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Abstract: With the overwhelming number of older reinforced concrete buildings that need to be assessed for seismic
vulnerability in a city, local governments face the question of how to assess their building inventory. By leveraging engineering
drawings that are stored in a digital format, a well-established method for classification reinforced concrete buildings with
respect to seismic vulnerability, and machine learning techniques, we have developed a technique to automatically extract
quantitative information from the drawings to classify vulnerability. Using this technique, stakeholders will be able to rapidly
classify buildings according to their seismic vulnerability and have access to information they need to prioritize a large
building inventory. The approach has the potential to have significant impact on our ability to rapidly make decisions related
to retrofit and improvements in our communities. In the Los Angeles County alone it is estimated that several thousand
buildings of this type exist. The Hassan index is adopted here as the method for automation due to its simple application
during the classification of the vulnerable reinforced concrete buildings. This paper will present the technique used for
automating information extraction to compute the Hassan index for a large building inventory.
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1 Introduction

Reducing the loss of life and economic and social
impactin the aftermath of an earthquake goes hand in hand
with reducing the vulnerability of buildings to the hazard
(Loos et al., 2020). Seismically vulnerable buildings
include non-engineered construction and buildings
with design deficiencies such as soft-story and vertical
stiffness irregularities. Seismic assessment methods
that can capture such deficiencies range from empirical
assessment approaches such as on-site screenings and
scoring methods to more accurate and detailed methods
such as non-linear time history analysis (Kassem et al.,
2020). But the high quantity of buildings in a given city
can make it challenging to allocate sufficient funds for
retrofit programs in buildings where it is more necessary
(Loos et al., 2020). Cities with large building inventories
will appreciate the potential benefits of automation and
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have access to an automated ranking system that will
expose those buildings in their inventory that need to be
carefully studied and, if necessary, retrofitted before a
major seismic event tests the built environment.

Some researchers have explored methods to assist
with building vulnerability classification. Yeum et al.
(2016, 2018) designed definitions and corresponding
image classifiers to classify images of buildings into
“collapsed” and “non-collapsed” based on images
containing a building overview. As categorizing the
buildings from the information generated through a
single image could cause bias, researchers have also
developed methods to fuse the information from more
than one single building image. For example, with data
from hurricane surveys conducted in 2020, Lenjani et al.
(2020) developed a Bayesian-based method to classify
the post-event condition of a house. Later, Liu ef al.
(2022) enhanced this method to classify the damage
state of a set of building images. An example of recently
developed machine learning assisted technology to
help manage city-scale building inventories is BRAILS
(Wang et al., 2019), where building properties are
extracted from Google imagery and local government
agencies to develop building information models (BIM)
and store information relevant to risk management.
Another example is SURF (Yu et al., 2019), a building
classifier, that uses Google imagery to sweep through
cities to obtain geometric information such as building
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roof shapes and buildings with a potential soft-story
mechanism, which are then used to populate building
characteristics in BRAILS (Wang et al., 2019). Other
efforts include the use of information fusion and
machine learning techniques to combine data from
multiple sources and create a building inventory (Wang
et al., 2021), and be able to analyze the several social
dimensions that affect a city after a natural hazard
(Szczyrba et al., 2021).

The Hassan index (Hassan and Sozen, 1997) is
selected for this study as the basis for classifying a
building with respect to seismic vulnerability. The
method is simple, widely studied and used, and only
requires the floor plan area, the area of columns, and
the area of concrete and/or masonry walls. We now
aim to empower communities to make use of it through
automation and artificial intelligence (Al), while scaling
it to the city-level. The computer vision-based method
is developed to extract information from the building
structural drawings and such information can be then
analyzed to determine the buildings’ vulnerability.
Currently, the Hassan index calculation process requires
considerable human effort. Based on the authors’
experience, manually generating the information from
drawings takes around 1 hour per drawing, which could
be made significantly more efficient with machine
learning methods.

Now, let us examine the enabling role of computer
vision to extract information from building drawings.
Most of the popular applications of computer vision
centered on the analysis of the content of natural scene
images (Figs. 1(a) and 1(b)). Structural framing plan
images (Fig. 1(c)) belong to the category of non-natural
images along with graphic images, synthetic scene
statistics, screen content images (Zheng et al., 2019) and
images with text such as those of book pages (Xu et al.,
2016; Li et al., 2018). This distinction from natural scene
images is of relevance because the semantic information
that define the content of these images such as local and
global features show different characteristics than those
of natural scene images, for which examples can be
found in the work of Min et al. (2021).

The capability to read structural drawings using
classical computer vision methods was very limited in the

years before the boom of Al deep learning. Researchers
had to hard code the rules to make the algorithm identify
elements such as walls, columns, and dimension lines
in the different framing plan configurations and text
styles, e.g., So et al. (1998), Gimenez et al. (2015),
Lu and Lee (2017). Nowadays, deep learning neural
networks are used to identify these patterns in structural
and architectural framing plans to build 3D BIM models
(Zhao et al., 2021; Lv et al., 2021), for recognition of
special objects such as in piping drawings (Zhang et
al., 2020) or structural components (Zhao et al., 2020),
and for simplifying extensive complicated architectural
drawings into simple floor plans (Kim et al., 2021). The
analysis of structural framing plans has remained limited.
The work of Lv et al. (2021) uses semantic segmentation
to identify architectural elements such as partition walls,
doors, windows along with spaces such as living room,
balconies, and text detection to understand the space
use in a building. Zhao et al. (2021) uses a combination
of object detection to identify location of structural
drawings and classical computer vision techniques to
extract coordinates of the different structural elements in
a building and then build a 3D computational structural
model. All of these works have been centered around
the general characteristics of architectural and structural
drawings. Our study focuses only on the characteristics
present in framing plans of concrete buildings. Next,
let's examine the Hassan index and how to empower
communities to classify large inventories of reinforced
concrete buildings for the purpose of performing seismic
vulnerability classification in an automated way.

