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Abstract: An all-dielectric photonic metastructure is investigated for application as a quantum
algorithm emulator (QAE) in the terahertz frequency regime; specifically, we show implementation
of the Deustsh-Josza algorithm. The design for the QAE consists of a gradient-index (GRIN) lens
as the Fourier transform subblock and patterned silicon as the oracle subblock. First, we detail
optimization of the GRIN lens through numerical analysis. Then, we employed inverse design
through a machine learning approach to further optimize the structural geometry. Through this
optimization, we enhance the interaction of the incident light with the metamaterial via spectral
improvements of the outgoing wave.
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1. Introduction

Improvement upon current computing architecture is required in order to enhance computation
power, time and resources for industries such as medicine, catalysis, and finance. As compared
to digital computers, optical computers offer the capabilities of parallel processing, high speed,
lower power consumption, and operation at multiple frequencies [1,2] thus exploiting a photonic
system can make these devices a prime candidate to realize this possibility [3], especially in the
least exploited THz regime. In order to achieve an integrated analog optical computing system,
it is necessary to focus the incident wave to the next operational computing component which
can be achieved by the use of computational metamaterials. Numerous systems, designed for
free space, have been proposed but have been difficult to integrate and bulky in design [4–7].
One such metamaterial known as the gradient index (GRIN) lens, can alleviate these issues
through being an on-chip device. A prototypical GRIN lens consists of a series of micro-layered
structures with holes of different geometries to vary the index of refraction [8,9] that manipulate
the propagation of electromagnetic waves [10]. Previous works of GRIN lens metamaterial
structures have theoretically and experimentally demonstrated to operate in the THz regime
[11–13] with strong focusing capabilities [14–16] and tunability [17–19].

Recently, GRIN lenses have been integrated as components of larger photonic devices,
consisting of a multitude of subblocks, to realize a new optical computing technology, the
quantum algorithm emulator (QAE). QAEs simulate quantum search algorithms with classical
waves via the superposition principle and interference phenomena which is integral to rapid
searching and solving difficult problems that would be time and power consuming on digital
computers [4,20,21]. QAEs have only been explored in the microwave region where the measured
electric field amplitude is the probability amplitude of the equivalent quantum state [21]. Zhang
et al. proposed a dielectric device, made of Veroclear810, consisting of an oracle subblock,
two Fourier transform (FT) subblocks, and a phase plate subblock [4,21]. The oracle subblock
imprints a spatially phase dependent profile on the incoming wave while the FT subblock
and phase plate subblock converts the phase difference for the oracle subblock to amplitude
information [21]. Through this device they were able to simulate Grover’s Algorithm and show
that the number of iterations performed on the device was consistent with the efficiency of the
quantum search algorithm.
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Metamaterials have reached a high degree of maturity and have recently emerged as a new
approach for quantum computing. In this context, Wei et al. proposed a quantum searcher
of an on-chip silicon device that consisted of four metasurfaces: an oracle metasurface, two
metalenses, and a middle metasurface where different spatial positions of the incident wave showed
repeatability in the distribution of the output wave intensity [4]. Cheng et al. experimentally
verified a Deutsch-Jozsa (DJ) algorithm with a millimeter scaled all-dielectric device [20].

Here, we report a new design for a quantum algorithm emulator in the THz frequency regime
based on a simple platform and optimized by machine learning. The investigated device is
composed of a microstructured oracle subblock made of silicon substrate and a FT subblock
made of Kapton polyimide. The Kapton film chosen acts as a 2D photonic crystal (PhC) slab and
proven to exhibit strong electric field confinement and interaction with THz waves with minimal
absorption loss [22]. In this work, numerical simulations enhanced by machine learning (ML)
were applied to optimize the hole radii and thickness of the FT subblock to achieve an optimal
distribution of wave intensities. The structural design of the QAE is first presented along with
the numerical analysis showing the initial optimized output. Lastly, the process and results for
the ML process are discussed. Our aim is that the simple design of our device and its compact
size may strongly relax the constraints for high frequency domains (e.g., IR and visible) which
are expected to play a larger role in photonics and quantum technology as a whole.

