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Single-loop elastic rings can be folded into multi-loop equilibrium configurations. In this paper, the stability of
several such multi-loop states which are either circular or straight are investigated analytically and illustrated by
experimental demonstrations. The analysis ascertains stability by exploring variations of the elastic energy of the
rings for admissible deformations in the vicinity of the equilibrium state. The approach employed is the con-

ventional stability analysis for elastic conservative systems based on the second variation of the system energy
which differs from most of the analyses that have been published on this class of problems, as will be illustrated
by reproducing and elaborating on several problems in the literature. In addition to providing solutions to two
basic problems, the paper analyses and demonstrates the stability of six-sided rings, curved-sided hexagrams,
that fold into straight configurations.

1. Introduction

Slender elastic rods formed into rings can assume a surprising variety
of equilibrium shapes other than the basic single-looped configuration.
For example, a single-looped circular ring formed from a uniform
straight rod can be twisted to form a ring having three equal sized cir-
cular loops with essentially no twist in the circular 3-loop state. More-
over, for rod cross-sectional geometries that have an out-of-plane
bending stiffness large enough compared to the in-plane bending stiff-
ness, both the 1-loop state and 3-loop state can be stable. The transition
between the 1- and 3- loop configurations is three-dimensional,
involving twist and out-of-plane displacements. This phenomenon has
been known and exploited for many years, but other phenomena of this
type are currently being uncovered and explored as illustrated by the
recent articles by Wu et al. (2021, 2022), Lu et al. (2023), and Yu et al.
(2023). The three-dimensional behavior of slender rod systems is of
interest to a wide audience of scientists and mathematicians dealing
with applications in mechanical and biological arenas. The motivation
of the authors of the present paper derives primarily from structural
applications of lightweight collapsible, or foldable, structures (Mouthuy
et al. (2012); Leanza et al. (2022); Sun et al. (2022); Lachenal et al.
(2012); Mhatre et al. (2021)).

In the nineteenth century, Kirchhoff laid out the three-dimensional
theory of elastic rods, generalizing Euler’s two-dimensional elastica.

Much of the work on this class of problems has been conducted within
the framework Kirchhoff developed, including that presented in this
paper. The main problem addressed in this paper is the stability of
curved-sided hexagrams, six-sided planar rings, formed by joining six
rods in the shape of 120° or 240° circular arcs into a complete ring. Each
of the six arc segments has a uniform natural curvature «, in the plane of
the ring (which is perpendicular to the 3-axis) when unloaded. The rods
are bent into 120° or 240° circular arcs of radius Ry and joined to form a
ring as depicted in Fig. 1. Each rod segment joins its neighbor at a cusp.
This 1-loop ring can be folded into a 3-loop ring with straight sides. In
any physical realization, each loop of the 3-loop ring is a narrow lens
formed from two of the rods, as depicted in Fig. 1. The loops are stacked
on top of one another with essentially no twist, as will be discussed in
more detail later. The bending stresses in each of the six segments in any
of the configurations in the upper half of Fig. 1 are uniform. They
depend on the difference between the curvature of the rod in this state,
Ro !, and the natural curvature, k,, in proportion to Ry~ — ;. In the 3-
loop line configurations in the lower half of Fig. 1, the bending stresses
are also uniform and depend only on «,. The bending stresses in a given
state drive the instability. In this paper, the stability of the straight
folded state is determined and, specifically, the natural curvature at
which the straight state becomes unstable is obtained. Experimental
demonstrations of the behavior of the rings will be presented. The reader
should be aware that the transition between equilibrium states is not
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Fig. 1. a) A curved-sided hexagram ring formed from 120° circular arcs which
folds into a straight 3-loop configuration of length 2zR,/3. b) A curved-sided
hexagram ring formed from 240° circular arcs which folds into a 3-loop
straight configuration of length 4zR,/3.

considered in this paper, and stability of the two 1-loop rings in the
upper half of Fig. 1 will not be examined in this paper. Both aspects will
be considered in a subsequent paper.

Many of the stability studies of three-dimensional rod structures,
going back to some of the earliest papers, e.g., Michell (1889), are based
on investigations of the vibration spectrum of the structure. These
studies identify the load or residual stress level at which at least one
natural frequency becomes zero. This approach is a natural choice
because Kirchhoff rod theory is a Eulerian-type formulation with the
variables describing the rod defined in the deformed state. For certain
problems, such as those illustrated in this paper, an equivalent, but
alternative, Lagrangian approach based on Kirchhoff theory may have
advantages and may provide a more direct and less complicated
pathway to ascertaining stability. In Section 2, equations are presented
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Fig. 2. Unit vectors and Euler angles. a) Cartesian base vectors and reference
cylindrical base vectors. b) Local cylindrical base vectors and the two Euler
angles, f and y, specifying the three embedded base vectors, e;, with no rotation
about the rod axis, e,. ¢) Same as b) but after rotation a about e, (dashed arrows
denote e; and e3 before rotation).

denoted by (e, ez, e3) with e, tangent to the rod and (e, e3) rotating
with the cross-section. The set (e1, ez, e3) coincides with (i, ig, i3) when
the ring is in the reference state.

Euler angles are employed to describe the change of deformation of
the rod for departures from the circular reference state. The two Euler
angles that define the geometry of the axis of the rod are shown in
Fig. 2b with no rotation of the embedded unit vectors about the axis. The
third angle is the accumulated rotation of the cross-section about the
ey-axis, a, occurring during the motion from the circular state (Fig. 2c).
Attention in this paper will be limited to inextensional rods, and the
distance along the rod measured from some reference point and
increasing with the circumferential angle 6 is denoted by s. A Lagrangian
description will be employed in the analyses in this paper. With R as the
radius of the ring, or rings, in the reference state, the unit vectors
introduced above, (i-(0), ig(6), i3), and the Euler angles, (a, 3, y), are
functions of 0 or s. The relations between the two sets of unit vectors are:

e, = (cos(a+7) + (1 —cos f)sinasiny )i, +sinasinf iy + (—sin(a +y) + (1 — cos f)sin a cos 7 ) i3,

e, = sin f#siny i, + cos f iy + sin fcosy i,

(2.1)

e; = (sin(a@ +y) — (1 — cos fB)cos a sin y )i, — cos a sin f ip + (cos(a + y) — (1 — cos f)cos a cos 7 ) iz.

for the investigation of the stability of configurations that are either
circular or straight. In Section 3, three problems previously analyzed in
the literature will be re-analyzed to illustrate application of the
approach adopted in this paper and to establish its validity. One of the
three problems in Section 3 is the maximum curvature that can be
imposed on a uniformly curved rod arc that is clamped at its ends. The
importance of this problem will be emphasized, and detailed results not
previously available in the literature will be presented. A model problem
for a pre-stressed bi-rod is analyzed in Section 4 providing basic insights,
and the stability of the 3-loop folded states of the six-sided rings are
analyzed in Section 5.

2. Equations governing ring behavior for circular and straight
reference configurations

The equations associated with deformations and strains based on
Kirchhoff rod theory from circular reference states are first presented
and then specialized to straight reference states. The procedures
employed to derive these equations are the same as those given in many
papers and books in the literature (Antman, 1995), and thus the present
presentation will be as brief as possible. As seen in Fig. 2, the right hand
set of unit vectors in the reference state, (ir,iy,i3), have iy tangent to the
reference circle, i, perpendicular to the circle, and i3 normal to the plane
of the circle. The embedded set of unit vectors in the deformed state is

The direction cosines between the axes are [; = i; @ ¢ such that ¢; =
li;, with (i, ig)— (i1, i2) for notational convenience, and i; = I;e;. These
are provided in the Supplementary Materials.