The Hassan index (Hassan and Sozen, 1997) is a
widely studied method for the classification of seismic
vulnerability of concrete buildings. The index is
computed by calculating the areas of the load-bearing
structural elements in a building: columns and walls
with respect to the total area of the floors above the
critical story. For the columns, the column index (CI) is
calculated as presented in Eq. (1), where Y'4_is the sum
of the cross-sectional areas of columns on the first floor.
For the wall index (WI) Eq. (2), 3.4 is the sum of cross-
sectional areas of reinforced concrete structural walls on
the first floor, >’ 4 is the sum of cross-sectional areas of
infill masonry walls in the first level. In both equations,

Fig.1 (a) Bridgeimage from the ImageNet repository (Deng et al., 2009), (b) building image from Datacenter Hub (Chungwook et al.,

2018), and (c) a structural framing plan from our inventory
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and ) A4, is the sum of floor areas from the first floor
and up, without including the ground-floor. The Hassan
index (often called, the priority index) is calculated using
Eq. (3), by adding the column index with the minimum
of the wall indexes in each horizontal direction. By
using Eq. (4), the curve classifies vulnerable and non-
vulnerable buildings, as these are defined by Hassan
and Sozen (1997). It is to be noted that Eq. (4) needs
to be calibrated for each city and the coefficients set in
this linear inequality should change accordingly as it is
discussed in the work by Pujol et al. (2020).
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Similar scoring indexes like the Hassan index exist
in the literature (Lv ef al., 2021), and examples include
the “wall index” in Europe for load-bearing masonry
and RC shear walls (Yeum et al., 2016, 2018), and the
“capacity index” (Kassem et al., 2020) that considers
plan irregularities, column length and workmanship.
The “performance score index” (Kassem et al., 2020)
considers material quality, steel corrosion, vertical and
horizontal irregularities, ground conditions, depth of
foundation, seismicity, and other parameters (Kassem
et al., 2020). These methods require the review of
architectural, structural, and geotechnical information,
resulting in increased effort. The Hassan index's
simplicity has attracted attention from numerous
researchers throughout the years (Liu er al., 2022;
Wang et al., 2019). Many researchers that have further
investigated the index by (1) adding additional structural
parameters and parameters related to the seismic hazard
such as the peak ground acceleration (Pujol et al., 2020),
or by (2) adding weights to the CI and WI parameters to
modify the classification model and make the threshold
more robust. Pujol et al., (2020) explains that such
parameters defining the slope that separates vulnerable
buildings are less critical than the local quality of the
buildings and suggests that cities define a local threshold
for a retrofit program. It must be noted that the Hassan
index is meant to be calibrated with site-specific building
data to be used as a classification tool one city at a time,
reflecting the view expressed in Pujol er al. (2020).
Moreover, evidence from past studies (Pujol et al., 2020;
Brzev et al., 2017; Balbirnie et al., 2021) clearly shows

that severe damage can be expected in buildings with
lower CI and WI values.

An example on the effect of seismic vulnerability
boundaries in the building environment is discussed
by Jury and Ferner (2015), for New Zealand. The new
building standard index (%NBS) is an index used in
New Zealand for classifying a building as seismically
vulnerable. The New Zealand Code defines a building
as earthquake prone when the building presents a %NBS
of 34% or lower. After the 2010-2011 Canterbury
earthquakes and with thousands of buildings with
moderate to severe damage, the %NBS had a significant
impact on the built environment in New Zealand as
some insurance companies would insure buildings based
on the %NBS limits (Marquis et al., 2017). A discussion
of the comparison between the %NBS and the Hassan
index is offered by Balbirnie et al. (2021). This study
mentions that when using the %NBS for the reinforced
concrete buildings in Christchurch that collapsed in
the 2010-2011 Canterbury earthquakes (buildings such
as the Pyne Gould Corporation (PGC) and Canterbury
Television (CTV) buildings), were not classified as
“earthquake prone” and would have not been examined
for retrofit, while if they were instead assessed using
the Hassan index as classifier for that city, the buildings
would have been classified as vulnerable, meaning the
building would have undergone a structural evaluation.
This comparison does not reach any conclusion regarding
the superiority of an index over another, but rather
signals the importance of calibration when defining a
boundary for vulnerable buildings. The Hassan index is
not a fit-for-all index used in classification, as Hassan
and Sozen (1997) explain in the original paper. The
index leaves more information out than it takes in and
is no replacement for expert knowledge when assessing
the vulnerability of a building. However, it is useful
in the classification of those buildings that may need a
post-event structural engineering inspection.

The Al offers the opportunity to automate the
calculation of the Hassan index and extend its
application to larger inventories of reinforced concrete
buildings. The Hassan index was developed to rank
reinforced concrete building vulnerability, and that is
the vision of the authors of this paper when coupled
with the technique presented herein. As more data is
collected for more regions, the decision boundary can
become more robust and adaptive for local conditions.
One of the main challenges that remain when using
available Al-based models involves the curation of a
sufficiently large database. Open databases exist for
architectural drawings. These include the Cubi-Casa5SK
(So et al., 1998) dataset that contains 5,000 floor plan
images of framing plans from the Finland architecture
and the Rent3D (R3D) (Gimenez et al., 2015) dataset
with 215 floor plans. These are architectural framing
plans centered on spatial distribution and lack structural
elements. Currently, there is no openly available dataset
for structural framing plans and researchers must build
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their own curated database (Zhao et al., 2021).

The development of a database of structural drawings
consists of first collecting structural framing plans from
around the world. While structural framing plans have
certain level of standardization, each company decides
how to ultimately present their structural drawings in their
own predefined style. The database used for training and
validation of the model must contain as many of these
styles as possible to be able to develop robust models
against unseen styles (Zhao et al., 2021). Examples
of the framing plans in our inventory are presented
in Fig. 2 and the general information of the dataset is
listed in Table 1. To date, our drawing dataset consists
of 245 structural framing plans. Fifteen percent of these
framing plans belong to structural drawings that have
been collected during reconnaissance missions after a
major earthquake. Thirty five percent belong to drawings
built before the 1990's, and fifty five percent of the 245
framing plans belong to buildings built within the last 20
years. Our dataset is divided into 4 different collections
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of structural drawing images, each from a different
region of the world. A summary of the description of the
contents of the dataset is shown in Table 1 and Table 2
along with some of the typical details found for columns,
in Fig. 3, and walls, in Fig. 4. The dataset is intentionally
built to contain a diverse arrange of patterns and styles for
the details contained in a structural drawing. This dataset
includes 2 types of floor plans: regular and irregular.
Regular floor plans are defined by their shapes, which
are nearly square or rectangular, and irregular floor plans
include those that are non-rectangular such as L-shaped
buildings or rectangular floor plans with re-entrant
corners. The dataset also includes two types of drawing
methods, using computer software and hand drawn. It
also includes two types of sources; the first source type is
scanned structural drawings as PDF files and the second
type is camera-captured structural drawings as JPG files.
The camera captured structural drawings are of varied
quality, including images similar to those that might be
obtained in the field with low contrast, folding lines,
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Fig. 2 Examples of sections from the structural drawings in our inventory examples from (a) Taiwan, China (b) Ecuador

(c) New Zealand (d) United States
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blurred, or ink stains.