2. Numerical evaluation of QAE

The block diagram of the QAE is shown in Fig. 1 (top panel). A schematic of the DJ algorithm
is shown in Supplement 1, Sec. A. The whole device consists of two functional subblocks,
oracle and Fourier transform, respectively, brought into optical contact. Figure 1 (bottom panel)
represents the schematic view of the metamaterial-based quantum emulator. The oracle block is
made from a 500-µm-thick silicon (Si) substrate. It modulates the electric field profile of the
incident THz light by assigning a phase shift of 0 or π on each spatial position along y-axis. This
phase shift is introduced by physically varying the radius of the holes array drilled in the silicon
substrate, or oracle block, and by consequence also varies the effective electric permittivity ϵe
along the y-axis thereby encoding the function f (y).

Fig. 1. Schematic of the Quantum Algorithm Emulator. (Top panel) Block diagram of the
DJ algorithm and (Bottom panel) metamaterial-based multi-layer configuration of the DJ
algorithm emulator. The input THz wave of width D is modulated by the oracle block of
varying hole diameters and then transformed through the Fourier block to show the output
signal of either a constant function (top output) or balanced function (bottom output).

The Fourier transform block is made from 127-µm-thick polyimide film with various hole
sizes acting as an all-dielectric GRIN metalens as shown in Figs. 2(a) and (b). Each hole has a
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period of 70 µm with varying radii of 10, 15, 20, 25, and 30 µm, respectively from the center
to the edge of the device. Due to the rotational symmetry imposed by the geometry of the
design, the structure has an identical response for both linearly TE-polarized and TM-polarized
waves. Also, note that the use of flexible substrates provides an unprecedented route to achieve
frequency tunability due to modifications in the profile and the periodicity of the structures when
the substrates are manipulated mechanically [22].

Fig. 2. (a) Structural design of the unit cell with the relevant geometrical dimensions: px =
py = 70 µm, t = 127 µm and r varies 10, 15, 20, 25 and 30 µm, respectively. (b) Schematic
view of the GRIN lens. The aperture size of the lens is ∼ 1 mm. (c) Index profile of the
structure at 0.8 THz. The blue solid line is a parabolic fit to the refractive index profile.
(d) Simulated electric field intensity on the focal plane at 0.8 THz. The input electric field
intensity is also plotted for comparison. (e) Simulated normalized electric field distribution
of the GRIN lens at 0.8 THz, for linearly TE-polarized radiation.

The polyimide film is treated as a dielectric with ε = 3.3 + i0.05. For the GRIN lens design,
we chose a radially symmetric refractive index gradient following a parabolic index profile
n(r) = n0sech(αr) with α = 1/r0 + cosh−1(n0/nr0) [Fig. 2(c)]. For this purpose, we introduced a
spatial variation of the refractive index by arraying unit cells of different radius such that the
refractive index gradually decreased from the center of the GRIN lens. The dimensions of each
cell are modified to fit the refractive index profile on the device. The design of the final GRIN lens
structure is shown in Fig. 2(b). The effective permittivity of the oracle block can be expressed
as: ϵe(y) = (3λ0/d0)

2; ∆ϕ = 0, ϵe(y) = (2.5λ0/d0)
2; ∆ϕ = π, where d0 is the length of the oracle

block and λ0 the working wavelength.
To examine the performance of the designed metalens, we plotted in Fig. 2(d) the cross-section

of the normalized intensity profiles in the plane y = 0 (axial x–z plane) around the focal point of
the metalens at 0.8 THz. The input electric field intensity is also plotted for comparison. Shown
in Fig. 2(e) we present the normalized local electric field distribution of the GRIN lens at 0.8 THz,
for linearly TE-polarized radiation. In it, we aim to clearly demonstrate the successful realization
of the focusing property of our design. When the incident light irradiates the surface of the oracle
block, the phase of the transmitted wave is modulated with a factor k0n(y)d0, where k0 = 2π/λ0 is
the vacuum wave vector, d0 is the thickness of the oracle block and n(y) is the effective refractive
index at position (y). The detecting function f (y) is encoded into the input states by assigning a
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phase modulation on each spatial position (y) along the input transversal direction. The refractive
index of the oracle operator is designed to achieve either 0 or π phase distribution depending on
the value of the function f . The Fourier transform operator is used to evaluate the final results
on the output signal. There are optical processes that can produce Fourier transform of field
distribution, such as diffraction and Optical spatial filtering, respectively. Generally, the far field
diffraction pattern is observed at infinity. By placing a lens after the diffracting aperture, the
plane at infinity is imaged onto the focal plane of the lens. This explains why a lens can perform
a Fourier transform.