Denote the displacement components of the centerline from the
circular reference state by u = w,i, + uyiy + usis such that position vector
of the centerline is r = R i, + u. A vector tangent to the centerline axis
pointing in the direction of e, t = dr/ds, is

t = (du,/ds — R™"ug)i, + (1 + dug/ds + R™'u,)ip + dus /ds iy
= —@si, + (1 + &)ig + @,13.

The inextensionality condition is

Z(du,,/ds + R’lu,) + (du,,/dS + R’lu,)2 + (du,/ds - R’lu(,)2 + (du;/ds)2
= 07
(2.2)

which also ensures that t=e; is a unit vector. Note that g =
(dug/ds + R uy), ¢, = dus/ds and @3 = —(du, /ds —R~'uy) are, respec-
tively, the centerline linearized stretching strain and linearized rotations
about i, and i3. Furthermore, solving the inextensionality condition for
¢ in terms of the other two quantities (with ¢,2 + @32 < 1) gives the
constraint expressed as
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o= T= 977~ 1. 23)

By comparing the terms in the equation for t with those for e,, the
following exact relations are also seen:

eo = (dug/ds + R 'u,) = cos f— 1, (2.4)

or cos f = /1 — ¢,%2 — p32 and
@, = duz/ds = sin p cos y and ¢y = —(du, /ds — R™'uy) = —sin Bsiny.
(2.5)

If p # 0, it also follows that
any = —@s/p,. (2.6)

With x; and «3 as the curvatures about the e; and e3 axes, respectively,
and «; as the derivative of twist with respect to distance along the rod,
one can use the Frenet-Seret formula (c.f., Champneys and Thompson,
1996; Audoly and Seffen, 2015),
1 de;

=L e ey, 2.7

K B ijk ds k ( )
to compute the curvatures. The exact results are

K| = cos (dﬂ/ds — R 'sin y) — sin a( —sin dy/ds + R ™! cos f cos y),

K2 = da/ds + cos B dy/ds + R™" sin f cos y,

K3 = CcOS @ ( —sin dy/ds + R~ cos B cos y) + sin a(dﬂ/ds — R 'sin y).
(2.8)

The curvature components are defined with respect to the embedded
unit vector system e; in the deformed state, as reflected by the vector,
Q= Ki€;.

For the stability bifurcation calculations to follow, the ‘natural’ un-
coiled state of the rod has length L and an initial uniform curvature «,
about the 3-axis. Attention here is restricted to uniform rods with linear
bending and twisting properties. The principal axes of the cross-section
in the natural state are taken to be aligned with (e;,e3), i.e., (ir,i3) in the
reference state, and the bending stiffnesses about these two axes are
denoted by B; and Bs. The torsional stiffness about the e-axis is denoted
by Bs. For all but one of the problems analyzed in this paper, the rods in
their detached state have a uniform natural curvature, k,, about the
iz-axis. Then, the rods are bent uniformly about the 3-axis into circular
loops or arc segments of radius R which, in general, is different from the
radius of the rod arc in the detached state, ,!. Stability or lack thereof
is investigated in this circular state. We will also investigate stability of
straight states with R—oo. In the circular reference state, the non-zero
curvature is k3 = R™!, the change of curvature from the natural state
is R~ — kp, and the magnitude of moment in the ring in the circular state
is M3 = BglR_l - K,,|. For rods of length L in reference states that are
either circular or straight, the strain energy in configurations displaced
from the reference state is assumed to be governed by linear constitutive
behavior such that

1 L
SE = 5/ {BIK12 JrBszZ +B3(K3 - K,,)z }dS, (2.9)
0

with curvatures given by (2.8). These curvature expressions hold for
reference states that are straight by setting the terms multiplied by R~!
to zero. Equation (2.8) agrees with those given by Champneys and
Thompson (1996) in their study of initially straight rods, but with
different notation.

2.1. Moderate rotation approximation
For moderate rotations from the circular state (with no initial twist)

we anticipate that a2, ¢,2 and ¢42 are all small compared to 1. Bifur-
cation calculations of stability of the circular or straight state require the
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energy changes of the elastic system to be accurate to the second order in
the displacements and their gradients from that state. It follows from the
equations given above that 42 is also small compared to 1, however, in
the circular state, y cannot be inferred from tany = — ¢5/¢,. In the
problems investigated here, the curvatures must vary continuously from
those in the reference state as bifurcation proceeds from this state. When
there is no initial torsion in reference state, the formulas for x; and 3 in
the circular state with (a=0,5=0) reveal that y must be zero at
bifurcation, and it must emerge continuously from zero given the initial
curvatures (k; = 0,k3=R™!) and a continuous variation of the curva-
tures. Assuming (a,f3,y) are all small and expanding the curvature ex-
pressions in these quantities in a Taylor series up to and including
quadratic terms one obtains:

dp
K :—/—R*'w—&-O;,
ds

do
Ky =—+R'B+ 03,
ds

. 1 1 do d(ap)
=R'1-z0"—p)-B—
o ( ) TPt e

+ Oq, (2.10)

with ® = a+ y. The notations O3 and Oy, signify that no terms below
cubic and quartic order, respectively, have been neglected. Thus, the
first two curvatures have no quadratic terms, and the third curvature has
no cubic terms. To the same order,

du() 1
(20 gy = 2P = (g2 2
€ <ds+ u) p 5@ +o5%)
Cduy (2.11)
dl Tds 7
u, _
0 = (ds ~R ‘ue> =—pr

2.2. The strain energy functional to quadratic order
Up to and including quadratic terms, the strain energy (2.9) is

1
SE = E:93(1/R — k)’ L+ Py (B, 0, M),

where

RYs dp o\’ do  p\* B\’ a2
Pz’i/o {B'<dsR) *BZ($+E> —BM (E) + (%)

L
Y d_w) }d‘HZBSMa_ﬂ

)

R ds R,

(2.12)

with @ = a+ y, and M = 1 — Rk, the parameter introduced by Audoly
and Seffen (2015). Because of the symmetry of the ring or arc, and the
accuracy of the curvature expressions noted earlier, SE has no cubic
terms, so, in fact, (2.12) is accurate to Oy.

The quadratic functional P, determines the second variation of SE
about the reference state and governs its stability. Consider either
complete rings, for which a, y and f§ are continuous across s = 0 and s =
L, or circular arcs clamped at both ends (@ = = 0). For these entities,
apl = 0. The functional P, defines an eigenvalue problem with M = 1 —
Rk, as the eigenvalue. To the order relevant to the bifurcation problem,
the inextensionality condition requires &y = (duy/ds + u, /R) = 0.
Additional conditions imposed on the Euler angles by displacement
constraints may have required, as will be illustrated. If M =0, Py > O for
all non-zero variations (f, w). P, only vanishes for non-zero variations
having w = # and  + = 0 which correspond to linearized rigid-body
rotations. In other words, if M = 0, P, > 0 for all non-zero admissible
variations that are not rigid-body motions. For complete rings, the Euler
angles and their associated displacements in the bifurcation problem are
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required to be continuous and differentiable with period L = 2zNR
where N is the number of loops, and continuity of displacement around
the ring requires fé pds = 0. For either complete rings or arcs, we seek
the range of M such that P, > 0 for all non-zero admissible variation
(excluding rigid-body motions). The circular state is stable within this
range and unstable for M outside this range. For complete rings, the class
of deformations involving a uniform axisymmetric twist, i.e., « = @ in-
dependent of @ with § =y =0, deserves special attention. The integrand
of P, for this class of deformations is simply (B; /B3 — M)a?, and thus
the ring is unstable against uniform axisymmetric twist if M > B;/ Bs
and stable for uniform axisymmetric twist if M < B;/Bs. Further dis-
cussion of this mode will be given later.