In Dataset 1 (D1), about 60 % of the structural
elements in drawings have no infill pattern, 30% have
a solid fill pattern, and 10% have customized infill
patterns. Also, 80% of the drawings in this dataset do not
have any walls. The floor plans for type of this dataset
are 60% regular. In addition, 70% of the drawings in
this dataset have high resolution. All these drawings are
computer-aided, and the source of the input is either a
camera and scanned documents, representing 30% and
70%, respectively. In Dataset 2 (D2), about 55% of
the drawings have customized fill patterns, 40% of the

Table 1 General information of the inventory

Label  Number of framing plans Place of Origin

D1 57 Taiwan, China
D2 128 Ecuador; Indonesia
D3 54 New Zealand
D4 6 USA

Table 2 Drawing scale variation of the inventory

Drawing scale Framing plans (%)

1:40 2

1:50 23

1:75 7

1:100 37

1:150 5
1:200

1/4"1'-0" 3

1/8"1'-0" 10

Not mentioned 10

=
7] %

I

(a) Customized fill patterns

o

drawings have no fill pattern, and 5% of the drawings
have full block pattern. For this dataset, 5% of the
drawings have no columns and only contain walls, 92%
contain only columns and 3% contain columns and
walls. Moreover, the drawings in this dataset have high
resolution. In Dataset 3 (D3), about 60% of the drawings
have customized fill pattern. Seventy percent of the
drawings in this dataset D3, are hand drawn. In Dataset
4 (D4), about 80% of the drawings have fill pattern
column features and customized fill pattern wall features.
Furthermore, 80% of the drawings in this dataset have a
high resolution. All drawings are 50% computer-aided
and 50% manually drawn by hand.

2 Automation of the Hassan index: technical
approach

The general outline of the automation of the
calculation of the Hassan index for a given set of
structural drawings is shown in Fig. 5. The process starts
with the identification of an inventory of N number of
buildings for the calculation of the Hassan index (Step
1). Next, the user needs to locate the critical framing
plan from the structural drawing set and manually
delineate the area of the structural drawing that contains
the framing plan (Step 2). Then, by using deep learning
segmentation models, columns and walls (Step 3) are
automatically identified within the framing plan and
printed on an image mask for the columns and an image
mask for the walls. The next step is the generation of
the framing plan based on the patches’ prediction from
the previous step and because segmentation predictions
are often accompanied by noise in the prediction, we
adopt automated standard computer vision techniques
for denoising to remove the noise from the images (Step

(b) No infill pattern

Fig. 3 Examples of fill patterns found in columns

1) SR ERT R 5 PRI PR X

(a) Customized fill pattern

(b) Full block pattern inside wall
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(c) No infill pattern

Fig. 4 Fill patterns found in walls
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4). The next step is to find the framing plan area, the
structural elements are then enclosed in a perimeter using
the concave hull algorithm developed by Kalinina et al.
(2018), which then serves to calculate the area of the
floor plan (Step 5). The floor plan area only includes the
area that is confined by columns, and areas of cantilevers
are neglected. With the area ratios of columns and
walls calculated, we obtain the column and wall index
pair for the building (Step 5). The user still needs to
manually set the number of stories in each building, as
this information can only be obtained from an elevation
plan. Until this moment the user has given the relevant
portion of framing plan as an input, and obtained the
Hassan index parameters, the Hassan index and a mask
of the columns and walls overlayed on the framing plan.
Using a quick visual inspection, the user needs to accept
or reject the model based on the overlay of the prediction
mask on the framing plan. Then, we move on to the next
building and start over from Step 2, until all available
buildings in the city inventory have been read to define a
decision boundary (Step 6). Once the decision boundary
is determined, one can readily prioritize among the
inventory of buildings being considered and generate a
spatial vulnerability map (Step 7).

Because the Hassan index is calculated entirely
using area ratios, calculating the true dimensions and
areas of columns or walls is not necessary (i.e., the
dimensions are not needed). Using segmentation, the
pixels enclosed by the boundary of the columns and
walls can be calculated. This area of pixels is divided by
the area of the perimeter enclosed by the most exterior
columns and walls. As a preprocessing step, all framing
plans in the dataset were denoised using the Sauvola and
Pietikdinen (2000) and NiBlack (1985) filters available
in the Scikit Image (van der Walt et al., 2014) library
to remove salt-paper noise and shading present in some
drawings. Then, 25 framing plans were set aside for
the evaluation of the technique, and the remaining 220
framing plan were used for training the models.

2.1 Training of the deep learning models

Two prediction models were trained, one model
for columns and one model for walls. The models
were trained using the U-Net model developed by
Ronneberger et al. (2015), and the focal Tversky loss
(Abraham and Khan, 2019), which is popular in the
literature for training on datasets with a relatively high
class imbalance for segmentation problems (Yeung et
al., 2021). Hyperparameter tuning was performed for
selecting the following parameters: the loss function
coefficients, the learning rate, the images numbers in the
batches and the number of layers in the neural network.
For the training models, we used the focal Tversky loss
with the delta factor of 0.10, which controls the false
positives and negatives weighting, and the gamma factor
of 0.75 which controls the degree of down-weighting of
easy examples. Both parameters (alpha and gamma)
were found to be the same for the columns model and
for the walls model. An initial leaning rate of 1x10~* with
exponential decay of 0.90 was used for both models,
decaying every 10,000 steps for the columns model
and every 2,000 steps for the walls model. The columns
dataset for training had a total of 65,000 images patches
and the walls model had a total of 35,000 images
patches. Each model had 3 layers for the encoder and
the decoder architecture. It was found that more layers
did not significantly affect the model accuracy. The
model for the columns were trained on 50 epochs with a
batch size of 10 grayscale images. For the walls model,
the training was on 100 epochs, with a batch size of 5
grayscale images. The W1 and the CI depend on the areas
of columns, walls, and floor area. The Dice coefficient
is selected as the metric for evaluating the prediction
accuracy for the wall and column areas. The equation
for this metric is given in Eq. (5), where true positives
(TP), false positives (FP) and false negatives (FN) refer
to these values at a pixel level.

