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ABSTRACT

This paper describes a group-level analysis of 14 subjects with
prefrontal cortex (pFC) lesions and 20 healthy controls perform-
ing multiple lateralized visuospatial working memory (WM) trials.
Using effective brain connectivity measures inferred from directed
information (DI) during memory encoding, we first show that DI
features can correctly classify 18 control subjects and 11 subjects
with pFC lesions, providing an overall accuracy of 85.3%. Second,
we show that differential DI, the change in DI during the encod-
ing phase from pretrial, can successfully overcome inter-subject
variability and correctly identify the class of all 34 subjects (100%
accuracy). These accuracy results are based on two-thirds major-
ity thresholding among all trials. Finally, we use Welch’s t-test to
identify the crucial differences in the two classes’ sub-networks re-
sponsible for memory encoding. While the inflow of information to
the prefrontal region is significant among subjects with pFC lesions,
the outflow from the prefrontal to the frontal and central regions
is diminished compared to the control subjects. We further iden-
tify specific neural pathways that are exclusively activated for each
group during the encoding phase.

Index Terms— Directed information (DI), differential DI, Ef-
fective connectivity, Prefrontal cortex (pFC) lesion, Working mem-
ory

1. INTRODUCTION

Neuroscientists and psychologists have long been interested in iden-
tifying the underlying neural framework for human cognition. Any
complex cognitive task requires a system for simultaneous storage
and manipulation of the required information. Such a brain system
is termed working memory (WM) [1]. The impairment of WM by
neurological disorders such as Alzheimer’s disease (AD) and Parkin-
son’s disease (PD) has led to standardized tests to quantify WM and
their use in diagnosing such disorders [2, 3]. Furthermore, the mod-
ification of WM through therapy has been shown to treat anxiety
symptoms, and post-traumatic stress disorder (PTSD) [4].

Prior studies involving brain imaging have identified a linear re-
lationship between the activity of the prefrontal cortex (pFC) and
WM load, which proved an indispensable role of pFC in the mem-
ory process [5]. Electrophysiological recordings, such as EEG, in-
herently possess a higher temporal resolution than imaging, making
them more suitable for describing the spatio-temporal dynamics of
the brain networks during memory encoding and retrieval [6]. Anal-
ysis using EEG can provide a better understanding of the degree of
dependence of WM on pFC activity. Newer research [7] proposes
that pFC activity is not always necessary in WM tasks. However,

further work is required to describe the consequences of damage to
pFC tissues on memory encoding and the reason behind successful
memory encoding and retrieval despite such impairment.

Studying the variations in brain connectivity during memory en-
coding can help address these unanswered questions. Brain connec-
tivity is typically categorized into three levels: structural, functional,
and effective [8]. Structural connectivity refers to the anatomical
interconnections of neurons inside the brain that can be viewed us-
ing noninvasive imaging techniques. Functional connectivity pro-
vides the statistical correlation between various brain regions and
identifies the cluster of active regions during a cognitive task. Ef-
fective connectivity quantifies the directional neural activity (flow of
information) across different brain regions during a cognitive task.
Functional and effective connectivities are inferred from the elec-
trophysiological time-series simultaneously recorded from multiple
electrodes.

Effective connectivity measures modeled using directed infor-
mation (DI) [9] have shown excellent performance in classification
tasks such as identification of seizure onset zone [10] and mental
states pertinent to a cognitive task [11]. Our prior work demonstrated
the superiority of DI-based effective connectivity in distinguishing
the memory encoding phase from the pretrial baseline for a given
subject [12].Similar to [13], this paper addresses group-level clas-
sification for distinguishing patients with pFC lesions from healthy
controls. In [13], we demonstrated 100% classification accuracy us-
ing a two-layer graph convolution network (GCN) for feature repre-
sentation from graph signals with differential DI, the variation of DI
from the pretrial to the encoding phase, as edges and relative-band
powers and centrality measures as node features. In contrast, in this
paper, we address the classification using an SVM model with only
the DI features from the encoding phase of WM trials and differen-
tial DI. From this, we infer that differential DI features are agnostic
to the inter-subject variability seen in the group-level analysis. Fur-
thermore, the SVM model is better suited for the analyzed data set
due to its lower complexity in terms of the number of parameters and
better explainability when compared to the GCN model.

