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Abstract: With the overwhelming number of older reinforced concrete buildings that need to be assessed for seismic 
vulnerability in a city, local governments face the question of how to assess their building inventory. By leveraging engineering 
drawings that are stored in a digital format, a well-established method for classifi cation reinforced concrete buildings with 
respect to seismic vulnerability, and machine learning techniques, we have developed a technique to automatically extract 
quantitative information from the drawings to classify vulnerability. Using this technique, stakeholders will be able to rapidly 
classify buildings according to their seismic vulnerability and have access to information they need to prioritize a large 
building inventory. The approach has the potential to have signifi cant impact on our ability to rapidly make decisions related 
to retrofi t and improvements in our communities. In the Los Angeles County alone it is estimated that several thousand 
buildings of this type exist. The Hassan index is adopted here as the method for automation due to its simple application 
during the classifi cation of the vulnerable reinforced concrete buildings. This paper will present the technique used for 
automating information extraction to compute the Hassan index for a large building inventory.
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1     Introduction

Reducing the loss of life and economic and social 
impact in the aftermath of an earthquake goes hand in hand 
with reducing the vulnerability of buildings to the hazard 
(Loos et al., 2020). Seismically vulnerable buildings 
include non-engineered construction and buildings 
with design defi ciencies such as soft-story and vertical 
stiff ness irregularities. Seismic assessment methods 
that can capture such defi ciencies range from empirical 
assessment approaches such as on-site screenings and 
scoring methods to more accurate and detailed methods 
such as non-linear time history analysis (Kassem et al., 
2020). But the high quantity of buildings in a given city 
can make it challenging to allocate suffi  cient funds for 
retrofi t programs in buildings where it is more necessary 
(Loos et al., 2020). Cities with large building inventories 
will appreciate the potential benefi ts of automation and 

have access to an automated ranking system that will 
expose those buildings in their inventory that need to be 
carefully studied and, if necessary, retrofi tted before a 
major seismic event tests the built environment. 

Some researchers have explored methods to assist 
with building vulnerability classifi cation. Yeum et al. 
(2016, 2018) designed defi nitions and corresponding 
image classifi ers to classify images of buildings into 
“collapsed” and “non-collapsed” based on images 
containing a building overview. As categorizing the 
buildings from the information generated through a 
single image could cause bias, researchers have also 
developed methods to fuse the information from more 
than one single building image. For example, with data 
from hurricane surveys conducted in 2020, Lenjani et al. 
(2020) developed a Bayesian-based method to classify 
the post-event condition of a house. Later, Liu et al. 
(2022) enhanced this method to classify the damage 
state of a set of building images. An example of recently 
developed machine learning assisted technology to 
help manage city-scale building inventories is BRAILS 
(Wang et al., 2019), where building properties are 
extracted from Google imagery and local government 
agencies to develop building information models (BIM) 
and store information relevant to risk management. 
Another example is SURF (Yu et al., 2019), a building 
classifi er, that uses Google imagery to sweep through 
cities to obtain geometric information such as building 
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roof shapes and buildings with a potential soft-story 
mechanism, which are then used to populate building 
characteristics in BRAILS (Wang et al., 2019). Other 
eff orts include the use of information fusion and 
machine learning techniques to combine data from 
multiple sources and create a building inventory (Wang 
et al., 2021), and be able to analyze the several social 
dimensions that aff ect a city after a natural hazard 
(Szczyrba et al., 2021). 

The Hassan index (Hassan and Sozen, 1997) is 
selected for this study as the basis for classifying a 
building with respect to seismic vulnerability. The 
method is simple, widely studied and used, and only 
requires the fl oor plan area, the area of columns, and 
the area of concrete and/or masonry walls. We now 
aim to empower communities to make use of it through 
automation and artifi cial intelligence (AI), while scaling 
it to the city-level. The computer vision-based method 
is developed to extract information from the building 
structural drawings and such information can be then 
analyzed to determine the buildings′ vulnerability. 
Currently, the Hassan index calculation process requires 
considerable human eff ort. Based on the authors′ 
experience, manually generating the information from 
drawings takes around 1 hour per drawing, which could 
be made signifi cantly more effi  cient with machine 
learning methods. 

Now, let us examine the enabling role of computer 
vision to extract information from building drawings. 
Most of the popular applications of computer vision 
centered on the analysis of the content of natural scene 
images (Figs. 1(a) and 1(b)). Structural framing plan 
images (Fig. 1(c)) belong to the category of non-natural 
images along with graphic images, synthetic scene 
statistics, screen content images (Zheng et al., 2019) and 
images with text such as those of book pages (Xu et al., 
2016; Li et al., 2018). This distinction from natural scene 
images is of relevance because the semantic information 
that defi ne the content of these images such as local and 
global features show diff erent characteristics than those 
of natural scene images, for which examples can be 
found in the work of Min et al. (2021). 

The capability to read structural drawings using 
classical computer vision methods was very limited in the 

years before the boom of AI deep learning. Researchers 
had to hard code the rules to make the algorithm identify 
elements such as walls, columns, and dimension lines 
in the diff erent framing plan confi gurations and text 
styles, e.g., So et al. (1998), Gimenez et al. (2015), 
Lu and Lee (2017). Nowadays, deep learning neural 
networks are used to identify these patterns in structural 
and architectural framing plans to build 3D BIM models 
(Zhao et al., 2021; Lv et al., 2021), for recognition of 
special objects such as in piping drawings (Zhang et 
al., 2020) or structural components (Zhao et al., 2020), 
and for simplifying extensive complicated architectural 
drawings into simple fl oor plans (Kim et al., 2021). The 
analysis of structural framing plans has remained limited. 
The work of Lv et al. (2021) uses semantic segmentation 
to identify architectural elements such as partition walls, 
doors, windows along with spaces such as living room, 
balconies, and text detection to understand the space 
use in a building. Zhao et al. (2021) uses a combination 
of object detection to identify location of structural 
drawings and classical computer vision techniques to 
extract coordinates of the diff erent structural elements in 
a building and then build a 3D computational structural 
model. All of these works have been centered around 
the general characteristics of architectural and structural 
drawings. Our study focuses only on the characteristics 
present in framing plans of concrete buildings. Next, 
let′s examine the Hassan index and how to empower 
communities to classify large inventories of reinforced 
concrete buildings for the purpose of performing seismic 
vulnerability classifi cation in an automated way. 