Identify Inventory of N

Calibrated slope

..i.ji..ij STEP 6 ‘

buildings

For 1 to N buildings

After the N building
parameters have been g
computed )/

STEP 3

STEP 4 STEP 7:

Identify most vulnerable
buildings

Fig. 5 Overview of the technical approach
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DICE = 21P )
(2TP +FP +FN)

Drawings of the framing plan have an average size
of approximately 10,000 x 8,000 pixels, ranging from
2,000 x 4,000 pixels to 15,000 x 10,000 pixels. Drafting
details (when available) such as section cuts, column
details and building information were removed from
the sheet by manually cutting the sheet so that the
final drawing input to the algorithm only included the
gridlines and the framing plan. The structural drawings
need to be divided into smaller pieces before training
and smaller portions of the aforementioned section cuts
of structural elements and floor systems can appear on
an image and perhaps be mistaken for a column or a
wall, if not removed. The result of this prediction could
result in the prediction of a non-existent column or wall
that will produce a floor plan different from the true floor
plan. Columns and walls were annotated using standard
segmentation tools (Labelbox, 2022). Examples of
segmentation masks of the complete framing plan
for two structural framing plans are shown in Fig. 6,
columns are shown in blue and walls in green.

For training, the 220 framing plans were divided
into smaller image patches as seen in Fig. 7. As seen in
these figures, the colors of the framing plans have been
inverted for training. The data was then augmented by
flipping and rotating the images to generalize features for
columns and walls and by applying filters that changed
the image intensities (Buslaev et al., 2020). It was found
in our early trials that the tone of lines in a framing plan
would affect the result predictions. The columns model
used patches with a size of 512 x 512 pixels and an
overlap of 20% among image patches, and the wall model

(a)

uses patches with 640x640 pixels and an overlap of 10%
among image patches. Because a structural framing plan
often has empty spaces in between structural elements,
partitioning of the framing plans into smaller images
results in a large quantity of images that contain no
information. Thus, images having zero RGB intensity
(0,0,0) were filtered out of the training in advance, as
they have a detrimental effect on the training model. We
found that such images comprise approximately 25% of
the images for the columns model and approximately
15% of the images for the walls model, based on the total
image patches. Including these images during training
would cause the training to experience complete batches
of images with no information to learn, and ultimately
slow down the training. At this stage, the 220 framing
plans patches are then randomly divided into training,
validation and testing sets using a split of 70%, 20% and
10%, respectively.

During training, the model had to overcome two
types of class imbalances. The first type of class
imbalance is related to the fact that the background
occupies more than 95% of the image. As evidenced by
the column index, even in small framing plans with big
columns, the columns only occupy about 2% of an image
containing the complete framing plan. The second type
of class imbalance is that walls appear much less often
in the training set than columns. For training the wall’s
prediction model, the number of columns was under-
sampled by selecting one patch from every two patches,
to obtain a more uniform composition of patches of walls,
columns, and background information during training for
this model. The dataset for this training was assembled
as follows: 50% of patches contain structural walls and
augmented walls, 30% of patches of images that contain
columns and 20% of image patches that contain details

<

< y

(®)

Fig. 6 Typical ground truth of a structural drawing containing (a) columns and (b) columns and walls
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like stairs, gridlines, section lines, and floor openings.
For a rectangular element to be considered a wall and not
a column, a shape factor (defined as height over width)
of 5 was used during the preprocessing.

Next, results of the column prediction model and
the wall prediction model are evaluated for purposes of
establishing possible limitations and how they could be

MASK DRAWING PATCH

PREDICTION

improved. The training and validations plots for the Dice
coefficient metric are shown in the appendix Fig. A1 for
both models. After 50 epochs, the validation accuracy
is 60% for the column's prediction model. After 100
epochs, the validation accuracy is 58% for the wall's
prediction model. Both models show to have a Dice
coefficient close to 60% which can be explained by the

RG1_265

-'L!Li-'ll-.-LHII
303036

33 4

—

Fig. 8 Examples of patches, ground truth, predictions for unseen images of the testing set for examples (a), (b), (¢), and (d). In blue:

columns, in white: the column prediction

DRAWING PATCH

MASK

PREDICTION

(@) (b)
Fig. 9 Examples of patches, ground truth, predictions for images of the testing set for examples (a), (b), (¢), and (d). In blue: the
column’s mask, in white: the column prediction

(©) (d)
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lack of semantic information around the edges of the
patches and by the scale of the walls and columns with
respect to the patch size as evidenced in the examples
shown in Figs. 8 to 11.

In Figs. 8 to 11, a representative set of the segmentation
results are shown for both the columns model and
walls model. The ground truth (GT) is in blue color

MASK DRAWING PATCH

PREDICTION

for the columns and green color for the walls. Figure 8
shows that the model can predict columns in a variety
of framing plan styles and with columns with different
shapes and boundary conditions. Additionally, the model
recognizes that symbols, Fig. 8(c), and text, Figs. 8(a) to
8(d), are not columns. On the other hand, Fig. 9 shows
where the model has failed. Figures 9(a) and 9(b) shows

(d)

Fig. 10 Examples of patches, ground truth, predictions for images of the testmg set for examples (a), (b), (c), and (d). In blue: the
column's mask, in green: the wall’s mask, in white: the wall prediction

MASK DRAWING PATCH

PREDICTION

Fig. 11 Examples of patches, ground truth, predictions for unseen images ofthe testmg set for examples (a), (b), (¢), and (d). In blue:
the column’s mask, in green: the wall’s mask, in white: the wall prediction
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that the model does not recognize as columns the cases
where there are non-concentric lines intersecting the
columns. Figure 9(d) shows that near the stairs detail,
a line that indicates the direction of the stairs forms a
column-like shape, which was recognized as columns.
Figures 10 and 11 show the prediction results for images
from the testing set within the pool of drawings selected
for training. Images in Fig. 10 show that walls are
predicted in all cases where there is an infill pattern in
rectangular regions. Figure 11 shows that the model has
some problems predicting walls in images having lower
resolution Fig. 11(a), and walls having lines intersecting
in non-concentric regions Figs. 11(c) and 11(d). The
result also shows in Fig. 11(b), that a complete wall
predicted in a joint region.

3 Implementation of the approach

This section focuses on the computer vision
techniques and algorithms used for the calculation of
the Hassan index. These steps are generation of the
framing plan from the prediction models, denoising of
the generated framing plan, and calculation of areas for
the columns, walls, and floor plan area. These steps have
been previously briefly introduced in Fig. 5 from Steps
4 and 5.