To evaluate the performance of the device, we performed numerical simulations based on the
finite-difference time-domain (FDTD) method. The length scale of the mesh was set to be less
than or equal to λ0/10 throughout the simulation domain, where λ0 is the central wavelength of
the incident radiation. The input and output ports are located at about 10λ0 from the device with
open boundary conditions. The blue line plots in Fig. 3 show the electric field intensity at the
focal plane of the GRIN lens with the detecting function being constant and balance, respectively,
computed for the initial numerical analysis at 0.8 Thz. The maximum intensity at y = 0 position
means the encoded function f (y) is constant. However, if the center intensity is zero this indicates
that the oracle subblock carries a balance function. Since the 0 and π phase elements correspond
with different effective permittivities, it makes the oracle subblock processes spatially varying
impedance which results in different transmissions creating a non-symmetric intensity for the
output of the electric field as shown in Fig. 3 (blue line, right panel).

Fig. 3. The electric field intensity at the focal plane of the GRIN lens for an intermediate
working frequency of 0.8 THz, with the detecting function being constant (left panel) and
balance (right panel), respectively. The blue and red lines are simulations of the output pre-
(original) and post-application (optimized) of machine learning based inverse design.

3. Machine learning optimization of QAE

To further engineer the structural parameters, a machine learning (ML) based optimization
procedure is implemented into the design of the grin lens. ML is a powerful tool for optimization
[23–28] and is expected to be an efficient complementary of electromagnetic wave numerical
simulations [29–31]. Recently, one of the most popular ML techniques used in conjunction with
EM field wave simulations is the inverse-design model [32–36]. Comparing to conventional
methods, inverse-design traces the geometry configurations from the output performance such
as resonant frequencies or S-parameters [28,37]. The overall procedure used in this study
is shown in Fig. 4. First, the data for training the proposed neural network (NN) model is
generated using the numerical simulation software (i.e., CST) based on the initial structure
parameters as in Fig. 4(a). After which, the geometry configuration is randomly generated using
MATLAB with the constraints on ri and h, respectively. The constraints for ri are 0<ri<a/2 and
r1<r2<r3<r4<r5<r6 where a = 70 µm is the characteristic length of the unit cell of each hole in
Fig. 4(b). Additionally, the constraint of h is 50 µm<h<300 µm. To optimize the performance of
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the GRIN lens, we divided the holes on the surface into six groups from inner to outer ring with
the radius of r1, r2, r3, r4, r5, and r6, respectively. In addition, the thickness of the grin lens h is
also involved into the optimized procedure since the path of the wave’s propagation can also
affect the performance. Additional details are provided in Supplement 1, Sec. B.

Fig. 4. The schematic of the proposed ML-based inverse-design of the Fourier subblock.
(a) Unit cell used for generating the whole GRIN lens with varying hole diameters shown in
(b). (c) Result of the balanced function which is used to apply inverse design to best fit the
peaks (d) comparing the initial data of amplitude at π and the full width at half maximum
(FWHM) of π the two peaks as the input parameters. The focused spot sizes are illustrated
in the insets for the initial and optimized device.

According to the Deutsch-Jozsa algorithm, the key point of the design is in fact the performance
of the balanced function case since the output of all zero or all one case will absolutely be one
peak. It is important that the proposed structure has an ability to distinguish the input status
(i.e., constant or balance) from the output performance. Therefore, the proposed optimization
procedure mainly focuses on the output spectrum [38,39]. Hence, we only need to optimize
the performance of the balanced function shown in Fig. 4(c). Moreover, since the output of the
half-zero half-one case is expected to have two peaks on two sides, the input for the inverse design
model can be simplified as the features of the peaks. Here, we choose the amplitude Api and the
full width at half maximum (FWHM) FWHMpi of the two peaks as the input parameters, i.e.,