The Hassan index (Hassan and Sozen, 1997) is a 
widely studied method for the classifi cation of seismic 
vulnerability of concrete buildings. The index is 
computed by calculating the areas of the load-bearing 
structural elements in a building: columns and walls 
with respect to the total area of the fl oors above the 
critical story. For the columns, the column index (CI) is 
calculated as presented in Eq. (1), where ∑Ac is the sum 
of the cross-sectional areas of columns on the fi rst fl oor. 
For the wall index (WI) Eq. (2), ∑Aw is the sum of cross-
sectional areas of reinforced concrete structural walls on 
the fi rst fl oor, ∑Amw is the sum of cross-sectional areas of 
infi ll masonry walls in the fi rst level. In both equations, 

Fig. 1   (a) Bridge image from the ImageNet repository (Deng et al., 2009), (b) building image from Datacenter Hub (Chungwook et al., 
           2018), and (c) a structural framing plan from our inventory
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and ∑AF is the sum of fl oor areas from the fi rst fl oor 
and up, without including the ground-fl oor. The Hassan 
index (often called, the priority index) is calculated using 
Eq. (3), by adding the column index with the minimum 
of the wall indexes in each horizontal direction. By 
using Eq. (4), the curve classifi es vulnerable and non-
vulnerable buildings, as these are defi ned by Hassan 
and Sozen (1997). It is to be noted that Eq. (4) needs 
to be calibrated for each city and the coeffi  cients set in 
this linear inequality should change accordingly as it is 
discussed in the work by Pujol et al. (2020).
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Similar scoring indexes like the Hassan index exist 
in the literature (Lv et al., 2021), and examples include 
the “wall index” in Europe for load-bearing masonry 
and RC shear walls (Yeum et al., 2016, 2018), and the 
“capacity index” (Kassem et al., 2020) that considers 
plan irregularities, column length and workmanship. 
The “performance score index” (Kassem et al., 2020)  
considers material quality, steel corrosion, vertical and 
horizontal irregularities, ground conditions, depth of 
foundation, seismicity, and other parameters (Kassem 
et al., 2020). These methods require the review of 
architectural, structural, and geotechnical information, 
resulting in increased eff ort. The Hassan index′s 
simplicity has attracted attention from numerous 
researchers throughout the years (Liu et al., 2022; 
Wang et al., 2019). Many researchers that have further 
investigated the index by (1) adding additional structural 
parameters and parameters related to the seismic hazard 
such as the peak ground acceleration (Pujol et al., 2020), 
or by (2) adding weights to the CI and WI parameters to 
modify the classifi cation model and make the threshold 
more robust. Pujol et al., (2020) explains that such 
parameters defi ning the slope that separates vulnerable 
buildings are less critical than the local quality of the 
buildings and suggests that cities defi ne a local threshold 
for a retrofi t program. It must be noted that the Hassan 
index is meant to be calibrated with site-specifi c building 
data to be used as a classifi cation tool one city at a time, 
refl ecting the view expressed in Pujol et al. (2020). 
Moreover, evidence from past studies (Pujol et al., 2020; 
Brzev et al., 2017; Balbirnie et al., 2021) clearly shows 

that severe damage can be expected in buildings with 
lower CI and WI values. 

An example on the eff ect of seismic vulnerability 
boundaries in the building environment is discussed 
by Jury and Ferner (2015), for New Zealand. The new 
building standard index (%NBS) is an index used in 
New Zealand for classifying a building as seismically 
vulnerable. The New Zealand Code defi nes a building 
as earthquake prone when the building presents a %NBS 
of 34% or lower. After the 2010-2011 Canterbury 
earthquakes and with thousands of buildings with 
moderate to severe damage, the %NBS had a signifi cant 
impact on the built environment in New Zealand as 
some insurance companies would insure buildings based 
on the %NBS limits (Marquis et al., 2017). A discussion 
of the comparison between the %NBS and the Hassan 
index is off ered by Balbirnie et al. (2021). This study 
mentions that when using the %NBS for the reinforced 
concrete buildings in Christchurch that collapsed in 
the 2010-2011 Canterbury earthquakes (buildings such 
as the Pyne Gould Corporation (PGC) and Canterbury 
Television (CTV) buildings), were not classifi ed as 
“earthquake prone” and would have not been examined 
for retrofi t, while if they were instead assessed using 
the Hassan index as classifi er for that city, the buildings 
would have been classifi ed as vulnerable, meaning the 
building would have undergone a structural evaluation. 
This comparison does not reach any conclusion regarding 
the superiority of an index over another, but rather 
signals the importance of calibration when defi ning a 
boundary for vulnerable buildings. The Hassan index is 
not a fi t-for-all index used in classifi cation, as Hassan 
and Sozen (1997) explain in the original paper. The 
index leaves more information out than it takes in and 
is no replacement for expert knowledge when assessing 
the vulnerability of a building. However, it is useful 
in the classifi cation of those buildings that may need a 
post-event structural engineering inspection. 

The AI off ers the opportunity to automate the 
calculation of the Hassan index and extend its 
application to larger inventories of reinforced concrete 
buildings. The Hassan index was developed to rank 
reinforced concrete building vulnerability, and that is 
the vision of the authors of this paper when coupled 
with the technique presented herein. As more data is 
collected for more regions, the decision boundary can 
become more robust and adaptive for local conditions. 
One of the main challenges that remain when using 
available AI-based models involves the curation of a 
suffi  ciently large database. Open databases exist for 
architectural drawings. These include the Cubi-Casa5K 
(So et al., 1998) dataset that contains 5,000 fl oor plan 
images of framing plans from the Finland architecture 
and the Rent3D (R3D) (Gimenez et al., 2015) dataset 
with 215 fl oor plans. These are architectural framing 
plans centered on spatial distribution and lack structural 
elements. Currently, there is no openly available dataset 
for structural framing plans and researchers must build 
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their own curated database (Zhao et al., 2021).
The development of a database of structural drawings 

consists of fi rst collecting structural framing plans from 
around the world. While structural framing plans have 
certain level of standardization, each company decides 
how to ultimately present their structural drawings in their 
own predefi ned style. The database used for training and 
validation of the model must contain as many of these 
styles as possible to be able to develop robust models 
against unseen styles (Zhao et al., 2021). Examples 
of the framing plans in our inventory are presented 
in Fig. 2 and the general information of the dataset is 
listed in Table 1. To date, our drawing dataset consists 
of 245 structural framing plans. Fifteen percent of these 
framing plans belong to structural drawings that have 
been collected during reconnaissance missions after a 
major earthquake. Thirty fi ve percent belong to drawings 
built before the 1990′s, and fi fty fi ve percent of the 245 
framing plans belong to buildings built within the last 20 
years. Our dataset is divided into 4 diff erent collections 

of structural drawing images, each from a diff erent 
region of the world. A summary of the description of the 
contents of the dataset is shown in Table 1 and Table 2 
along with some of the typical details found for columns, 
in Fig. 3, and walls, in Fig. 4. The dataset is intentionally 
built to contain a diverse arrange of patterns and styles for 
the details contained in a structural drawing. This dataset 
includes 2 types of fl oor plans: regular and irregular. 
Regular fl oor plans are defi ned by their shapes, which 
are nearly square or rectangular, and irregular fl oor plans 
include those that are non-rectangular such as L-shaped 
buildings or rectangular fl oor plans with re-entrant 
corners. The dataset also includes two types of drawing 
methods, using computer software and hand drawn. It 
also includes two types of sources; the fi rst source type is 
scanned structural drawings as PDF fi les and the second 
type is camera-captured structural drawings as JPG fi les. 
The camera captured structural drawings are of varied 
quality, including images similar to those that might be 
obtained in the fi eld with low contrast, folding lines, 