3.1 Regenerating the framing plan

Once the selection of a framing plan is carried out,
a sliding window with the same patch size used during
training is passed through the full image every 100 pixels
as input for the prediction model. The model will predict,
for each pixel, a probability that is between 0 and 1. This
value represents the probability that a pixel belongs
to the column class for the column prediction model,
or, similarly, to the wall class for the wall prediction
model. When the probability for a pixel is higher than
or equal to 0.5, the pixel is more likely to belong to the
corresponding class. The closer this probability is to 1,
the more confident this prediction is. We have selected
a threshold of 0.70. Thus, when the probability is 0.70
or higher, then the result for that pixel is rounded up
to 1, indicating it falls into the corresponding class.
Otherwise, the result is set to 0, indicating it is not in
the corresponding class. Cropping the framing plans in
small patches is the standard practice for deep learning-
based methods for semantic segmentation because of
the limitations of the GPU memory for accommodating
deep learning operations. Therefore, overlapping the
predictions patches (Messaoud et al., 2022), averaging
(Miiller et al., 2020), clipping (Huang et al., 2018) and
eliminating the smaller areas (Kestur et al., 2019) in the
prediction is used herein during this stage for improving
the final prediction. The prediction for the columns
model gives an image of 512x512 pixels and then the
image is clipped 100 pixels along the four borders of
the image, with a final size of 312x312 pixels. The

prediction for the walls model gives an image of 640x640
pixels, that is clipped around the edges resulting in
an image of 440%x440 pixels for the walls model. The
patches are then overlapped, when at least 50% of these
patches are overlapped for the columns model of the
overlapped patches and walls prediction model have the
same prediction (appendix Fig. A2(a)), the pixel wise
prediction is deemed as truth (see appendix, Fig. A2(b)).
These two boundaries were found by comparing the
minimum number of patches needed to obtain less noise
and a better prediction. When cropped images may or
may not contain an entire wall (or an entire column),
the pattern that characterizes walls might become more
difficult to identify.

Using semantic segmentation results for calculating
the area ratios for columns and walls makes the result
sensitive to the noise in the prediction. The intensity of
each pixel in an image is binarized using a threshold of
0.70 (Messaoud et al., 2022). Then, a dilatation kernel is
slid over the generated framing plan with a size of ten-
by-ten pixels, (a kernel size chosen based on experience
in this dataset) to fill the pixel with pixel value of zero
inside the elements (columns, and walls) that did not
get filled through the pixel-wise prediction. This step
is performed for both the columns and walls. Then, the
elements geometric characteristics such as area and
centroids are obtained using the SciPy module (Virtanen
et al., 2020).

Columns tend to have similar sizes within a framing
plan. We found that walls do not share this feature and
thus this denoising approach of removing the smaller
elements is only applied to the column’s prediction mask.
To take advantage of this fact on the columns’ mask, the
denoising approach used here depends on the average
pixel area of columns within three standard deviations
of the predicted elements in the framing plan. Then, a
condition with two thresholds is established to remove
columns from the framing plan. The average length of
the columns for a given framing plan is multiplied by
0.1 to obtain the minimum limit and by 5 to obtain the
maximum limit. For example, if the average length the
columns is around 30 cm (12 in), then all areas smaller
than 5 by 5 cm (2 by 2 inches) and greater than 150
by 150 cm (60 by 60 inches) will be deleted from the
image. These thresholds were selected based on the type
of errors observed in the predictions.

Noise removal using the techniques mentioned
herein has been performed for the evaluation set, using
the ratio of the false positives (FPR). These techniques
include overlapping the prediction patches, averaging
the patches, clipping and eliminating the smaller areas
(the latter, only applicable in columns). This ratio is
then calculated using the total pixel area predicted by
the segmentation model (PA, . .. ) divided by the
true floor plan area. The equation can be found in the
appendix, Eq. (A1). The effect of these techniques can
be found in the Fig. A3 for the complete evaluation set.
This figure shows that the techniques are effective in
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removing noise in 24 of the 25 cases. Because of the
hard-coded nature of these denoising techniques, several
patches can present the same wrong prediction on a
difficult example resulting in the enforcement of a false
positive These denoising techniques also hint that there
is a logical path for removal of false positives, which can
also be tackled by increasing the size of the training set.
Finally, Fig. A4 demonstrates the effect on the column
predictions with and without the denoising techniques
on one framing plan.

3.2 Finding the pixel area of columns and walls

The calculation of the Hassan index begins by
obtaining the area of pixels of walls and columns
through the segmentation prediction model developed
and tested in the previous section. The calculation of the
areas and centers of columns is simple. Columns present
themselves as isolated and can either be rectangular or
circular. The area is calculated by counting the non-zero
pixels in the generated framing plan mask for columns.

Morphological operations were used to calculate
the area and direction of the walls that are predicted by
the wall model. The process for calculating the WI in
both the X- and Y-directions is shown Algorithm 1. The
process starts with calculating the medial axis (Tam and
Heidrich, 2003), as shown in Fig. 12(b) and the distance
transform as shown in Fig. 12(c) for a walls mask as
shown in Fig. 12(a). The medial axis is sensitive to

noise and small branches will appear even on denoised
images, because the borders in this image can still
present some small imperfections, especially in a
prediction mask. With the medial axis we have the main
skeleton of a wall, but this wall is one body and thus
the wall is trimmed at intersections through automatic
morphological operations of the OpenCV (Bradski and
Kaehler, 2000) implementation of the PlantCV library
(Gehan et al., 2017). This results in the generation of
N segments. The points generated from each segment
are then fitted with N regression lines that define the
walls. These regression lines allow us to calculate the
directionality of each of the walls and also determine
whether they are perpendicular or parallel to each other,
regardless to the true direction of the wall (Fig. 6(b)).
Here we also take notice of a common domain-specific
feature known to apply to structural framing plans: walls
tend to be designed to be perpendicular to each other
(Fig. 6(b)). We then take the dot product among the N
lines vectors and separate those walls that are parallel to
each other and the walls that are perpendicular, resulting
in a symmetric N x N matrix containing zeros and ones. If
two vectors are parallel, the result will be one; if they are
perpendicular then the result will be zero. Because some
borders might be imperfect, a threshold for 2 vectors to
be parallel or perpendicular is set to 15 degrees. This
value was selected to accommodate imperfections of the
segmentation prediction and the subsequent branches
generated by the medial axis method. Then, we multiply

Algorithm 1 Calculation of the areas of walls

Algorithm 1

Input: mask from the wall prediction model

Output: areas of walls and angles in W _and Wy direction

1 [Skeleton], [Thickness]=Medial axis (Prediction mask)

2 [Segments]N =Trim_Intersections (skeleton) #Segments coordinates for each segment of walls

4 Vectors, angles=Linear Regression[Segments] #Obtain the vector equation for each line and its angle
5 Orthogonality[threshold=15] = Vectors (.)Vectors ~ #Take the dot product among vectors

6 W = Orthogonality*[ Thickness|*[Length] ~ #Add all areas in parallel directions

7 [W,angles| = Kmeans (angles, W, Sillouethe) #Obtain areas and angles of walls in each direction