2. EXPERIMENTAL SETUP

2.1. Overview of Working Memory task and data

We examined the human scalp EEG from subjects performing later-
alized visuospatial working memory tasks [14]. The two classes of
subjects studied are patients with unilateral pFC lesions (n = 14)
and healthy control (n = 20). All participants provided written con-
sent following the University of California, Berkeley, Institutional
Review Board. The working memory is tested in two ways, as de-
scribed in [7].



• Identity test - Subjects were shown a pair of shapes and then
asked to identify whether a given pair of shapes was the same as
what they had just observed.

• Spatio-temporal relation test - The subjects were initially shown
a pair of shapes similar to identity tests. The spatial aspect was
examined by cuing the subjects to indicate the shape observed in
the top/bottom, and the temporal aspect was examined by cuing
them to indicate the shape observed first/second.
There are five phases in each trial for a WM test. During the 2

s pretrial phase, central fixation is shown to record the resting state
EEG. This is followed by the encoding phase, where subjects were
shown two common shapes sequentially in a top/bottom spatial ori-
entation for 200 ms each with a 200 ms break in between. Following
a 900 ms or 1150 ms maintenance interval, a text prompt appears
in the active processing stage that lasts for the same duration as the
maintenance phase. Finally, the subjects indicated their response.
Fig. 1 illustrates the five phases of a WM task.

Fig. 1: The phases of a lateralized visuospatial WM task [12].

The 64 + 8 channel BioSemi ActiveTwo amplifier was used to
record the scalp EEG [14] at 1024 samples/sec, with Ag-AgCl pin-
type active electrodes mounted on an elastic cap. The electrophysi-
ological signals from the 64 channels were recorded during each of
the five phases of a WM trial. The preprocessing steps included spa-
tial transformation for normalizing all lesions to the left hemisphere
and noise removal. All subjects completed 120-240 trials, with each
trial testing identity or relation with equal probability.

2.2. Feature extraction

2.2.1. Directed Information during the encoding phase

The information-theoretic measure of directed information (DI) [9]
is used to characterize the brain’s effective connectivity using the
scalp EEG of the 64 channels recorded during the encoding phase
of the WM trials. Let the time-series of scalp EEG recorded at
channels ’x’ and ’y’ be denoted as XN = [x1, x2, . . . , xN ] and
YN [y1, y2, . . . , yN ], respectively, where N is the total sample length
of the time-series. The DI from channel ’x’ to ’y’ is given by

Î(XN → YN ) = ĥ(YN )− ĥ(YN ||XN ) (1)

where ĥ(YN ) and ĥ(YN ||XN ) represent the differential entropy
of YN and the differential entropy of YN causally conditioned by
XN , respectively [10]. The DI value I(XN → YN ) statistically
provides an estimate of the degree to which XN is relevant for
causal inference on YN from the observed EEG recordings. The
estimates of the two entropy values described in (1) are obtained us-
ing likelihood measures inferred from data-driven Kernel smoothing
functions. The MATLAB implementation of the DI estimator was
adapted from [11].

For the 64-channel scalp EEG recording, we have 2 ×
(
64
2

)
=

4032 features representing the directional information from each

channel to every other channel. Feature selection using the mutual
information (MI) based minimal-redundancy-maximal-relevance
(mRMR) framework [15] was employed to select up to 200 top
directional connectivity as input features to the classifier. mRMR
has shown to be a tractable option for dimensionality reduction in
brain network classification problems for diagnosis of neural dis-
orders, such as borderline personality disorder [16], schizophrenia
[17], adolescent major depressive disorder [18], and attention-deficit
hyperactivity disorder (ADHD) [19]. Other feature selection algo-
rithms, such as MUSE [20], could also be used.

2.2.2. Differential DI

Group analyses involving multiple trials from various subjects suf-
fer from inter-trial and inter-subject variances that stem from EEG
recordings and the subject’s physiology [21]. In our previous work
[12], the high accuracy for subject-wise trial classification using DI
features revealed that they are agnostic to inter-trial variance. How-
ever, the variations across different subjects that stem from physio-
logical differences can obscure any similarity found across a group.
Thus, we modeled another classifier that utilized the difference in
DI value during the encoding phase from the pretrial baseline as its
features.