(a) (b)

(c) (d)

Fig. 2  Examples of sections from the structural drawings in our inventory examples from (a) Taiwan, China (b) Ecuador 
             (c) New Zealand (d) United States
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blurred, or ink stains.
In Dataset 1 (D1), about 60 % of the structural 

elements in drawings have no infi ll pattern, 30% have 
a solid fi ll pattern, and 10% have customized infi ll 
patterns. Also, 80% of the drawings in this dataset do not 
have any walls. The fl oor plans for type of this dataset 
are 60% regular. In addition, 70% of the drawings in 
this dataset have high resolution. All these drawings are 
computer-aided, and the source of the input is either a 
camera and scanned documents, representing 30% and 
70%, respectively. In Dataset 2 (D2), about 55% of 
the drawings have customized fi ll patterns, 40% of the 

drawings have no fi ll pattern, and 5% of the drawings 
have full block pattern. For this dataset, 5% of the 
drawings have no columns and only contain walls, 92% 
contain only columns and 3% contain columns and 
walls. Moreover, the drawings in this dataset have high 
resolution. In Dataset 3 (D3), about 60% of the drawings 
have customized fi ll pattern. Seventy percent of the 
drawings in this dataset D3, are hand drawn. In Dataset 
4 (D4), about 80% of the drawings have fi ll pattern 
column features and customized fi ll pattern wall features. 
Furthermore, 80% of the drawings in this dataset have a 
high resolution. All drawings are 50% computer-aided 
and 50% manually drawn by hand. 

2  Automation of the Hassan index: technical 
     approach 

The general outline of the automation of the 
calculation of the Hassan index for a given set of 
structural drawings is shown in Fig. 5. The process starts 
with the identifi cation of an inventory of N number of 
buildings for the calculation of the Hassan index (Step 
1). Next, the user needs to locate the critical framing 
plan from the structural drawing set and manually 
delineate the area of the structural drawing that contains 
the framing plan (Step 2). Then, by using deep learning 
segmentation models, columns and walls (Step 3) are 
automatically identifi ed within the framing plan and 
printed on an image mask for the columns and an image 
mask for the walls. The next step is the generation of 
the framing plan based on the patches′ prediction from 
the previous step and because segmentation predictions 
are often accompanied by noise in the prediction, we 
adopt automated standard computer vision techniques 
for denoising to remove the noise from the images (Step 

          Table 1  General information of the inventory

Label Number of framing plans Place of Origin
D1 57 Taiwan, China
D2 128 Ecuador; Indonesia
D3 54 New Zealand
D4 6 USA

 Table 2  Drawing scale variation of the inventory

Drawing scale Framing plans (%)
1:40 2
1:50 23
1:75 7
1:100 37
1:150 5
1:200 3

1/4″:1′-0″ 3
1/8″:1′-0″ 10

Not mentioned 10

(a) Customized fi ll patterns (b) No infi ll pattern
Fig. 3  Examples of fi ll patterns found in columns

(a) Customized fi ll pattern (b) Full block pattern inside wall (c) No infi ll pattern
Fig. 4  Fill patterns found in walls
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4). The next step is to fi nd the framing plan area, the 
structural elements are then enclosed in a perimeter using 
the concave hull algorithm developed by Kalinina et al. 
(2018), which then serves to calculate the area of the 
fl oor plan (Step 5). The fl oor plan area only includes the 
area that is confi ned by columns, and areas of cantilevers 
are neglected. With the area ratios of columns and 
walls calculated, we obtain the column and wall index 
pair for the building (Step 5). The user still needs to 
manually set the number of stories in each building, as 
this information can only be obtained from an elevation 
plan. Until this moment the user has given the relevant 
portion of framing plan as an input, and obtained the 
Hassan index parameters, the Hassan index and a mask 
of the columns and walls overlayed on the framing plan. 
Using a quick visual inspection, the user needs to accept 
or reject the model based on the overlay of the prediction 
mask on the framing plan. Then, we move on to the next 
building and start over from Step 2, until all available 
buildings in the city inventory have been read to defi ne a 
decision boundary (Step 6). Once the decision boundary 
is determined, one can readily prioritize among the 
inventory of buildings being considered and generate a 
spatial vulnerability map (Step 7).

Because the Hassan index is calculated entirely 
using area ratios, calculating the true dimensions and 
areas of columns or walls is not necessary (i.e., the 
dimensions are not needed). Using segmentation, the 
pixels enclosed by the boundary of the columns and 
walls can be calculated. This area of pixels is divided by 
the area of the perimeter enclosed by the most exterior 
columns and walls. As a preprocessing step, all framing 
plans in the dataset were denoised using the Sauvola and 
Pietikäinen (2000) and NiBlack (1985) fi lters available 
in the Scikit Image (van der Walt et al., 2014) library 
to remove salt-paper noise and shading present in some 
drawings. Then, 25 framing plans were set aside for 
the evaluation of the technique, and the remaining 220 
framing plan were used for training the models. 

2.1  Training of the deep learning models

Two prediction models were trained, one model 
for columns and one model for walls. The models 
were trained using the U-Net model developed by 
Ronneberger et al. (2015), and the focal Tversky loss 
(Abraham and Khan, 2019), which is popular in the 
literature for training on datasets with a relatively high 
class imbalance for segmentation problems (Yeung et 
al., 2021). Hyperparameter tuning was performed for 
selecting the following parameters: the loss function 
coeffi  cients, the learning rate, the images numbers in the 
batches and the number of layers in the neural network. 
For the training models, we used the focal Tversky loss 
with the delta factor of 0.10, which controls the false 
positives and negatives weighting, and the gamma factor 
of 0.75 which controls the degree of down-weighting of 
easy examples. Both parameters (alpha and gamma) 
were found to be the same for the columns model and 
for the walls model. An initial leaning rate of 1×10-3 with 
exponential decay of 0.90 was used for both models, 
decaying every 10,000 steps for the columns model 
and every 2,000 steps for the walls model. The columns 
dataset for training had a total of 65,000 images patches 
and the walls model had a total of 35,000 images 
patches. Each model had 3 layers for the encoder and 
the decoder architecture. It was found that more layers 
did not signifi cantly aff ect the model accuracy. The 
model for the columns were trained on 50 epochs with a 
batch size of 10 grayscale images. For the walls model, 
the training was on 100 epochs, with a batch size of 5 
grayscale images. The WI and the CI depend on the areas 
of columns, walls, and fl oor area. The Dice coeffi  cient 
is selected as the metric for evaluating the prediction 
accuracy for the wall and column areas. The equation 
for this metric is given in Eq. (5), where true positives 
(TP), false positives (FP) and false negatives (FN) refer 
to these values at a pixel level.