8 [W., angle., W, angle ] =sort[W,angles] #Sort cluster centers for areas and angles and find W, and W

@ (b)

©

Fig. 12 (a) Ground truth of a wall, (b) medial axis skeleton and (c) distance transform in a label
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this orthogonality matrix, by the vector of width of
the segments, resulting in a vector with length Nx1.
These are finally divided using a K-means algorithm
(Vassilvitskii and Arthur, 2006; Pedregosa et al., 2011)
by using the angle of each vectorized line segment. This
angle was calculated for each segment in the skeleton
with respect to the horizontal. The K-means algorithm
uses then the area and angles of each of the segments to
separate the wall area and angles pairs into clusters. The
Silhouette score (Rousseeuw, 1987) is used to select the
optimum number of clusters to separate these pairs. The
result of K-means algorithm is the cluster centroid pairs.
The output of Algorithm 1 is the area of the walls in each
direction with its respective angles. These are obtained
by sorting the clusters in order and by obtaining the
two highest area of walls if walls exist in two different
directions, or obtaining the maximum area of walls if
walls exist only in one direction. For the calculation of
the Hassan index only the areas are used, but the engineer
can verify the results by obtaining the same expected
angle for each wall direction from a visual inspection of
the framing plan. Because of the presence of some false
positive in some predictions, WI value less than 0.05%
are not considered in this calculation and are set to zero.

3.3 Finding the floor plan area

The next step is to calculate the floor area in terms
of the number of pixels. The concave hull method
developed by Kalinina et al. (2018) was selected to
derive an approximate contour of the perimeter of
the framing plan. This algorithm uses the Delaunay
method which connects the coordinates of elements in

(a) Framing plan

(c) a=0.7

a drawing and generates triangles with sides that depend
on a length “L”. The value of L depends on the average
distance among the coordinates and a given parameter
o. This algorithm uses interpolation to give curved lines
along the contour because its original application was for
geospatial applications. Here the algorithm is modified
to skip this interpolation and simply use straight lines,
as shown in the representative results shown in Fig. 13.
As shown in Figs. 13(a)-13(c), using the concave hull
method the column coordinates (represented as points)
are all enclosed within an area. The shape of this area
converges from a concave hull (o =0.5) to a convex hull
(a=1). For this particular framing plan, the closest shape
to the true framing plan is the concave hull with an a
of 0.55. For the concave hull with an a =1, the error of
the area is 15% in comparison to the optimized a =0.55.
With an a of 0.7, the error is of 4%.

At this step both the pixel area of columns and the
pixel area of walls have been calculated and denoised.
Algorithm 2 is used for finding the perimeter and pixel
area of the floor plan. The first step is to calculate the
coordinates of both the columns and the walls within the
framing plan. For the columns, we use the centroid as
coordinates (CC), while for the walls coordinates (WC),
we obtain the coordinates from the vectorization process
from Algorithm 1. Because the walls have several
segments within an element, we set the minimum of
coordinate pairs that come from a wall as 3 (start, mid
and end). But ultimately, the number of coordinates pairs
depend on the length of a wall segment and the thickness
of a wall segment. A coordinate pair will be taken every
10 times the thickness of the wall in the segment being
evaluated. Segments with lengths less than 1 times the

(b) 0=0.55

(d) a=1

Fig. 13 Selection of alpha for concave hull
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Algorithm 2 Shape finding algorithm for the framing plan

Algorithm 2

Input: Framing plan mask of columns and walls

Output: Area of the floor plan

[CCJ=coordinates (CM)

Fora=1[0.7to 1, A=0.5]:
Area, perimeter, NumpolygonS

contours
If Num =1 and Num =1:
contours polygons

Break

O 0 AN W KN =

[WCl]=discretize (WM, min=3, step=10*w, remove=1*w)

= Delaunay (a, CC, WC)

Num = contour(area) #Find number of contours

thickness of the wall segment evaluated are removed
from this calculation. Once we obtain the coordinates of
both structural elements, then we iterate from an alpha
shape of 0.7 up to an alpha shape of 1, in increments 4
of 0.05. In each iteration we perform two checks. The
first check is the number of openings within an area, and
we perform this check by finding the number of contours
inside the generated shape. Here we define an opening as
an empty area within a framing plan perimeter. Because
the triangulation depends on the alpha parameter and
distance among element coordinates, empty areas can be
generated inside a polygon, see more in Kalinina et al.
(2018). Openings are not captured by the Hassan index
and thus this does not impact the results when openings
do exist within a framing plan. The second check is the
number of polygons used to generate the shape that
encloses the points. When these two conditions: the
number of polygons and the number of contours is 1,
then we break the loop with the minimum alpha shape
possible, and thus the minimum area possible that can be
generated with these points without having any openings
inside the framing plans.

As explained by Kalinina er al. (2018), good
approximations for a concave shape can typically be
found with an « between 0.5 and 0.8. However, as the a
is reduced, more points are needed to find a close-fitting
shape. For this study, it was found that an o between 0.7
and 1 would be a better fit for most irregular framing
plans. However, it was found that when the average
error relative to the true area for irregular plans would be
around 15% or more, this method could deeply impact
the results for the Hassan index.

4 Evaluation of the approach

In this section, we assess the approach and the
robustness of the technique from beginning to end. The
twenty-five framing plans of the evaluation set from
the dataset split (10% of the total framing plans in the
inventory) were used in the evaluation of the approach.
These framing plans were not part of the prediction
models training, and they were separated from the four
datasets proportionally using random selection. The true
Hassan index was determined by going through each set

of structural drawings, annotating, and calculating the
area of columns, walls, and the area of the critical floor.
This process can take from 10 minutes to 1.5 hours with
an average of 30 min per building. This evaluation set is
composed of five framing plans from Dataset 1, thirteen
framing plans from Dataset 2, four framing plans from
Dataset 3 and three framing plans from Dataset 4. The
automation of the Hassan index consists of obtaining
column and wall ratios for each framing plan, and thus
the metrics used in this section center around evaluating
how the segmentation results alter the index calculation.
The metrics used herein are defined in Eq. (6) to Eq. (15).