2.3. Classifier

2.3.1. Classification using DI features

Fig. 2 illustrates the overall framework of the proposed prelimi-
nary architecture. We employ the leave-one-out (LOO) classification
technique using linear SVM classifiers implemented in Python [22].
The nonlinear interactions across the different brain regions are al-
ready captured in the DI features. This, along with the moderately
high dimensionality (up to 200), justifies using SVM classifiers with
linear kernels. For each fold of the LOO classifier, the DI features
obtained from the various trials of a subject are left out for testing,
and the remainder was used for training.

Feature selection for each fold was performed separately based
on the respective training data prior to classification. For each clas-
sifier, the model was recursively trained using the top 200 features
ranked by the mRMR algorithm, and the best subset of features is
identified as the one yielding the highest training accuracy. The clas-
sifier parameters were tuned using a comprehensive search. A single
class label is assigned to the test subject based on 2
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majority vot-

ing after testing on all test subject’s trials. We used the labels 0 and
1 to denote the control subjects and subjects with pFC lesions, re-
spectively. SMOTE oversampling [23] prior to the classification was
performed to address the class imbalance problem. The final per-
formance of the classifier is determined based on the percentage of
subjects identified correctly after the majority voting.

2.3.2. Classification using differential DI features

As such, the differential change in DI is smaller than the absolute
value of DI during the encoding phase. Moreover, the change is
relatively similar across the classes for many features. Only features
with different mean values for the two classes with high statistical
significance (p < 0.05) were considered for classification. Thus,
only a small subset containing d of the total 4032 features will result
in significant changes across the two groups, i.e. d << 4032. Fig. 3
depicts the overview of preprocessing steps used before classifying
using relative DI features. The classification technique remained the
same - Leave one subject out cross-validation using linear SVM. The
feature dimensionality is indicated in red.



Fig. 2: Classification of healthy control and subjects with pFC lesions using DI features inferred from the encoding phase of WM tasks.

Fig. 3: Extraction and selection of differential DI features from train-
ing data for classifying control subjects vs. patients with pFC lesions
(shown for one fold).

2.4. Group analysis

Sub-networks specific to the encoding phase are constructed from
the subset of influential attributes obtained from feature selection
that resulted in the best classifier performance. The mean DI and
differential DI values are compared for the two classes to identify
the statistically significant features that contrast the two populations.
Following our previous work [12], the DI and differential DI fea-
tures inferred from the 64 channels are then aggregated into eight
regions - anterio-frontal (AF), frontal (F), fronto-central (FC), cen-
tral (C), centro-parietal (CP), parietal (P), parieto-occipital (PO),
and temporal (T).

3. RESULTS

3.1. Classification performance using DI features from the en-
coding phase

The best performance was observed from the model that used 135
of the top 200 features ranked using the mRMR algorithm. With
an accuracy of 85.3%, the LOO classifier correctly identified 18 of
the 20 healthy control (90.0% specificity) and 11 of the 14 subjects
with pFC lesions (78.57% sensitivity). Given the smaller data size
of 34 subjects, the inter-subject variability resulted in a marginally
reduced performance.

3.2. Classification performance using differential DI features of
the encoding phase from pretrial baseline

234 of the 4096 features revealed a statistically significant differ-
ence in the mean values of differential DI across the two classes.
These features were used to classify the subjects with pFC lesions
from healthy controls. Although the number of input features re-
quired is higher than the classifier that used absolute DI values (135),
the differential DI features successfully identified the class of all 34
subjects using majority voting. This suggests that considering the
change in DI value from baseline is an efficient method to com-
bat inter-subject variability, which diminished the classifier’s perfor-
mance that only employed the DI features from the encoding phase.
Table 1 summarizes the performance of the best models obtained
from the two classification techniques used in this work.