3. Three solved problems in the literature

In this section we use the standard quasi-static approach to the sta-
bility, or buckling, of elastic conservative systems outlined above to
reproduce solutions to three problems previously analyzed and solved in
the literature. The Lagrangian quasi-static method employed here, in
some cases, generates results more directly. In the case of the second
problem, the stability of pure bending of clamped circular and straight
arcs, we will provide more complete and extensive results than are
available in the literature and follow up in Sections 4 and 5 by discussing
the relevance of this fundamental problem.

3.1. The stability of circular rings untwisted in 1-loop or 3-loop states

The remarkable property of a 1-loop elastic circular ring to deform
into multi-loop circular rings without twist when the number of loops is
odd (N = 3,5,...) has been known for years (Goto et al., 1992; Stojanoska
and Stoytchev, 2008), but this phenomena is evidently not widely
known to the community concerned with the buckling of structures. Two
papers have provided a rather complete analysis of multi-state rings
within the framework of Kirchhoff rod theory dealing with both the
stability of the circular states and the transitional behavior linking them
(Manning and Hoffman, 2001; Audoly and Seffen, 2015). The present
paper will analyze the stability of circular and straight states but not the
transition between the states. Our results reproduce some of those in the
studies of Audoly and Seffen and those still earlier by Manning and
Hoffman. This section serves the purpose of presenting and validating
the present approach for a solved problem.

We seek the critical eigenvalues, M; and M{, and the associated
modes, that define the range of stability of the ring subject to the con-
dition that $(0) and w(6), with ¢ = s/R, have periodicity 2zN with
continuous derivatives. The eigenvalue equations are obtained from
rendering the variations of P, stationary with respect to the variables (4,
). The ordinary differential equations (ODEs) governing the eigenvalue
problem are

byo + (M —b)o+ (—M+b +b) =0,

BB+ (M= b2)B— (— M+ by + by =0, @D

’

with by = B1/Bs, ba = By/Bs, and () = d()/d6. These equations do not
involve ¢4 or the in-plane displacements, u, and uy. From (2.11), u, and
uy are of second order and play no role in the first order bifurcation
problem, which involves a combination of the out-of-plane displace-
ment, u3' = Rp, and twist. Continuity of us requires f02 e pdo = 0.

A central concern of Audoly and Seffen (2015) is ribbon-like rods
with high aspect ratio cross-sections for which the bending-torsional
behavior can be nonlinear due to developable deformations of the rib-
bon. Throughout this paper the emphasis will be on rods with linear
bending-torsional constitutive behavior. The height to thickness ratio of
the cross section is assumed to be in the range such that ribbon-like
nonlinear behavior does not occur. Consider modes of the form

® = Acos(j0/N), p=Bsin(jo/N), (3.2)
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where j is any non-negative integer. The modal displacement is
u3 = —B(RN /j)cos(j0 /N) for j > 0 and these all satisfy fOZN”/}dH =0.
(Potential modes of the form p = const. are periodic but they are

2N7

excluded by the condition [y pdf = 0.) The algebraic eigenvalue

problem is
Albr +ba/NY — M| = B(b1 + by = M)(i/N)] = 0,
—A[(by + by — M)(i/N)] + B[bl G/NY + by — M] -0,

leading to
(M7 = My +b2) b1y (1= G/ ) ) (1= GV ) =0,

whose solutions are j/N = 1 for any M (rigid-body modes), and

(M* M) :%(bl+b2)i\/%(bl —b,)* + by(j/N), (3.3)

for all other j and N. This agrees with the solution of Audoly and Seffen
(2015) and Manning and Hoffman (2001).

For demonstrating and validating the present method, in this sub-
section we will consider only rings with an isotropic cross-section made of
an isotropic elastic material. For circular cross-sections, solid or annular,
these have b; =1 and b, = 1/(1 +v) with v as Poisson’s ratio. The uni-
form axisymmetric twisting mode for any integer number of loops,
corresponding to j = 0, with w = A, § = 0, M" =1 and M~ = b, has
been discussed earlier. Rods with cross-sections having b; =1 are un-
stable in the uniform twisting mode if M > M = 1— R4, > 1, ie,
An < 0. If the rod in the natural state is straight, i.e., 4, = 0, it is easy to
see that strain energy of the ring does not change subject to uniform
axisymmetric twist. The ring has neutral stability with respect to this
class of deformations. Any such rod with an initial curvature 4, <0
would immediately undergo a 180° uniform axisymmetric twist when
shaped into a ring, thus effectively switching the sign of the initial
natural curvature. In other words, the uniform axisymmetric twisting
mode rules out the necessity of further consideration of rings of isotropic
bending stiffness formed from rods with a negative natural curvature.
The shape of the ring is unchanged by uniform axisymmetric twist, but
the material of which it is composed undergoes deformation changes.
The second eigenvalue, M~ = by, is spurious because it is associated
with the trivial eigenmode, § = ® = 0.

The modes associated with j/N =1 for any M are rigid-body rota-
tions about axes in the plane of the ring. For the form assumed, B =A
such that w = Acos 6, ¢, = =Asin6, 3 =0, u3 = — AR cos 6, and
u, = uy = 0. The one exception is the additional possibility of a mode
involving deformation of the ring if M = M = 1 + by, but this will not
be consequential because the associated natural curvature, Rk, = — b,
is negative and superseded by uniform axisymmetric twist.

For 1-loop rings (N = 1) and j > 2, the range of stability for the j
mode is M~ < M < M*. All the values of M* given by (3.3) satisfy M* >
1 and thus the upper limit of the stability range is determined by uniform
axisymmetric torsion and M = 1. The largest value of M~ is associated
with j = 2 and (3.3) gives M; = —0.861 for circular cross-sections with
v = 1/3. Thus for 1-loop rings, the stability range is — 0.861 < M < 1.
Consider rings formed from a rod of length L with natural curvature «,
with either one or multiple loops such that R = L/(2zN). This is the
relevant normalization for rings formed from a rod with a given length
and natural curvature that assumes one or more loops. The stability
limits of the natural curvature are given by

L _ L -
275 =N(1-M{}) and ZK::N(I - My).

For the 1-loop ring, the range of the natural curvature for which the
circular state is stable is
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0 < (Lk,/27)(1.86 (N = 1).

Determination of stability of the circular state for the same ring with
multiple loops requires an additional consideration. For each of the
modes with j/N > 1, the stability range is again givenby M~ < M < M™,
but for each of the modes with 0 < j/N < 1, the stability range is M <
M-, with M playing no role. This is easily established by showing that
for M < M, P, > 0 for all A and B, while negative values of P, exist for
some combinations of A and B for every M if M > M~ . For the 3-loop ring
(N = 3), the largest value of M for stability is set by j = 2 and given by
M~ = 0.284. The largest lower stability limit of M is determined by
M, = —0.286 for j = 4. Thus, the stability range for N = 3 is — 0.286 <
M < 0.284 such that

2.15 < (Lk,/27)(3.86 (N = 3).

The stability ranges of the 1- and 3- loop rings do not overlap for
circular cross-sections. If the natural state of the rod is straight, the 1-
loop circular state is marginally stable (susceptible to uniform axisym-
metric torsion), however the 3-loop state is not. While it is possible to
deform a stable 1-loop ring into the 3-loop circular state, that state
would not be stable. Conversely, if the natural curvature is such that the
3-loop ring is stable, it would not transition to a circular ring with one
loop when dislodged from the 3-loop state. Rods with cross-section
having sufficiently large out-of-plane bending stiffness compared to in-
plane stiffness have overlapping stability ranges for 1- and 3-loop
rings. The modal displacement, u3 = — B(RN /j)cos(j0 /N), with the
associated twist (3.2), is a progressive separation of the loops around the
ring which does not bring the ring into contact with itself.