The equations for calculating the error in the column
index, wall index, and the Hassan index (HI) are given in
Egs. (6) to (9). These equations seek to compare the true
Hassan index and its components to the calculated using
the approach developed herein. In these equations, the
true values use the subscript: “GT” or ground truth. The
indices calculated with this approach use the subscript:
“predicted”. The error calculations for Egs. (9a) and (9b)
take the minimum among the W1 in both directions when
there are walls in both directions. The Hassan index is
calculated using Eq. (10a) and Eq. (10b). Equation (10a)
calculates the HI using the CI and WI with ground truth
framing plan area, and Eq. (10b), calculates the HI,
including the calculated framing plan area. The predicted
indices: CIpre dicea WL, . and WIy’pre s 10 Egs. (11)
to (13), use the predicted column pixels (CPpre diced)
predicted wall pixel in the X-direction (WP ) and

x,predicted

the predicted wall pixel in the Y-direction (WP sicied)
as calculated on the previous section. Note that for these
equations, the floor plan area from the ground truth (GT)
is used and not the floor plan area generated through the
predictions. This distinction is performed to separate the
error of the found framing plan from the Hassan index
calculation. The error of the found framing plan, is
calculated using Eq. (14). As previously mentioned, this
method works well for regular framing plans. However,
a great portion of the dataset contains irregular framing
plans with strong re-entrant corners. The floor plan error
(FPE) is calculated as the ratio of the found floor plan
area through the algorithm to the floor plan area obtained
from the mask. Finally, the vectorized area from the GT
mask and from the prediction are compared with Eq. (15).
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This metric intends to measure the total area of a wall
that has been selected from the generated wall framing
plan to be vectorized area.

(CIGT - CIpredicted)

Cl__ =
error CIGT (6)
WI _ (WI,\',GT - WIx,predicted) (7)
o WIx,GT
(WIy, GT — WIy, predicted )
Wl = i (8)
»,GT
(HI - HI redicte: )
HIerroripredicled = - e (93)
HI,
(HIGT —HI I ltd)
Hlerror calculated = S (9b)
e HI,;
HIpredicted = CIpredicted + min (Wy, predicted * Wx, predicted ) (loa)
CP_ .
HIcalculated = precees +
2 x Floor plan area .4
. WPx,predicted WPy,predicted
Floor plan area ;.. "Floor plan area predicted
(10b)
CP_.
Ipredicted = s ( 1 1 )
2 x Floor plan area,
WP .
I x,predicted = ~ g (1 2)
Floor plan area ;.
WP’ redicted
Iy, predicted = = t (1 3)

Floor plan area

Floor plan area ..
FPE _ p predicted (14)
Floor plan area

Total_mask

Vectorized wall area =

(15)
Total_prediction

Error calculations are demonstrated with two
examples from Dataset 3 for Example A and from
Dataset 2 for Example B. Both structural drawings are
rich in structural details to demonstrate the robustness of
the prediction models on the framing for this inventory.
The drawings have the masks overlayed with blue for
the columns and green for the walls.

Example A is a framing plan from the New Zealand
dataset (see framing plan in the appendix, Fig. AS5).
Both walls and columns presented a similar infill pattern
as shown in the close-up details that can be found the
appendix, Fig. A6. As seen in this prediction results for
this framing plan (Fig. 14), there are two columns near
the stairs detail where both the columns and walls model
had predicted columns and walls (respectively). This
prediction is highlighted with red arrows in Fig. 14. With
these prediction masks, we continue to Step 5 from Fig. 5
which is calculating the area of columns and walls.
The area of columns can be readily obtained from the
prediction mask. For the area of the walls, the walls need
to be vectorized following the steps of Algorithm 2. The
skeleton, before vectorization is shown in Fig. 15 for
(a) GT and for (b) prediction mask. It can be seen that
the prediction mask presents a few false positives. The
percentage of the false positives is presented in Table 4,
and is 0.26% with respect to the floor plan area of the
GT. Some of these fragments will erroneously contribute
to the calculation of the wall index. When compared to
the label skeleton, this prediction will have 5% more
arca to distribute than the GT, as shown in Table 4. The
next step is calculating the floor perimeter given the
coordinates of the columns and the coordinates of the
walls. Unlike the columns, the walls are discretized. The
“form finding” for the floor perimeter is shown in Fig. 16. The
final perimeter closely relates to the true shape of the
building, but it skips a small area as seen in Fig. 16(b).
The evaluation metrics are summarized in Table 3 and
Table 4.

Example B is a framing plan from the Ecuador
dataset. Both walls and columns presented characteristics
like other walls and columns present in Dataset 3. The
labelled framing plan along with the column and wall
characteristics are shown in the appendix, Fig. A7 and
Fig. A8. As seen in these prediction results for this
framing plan (Fig. 17), one column is predicted (shown
in cyan) in the walls area, and one column is missing
from the prediction on the left to the wall. This behavior
can be explained from the training. When they are
present, the boundary elements would be labelled as
columns and not as part of the walls. Now, with these
prediction masks, we continue to the next step which is
calculating the area of columns and walls. The area of
columns can be readily obtained from the mask. For the
walls calculation, the skeletons for (a) GT and for (b)
prediction mask are shown in Fig. 18. It can be seen that
the prediction mask presents a few false positives, less
than what we saw in Example A. The percentage of FP
is presented in Table 4, and is 0.06% with respect to the
floor plan area of the mask. The next step is calculating
the floor perimeter given the coordinates of the columns
and the coordinates of the walls. The form finding for
the floor perimeter is shown in Fig. 19. This is a regular
plan, and thus the error is less likely to be large. The
evaluation metrics are summarized in Tables 3 and 4.
Results show that this framing plan had overall good
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results and should be used to calculate the Hassan index.

The evaluation metrics for the complete evaluation
set are shown in Fig. 20. There is a total of 25 drawings,
of which all contained columns and 13 contained walls in
at least one direction. Example A is framing plan number
11 and Example B is framing plan number 17. The
results explained in the tables above can be also found in
this figure with the corresponding framing number.
Figure 20(a) divides the results by dataset because each
dataset had special characteristics. The average errors

from all the framing plans in the calculation of the CI,
WI, WI are 13.5%, 12.5% and 14%, respectively, for
Figs. 20(b) to 20(d). Thus, a boundary of 15% was
defined for these plots. Most of the framing plans with
large errors (above the 15% error line) come from
Dataset 1. The data in this dataset contains diverse
architectural and structural details which can be difficult
to capture during training. The form finding perimeter
of the framing plan in Fig. 20(e) shows that the ratio of
the framing plans is around 0.95, with one outlier. This

Fig. 14 Overlay of the prediction on the structural drawing

(a) Ground truth
Fig. 15 Piece-wise segmentation of wall for (a) ground truth and (b) prediction mask