Fig. 5  Overview of the technical approach
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 
2TPDICE

2TP + FP + FN
     

                 
(5) 

Drawings of the framing plan have an average size 
of approximately 10,000 × 8,000 pixels, ranging from 
2,000 × 4,000 pixels to 15,000 × 10,000 pixels. Drafting 
details (when available) such as section cuts, column 
details and building information were removed from 
the sheet by manually cutting the sheet so that the 
fi nal drawing input to the algorithm only included the 
gridlines and the framing plan. The structural drawings 
need to be divided into smaller pieces before training 
and smaller portions of the aforementioned section cuts 
of structural elements and fl oor systems can appear on 
an image and perhaps be mistaken for a column or a 
wall, if not removed. The result of this prediction could 
result in the prediction of a non-existent column or wall 
that will produce a fl oor plan diff erent from the true fl oor 
plan. Columns and walls were annotated using standard 
segmentation tools (Labelbox, 2022). Examples of 
segmentation masks of the complete framing plan 
for two structural framing plans are shown in Fig. 6,  
columns are shown in blue and walls in green. 

For training, the 220 framing plans were divided 
into smaller image patches as seen in Fig. 7. As seen in 
these fi gures, the colors of the framing plans have been 
inverted for training. The data was then augmented by 
fl ipping and rotating the images to generalize features for 
columns and walls and by applying fi lters that changed 
the image intensities (Buslaev et al., 2020). It was found 
in our early trials that the tone of lines in a framing plan 
would aff ect the result predictions. The columns model 
used patches with a size of 512 × 512 pixels and an 
overlap of 20% among image patches, and the wall model 

uses patches with 640×640 pixels and an overlap of 10% 
among image patches. Because a structural framing plan 
often has empty spaces in between structural elements, 
partitioning of the framing plans into smaller images 
results in a large quantity of images that contain no 
information. Thus, images having zero RGB intensity 
(0,0,0) were fi ltered out of the training in advance, as 
they have a detrimental eff ect on the training model. We 
found that such images comprise approximately 25% of 
the images for the columns model and approximately 
15% of the images for the walls model, based on the total 
image patches. Including these images during training 
would cause the training to experience complete batches 
of images with no information to learn, and ultimately 
slow down the training. At this stage, the 220 framing 
plans patches are then randomly divided into training, 
validation and testing sets using a split of 70%, 20% and 
10%, respectively.

During training, the model had to overcome two 
types of class imbalances. The fi rst type of class 
imbalance is related to the fact that the background 
occupies more than 95% of the image. As evidenced by 
the column index, even in small framing plans with big 
columns, the columns only occupy about 2% of an image 
containing the complete framing plan. The second type 
of class imbalance is that walls appear much less often 
in the training set than columns. For training the wall′s 
prediction model, the number of columns was under-
sampled by selecting one patch from every two patches, 
to obtain a more uniform composition of patches of walls, 
columns, and background information during training for 
this model. The dataset for this training was assembled 
as follows: 50% of patches contain structural walls and 
augmented walls, 30% of patches of images that contain 
columns and 20% of image patches that contain details 

(a)
Fig. 6  Typical ground truth of a structural drawing containing (a) columns and (b) columns and walls

(b)

Fig. 7  Typical image patch
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like stairs, gridlines, section lines, and fl oor openings. 
For a rectangular element to be considered a wall and not 
a column, a shape factor (defi ned as height over width) 
of 5 was used during the preprocessing. 

Next, results of the column prediction model and 
the wall prediction model are evaluated for purposes of 
establishing possible limitations and how they could be 

improved. The training and validations plots for the Dice 
coeffi  cient metric are shown in the appendix Fig. A1 for 
both models. After 50 epochs, the validation accuracy 
is 60% for the column′s prediction model. After 100 
epochs, the validation accuracy is 58% for the wall′s 
prediction model. Both models show to have a Dice 
coeffi  cient close to 60% which can be explained by the 

Fig. 8   Examples of patches, ground truth, predictions for unseen images of the testing set for examples (a), (b), (c), and (d). In blue: 
            columns, in white: the column prediction

(a) (b) (c) (d)

Fig. 9  Examples of patches, ground truth, predictions for images of the testing set for examples (a), (b), (c), and (d). In blue: the 
            column′s mask, in white: the column prediction

(a) (b) (c) (d)
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lack of semantic information around the edges of the 
patches and by the scale of the walls and columns with 
respect to the patch size as evidenced in the examples 
shown in Figs. 8 to 11.

In Figs. 8 to 11, a representative set of the segmentation 
results are shown for both the columns model and 
walls model. The ground truth (GT) is in blue color 

for the columns and green color for the walls. Figure 8 
shows that the model can predict columns in a variety 
of framing plan styles and with columns with diff erent 
shapes and boundary conditions. Additionally, the model 
recognizes that symbols, Fig. 8(c), and text, Figs. 8(a) to 
8(d), are not columns. On the other hand, Fig. 9 shows 
where the model has failed. Figures 9(a) and 9(b) shows 

Fig. 10  Examples of patches, ground truth, predictions for images of the testing set for examples (a), (b), (c), and (d). In blue: the 
              column′s mask, in green: the wall′s mask, in white: the wall prediction

(d)(c)(b)(a)

Fig. 11    Examples of patches, ground truth, predictions for unseen images of the testing set for examples (a), (b), (c), and (d). In blue:
               the column′s mask, in green: the wall′s mask, in white: the wall prediction

(d)(c)(b)(a)
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that the model does not recognize as columns the cases 
where there are non-concentric lines intersecting the 
columns. Figure 9(d) shows that near the stairs detail, 
a line that indicates the direction of the stairs forms a 
column-like shape, which was recognized as columns. 
Figures 10 and 11 show the prediction results for images 
from the testing set within the pool of drawings selected 
for training. Images in Fig. 10 show that walls are 
predicted in all cases where there is an infi ll pattern in 
rectangular regions. Figure 11 shows that the model has 
some problems predicting walls in images having lower 
resolution Fig. 11(a), and walls having lines intersecting 
in non-concentric regions Figs. 11(c) and 11(d). The 
result also shows in Fig. 11(b), that a complete wall 
predicted in a joint region. 

3  Implementation of the approach

This section focuses on the computer vision 
techniques and algorithms used for the calculation of 
the Hassan index. These steps are generation of the 
framing plan from the prediction models, denoising of 
the generated framing plan, and calculation of areas for 
the columns, walls, and fl oor plan area. These steps have 
been previously briefl y introduced in Fig. 5 from Steps 
4 and 5.