3.2. Stability of pure bending of straight or naturally curved rods clamped
at their ends

Consider another problem analyzed by Audoly and Seffen (2015):
the stability of pure bending about the i3-axis of rods with natural cur-
vature. We will see in Sections 4 and 5 that this basic problem is
fundamental to more complex structural stability phenomena. Here,
reasonably complete results for rods with circular or rectangular
cross-sections will be presented. As depicted in Fig. 3, the natural state of
the rod is a uniform curvature, «, > 0, and the deformed state can be
either curved (x = 1/R) or straight (« = 1/R = 0). The rod is inexten-
sional and of length L. Take s = R0 measured from the center of the rod
such that its ends are at s = +L/2. The rod is subject to pure bending by

12 T

— / / /

2l h/t=15,125.1,075 1

L/R
O 1 1
0 1 2 3

Fig. 3. Stability range of the natural curvature for a rod of length L with either
a circular (dashed line) or a rectangular (solid lines, depending on h/ t) cross-
section that is bent into an arc of radius R and clamped at its ends. For natural
curvatures greater than those plotted, the arc will buckle. Poisson’s ratio is 1/3
in this plot. The limit in which the bent rod is straight, L/ R— 0, is given by
(3.9). For the bent straight rod, the result applies when there is no constraint on
the displacement parallel to the rod at the right end.
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equal and opposite end moments of magnitude B3|k —kn| with k = 1/R as
the curvature in the deformed state. In this state, the ends of the beam
are clamped against further rotation. The stability of this state requires
Py > 01in (2.12) for all non-zero admissible variations from the current
circular state. Due to the clamped end conditions, afl; = 0. To remove
the constraint imposed by the requirement ffﬁz pds = 0, substitute g =
dusz /ds in Py. With (u3, w) as unknowns, the boundary conditions at each
clamped end of the rod are u3 = dusz/ds = w = 0.

With x = s/L, u = u3/L, M = 1 — Rxy, and L = L/R, the ODEs ob-
tained by rendering P, in (2.12) stationary are

(" —Lw)—bLw +Lu") +MLLu + ") =0,

Z(M” — Zw) + bz(w” + ZM) + MZ(Z&) — u”) — (34)

by
by
For this analysis, take s = 0 in the center of the rod such that —

1/2 < x < 1/2. The general solution to (3.4) can be split into symmetric
(c1, €9, c3) and anti-symmetric (c4, cs, C¢) parts as

u=c; + ¢ cos(Lx) + c3 cos(ALx) + csx + ¢5 sin(Lx) + ¢4 sin(ALx),

@ = —L(c; cos(Lx) + c3q cos(ALx) + cs sin(Lx) + cq sin(ALx) ), (3.5)
with (anticipating (b — M)(b, — M) > 0)

(b = M)(b, — M) _ bhh-M
A= bibs P A= (3.6

The eigenvalue equations obtained by satisfying the boundary con-
ditionsatx =1/2,u =u =w =0, are

A sin(AL/2)cos(L/2) — q cos(AL/2)sin(L/2) = 0 (symmetric), (3.7)
2(1 — g)sin(L/2)sin(AL/2) — ALsin(L/2)cos(AL/2) + qLcos(L/2)sin(AL/2)
=0 (anti-symmetric).
(3.8)

Before discussing some details of this solution, we first present the
results for what will prove to be an important limiting case—the limit
when the clamped rod is straight, R—oo and L = L/R—0. To the order
relevant to the bifurcation analysis, u, = 0, and the combination of
inextensionality and fully clamped conditions at both ends of the rod is
still applicable in this limit. Obviously, a straight rod that is inexten-
sional and clamped in this manner could not deflect from its straight
state. However, if, for example, the support condition at the right end of
the rod is modified slightly so that the rod displacement is unconstrained
in the 2-direction but otherwise constrained against rotation and
displacement, the rod could undergo buckling displacements at the
critical condition. The present analysis is equally applicable with this
slight modification (similarly, if in the circular state one end of the rod is
free to displace in the circumferential direction, the analysis in this
section still applies). The results for the rod in the straight state can be
obtained either by taking the limit of the above equations or by starting
from scratch using the ODEs (3.4) with L = 0, noting that ML— — Lx,.
One finds that the critical mode is symmetric and the maximum natural
curvature for which the straight clamped rod is stable is

\/Ble

Lk, =2
K, y4 B,

3.9
The associated mode is a combination of displacement and rotation
given by
uz = cL(1 + cos(2ns/L)),
® = —2nc\/B;/B>(1 + cos(2zs/L) ).

The dimensionless combination of bending and twisting stiffnesses,

(3.10)

V/B1B, /B3, governing the critical natural curvature is plotted in Fig. 4 for
rods with elliptical and rectangular cross-sections each having height h
in the 3-direction and thickness t in the 1- or r-direction. Recall that for
circular cross-sections (solid or annular), b; =B;/Bs3=1 and
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Fig. 4. A dimensionless combination of the bending and torsional stiffnesses
important to rod stability (see 3.9) for rectangular and elliptical cross-sections.

b, =B;/B3; =1/(1+4v) so that /B1By/Bs = 1/+/1 +v. For elliptical
cross-sections

VBIBZ _ h

B; t

2

_ (3.11)
(L+0)(1 + (t/h)’)

For solid rectangular cross-sections, b; = (h/t)?, and an accurate
approximation for b, is obtained using Sokolnikoff’s (1956) result for
the torsional stiffness:

B, 2 192 ¢ wh
bﬁg*lw(“?zmh(ﬁ))'

The stable range of natural curvature for rods of circular and rect-
angular cross-sections is presented in Fig. 3. For all cases plotted, the
anticipated condition, (b; — M)(b, — M) > 0, is satisfied and the sym-
metric mode with eigenvalue given by (3.7) is critical. Although the
circular cross-section and the square cross-section both have b; = 1, b,
is slightly smaller for the square cross-section and that is reflected in its
slightly smaller range of stability. Not surprisingly, the aspect ratio of
the rectangular cross-section, h/t, has a very strong influence on the
stability range. One case for a cross-section with higher in-plane bending
stiffness than out-of-plane stiffness, h/t = 0.75, is included in Fig. 3
showing that rods having such cross-sections have a dramatically
reduced stability range. When the aspect ratio is very high, e.g., h/ t>1,
(3.11) predicts a large range of stability. Such cross-sections are sus-
ceptible to the ribbon-like instabilities modeled by Audoly and Seffen
(2015).

The eigenvalue conditions (3.7) and (3.8) have two branches. The
one plotted in Fig. 3 and in the formula for a straight rod in (3.9) is for
kn > 1/R. The other branch yields values of x, < 1/R. For example, for
the straight rod, this second branch has Lk, = — 27v/B1B3/Bs, as
obvious from symmetry.