(v̄in) = [Ap1, FWHMp1, Ap2, FWHMp2] (1)

where p1 and p2 denote the left and right peak, respectively in Fig. 4(d).
The data is then split into the training and validating set with the ratio of 80% − 20%. The

training set is used to train the proposed NN model, while the validating set is used to check the
performance of the model after each training round. Since the length of the input and output
vectors are four and seven only, the artificial neural network (ANN) is well enough to achieve the
optimal design. There are seven hidden layers in the proposed ANN model, each hidden layer
has 16, 16, 32, 32, 16, 16, and 7 channels, respectively. All the layers except for the last one
come with a rectified linear activation function (ReLU). The channel in the last layer is the output
of the NN model representing the geometry configuration from Fig. 3 which is represented in the
following equation:

(v̄out) = [r1, r2, r3, r4, r5, r6, h] (2)

where r1, r2, r3, r4, r5, r6 denote the radii of the six layers and h is the thickness of the GRIN lens.

https://doi.org/10.6084/m9.figshare.23865360
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After training with 100 iterations, the proposed model can precisely predict the geometry
configuration from (v̄out). Hence, we can feed the model with the desired (v̄in) so that the desired
optimal geometry configuration (v̄out) is achieved. However, if the values of (v̄in) exceed the
performance limitation of the proposed GRIN lens, (v̄out) may not get the same performance
as (v̄in). As a result, it is required to re-validate the connection between (v̄in) and (v̄out) via
the numerical simulation software. After several trials, an optimal geometry configuration is
achieved and validated by FDTD method. According to Fig. 3, the performance with respect
to the output spectral balance is much better for the inverse-design than the initial design. The
detail comparison of the initial and optimal design is represented in Table 1.

Table 1. Top: Comparison of initial numerical GRIN lens parameters to the machine Learning
optimized parameters. Bottom: The performance comparison of the initial and optimal design for (i)

all-zero all-one case and (ii) half-zero half one case as represented by the output wave
characteristics.

From Table 1, the optimized design of the GRIN lens shows minimal increases of all radii
except r3 with changes being no more than 15%. However, the biggest change occurred with a
factor of two increase of the thickness. This means the radii sizes were near optimal from the
initial numerical analysis and that the amount of the computational metamaterial interacting with
the incident wave is crucial in achieving the best output amplitudes and full width half maximum
(FWHM) for both cases. The thickness of the GRIN lens needs to be at least one-working
wavelength in such a way that the wave can better interact with the medium. The thicker the
medium the better the interaction will be. However, if the GRIN lens is too thick, the focal point
may fall inside the GRIN lens.

For the constant function case the amplitude has been increased by about 26 % and the FWHM
has been decreased by 52%. For the balanced function, the first peak had its amplitude increased
by 50% and its FWHM decreased by 26% while the second peak was already close to optimal.
Knowing that the efficiency of this method is proportional to the ratio the FWHM of the incoming
and outgoing waves [21] we can see from the spectral improvements that the optimization
enhanced the device. For the output of either balanced or constant functions, the sharper peaks
(higher amplitude and smaller FWHM) mean greater distribution of the wave intensity, stronger
focus of the outgoing wave, and a better probability of handling a higher number of database
inputs [4,21] as shown in bottom right of Fig. 4 and in the red plot of the right panel of Fig. 3.
Cheng et al. also showed an enhancement of their balance function through increasing the
number of phase elements in their oracle block.[20] Our design makes the fabrication process
simpler for this improvement in output in that we only have to manufacture a thicker GRIN lens.

4. Conclusion

To summarize, we designed, with machine learning, an optimized all-dielectric metadevice as a
part of a quantum algorithm emulator for simulating the DJ algorithm in the THz region. Initial
structural optimization was constructed using numerical analysis based on FDTD to evaluate
its initial performance. Using a ML-based optimization procedure, the original design of the
structure was further engineered for an enhanced performance as shown by the two-fold increase
in the thickness of the GRIN lens. The resultant optimization showed performance improvements
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in the amplitude and FWHM of the peaks for both the balanced and constant cases and shows
promise for the emulation of quantum algorithms with current THz technologies.
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