3.1  Regenerating the framing plan 

Once the selection of a framing plan is carried out, 
a sliding window with the same patch size used during 
training is passed through the full image every 100 pixels 
as input for the prediction model. The model will predict, 
for each pixel, a probability that is between 0 and 1. This 
value represents the probability that a pixel belongs 
to the column class for the column prediction model, 
or, similarly, to the wall class for the wall prediction 
model. When the probability for a pixel is higher than 
or equal to 0.5, the pixel is more likely to belong to the 
corresponding class. The closer this probability is to 1, 
the more confi dent this prediction is. We have selected 
a threshold of 0.70. Thus, when the probability is 0.70 
or higher, then the result for that pixel is rounded up 
to 1, indicating it falls into the corresponding class.  
Otherwise, the result is set to 0, indicating it is not in 
the corresponding class. Cropping the framing plans in 
small patches is the standard practice for deep learning-
based methods for semantic segmentation because of 
the limitations of the GPU memory for accommodating 
deep learning operations. Therefore, overlapping the 
predictions patches (Messaoud et al., 2022), averaging 
(Müller et al., 2020), clipping (Huang et al., 2018) and 
eliminating the smaller areas (Kestur et al., 2019) in the 
prediction is used herein during this stage for improving 
the fi nal prediction. The prediction for the columns 
model gives an image of 512×512 pixels and then the 
image is clipped 100 pixels along the four borders of 
the image, with a fi nal size of 312×312 pixels. The 

prediction for the walls model gives an image of 640×640 
pixels, that is clipped around the edges resulting in 
an image of 440×440 pixels for the walls model. The 
patches are then overlapped, when at least 50% of these 
patches are overlapped for the columns model of the 
overlapped patches and walls prediction model have the 
same prediction (appendix Fig. A2(a)), the pixel wise 
prediction is deemed as truth (see appendix, Fig. A2(b)). 
These two boundaries were found by comparing the 
minimum number of patches needed to obtain less noise 
and a better prediction. When cropped images may or 
may not contain an entire wall (or an entire column), 
the pattern that characterizes walls might become more 
diffi  cult to identify. 

 Using semantic segmentation results for calculating 
the area ratios for columns and walls makes the result 
sensitive to the noise in the prediction. The intensity of 
each pixel in an image is binarized using a threshold of 
0.70 (Messaoud et al., 2022). Then, a dilatation kernel is 
slid over the generated framing plan with a size of ten-
by-ten pixels, (a kernel size chosen based on experience 
in this dataset) to fi ll the pixel with pixel value of zero 
inside the elements (columns, and walls) that did not 
get fi lled through the pixel-wise prediction. This step 
is performed for both the columns and walls. Then, the 
elements geometric characteristics such as area and 
centroids are obtained using the SciPy module (Virtanen 
et al., 2020). 

Columns tend to have similar sizes within a framing 
plan. We found that walls do not share this feature and 
thus this denoising approach of removing the smaller 
elements is only applied to the column′s prediction mask. 
To take advantage of this fact on the columns′ mask, the 
denoising approach used here depends on the average 
pixel area of columns within three standard deviations 
of the predicted elements in the framing plan. Then, a 
condition with two thresholds is established to remove 
columns from the framing plan. The average length of 
the columns for a given framing plan is multiplied by 
0.1 to obtain the minimum limit and by 5 to obtain the 
maximum limit. For example, if the average length the 
columns is around 30 cm (12 in), then all areas smaller 
than 5 by 5 cm (2 by 2 inches) and greater than 150 
by 150 cm (60 by 60 inches) will be deleted from the 
image. These thresholds were selected based on the type 
of errors observed in the predictions.

Noise removal using the techniques mentioned 
herein has been performed for the evaluation set, using 
the ratio of the false positives (FPR). These techniques 
include overlapping the prediction patches, averaging 
the patches, clipping and eliminating the smaller areas 
(the latter, only applicable in columns). This ratio is 
then calculated using the total pixel area predicted by 
the segmentation model (PAFalsePositives) divided by the 
true fl oor plan area. The equation can be found in the 
appendix, Eq. (A1).  The eff ect of these techniques can 
be found in the Fig. A3 for the complete evaluation set. 
This fi gure shows that the techniques are eff ective in 
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removing noise in 24 of the 25 cases. Because of the 
hard-coded nature of these denoising techniques, several 
patches can present the same wrong prediction on a 
diffi  cult example resulting in the enforcement of a false 
positive These denoising techniques also hint that there 
is a logical path for removal of false positives, which can 
also be tackled by increasing the size of the training set. 
Finally, Fig. A4 demonstrates the eff ect on the column 
predictions with and without the denoising techniques 
on one framing plan. 

3.2  Finding the pixel area of columns and walls

The calculation of the Hassan index begins by 
obtaining the area of pixels of walls and columns 
through the segmentation prediction model developed 
and tested in the previous section. The calculation of the 
areas and centers of columns is simple. Columns present 
themselves as isolated and can either be rectangular or 
circular. The area is calculated by counting the non-zero 
pixels in the generated framing plan mask for columns. 

Morphological operations were used to calculate 
the area and direction of the walls that are predicted by 
the wall model. The process for calculating the WI in 
both the X- and Y-directions is shown Algorithm 1. The 
process starts with calculating the medial axis (Tam and 
Heidrich, 2003), as shown in Fig. 12(b) and the distance 
transform as shown in Fig. 12(c) for a walls mask as 
shown in Fig. 12(a). The medial axis is sensitive to 

noise and small branches will appear even on denoised 
images, because the borders in this image can still 
present some small imperfections, especially in a 
prediction mask. With the medial axis we have the main 
skeleton of a wall, but this wall is one body and thus 
the wall is trimmed at intersections through automatic 
morphological operations of the OpenCV (Bradski and 
Kaehler, 2000) implementation of the PlantCV library 
(Gehan et al., 2017). This results in the generation of 
N segments. The points generated from each segment 
are then fi tted with N regression lines that defi ne the 
walls. These regression lines allow us to calculate the 
directionality of each of the walls and also determine 
whether they are perpendicular or parallel to each other, 
regardless to the true direction of the wall (Fig. 6(b)). 
Here we also take notice of a common domain-specifi c 
feature known to apply to structural framing plans: walls 
tend to be designed to be perpendicular to each other 
(Fig. 6(b)). We then take the dot product among the N 
lines vectors and separate those walls that are parallel to 
each other and the walls that are perpendicular, resulting 
in a symmetric N × N matrix containing zeros and ones. If 
two vectors are parallel, the result will be one; if they are 
perpendicular then the result will be zero. Because some 
borders might be imperfect, a threshold for 2 vectors to 
be parallel or perpendicular is set to 15 degrees. This 
value was selected to accommodate imperfections of the 
segmentation prediction and the subsequent branches 
generated by the medial axis method. Then, we multiply 

Fig. 12  (a) Ground truth of a wall, (b) medial axis skeleton and (c) distance transform in a label
(a) (b) (c)

 Algorithm 1  Calculation of the areas of walls

Algorithm 1

Input: mask from the wall prediction model
Output: areas of walls and angles in Wx and Wy direction 

1 [Skeleton], [Thickness]=Medial_axis (Prediction mask)

2  Segments
N

=Trim_Intersections (skeleton)   #Segments coordinates for each segment of walls
4 Vectors, angles=Linear_Regression[Segments]        #Obtain the vector equation for each line and its angle
5 Orthogonality[threshold=15] = Vectors (.)Vectors       #Take the dot product among vectors