Consider another fundamental problem governed by the eigenvalue
equation (3.4): The maximum length L of a straight rod (x, = 0) that can be
bent into a clamped arc of radius R such that the rod does not buckle.
Equation (3.4) applies, with M = 1 and clamped conditionsu =u' = =
0 at the two ends of the rod. We omit the details of this analysis, which is

(3.12)
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Fig. 5. The stability limit for the length L of a straight rod of rectangular cross-
section that can be bent into a clamped circular arc of radius R. The height of
the cross-section perpendicular to the plane of bending is h, the thickness is t,
and v = 1/3 in this plot. For h/t = 1, L/R = 2x.

similar to that already given. The mode associated with the critical value
of L = L/R at which the bent rod loses stability is found to be symmetric
about the center of the rod with eigenvalues given by:

asin(AL/2)cos(L/2) — gcos(AL/2)sin(L/2) = 0, if (b; — 1)(b, — 1))0,
(3.13)

with 1 = \/(bl — 1)(1)2 — 1)/b1b2 and q = (b2 — 1)/1)2, and

Asinh(4L/2)cos(L/2) + gcosh(AL/2)sin(L/2) = 0, if (by — 1)(b, — 1)(0,
(3.14)

with 2= /—(by —1)(b2 — 1)/b1b; and q = (b — 1)/b,. The largest
normalized length, L/R, for which the clamped bent arc is stable is
plotted in Fig. 5 as a function of h/t for rods of rectangular cross-section.
Any rod with equal bending stiffnesses, i.e., by = 1, so that 1=0 in
(3.13) and (3.14), has a critical length given by L/R = 2z, with an
associated mode that is a combination of uniform axisymmetric torsion
and rigid body rotation such that there is no rotation where the ring is
clamped. The critical stability limit is extremely sensitive to the cross-
section aspect ratio for rods with in-plane and out-of-plane bending
stiffnesses that are nearly the same. A slight increase of the out-of-plane
bending stiffness relative to the in-plane stiffness significantly increases
the stability limit.

A clamped bent rod can store relatively large amounts of energy and
remain stable. To illustrate this assertion, we compare the elastic energy
in a clamped Euler column of length L under axial compression at the
critical Euler buckling load (assuming elastic behavior in the compres-
sive state) with the elastic energy stored in the clamped straight rod of
length L when the natural curvature from which it is formed is at the
critical level (3.9). When both entities have the same circular cross-
section of radius r and elastic properties, the ratio of these stored en-
ergies is

SEEulcr column 2 r\2
———=(1+v (7) .
I+ (g

SEslrai ghtened rod

(3.15)

Slender rods clamped at their ends can store enormously more
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energy and remain stable when bent than a clamped Euler column in
compression. Implications will be discussed later.

3.3. Michell’s problem: stability of a circular ring with circular cross-
section formed from a twisted straight rod

In the natural state, the rod is straight. It is subject to a uniform initial
twist dw/ds = wo /R, with () = d()/d6 and w," as the uniform initial
twist, and bent into a one-loop circle with radius R, and ends ‘welded’.
The issue at hand is how much initial twist can be imposed for the cir-
cular state to remain stable. This problem was first solved by Michell
(1889) and several other solutions were presented in the literature over
succeeding years, including a recent elegantly economical solution by
Goriely (2006), who also discussed the interesting history of Michell and
this problem. Here we add another relatively economical and direct
solution based on an investigation of the second variation of the energy.
This example illustrates a case in which, due to the initial twist, in-plane
and out-of-plane displacements are coupled in the bifurcation mode.

The exact energy functional for the ring from (2.8) and (2.9) is

SE 1 (™ : , .
== [ {b:y(® + (cos p— 1)y +sinfcosy ) + (f — siny)?
B3R_] 2 0

+ (sin By — cos S cos y)2 }d@,

(3.16)

where ® = a+ y, By = B3 and b, = B, /Bs;. The associated connections
are

cos f=/T=07 97,

) 3.17
g9 =R "(ug +u,)=cos f—1, ( )

@, :711?"1{3' =sinfeosy, (3.18)
@3 =—R (u, —ug) =—sinpfsiny.

The pre-bifurcation state has o = w,, f = 0, with SE; =
7R 'Bs(1 +b2w0'2) and y undetermined. With o =, + Aw and
neglecting terms of order 4 and smaller,

E — SE 2 L , ,
SE - Sty _ {b2(wy Aw + @y fcosy) — (Bsiny) }do
B3R! o
+ Py(wo, A0, f,7), (3.19)
where

21
P, = %/ {b> (A0 +fcosy) —wg By ) + B +Fr " — I cos® v }de.
0
(3.20)

The integral in (3.19) is linear in A and $ vanishes because Aw and
psiny are continuous and periodic, and because fcosy = R lug,
neglecting terms of order #° in (3.18). The second integral, P,, which is
quadratic in Aw’ and 3, determines the stability of the circular state. The
circular state is stable for a pre-twist, w, , if P, > 0 for all non-zero ad-
missible functions (Aw, ,7), excluding rigid body motions. The limit of
the stable states is determined by the smallest value of |w, | for which
there exists a non-zero admissible (Aw, 3, y) such that P, = 0. Because A
o appears only in the first term in (3.20), minimizing P, with respect to
Ao implies that A = —p cos y such that (3.20) reduces to

21
P, = %/0 { = b2 By + 57 + Py — B cos” y}do. (3.21)

The in-plane and out-of-plane displacements are coupled through
@3/, = — tany, where y(6) is unknown.

One approach to this eigenvalue problem would be to work with the
ODEs generated by rendering P, stationary. Here, we will use a direct
method by considering periodic sinusoidal displacement fields of the
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form

u, = Rajcos jO, us = —Rasin jO, uz = RbsinjO (j =2, ). (3.22)

The phasing of the in-plane and out-of-plane components is impor-
tant: the choice uzxcos(j#) does not lead to bifurcation. These modes
satisfy the lowest order inextensionality condition ¢, = 0. Modes having
j=0 and j =1 are excluded by inextensionality or because they are
rigid-body modes. Neglecting terms of order * and smaller, one has

. pecosy =@, = bj.cosjﬂ7 o (3.23)
psiny = —g; = —a(j* — 1)sin j6.

It follows that the terms in the integrand of (3.21) are
(Beosy)® = (bj)*(cosjo)’,
B=(a(- I)Sian)2 +(bjcosjo)* = (bj)* ((cosj@)2 +r? (sinj@)z) ,

2((r2 - l)jsinjé?cosjg)2
(cosjO)’ +7*(sinj6)”

g o v . . 2 .
B =p[((al? 1))’ = (6i)" )jsinjocosjo | = (b)
Py =—ab(? = 1) =—(®})’Jr,
B P G- =T
(cosjO)* +7* (sinjo)*’

(3.24)
where r = a(j2 — 1)/(bj). Integrals of the terms in (3.21) are straight-
forward except for the 2nd for which the following was used
-2

2
/ (cos? y + 1 sin’ 1;/)7]sin2 weos” ydy = ﬂ(l + \/ﬁ)
0

Evaluating P,, one obtains (with the same order of terms in (3.21)):

. 2
P, = g(bj)z{zmo jr+ 7 (1 - \/ﬁ> +22VrR —1 } (3.25)
which simplifies to
P, = g(bj)z{zhzw(,'jr +A(1+7) -1} (3.26)

The lowest non-trivial eigenvalue is associated with j = 2 and given
by bywe = v/3withr = —v/3/2 (or, by byw, = —v/3 withr =+/3/2), in
agreement with the original result of Michell (1889) and others as
described in the history of the problem by Goriely (2006). Coupling
between the in-plane and out-of-plane displacements is essential with
b = ++/3a depending on the sign of ;.

The ring in a 3-loop state is expected to be unstable for any initial
twist because, as seen in Section 3.1, such a ring would be unstable
without any twist. This can indeed be confirmed by replacing jo by jo/N
in the mode (3.20) and re-evaluating P,. The outcome is N times the
righthand side of Eq. (3.26) with j replaced by j/N. Then, with N = 3, it
is readily established that P, can be negative for any value of w,” when
j=1or2.

v W

Fig. 6. A bi-rod made of two identical rods of equal and opposite natural
curvatures, k, = +ko = +Ro !, that are bent about the 3-axis into straight
segments and welded at the ends.
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4. A model problem: the stability of a straight bi-rod formed
from two rods with equal natural curvatures

The following problem will illustrate the approach used in the next
section for more complicated geometries, but it is of interest on its own
merits. The problem is defined in Fig. 6. Apart from the location of their
openings, the rods are identical with uniform bending stiffnesses B; and
B3 about the 1- and 3-axes, and torsional stiffness By about the 2-axis.
Denote the natural curvature of the upper rod by x, = o and that of
the lower by x, = — ko, as defined relative to the x,-axis. The rods are
bent until they are straight and then their ends are welded together. The
straight configuration of the bi-rod is an equilibrium state with equal
and opposite moments in the rods of magnitude Bsko about the 3-axis.
The rods are assumed to be inextensional, each having length L =
2yR, where Ry = 1/k¢ and 2y is the angle subtended by the arc prior to
bending. The stability of the straight bi-rod as dependent on y, or
equivalently on L/Ry, is analyzed.