(b) Prediction
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outlier, which almost doubled the framing plan area, had
a highly irregular floor plan. Again, because this is a
visual method, it would likely be necessary to make the
calculation for this drawing by hand after detecting that
the generated framing plan area is different from the true
one. The vectorized wall ratio Fig. 20(f), shows more
variability than other metrics. If the prediction model
failed in detecting the walls, there would be more area

or less area to be accounted in the calculation and thus
if the error in the wall index prediction is large so will
be the vectorized area ratio. The Hassan index error
calculated using the ground truth framing plan area
is shown in Fig. 21, here the average error among all
points is 14.35%. Note that for this calculation all the
errors calculated previously accumulate, which can be
observed by the number of points above the 15% line

Table 3 Evaluation of the Hassan index parameters

Example A Example B
Metric True value Calculated Relative error (%) True value  Calculated  Relative error (%)
Column index (CI) 0.734% 0.81% 10.27 0.503% 0.509% 1.16
Wall index in X' (W) 0.814% 0.776% 4.65 0.357% 0.346% 2.98
Wall index in Y (W) 0.767% 0.772% 0.53 0.321% 0.341% 6.18
Floor plan area (pixels) 10963024 10819524 1.3 1473701 1415330 3.96
HI ioea (%0) 1.501% 1.582% 5.46 0.824% 0.850% 3.16
HI oea (70) 1.501% 1.603% 6.80 0.824% 0.885% 7.4
Table 4 Evaluation of the segmentation
Metric Example A Example B
False positives in columns 0.26% 0.059%
False positives in walls 0.22% 0.01%
Vectorized wall area 1.048 0.853

.

(a) Ground truth

i

(b) Prediction

Fig. 18 Piece-wise segmentation of wall for (a) mask and (b) prediction

(a) Ground truth for the perimeter

L
S o TR -

(b) Perimeter tracing

Fig. 19 Perimeter tracing for (a) ground truth and prediction (b) mask
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and their distance above this line. Note that 30% of the
drawings are above this line. When including only those
framing plans that fall below the 15% limit, the average
accuracy of the remaining 18 framing plans, is 94.96%
(from 85.64%). The Hassan index error calculated using
the complete approach developed herein is shown
in Fig. 22. When comparing Figs. 21 to 22, we can
visualize the effect of using the convex hull technique for
irregular floor plans. When including only those framing
plans that fall below the 15% limit, the average accuracy
of the remaining 18 framing plans, is 93.43% (from
80.88%). These results show there is an opportunity to
improve the method with the use of deep learning-based
segmentation techniques to predict the framing plan area
when enough structural drawings become available.

To summarize, our approach to automate the Hassan
index and the Hassan index parameters show the average
accuracy of the Hassan index estimation in the evaluation
dataset is of 80.88%, making this a good approach for
calculation of this index. Regarding the set of the framing
plans where the approach failed, it can be explained by
noting that this data was trained on a limited training
images set of about 220 framing plans, which highlights
the importance of the quantity and quality of data needed
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for training neural networks. For the cases studied in
this section, the predictions models failed at times to
identity correctly columns or walls because specific
features were available in the framing plan. For walls,
these features include different infill patterns or no infill,
and cluttered non-concentric lines within beams could
be predicted as walls because the model can only extract
a small patch to predict at a time. For columns, errors in
the prediction result from cluttered lines inside columns,
or columns without beams near them. The walls model
was less susceptible to salt-and-pepper noise than the
columns prediction model. These results indicate that the
remaining challenges can be overcome with the addition
of more framing plans in the training set. However, due
to the large variety of drawing standards, even when a
larger inventory is available for training, there still could
be drawings with details that will not be recognized by
the detector. For this evaluation set, the ratio of framing
plans that had an error greater than 15% was 30% of
the drawings in this set. In practice, we would leave
this portion of drawings to the human. In this case, the
machine learning model can process one drawing in less
than 5 minutes, which extremely improves the working
efficiency, compared to manually conduct drawings.
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Fig. 20 Evaluation metrics for the 25 drawings in the evaluation set. (a) Dataset breakdown, (b) column index error, (c) wall
index error in X, (d) wall index error in Y, (e) floor area ratio, and (f) vectorized ratio
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Fig. 21 Evaluation of error in the prediction of columns and
walls for the Hassan index for the 25 drawings in the
evaluation set
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Fig. 22 Evaluation of error for the Hassan index using the
complete approach for the 25 drawings in the
evaluation set

From the training of the models to the inference, the
denoising of the images and the calculation of the Hassan
index parameters, a desktop computer was used with
the following specifications: CPU - Intel 19-7820X @
2.9Ghz, GPU - NVIDIA GeForce RTX 2080Ti - 11GB.

4.1 Remarks on limitations of the approach

The method presented in this paper can be applied
to the calculation of the Hasan index provided that some
conditions are met in the structural drawings: (1) the
drawings need to be at scale, and (2) framing plans need
to be more or less regular. For irregular plans, for best
results the user should trace the perimeter of the framing
plan. Alternatively, one may use a prediction model
with an architecture such as the U-Net (Ronneberger
et al., 2015) to find the area of the framing plan. These
limitations exist in the automation of the Hassan index
calculation and offer opportunities for future research to
improve the method.

5 Conclusions

A method for automating the calculation of a
vulnerability index to empower cities to rank and classify
reinforced concrete buildings is developed and validated
herein. The Hassan index is used as the classification
tool for seismic vulnerability because it has been used by

hundreds of researchers to correlate damage and seismic
vulnerability since it was first proposed in 1997. The
parameters included in this index are the area of columns
and walls on the first floor, which play an important role
in the capacity of the building to withstand seismic
demands, and the area of the framing plan, which is
used for calculating the seismic demand. The simplicity
of this method lends itself to the ability to automate
the calculations by integrating current computer vision
techniques.

This study shows that deep learning based semantic
segmentation and computer vision techniques can be
used in the automation of the Hassan index calculation
for one building at a time. The average accuracy
of the approach adopted in this study is of 80.88%.
This approach is human aided as it still needs human
component to verify visually that the segmentation
predictions have been done correctly per framing plan.
Still, by using the approach explained herein, engineers
can greatly reduce the man hours used to calculate the
Hassan index for complex and large structural drawings.
Moreover, this works opens up the ability to obtaining
geometric information from framing plans such as
plan torsional irregularity, shape ratios of columns and
walls, among other characteristics useful for design
and analysis of buildings. This new information could
be beneficial for enriching the building inventories and
calculating other indexes.

With an inventory of 245 unique framing plans of
structural and architectural drawings, we were able to
estimate the Hassan index for these concrete buildings.
While some limitations still remain, this work illustrates
progress towards the automation of the Hassan index for
an inventory of concrete buildings.
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