6    W Orthogonality* Thickness * Length        #Add all areas in parallel directions

7    W,angles Kmeans angles,W,Sillouethe  #Obtain areas and angles of walls in each direction

8 [ ,  ,  ] sort[W,angles],  x x y yW angle W angle    #Sort cluster centers for areas and angles and fi nd  Wx, and Wy
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this orthogonality matrix, by the vector of width of 
the segments, resulting in a vector with length N×1. 
These are fi nally divided using a K-means algorithm 
(Vassilvitskii and Arthur, 2006; Pedregosa et al., 2011) 
by using the angle of each vectorized line segment. This 
angle was calculated for each segment in the skeleton 
with respect to the horizontal. The K-means algorithm 
uses then the area and angles of each of the segments to 
separate the wall area and angles pairs into clusters. The 
Silhouette score (Rousseeuw, 1987) is used to select the 
optimum number of clusters to separate these pairs. The 
result of K-means algorithm is the cluster centroid pairs. 
The output of Algorithm 1 is the area of the walls in each 
direction with its respective angles. These are obtained 
by sorting the clusters in order and by obtaining the 
two highest area of walls if walls exist in two diff erent 
directions, or obtaining the maximum area of walls if 
walls exist only in one direction.  For the calculation of 
the Hassan index only the areas are used, but the engineer 
can verify the results by obtaining the same expected 
angle for each wall direction from a visual inspection of 
the framing plan. Because of the presence of some false 
positive in some predictions, WI value less than 0.05% 
are not considered in this calculation and are set to zero. 

3.3  Finding the fl oor plan area

The next step is to calculate the fl oor area in terms 
of the number of pixels. The concave hull method 
developed by Kalinina et al. (2018) was selected to 
derive an approximate contour of the perimeter of 
the framing plan. This algorithm uses the Delaunay 
method which connects the coordinates of elements in 

a drawing and generates triangles with sides that depend 
on a length “L”. The value of L depends on the average 
distance among the coordinates and a given parameter 
α. This algorithm uses interpolation to give curved lines 
along the contour because its original application was for 
geospatial applications. Here the algorithm is modifi ed 
to skip this interpolation and simply use straight lines, 
as shown in the representative results shown in Fig. 13. 
As shown in Figs. 13(a)–13(c), using the concave hull 
method the column coordinates (represented as points) 
are all enclosed within an area. The shape of this area 
converges from a concave hull (α =0.5) to a convex hull 
(α =1). For this particular framing plan, the closest shape 
to the true framing plan is the concave hull with an α 
of 0.55. For the concave hull with an α =1, the error of 
the area is 15% in comparison to the optimized α =0.55. 
With an α of 0.7, the error is of 4%.

At this step both the pixel area of columns and the 
pixel area of walls have been calculated and denoised. 
Algorithm 2 is used for fi nding the perimeter and pixel 
area of the fl oor plan. The fi rst step is to calculate the 
coordinates of both the columns and the walls within the 
framing plan. For the columns, we use the centroid as 
coordinates (CC), while for the walls coordinates (WC), 
we obtain the coordinates from the vectorization process 
from Algorithm 1. Because the walls have several 
segments within an element, we set the minimum of 
coordinate pairs that come from a wall as 3 (start, mid 
and end). But ultimately, the number of coordinates pairs 
depend on the length of a wall segment and the thickness 
of a wall segment. A coordinate pair will be taken every 
10 times the thickness of the wall in the segment being 
evaluated. Segments with lengths less than 1 times the 

(a) Framing plan (b) α=0.55

(c) α=0.7 (d) α=1
Fig. 13  Selection of alpha for concave hull
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thickness of the wall segment evaluated are removed 
from this calculation. Once we obtain the coordinates of 
both structural elements, then we iterate from an alpha 
shape of 0.7 up to an alpha shape of 1, in increments Δ 
of 0.05. In each iteration we perform two checks. The 
fi rst check is the number of openings within an area, and 
we perform this check by fi nding the number of contours 
inside the generated shape. Here we defi ne an opening as 
an empty area within a framing plan perimeter. Because 
the triangulation depends on the alpha parameter and 
distance among element coordinates, empty areas can be 
generated inside a polygon, see more in Kalinina et al. 
(2018). Openings are not captured by the Hassan index 
and thus this does not impact the results when openings 
do exist within a framing plan. The second check is the 
number of polygons used to generate the shape that 
encloses the points. When these two conditions: the 
number of polygons and the number of contours is 1, 
then we break the loop with the minimum alpha shape 
possible, and thus the minimum area possible that can be 
generated with these points without having any openings 
inside the framing plans. 

As explained by Kalinina et al. (2018), good 
approximations for a concave shape can typically be 
found with an α between 0.5 and 0.8. However, as the α 
is reduced, more points are needed to fi nd a close-fi tting 
shape. For this study, it was found that an α between 0.7 
and 1 would be a better fi t for most irregular framing 
plans. However, it was found that when the average 
error relative to the true area for irregular plans would be 
around 15% or more, this method could deeply impact 
the results for the Hassan index. 

4  Evaluation of the approach

In this section, we assess the approach and the 
robustness of the technique from beginning to end. The 
twenty-fi ve framing plans of the evaluation set from 
the dataset split (10% of the total framing plans in the 
inventory) were used in the evaluation of the approach. 
These framing plans were not part of the prediction 
models training, and they were separated from the four 
datasets proportionally using random selection. The true 
Hassan index was determined by going through each set 

of structural drawings, annotating, and calculating the 
area of columns, walls, and the area of the critical fl oor. 
This process can take from 10 minutes to 1.5 hours with 
an average of 30 min per building.  This evaluation set is 
composed of fi ve framing plans from Dataset 1, thirteen 
framing plans from Dataset 2, four framing plans from 
Dataset 3 and three framing plans from Dataset 4. The 
automation of the Hassan index consists of obtaining 
column and wall ratios for each framing plan, and thus 
the metrics used in this section center around evaluating 
how the segmentation results alter the index calculation. 
The metrics used herein are defi ned in Eq. (6) to Eq. (15).

The equations for calculating the error in the column 
index, wall index, and the Hassan index (HI) are given in 
Eqs. (6) to  (9). These equations seek to compare the true 
Hassan index and its components to the calculated using 
the approach developed herein. In these equations, the 
true values use the subscript: “GT” or ground truth. The 
indices calculated with this approach use the subscript: 
“predicted”. The error calculations for Eqs. (9a) and (9b) 
take the minimum among the WI in both directions when 
there are walls in both directions. The Hassan index is 
calculated using Eq. (10a) and Eq. (10b). Equation (10a) 
calculates the HI using the CI and WI with ground truth 
framing plan area, and Eq. (10b), calculates the HI, 
including the calculated framing plan area. The predicted 
indices: CIpredicted, WIx,predicted and WIy,predicted, in Eqs. (11) 
to (13), use the predicted column pixels (CPpredicted), 
predicted wall pixel in the X-direction (WPx,predicted) and 
the predicted wall pixel in the Y-direction (WPy,predicted) 
as calculated on the previous section. Note that for these 
equations, the fl oor plan area from the ground truth (GT) 
is used and not the fl oor plan area generated through the 
predictions. This distinction is performed to separate the 
error of the found framing plan from the Hassan index 
calculation. The error of the found framing plan, is 
calculated using Eq. (14). As previously mentioned, this 
method works well for regular framing plans. However, 
a great portion of the dataset contains irregular framing 
plans with strong re-entrant corners. The fl oor plan error 
(FPE) is calculated as the ratio of the found fl oor plan 
area through the algorithm to the fl oor plan area obtained 
from the mask. Finally, the vectorized area from the GT 
mask and from the prediction are compared with Eq. (15). 