With the straight configuration as the reference state, the changes of
curvature from this state are given by

K1 —cosaﬂ’+sinasinﬁyy,
K=a -i-cosﬂ;/7
k3 =sinaf —cosasinfy,

4.1)

where now ()/ = d()/ds. The linearized strain and rotation variables are

& =1u, =cosf—1,

@, = u;s = sinfcosy, (4.2
@3 = —u; = —sin fsiny.
The strain energy in the bi-rod is

1t 2 2 2 1 [* 2
SE = —/ {B]K(ll) +BQK£1) + B3 (Kgl) — K0> }ds +—/ {BIKEZ)

2Jo 2Jo

2 2
+ BZK(22) + B3 (Kg2> + Ko ) }ds, (4.3)

where the first integral is the energy in the upper rod and the second is
that in the lower rod.

With y = 0 and @ = 0 in the pre-bifurcation state, we evaluate SE in
the bifurcated state up to and including terms of order o2 and 2. (In-
plane displacements, with y = z/2 and us = 0, do not allow bifurcation.)
To this same order of accuracy, f = us’, and with this substitution the
strain energy is

SE = BsLky* + P,

1 [t "2
P, :5/0 {Bud!

+ Bza“) + 2B;kpa D'y

Because the ends of the rods are welded together, a and us must satisfy

a® = @, u) =P and uf’ =u? at both ends of the bi-rod.
Consequently, the two contributions in (4.4) evaluated at the ends add
to zero and can be dropped. The energy in the straight state is B3Lxo?,
and P, is quadratic in « and us. P, is positive for all admissible non-zero
a and us (excluding rigid body motions) if the straight state is stable. We
seek the upper limit to the stability range, i.e., the minimum value of y
such that there exists non-zero admissible functions « and us for which
P, = 0. The eigenvalue problem for the stability limit requires 5Py = 0
for all admissible variations, which, in turn, requires

L 1 2 .
}ds — Byk,a a )u(l) ‘0 + 2/ {B]u(z) + Bzot(2> — ZB;KO(/V<2
0
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m

Blug L Y 0, ByaV nggug1> =0, “.5)
B, ug) + B;K()a 2" = =0, BQa(z)n — BgKngz) =0,
on 0 < x <L, and at the ends,
ugl) +u? =0, ) + u§2> - (B3K0/Bl)(a(l)ﬁ —a® ) =0,
W+ a® 4 (Bsko/B) (“g]) —uf) ) =0, (4.6)

in addition to oV = a®), u(gl) = u<32) and u(gl) = u3 . Conditions (4.6)

are the natural, or dynamic, boundary conditions which ensure there are
no external forces or moments applied at the ends.
The general solution to (4.5) is

ug]) = L(c(,l) + cgl)x + cgl) sin Ax + cil) cos /Lx),
ah = ¢! Ut c< x— K(cg]) sin Ax + ¢}') cos ix),
u§2> = L(cl2 + c22 X+ cf) sin Ax + cﬁz) cos /Lx),
a® = ? 4+ Px+ K(c?) sin Ax + ¢ cos Ax),
with x = s/L, A = BskoL/v/B1B2 and K = A,/B;1/By. To exclude the

possibility of rigid body motions, the left end of the bi-rod is constrained
at x =0 such that it cannot undergo displacement or rotation by

requiring V) = a® =0, uf) =uf) =0 and u{" = u¥) = 0. When
these conditions, together with the three conditions (4.6), are imposed
at x = 0, one obtains

ul) = L(cgl)(sin ax — 2x) + P (cos Ax — 1) ),
alt) :—K< sin Ax + ¢\ (cos Ax — 1)) +cVx
u) = L(cgl)(sin ax — 2x) — eV (cos Ax — 1) + {2k (x — 27" sin Ax) ),

a? :K(cg” sin Ax — ¢{Y (cos Ax — 1)) +c (x72i sin Ax).

Next, imposing 1)) =u{?, u{" = u? and aV) = ¢ at s/L = 1 obtains

}d? + Bsk,a®u (2> ; (4.4)

K(cos A —1)cl! + (@
—Kasin Ac{” + (cos A —
—K sinAc{) 427!

sin 2 —1)cf) =0,
D =o,
sin Acl”) = 0.

The determinant of the system of homogeneous equations for (cg”,

¢ ey is K2A(sin )2,
The lowest non-zero value of 1 for which the determinant vanishes is
A = m. With this value, the three equations imply that 6(31> is the ampli-

tude of the eigenmode with cgl) = cél) = 0 such that the mode is

ug ) =4 = Lc3 (sin(zs/L) — zs/L ),

4.7
a = —a® = kY sin(zs/L), “4.7)
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with K = 7+/B1/B,. It is straightforward to verify that the three dynamic
conditions (4.6) at s/L =1 are satisfied by (4.7). Thus, A = x is the
critical eigenvalue governing bifurcation from the straight state and
(4.7) is the associated bifurcation mode. The modal rotation at the right
end of the bi-rod is zero but the modal displacement and slope at the
right end are

ugl) = ugz) = 7ﬂchl), ugl)' = ugz) = 72ﬂ:c§”.

For stability of the bi-rod,

Lio < n\/3132/33., (4.8)

which is exactly one half the limiting value of Lk, in (3.9) for stability of
a single initially curved rod that is straightened and clamped at its ends.
Note that 1 =2z is also an eigenvalue for the bi-rod. A bi-rod con-
strained from out-of-plane displacement at its ends will become unstable
at twice the limit given by (4.8), with a mode having a form in each of its
two members comprised of that for the single clamped rod (3.10). The
bi-rod considered in this section, which is unconstrained at its right end,
undergoes an out-of-plane displacement at that end giving rise to its
lower critical value of Lkg. The critical condition (4.8) implies that the
largest value of the half-angle of the arc in the natural state such that the
unconstrained straight bi-rod is stable is y. = 7/B1B2/2Bs. For rods
with a circular cross-section, the limit is y = 7/(2v/1 + ).

