critical natural cur-
vature is governed by the eigenvalue problem associated with non- 
trivial solutions to rendering the first variation of P2 stationary. The 
differential equations and conditions at the joints that follow from 
rendering P2 stationary are 

B1u
(i)
3

′′′′

+ B3Δκ
(i)
0 α(i) ’’ = 0, ​

B2α(i) ’’ − B3Δκ
(i)
0 u

(i)
3

’’ = 0, ​ i = 1, 6,
(5.4)  

u
(i)
3 (L) − u

(i+1)
3 (L) = 0, ​ u(i)

3

’(L) − u
(i+1)
3

’(L) = 0, ​ α(i)(L) − α(i+1)(L) = 0,

u
(i)
3

’’(L) + u
(i+1)
3

’’(L) = 0, ​ α(i)(L)’ + α(i+1)(L)’ = 0,

u
(i)
3

’’’(L) + u
(i+1)
3

’’’(L) = −
(

B3Δκ
(i)
0

/

B1

)

(

α(i)’(L) − α(i+1)’(L)
)

,

(5.5) 
for i = 1,3, 5, while for i = 2,4, 6. 

u
(i)
3 (0) − u

(i+1)
3 (0) = 0, ​ u(i)

3

’(0) − u
(i+1)
3

’(0) = 0, ​ α(i)(0) − α(i+1)(0) = 0,

u
(i)
3

’’(0) + u
(i+1)
3

’’(0) = 0, ​ α(i)(0)’ + α(i+1)(0)’ = 0,

u
(i)
3

’’’(0) + u
(i+1)
3

’’’(0) = −
(

B3Δκ
(i)
0

/

B1

)

(

α(i) ’(0) − α(i+1) ’(0)
)

,

(5.6)  

where, when i = 6, i + 1 must be taken as 1. For each set of joint con-
ditions, the first three are geometric requirements and the second three 
are the natural, or dynamic, conditions that follow from the fact that 
there are no external forces or moments acting on the joints. 

The following dimensionless quantities are employed: 

u(i) = u
(i)
3

/

L, ​ α(i) = α(i)
/

(B3κnL/B2), ​ λ = B3κnL
/

̅̅̅̅̅̅̅̅̅̅

B1B2

√

, ​ x

= s
/

L, ​ B2

/

B1. (5.7) 

The eigenvalue is λ. The details of the following solution to the 
eigenvalue problem are provided in the Supplementary Materials. The 
dimensionless equations can be solved analytically for the relation be-
tween the unknown quantities at the ends of the six segments. With [u(i)]
= (u(i),u(i) ′ ,α(i),u(i)′′,u(i) ′′′ ,α(i) ′ ), one obtains 
[

u(i)(1)
]

= TA

[

u(i)(0)
]

, ​ i = 1, 3, 5, &
[

u(i)(1)
]

= TB

[

u(i)(0)
]

, ​ i

= 2, 4, 6, (5.8)  

where TA and TB are 6 × 6 matrices which depend only on λ. The con-
ditions at the joints can be expressed as 
[

u(i+1)(1)
]

= DA

[

u(i)(1)
]

, ​ i = 1, 3, 5, &
[

u(i+1)(0)
]

= DB

[

u(i)(0)
]

, i

= 2, 4, 6,

(5.9)  

with i + 1 taken to be 1 when i = 6. DA and DB are 6 × 6 diagonal 
matrices having component values ±1 except for one off-diagonal 
element, D56, which depends on B2/B1. These matrices allow one to 
compute [u(6)(0)] in terms of [u(1)(0)]. Then, imposing the condition at 
the joint between segment 1 and 6 in (5.9), one obtains 
(A − I)

[

u(1)(0)
]

= 0, (5.10)  

where A = (DB(T−1B DATA))3 which depends only on λ and B2/B1.2 The 
form of A − I is 

A − I =
[

0 A(1)

0 A(2)

]