Table 1: Classification of subjects with pFC lesions (class 1) vs.
healthy control (class 0) during the encoding phase of WM task

Features to the classi-
fier

Specificity
(%)

Sensitivity
(%)

Accuracy
(%)

DI (encoding phase) 90 78.6 85.3

Differential DI 100 100 100

Note: Classification performance here is measured by the % of
subjects identified correctly after 2
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-majority voting and is not

the trial accuracy of each fold.

3.3. Region-wise sub-network analysis

The two sets of features, DI values during the encoding phase and
differential DI, were analyzed using Welch’s t-test after performing
region-wise aggregation. The heatmaps of the test results are shown
in Fig. 4. The bold value represents the statistic, and the correspond-
ing p-value is italicized. A positive sign for the statistic value indi-
cates that the mean value of the corresponding DI (or differential DI)
is observed to be higher in magnitude among the control subjects,
and a negative sign indicates that they are higher among the subjects
with pFC lesions. Statistically insignificant features (p >= 0.05)
are masked to avoid their contribution to the final analysis. Fig. 5
shows the significant sub-networks for the two populations (control
and patients with pFC lesions) that show a greater change in DI from
the pretrial to WM encoding phase.



(a) Heatmap of Welch’s t-test results for DI features of the
WM encoding phase.

(b) Heatmap of Welch’s t-test results for differential DI fea-
tures of the WM encoding phase from the baseline.

Fig. 4: Statistical comparison of DI and differential DI features for
control subjects vs. subjects with pFC lesions.

4. DISCUSSION

The main region-wise observations from the statistical test are dis-
cussed below:

• The control group exhibits a higher inflow of DI to F, FC, C, and
CP regions, while subjects with pFC lesions show a higher DI
inflow to the other regions.

• Although there is a significantly higher inflow of information to
the AF region for subjects with pFC lesions, information flow
from AF is predominantly seen only towards P and PO regions
among the subjects with pFC lesions. DI to other regions from
AF is relatively higher among the control subjects.

• When compared to the baseline, the differential DI inflow from
PO regions is higher among the control, and that from the T re-
gion is higher among the subjects with pFC lesions. This result
corroborates our previous finding of increased mean between-
ness of PO region among controls and T region among subjects
with pFC lesions.

• Though the directional information flow for AF→C, F→FC,
F→C, F→C, T→FC, P→FC, and P→CP are seen to be higher
among the control subjects, these features showed a higher
change among subjects with pFC lesions when compared to
baseline. This may indicate that these neural pathways are gen-
erally active with high information flow among controls but only

(a) Sub-graph with differential DI edges that are higher
among control subjects.

(b) Sub-graph with differential DI edges that are higher
among subjects with pFC lesions.

Fig. 5: Region-wise sub-networks with statistically significant
higher differential DI flow among control subjects (5a) an patients
with pFC lesions (5b).

get activated among subjects with pFC lesions during memory
encoding. Similarly, a typically active elevated information flow
to PO from P, PO, and T regions exists among subjects with
pFC lesions that are only activated during the memory encoding
phase among control subjects.

• The neural pathways AF→CP, C→CP, F↔FC, PO→FC, and
PO→C show higher information flow exclusively among the
control subjects, and C→P, C→T, CP→PO, and T→P exclu-
sively show a higher DI among subjects with pFC.

5. CONCLUSION

A multi-subject group classification method of subjects with pFC le-
sions from healthy control using DI inferred effective connectivity
is discussed in this paper. We have demonstrated that differential
DI are viable features to manage inter-subject variability that typi-
cally affects any group-level analysis. Subnetwork group analysis
revealed critical differences in directional information flow across
the two classes using scalp EEG recorded during WM tasks. Sub-
jects with pFC lesions exhibited a reduced outflow of information
from the AF region. Specific neural pathways that are generally ac-
tive with high information flow for one class only get activated for
the other class during memory encoding. Finally, some neural path-
ways are generally active with high information flow solely for one
of the classes. Further work with a much larger data set is needed to
generalize the findings and validate our results. A larger data set can
also make the use of deep-learning models feasible for its analysis.
Future work on identifying directional neural pathways for memory
encoding and retrieval among subjects with memory disorders like
dementia and Alzheimer’s disease may assist in developing prospec-
tive treatment procedures.
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