It is easy to establish the corresponding result if each of the rods in
Fig. 6 before bending into the straight configuration is rotated 180°
about the horizontal axis with the gap in the upper rod at the bottom and
the gap of the lower rod at the top. In other words, a bi-rod with x, = —
ko for the upper rod and «, = ko for the lower rod also has the stable
range (4.8). In terms of the natural curvature of the unconnected rods,
the stable range of the bi-rod is

—fz\/B,Bz/B_; <Lk, < m/Ble/B_;. (4.9)

Two experimental realizations of plastic bi-rods with circular cross-
sections are displayed in Fig. 7, one formed from a naturally curved
rod with y = /3, which is well below the stability limit, and the other
with y = 7z, which is about 15% above the stability limit. The ends are
clamped by a bracket that also provides some constant separation be-
tween the ends of the individual rods. The bi-rod in Fig. 7a is clearly
stable in the straight state and requires counter-twisting of the ends to
deform it into an unstable twisted configuration, which returns back to
the initial straight state when unloaded. The bi-rod in Fig. 7b is unstable
in the folded straight state. The figure shows how, starting from a stable

a) Stable straight bi-rod: y = 7/3, R, = 90 mm

Top view

| & 1 — 1
(stable) (stable)

Tnitial state Release —>

Twisting

b) Unstable straight bi-rod: y =z, R, = 90 mm

Top view
. ; v )
(stable) (unstable) (stable)
Initial state Unfolding Release ——>

Fig. 7. Experimental demonstration of bi-rods with circular cross-sections that
are stable in a) and unstable in b) in the straight state. a) A stable straight bi-rod
with y = 7/3 showing the effect of twisting it out of the straight state into an
unstable twisted state and then returning to the straight state upon unloading.
b) A bi-rod with y = # that is unstable in the straight state. The sequence shows
the initial stable non-straight state, manipulation into a constrained straight
state, and finally, upon release, return to the initial state. Scale bars: 50 mm.
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a) b)

NSO

Fig. 8. Numbering system for the segments, coordinate definition, and sche-
matic of the arrangement in the straight folded state. a) Six-sided ring with 120°
arc segments. b) Six-sided ring with 240° arc segments. The left ends of seg-
ments 1 and 6 are connected in both cases. In the straight folded state, the left
ends coincide with x, = 0 and the right ends with x, = L.

state, the bi-rod can be deformed into the straight state, which requires
constraint to maintain its stability. When that constraint is removed, the
bi-rod springs back to its initial stable state. Photos of the bi-rods in their
‘natural state’ before both ends are joined are shown in Supplemental
Fig. 1 of the Supplementary Materials. Additionally, Video 1 depicts the
transition process between states. Based on the experimental observa-
tions, the two rods comprising the bi-rod do not make contact with one
another during the transition between the line state and the "figure 8"
state. This is consistent with transition simulations (not reported here)
and the fact that the bifurcation mode does not indicate contact.
Supplementary videos related to this article can be found at
https://doi.org/10.1016/j.euromechsol.2023.105041

5. Stability of six-sided rings that fold into a straight three-loop

Now consider the ring in Fig. 1a. As described in the Introduction,
the ring is formed from six rod segments, each with uniform natural
curvature k,, that are bent with a uniform moment, M3 = Bs(ko — kn),
into a 120° arc with radius, Ry = 1/ko, and ‘welded’ at the six joints
where the arcs form a cusp. This 6-sided 1-loop ring can be folded into a
3-loop ring with straight sides of length L = 2zR,/3. The 3-loop
configuration is in equilibrium with a uniform bending moment in
each segment alternating in sign, M3 = +Bsk,, from segment to
segment. There is no twist in either the 1-loop state or the straight 3-loop
state, although twist occurs in the transition from one state to another.'
We investigate the stability of the straight 3-loop state. The numbering
system employed in the stability analysis is shown in Fig. 8a. If the rod
segments prior to ring formation are straight with x, = 0, there is no
stress in the folded state, and it is clearly stable, but the unfolded one-
loop state will have residual stress, and it may or may not be sta-
ble—the stability of the unfolded state will not be investigated here. If,
on the other hand, the natural curvature of the rod segments is x, =
1/Ry, the one-loop state is unstressed and stable, while the straight
folded state is stressed with moments alternating in sign, M3 = +Bsk, =
+B3/Ry, from segment to segment. We investigate the stability of the
straight folded state for rings formed from rods having an arbitrary
uniform natural curvature .

1 The 3-loop ring is sometimes called a ‘covered ring’ (Manning and Hoffman,
2001). In forming a 3-loop covered ring, the rod is wound around itself three
times and the two ends are lifted slightly to cross-over the ring and joined.
There can be a very small twist or non-uniform bending in the vicinity of the
cross-over, but this becomes vanishingly small for thinner and thinner rods and
is neglected in the rod model.
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The elastic energy of the ring with the straight folded state as the
reference is

Ll G 0)? 0 0 )?
SE:;E ; Bix)" + Bk, +B3<K3 —AKO) ds,

(5.1)

where (K(li),K(zi),Kg) ) are the curvature changes measured from the
straight state about the imbedded unit vectors (e, ez, e3) which coincide
with the fixed Cartesian unit vectors (ij,iz,i3) in the straight state.
Further, Axg) = —kp in segments 1, 3 and 5 and AKg) = kp in segments 2,
4 and 6. The change in sign of AKEP from one segment to the next is due
to the flip of the orientation of the segments at each joint in the folded
state and our use of the reference coordinate system shown in Fig. 8.
Following the same procedure described in connection with the bi-
rod problem, the strain energy in the i* segment is expressed in terms
of u(gi) (s) and a®(s). It is then reduced by retaining all terms up to and
including order u? and a? such that the strain energy in the i segment is
y 1 R )2 @ 0 0
SEY = SBilk, +3 / {Blu3 + B, — 2B, (AKO W g ) }ds
0
O (0 0 \|"
+ B3 Ak (ug’ al) ) ‘ .
N 0
(5.2)

The total strain energy in the ring to this order is SE = 3B3Lk,?+ P,
where the quadratic terms (which sum to the second variation of the
system energy about the straight state) are

6 L
1 572 2 P N
Paus k) =Y 5 / {Blug” +Ba” — 2B, (Axg>u;'> a) ) }ds.
i=1 0
(5.3)

The geometric conditions at the joints require (us,us’,a) to be
continuous across the joints and, because of this, the terms evaluated at
the ends of the segments in (5.2) sum to zero. As in the case of the bi-rod
problem, the in-plane displacements decouple from u; and a in the
bifurcation problem, and their contribution to the second variation of
the energy is positive (apart from rigid body motion) so that bifurcation
is controlled by out-of-plane deformation plus twist. If the natural cur-
vature is zero such that Axg) = 0, P, is non-negative and only vanishes
for rigid-body displacements. For the present problem, we seek the
largest value of k, such that P, > 0 for all admissible variations from the
straight state, excluding rigid body motions. The critical natural cur-
vature is governed by the eigenvalue problem associated with non-
trivial solutions to rendering the first variation of P, stationary. The
differential equations and conditions at the joints that follow from
rendering P, stationary are

m

B]ugi) + B}AKE)[)Q(II)“ =0,

o, (5.4)
Bya® —BAkPuY =0, i=1,6,

(L)~ (L) =0, ) (1)~ (1) =0, a(L) ~ V(L) =0,

u{) (L) +ul™ (L) =0, a(L) +a™ (L) =0,
ugi) (L) + ugiH) (L) =— <B3AK((;)/BI ) (a(")'(L) - a("“)v(L) ),

fori =1,3,5, while fori = 2,4,6.

(0) il (0) =0, a?(0) —aV(0) =0,
0, a?(0) +a*V(0) =0,

(0) = = (Bsax /B ) (@ (0) =+ (0)),

uy’(0) = ug™(0)

us (0)+uf™" (0)

ugi) (0) + u(;H)

0, ug[)

(5.6)
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where, when i = 6, i + 1 must be taken as 1. For each set of joint con-
ditions, the first three are geometric requirements and the second three
are the natural, or dynamic, conditions that follow from the fact that
there are no external forces or moments acting on the joints.

The following dimensionless quantities are employed:

a0 = ug">/L, ai — a<">/(B3;<,,L/Bz), A= B31<,1L/\/BIBZ7 x

:s/L7 BZ/BI.