, (5.11)  

where A(1) and A(2) are 3 × 3 matrices. The first three equations in (5.10) 
require 

A(1)[u(1)’’(0), u(1)’’’(0), α(1)’(0)
]

= 0, (5.12)  

which requires the determinant of A(1) to vanish. By carrying out the 
numerical calculations prescribed above, the smallest value of λ for the 
determinant of A(1) to vanish is found to be π, independent of B2/B1. The 
solution to (5.12) with λ = π is any multiple of 
[

u(1)’’(0), ​ u(1)’’’(0), ​ α(1)’(0)
]

=
[

0, ​ π, ​
̅̅̅̅̅̅̅̅̅̅̅̅̅

B1/B2

√

]

. (5.13) 

Moreover, this solution satisfies 

A(2)[u(1)’’(0), u(1)’’’(0),α(1)’(0)
]

= 0.

Thus, the critical eigenvalue is λ = π such that the largest value of the 
natural curvature κn for which the folded straight 3-loop ring is stable is 
Lκn = π

̅̅̅̅̅̅̅̅̅̅̅B1B2
√

/B3 with L = 2πR0/3. This result also applies if the sign of 
κn is switched from positive to negative so that the range of the natural 
curvature for stability for the folded straight 3-loop ring is 

−π
̅̅̅̅̅̅̅̅̅̅

B1B2

√

/

B3 < Lκn < π
̅̅̅̅̅̅̅̅̅̅

B1B2

√

/

B3 with L = 2πR0

/

3. (5.14) 

2 This eigenvalue equation applies to the bi-rod if A = (DB(T−1B DATA)), 
providing an alternative solution method. 
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This is the same range as for the bi-rod and, again, one half that for 
the single straightened clamped rod (3.9) in Section 3.2. The other three 
components determining the eigenfunction, [u(1)(0),u(1) ′ (0),α(1)(0)], are 
the amplitudes of rigid body modes which can be chosen arbitrarily. For 
our purposes we will take [u(1)(0), u(1) ′ (0), α(1)(0)] = 0. The full eigen-
mode is plotted in Fig. 9 for the components u(s) and α(s) as a function of 
the distance s starting from the left end of segment 1, continuing from 
the right end back along segment 2 to its left end, and then towards the 
right end of segment 3, etc. The solution for the critical mode for the 
three pairs of straight rods can be viewed as the joining together of three 
of the modes for bi-rods (4.7). 

There can be an advantage to constructing this structure from rods 
with natural curvature (Olson et al., 2013). If the natural curvature is 
zero, the elastic energy in the straight folded state is also zero, whereas, 
with natural curvature, the elastic energy is non-zero and it may be used 
to help drive the unfolding process. For certain designs, it might even be 
desirable to have the folded state be unstable. It might be straightfor-
ward to restrain the folded state and release the restraint when 
unfolding is required. The stored elastic energy, which as discussed in 
Section 3.2 can be substantial, could drive the unfolding process. The 

maximum natural curvature for stability in (5.14) is proportional to 
̅̅̅̅̅̅̅̅̅̅̅B1B2

√
/B3 which is plotted for rectangular cross-sections in Fig. 4. The 

height to thickness of the cross-section is the important parameter for 
stability. 

Finally, it is noted, without repeating the analysis, that the stability 
limit for the natural curvature of the folded 6-sided ring formed from 
240o arcs in Figs. 1 and 8 is also governed by (5.14). However, the length 
is twice that for the 120◦-arc structure, i.e., L = 4πR0/3, reducing the 
limiting natural curvature for stability by a factor of 2. A close exami-
nation of the intimate relationship between the two ring geometries in 
Fig. 1 will be given in a subsequent publication. 