Algorithm 2  Shape fi nding algorithm for the framing plan

Algorithm 2
Input: Framing plan mask of columns and walls
Output: Area of the fl oor plan 

1 [CC]=coordinates (CM)
2 [WC]=discretize (WM, min=3, step=10*w, remove=1*w) 
4 For α = [0.7 to 1, Δ= 0.5]:
5            Area, perimeter, Numpolygons = Delaunay (α, CC, WC)
6            Numcontours= contour(area)    #Find number of contours 
8            If Numcontours = 1 and Numpolygons = 1:
9                  Break
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This metric intends to measure the total area of a wall 
that has been selected from the generated wall framing 
plan to be vectorized area.
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Error calculations are demonstrated with two 
examples from Dataset 3 for Example A and from 
Dataset 2 for Example B. Both structural drawings are 
rich in structural details to demonstrate the robustness of 
the prediction models on the framing for this inventory. 
The drawings have the masks overlayed with blue for 
the columns and green for the walls. 

Example A is a framing plan from the New Zealand 
dataset (see framing plan in the appendix, Fig. A5). 
Both walls and columns presented a similar infi ll pattern 
as shown in the close-up details that can be found the 
appendix, Fig. A6. As seen in this prediction results for 
this framing plan (Fig. 14), there are two columns near 
the stairs detail where both the columns and walls model 
had predicted columns and walls (respectively). This 
prediction is highlighted with red arrows in Fig. 14. With 
these prediction masks, we continue to Step 5 from Fig. 5 
which is calculating the area of columns and walls. 
The area of columns can be readily obtained from the 
prediction mask. For the area of the walls, the walls need 
to be vectorized following the steps of Algorithm 2. The 
skeleton, before vectorization is shown in Fig. 15 for 
(a) GT and for (b) prediction mask. It can be seen that 
the prediction mask presents a few false positives. The 
percentage of the false positives is presented in Table 4, 
and is 0.26% with respect to the fl oor plan area of the 
GT. Some of these fragments will erroneously contribute 
to the calculation of the wall index. When compared to 
the label skeleton, this prediction will have 5% more 
area to distribute than the GT, as shown in Table 4. The 
next step is calculating the fl oor perimeter given the 
coordinates of the columns and the coordinates of the 
walls. Unlike the columns, the walls are discretized. The 
“form fi nding” for the fl oor perimeter is shown in Fig. 16. The 
fi nal perimeter closely relates to the true shape of the 
building, but it skips a small area as seen in Fig. 16(b). 
The evaluation metrics are summarized in Table 3 and 
Table 4.

Example B is a framing plan from the Ecuador 
dataset. Both walls and columns presented characteristics 
like other walls and columns present in Dataset 3. The 
labelled framing plan along with the column and wall 
characteristics are shown in the appendix, Fig. A7 and 
Fig. A8. As seen in these prediction results for this 
framing plan (Fig. 17), one column is predicted (shown 
in cyan) in the walls area, and one column is missing 
from the prediction on the left to the wall. This behavior 
can be explained from the training. When they are 
present, the boundary elements would be labelled as 
columns and not as part of the walls. Now, with these 
prediction masks, we continue to the next step which is 
calculating the area of columns and walls. The area of 
columns can be readily obtained from the mask. For the 
walls calculation, the skeletons for (a) GT and for (b) 
prediction mask are shown in Fig. 18. It can be seen that 
the prediction mask presents a few false positives, less 
than what we saw in Example A. The percentage of FP 
is presented in Table 4, and is 0.06% with respect to the 
fl oor plan area of the mask. The next step is calculating 
the fl oor perimeter given the coordinates of the columns 
and the coordinates of the walls. The form fi nding for 
the fl oor perimeter is shown in Fig. 19. This is a regular 
plan, and thus the error is less likely to be large. The 
evaluation metrics are summarized in Tables 3 and 4. 
Results show that this framing plan had overall good 
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results and should be used to calculate the Hassan index. 
The evaluation metrics for the complete evaluation 

set are shown in Fig. 20. There is a total of 25 drawings, 
of which all contained columns and 13 contained walls in 
at least one direction. Example A is framing plan number 
11 and Example B is framing plan number 17. The 
results explained in the tables above can be also found in 
this figure with the corresponding framing number. 
Figure 20(a) divides the results by dataset because each 
dataset had special characteristics. The average errors 

from all the framing plans in the calculation of the CI, 
WIy, WIx are 13.5%, 12.5% and 14%, respectively, for 
Figs. 20(b) to 20(d). Thus, a boundary of 15% was 
defi ned for these plots. Most of the framing plans with 
large errors (above the 15% error line) come from 
Dataset 1. The data in this dataset contains diverse 
architectural and structural details which can be diffi  cult 
to capture during training. The form fi nding perimeter 
of the framing plan in Fig. 20(e) shows that the ratio of 
the framing plans is around 0.95, with one outlier. This 

Fig. 14  Overlay of the prediction on the structural drawing

Fig. 15   Piece-wise segmentation of wall for (a) ground truth and (b) prediction mask
(a) Ground truth                                                                (b) Prediction



Fig. 17  Overlay of the prediction on the structural drawing
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(a) Ground truth for perimeter                                                 (b) Perimeter tracing 
Fig. 16   (a) Floor plan for the ground truth and (b) the form fi nding results for the fl oor plan



outlier, which almost doubled the framing plan area, had 
a highly irregular fl oor plan. Again, because this is a 
visual method, it would likely be necessary to make the 
calculation for this drawing by hand after detecting that 
the generated framing plan area is diff erent from the true 
one. The vectorized wall ratio Fig. 20(f), shows more 
variability than other metrics. If the prediction model 
failed in detecting the walls, there would be more area 

or less area to be accounted in the calculation and thus 
if the error in the wall index prediction is large so will 
be the vectorized area ratio.  The Hassan index error 
calculated using the ground truth framing plan area 
is shown in Fig. 21, here the average error among all 
points is 14.35%. Note that for this calculation all the 
errors calculated previously accumulate, which can be 
observed by the number of points above the 15% line 

Fig. 18  Piece-wise segmentation of wall for (a) mask and (b) prediction 
(a) Ground truth                                                          (b) Prediction