The eigenvalue is A. The details of the following solution to the
eigenvalue problem are provided in the Supplementary Materials. The
dimensionless equations can be solved analytically for the relation be-
tween the unknown quantities at the ends of the six segments. With [u®]

i)/

(5.7)

,a” @), one obtains

[1(1)] = Ta[u®(0) ],
=246,

= @@ &, o

i=1,35 & [u(1)]=Ts[u?(0)], i

(5.8)

where T, and Tp are 6 x 6 matrices which depend only on 4. The con-
ditions at the joints can be expressed as

(W ()] = Da[u(1)],
=2,4,6,

i=1,3,5 & [u0)]=Ds[u"(0)],i

(5.9

with i+ 1 taken to be 1 when i = 6. D4 and Dg are 6 x 6 diagonal
matrices having component values +1 except for one off-diagonal
element, Dsg, which depends on By/B;. These matrices allow one to
compute [u®(0)] in terms of [u(!)(0)]. Then, imposing the condition at
the joint between segment 1 and 6 in (5.9), one obtains

A-nl O] =0, (5.10)
where A = (DB(TngATA))S which depends only on A and By /B;.> The

form of A — I is

where A1) and A are 3 x 3 matrices. The first three equations in (5.10)
require

o AM

0 A0 (5.11)

|

(5.12)

which requires the determinant of A() to vanish. By carrying out the
numerical calculations prescribed above, the smallest value of A for the
determinant of AV to vanish is found to be 7, independent of By /B; . The
solution to (5.12) with 1 = z is any multiple of

[E(I)H(O), ﬁ(l)m(o)7 a(lf(o)]: [0’ 7, \/BI/BQ]A

Moreover, this solution satisfies

(5.13)

AP [ (0),5V (0),aV (0)] = 0.

Thus, the critical eigenvalue is 1 = 7 such that the largest value of the
natural curvature k, for which the folded straight 3-loop ring is stable is
Lkn = m/B1B3/Bs with L = 2zR, /3. This result also applies if the sign of
Kk is switched from positive to negative so that the range of the natural
curvature for stability for the folded straight 3-loop ring is

77n/Ble/B3 <Lk, < m/Ble/B3 with L = 2ﬂR0/3.

(5.14)

2 This eigenvalue equation applies to the bi-rod if A = (Dp(Tz'DaTa)),
providing an alternative solution method.
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Fig. 9. The bifurcation modal components uz and « plotted as a function of distance progressing continuously around the 3-loop straight ring starting at the left end
of segment 1. In each segment, « in this plot is the rotation about i,. The cross-section is circular and v = 1/3. The joints are tagged with a solid dot. The maximum

amplitude of u3/L is normalized to be unity.

This is the same range as for the bi-rod and, again, one half that for
the single straightened clamped rod (3.9) in Section 3.2. The other three

components determining the eigenfunction, [a'V (0),ﬂ<1), (0),a(0)], are
the amplitudes of rigid body modes which can be chosen arbitrarily. For

our purposes we will take [ (0), L_L“)/(O), @ (0)] = 0. The full eigen-
mode is plotted in Fig. 9 for the components u(s) and @(s) as a function of
the distance s starting from the left end of segment 1, continuing from
the right end back along segment 2 to its left end, and then towards the
right end of segment 3, etc. The solution for the critical mode for the
three pairs of straight rods can be viewed as the joining together of three
of the modes for bi-rods (4.7).

There can be an advantage to constructing this structure from rods
with natural curvature (Olson et al., 2013). If the natural curvature is
zero, the elastic energy in the straight folded state is also zero, whereas,
with natural curvature, the elastic energy is non-zero and it may be used
to help drive the unfolding process. For certain designs, it might even be
desirable to have the folded state be unstable. It might be straightfor-
ward to restrain the folded state and release the restraint when
unfolding is required. The stored elastic energy, which as discussed in
Section 3.2 can be substantial, could drive the unfolding process. The

a) Analytical

Initial state Folded state

¢) Snapping from folded state (experiment)

maximum natural curvature for stability in (5.14) is proportional to
V/B1B2 /B3 which is plotted for rectangular cross-sections in Fig. 4. The
height to thickness of the cross-section is the important parameter for
stability.

Finally, it is noted, without repeating the analysis, that the stability
limit for the natural curvature of the folded 6-sided ring formed from
240° arcs in Figs. 1 and 8 is also governed by (5.14). However, the length
is twice that for the 120°-arc structure, i.e., L = 4zR/3, reducing the
limiting natural curvature for stability by a factor of 2. A close exami-
nation of the intimate relationship between the two ring geometries in
Fig. 1 will be given in a subsequent publication.

An experimental demonstration of the 1- and 3-loop states of the six-
sided 120° arc ring is presented in Fig. 10. The cross-section of the rod is
rectangular with h/t = 4 and the natural curvature of the arcsisx, = 1/
Ry such that the initial unfolded state has no residual stress and is
therefore stable (see Supplemental Fig. 2). For this ring, Lk, = 27/3 and
it is seen from the criterion in (5.14), in conjunction with Fig. 4, that the
folded 3-loop state is far below the stability limit, as the experimental
realization in Fig. 10 indicates. By applying bending to the ends of the
folded ring, it can be brought to an intermediate state at which it snaps

b)

Experimental

Initial state Folded state

\ &

7\ A NN

Fig. 10. Unfolded initial (1-loop) and folded (3-loop) states of a six-sided 120° arc ring that is formed from arcs with x, = 1/Ro such that the 1-loop state has no
stored elastic energy. a) The analytical representation. b) The experimental realizations of the two states, both of which are predicted to be stable. ¢) Applying
bending to the ends of the stable folded state until it snaps to the unfolded state.
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dynamically to the unfolded state. The snapping process occurs with
vigor consistent with the considerable elastic bending energy stored in
the folded state. Photos of the ring before and after the ends of the open
ring have been connected are shown in Supplemental Fig. 2 of the
Supplementary Materials along with Video 2 showing the unfolding and
snapping process.

Supplementary videos related to this article can be found at
https://doi.org/10.1016/j.euromechsol.2023.105041

6. Conclusions

The main finding in this paper is the stability limit of the natural
curvature for the bi-rod and the straight folded six-sided ring is |Lk,| <
7v/B1B2/B3. The bifurcation mode is a combination of bending of the
rods out of the plane of the natural curvature coupled with twist along
the length of the rods. The relevance of the fundamental problems in
Section 3.2 for the stability limit for bending of a single clamped rod to
reduce its natural curvature has been emphasized. For the case when the
single rod is bent to become straight and clamped at its ends, the sta-
bility limit on the natural curvature is exactly twice that for the bi-rod
and the straight folded six-sided ring.

The approach to stability used in this paper employs the relations of
Kirchhoff rod theory for conservative loads but specialized to a
Lagrangian formulation in which the state being investigated is either
circular or straight. Stability rests on the positive definiteness of the
second variation of the energy of the system. This paper has been con-
cerned only with the ranges of stability and instability and the bifur-
cation mode from the reference state. Post-bifurcation behavior has not
been considered in this paper for any of the problems, although the
formulation permits extension into the post-buckling range and is
particularly well suited for carrying out studies based on Koiter’s (1945)
approach to initial post-buckling behavior and imperfection-sensitivity.
It should be mentioned that numerical post-bifurcation results for the
1-loop and 3-loop circular ring problems have been presented by Goto
et al. (1992), Mouthuy et al. (2012), and by Audoly and Seffen (2015)
who deploy the natural curvature as a control parameter to follow
quasi-static equilibrium transition paths between the two circular states.

Although the demonstrated experiments on the bi-rod and the six-
sided straight folded ring are limited in number and far from being
comprehensive, they do suggest that, unlike many structures con-
structed from rods or beams, these entities may display highly unstable
post-bifurcation behavior and strong imperfection-sensitivity. It has
been noted that significant elastic energy can be stored in structures
such as the bi-rod or straight folded rings constructed by straightening
initially curved rods. Future investigations of post-buckling behavior
and imperfection-sensitivity of these structures, whether based on the
present formulation or the classical Kirchhoff formulation, are likely to
be interesting.
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