An experimental demonstration of the 1- and 3-loop states of the six- 
sided 120o arc ring is presented in Fig. 10. The cross-section of the rod is 
rectangular with h/t = 4 and the natural curvature of the arcs is κn = 1/
R0 such that the initial unfolded state has no residual stress and is 
therefore stable (see Supplemental Fig. 2). For this ring, Lκn = 2π/3 and 
it is seen from the criterion in (5.14), in conjunction with Fig. 4, that the 
folded 3-loop state is far below the stability limit, as the experimental 
realization in Fig. 10 indicates. By applying bending to the ends of the 
folded ring, it can be brought to an intermediate state at which it snaps 

Fig. 9. The bifurcation modal components u3 and α plotted as a function of distance progressing continuously around the 3-loop straight ring starting at the left end 
of segment 1. In each segment, α in this plot is the rotation about i2. The cross-section is circular and ν = 1/3. The joints are tagged with a solid dot. The maximum 
amplitude of u3/L is normalized to be unity. 

Fig. 10. Unfolded initial (1-loop) and folded (3-loop) states of a six-sided 120o arc ring that is formed from arcs with κn = 1/R0 such that the 1-loop state has no 
stored elastic energy. a) The analytical representation. b) The experimental realizations of the two states, both of which are predicted to be stable. c) Applying 
bending to the ends of the stable folded state until it snaps to the unfolded state. 
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dynamically to the unfolded state. The snapping process occurs with 
vigor consistent with the considerable elastic bending energy stored in 
the folded state. Photos of the ring before and after the ends of the open 
ring have been connected are shown in Supplemental Fig. 2 of the 
Supplementary Materials along with Video 2 showing the unfolding and 
snapping process. 

Supplementary videos related to this article can be found at 
https://doi.org/10.1016/j.euromechsol.2023.105041 

6. Conclusions 

The main finding in this paper is the stability limit of the natural 
curvature for the bi-rod and the straight folded six-sided ring is |Lκn| <
π
̅̅̅̅̅̅̅̅̅̅̅B1B2

√
/B3. The bifurcation mode is a combination of bending of the 

rods out of the plane of the natural curvature coupled with twist along 
the length of the rods. The relevance of the fundamental problems in 
Section 3.2 for the stability limit for bending of a single clamped rod to 
reduce its natural curvature has been emphasized. For the case when the 
single rod is bent to become straight and clamped at its ends, the sta-
bility limit on the natural curvature is exactly twice that for the bi-rod 
and the straight folded six-sided ring. 

The approach to stability used in this paper employs the relations of 
Kirchhoff rod theory for conservative loads but specialized to a 
Lagrangian formulation in which the state being investigated is either 
circular or straight. Stability rests on the positive definiteness of the 
second variation of the energy of the system. This paper has been con-
cerned only with the ranges of stability and instability and the bifur-
cation mode from the reference state. Post-bifurcation behavior has not 
been considered in this paper for any of the problems, although the 
formulation permits extension into the post-buckling range and is 
particularly well suited for carrying out studies based on Koiter’s (1945) 
approach to initial post-buckling behavior and imperfection-sensitivity. 
It should be mentioned that numerical post-bifurcation results for the 
1-loop and 3-loop circular ring problems have been presented by Goto 
et al. (1992), Mouthuy et al. (2012), and by Audoly and Seffen (2015) 
who deploy the natural curvature as a control parameter to follow 
quasi-static equilibrium transition paths between the two circular states. 

Although the demonstrated experiments on the bi-rod and the six- 
sided straight folded ring are limited in number and far from being 
comprehensive, they do suggest that, unlike many structures con-
structed from rods or beams, these entities may display highly unstable 
post-bifurcation behavior and strong imperfection-sensitivity. It has 
been noted that significant elastic energy can be stored in structures 
such as the bi-rod or straight folded rings constructed by straightening 
initially curved rods. Future investigations of post-buckling behavior 
and imperfection-sensitivity of these structures, whether based on the 
present formulation or the classical Kirchhoff formulation, are likely to 
be interesting. 
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