(a) Ground truth for the perimeter                   (b) Perimeter tracing

Fig. 19  Perimeter tracing for (a) ground truth and prediction (b) mask
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 Table 3  Evaluation of the Hassan index parameters 

Example A Example B
Metric True value Calculated Relative error (%) True value Calculated Relative error (%)

Column index (CI) 0.734% 0.81% 10.27 0.503% 0.509% 1.16
Wall index in X (Wx) 0.814% 0.776% 4.65 0.357% 0.346% 2.98
Wall index in Y (Wy) 0.767% 0.772% 0.53 0.321% 0.341% 6.18

Floor plan area (pixels) 10963024 10819524 1.3 1473701 1415330 3.96
HIpredicted (%) 1.501% 1.582% 5.46 0.824% 0.850% 3.16
HIcalculated (%) 1.501% 1.603% 6.80 0.824% 0.885% 7.4

 Table 4  Evaluation of the segmentation 

Metric Example A Example B
False positives in columns 0.26% 0.059%

False positives in walls 0.22% 0.01%
Vectorized wall area 1.048 0.853



and their distance above this line. Note that 30% of the 
drawings are above this line. When including only those 
framing plans that fall below the 15% limit, the average 
accuracy of the remaining 18 framing plans, is 94.96% 
(from 85.64%). The Hassan index error calculated using 
the complete approach developed herein is shown 
in Fig. 22. When comparing Figs. 21 to 22, we can 
visualize the eff ect of using the convex hull technique for 
irregular fl oor plans. When including only those framing 
plans that fall below the 15% limit, the average accuracy 
of the remaining 18 framing plans, is 93.43% (from 
80.88%). These results show there is an opportunity to 
improve the method with the use of deep learning-based 
segmentation techniques to predict the framing plan area 
when enough structural drawings become available.   

To summarize, our approach to automate the Hassan 
index and the Hassan index parameters show the average 
accuracy of the Hassan index estimation in the evaluation 
dataset is of 80.88%, making this a good approach for 
calculation of this index. Regarding the set of the framing 
plans where the approach failed, it can be explained by 
noting that this data was trained on a limited training 
images set of about 220 framing plans, which highlights 
the importance of the quantity and quality of data needed 

for training neural networks. For the cases studied in 
this section, the predictions models failed at times to 
identity correctly columns or walls because specifi c 
features were available in the framing plan. For walls, 
these features include diff erent infi ll patterns or no infi ll, 
and cluttered non-concentric lines within beams could 
be predicted as walls because the model can only extract 
a small patch to predict at a time. For columns, errors in 
the prediction result from cluttered lines inside columns, 
or columns without beams near them. The walls model 
was less susceptible to salt-and-pepper noise than the 
columns prediction model.  These results indicate that the 
remaining challenges can be overcome with the addition 
of more framing plans in the training set. However, due 
to the large variety of drawing standards, even when a 
larger inventory is available for training, there still could 
be drawings with details that will not be recognized by 
the detector. For this evaluation set, the ratio of framing 
plans that had an error greater than 15% was 30% of 
the drawings in this set.  In practice, we would leave 
this portion of drawings to the human. In this case, the 
machine learning model can process one drawing in less 
than 5 minutes, which extremely improves the working 
effi  ciency, compared to manually conduct drawings. 
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Fig. 20  Evaluation metrics for the 25 drawings in the evaluation set. (a) Dataset breakdown, (b) column index error, (c) wall 
               index error in X, (d) wall index error in Y, (e) fl oor area ratio, and (f) vectorized ratio 

(a)

(b)

(c) (d)

(e) (f)

Framing plan

Framing planFraming plan



From the training of the models to the inference, the 
denoising of the images and the calculation of the Hassan 
index parameters, a desktop computer was used with 
the following specifi cations: CPU - Intel i9-7820X @ 
2.9Ghz, GPU - NVIDIA GeForce RTX 2080Ti - 11GB. 

4.1  Remarks on limitations of the approach

The method presented in this paper can be applied 
to the calculation of the Hasan index provided that some 
conditions are met in the structural drawings: (1) the 
drawings need to be at scale, and (2) framing plans need 
to be more or less regular. For irregular plans, for best 
results the user should trace the perimeter of the framing 
plan. Alternatively, one may use a prediction model 
with an architecture such as the U-Net (Ronneberger 
et al., 2015) to fi nd the area of the framing plan. These 
limitations exist in the automation of the Hassan index 
calculation and off er opportunities for future research to 
improve the method.

5  Conclusions

A method for automating the calculation of a 
vulnerability index to empower cities to rank and classify 
reinforced concrete buildings is developed and validated 
herein. The Hassan index is used as the classifi cation 
tool for seismic vulnerability because it has been used by 

hundreds of researchers to correlate damage and seismic 
vulnerability since it was fi rst proposed in 1997. The 
parameters included in this index are the area of columns 
and walls on the fi rst fl oor, which play an important role 
in the capacity of the building to withstand seismic 
demands, and the area of the framing plan, which is 
used for calculating the seismic demand. The simplicity 
of this method lends itself to the ability to automate 
the calculations by integrating current computer vision 
techniques. 

This study shows that deep learning based semantic 
segmentation and computer vision techniques can be 
used in the automation of the Hassan index calculation 
for one building at a time.  The average accuracy 
of the approach adopted in this study is of 80.88%. 
This approach is human aided as it still needs human 
component to verify visually that the segmentation 
predictions have been done correctly per framing plan. 
Still, by using the approach explained herein, engineers 
can greatly reduce the man hours used to calculate the 
Hassan index for complex and large structural drawings. 
Moreover, this works opens up the ability to obtaining 
geometric information from framing plans such as 
plan torsional irregularity, shape ratios of columns and 
walls, among other characteristics useful for design 
and analysis of buildings. This new information could 
be benefi cial for enriching the building inventories and 
calculating other indexes. 

With an inventory of 245 unique framing plans of 
structural and architectural drawings, we were able to 
estimate the Hassan index for these concrete buildings. 
While some limitations still remain, this work illustrates 
progress towards the automation of the Hassan index for 
an inventory of concrete buildings.
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Fig. A3  Eff ect on the denoising techniques on the elimination of the false positives for the predictions

Fig. A4  Eff ect on the denoising techniques on the elimination of the false positives for the prediction of columns (blue). (a) Before 
              denoising techniques, (b) after denoising techniques, (c) ground truth

(a) (b) (c)
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(a) (b)
Fig. A2  (a) Sliding window producing overlap, (b) result of overlap 

(a) (b)
Fig. A1  Training and validation for (a) columns prediction model and (b) walls prediction model



Fig. A5  Overlay of the structural drawing and the ground truth of columns (blue) and walls (green)
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Fig. A6  Close up of column and wall details in the framing plan

(a) Column                                                                                          (b) Wall
 



Fig. A7  Overlay of the structural drawing and the ground truth of columns (blue) and walls (green)

Fig. A8  Column and wall details in the structural drawing
(a) Columns details                                                                                       (b) Wall detail
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