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Abstract

Diaplectic feldspathic glass, commonly known as maskelynite, is a widely-used impact
indicator, notably for shergottites, whose shock conditions are key to their geochemistry and
launch mechanism. However, classic reverberating shock-recovery experiments show
maskelynitization at higher shock pressures (>30 GPa) than the stability field of the high-pressure
minerals found in many shergottites (15-25 GPa). Most likely, differences between experimental
loading paths and those appropriate for Martian impacts have created this ambiguity in shergottite
shock histories. Shock-reverberation yields lower temperature and deviatoric stress than single-
shock planetary impacts at equivalent pressure. Here, we report the Hugoniot equation of state of
a Martian analogue basalt and single-shock recovery experiments, indicating partial-to-complete
maskelynitization at 17-22 GPa, consistent with the high-pressure minerals in maskelynitized
shergottites. This pressure explains the presence of intact magmatic accessory minerals, used for
geochronology in shergottites, and offers a new pressure-time profile for modeling shergottite
launch, likely requiring greater origin depth.

Teaser
Experiments on shock amorphization of plagioclase in Mars-like basalt reconcile the
pressure scale for martian meteorites

MAIN TEXT

Introduction

The feldspar-to-maskelynite transformation is one of the most widely observed shock-
metamorphic features in impacted rocks (/). Although the original 19th century identification of
maskelynite in the Shergotty meteorite as a new mineral was inaccurate because of the
shortcomings of 19" century analytical techniques (2, 3), the term has subsequently come to
describe isotropic feldspathic glass created by pressure-induced solid-state transformation
(diaplectic glass) (4), whereas quenched feldspathic melt is empirically referred to as normal
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glass. The shock pressure (P)-temperature (7)-pulse duration (¢) conditions indicated by the
formation and preservation of maskelynite offer essential constraints on the thermal (5) and
launch history (6—8) of shergottites, a subgroup of Martian meteorites in which plagioclase is
always partially or fully maskelynitized, supposedly due to the shock experienced during impact-
driven acceleration to the escape velocity of Mars (9, 10).

The shock conditions required for maskelynitization have been investigated in shock-
recovery experiments (4, //—15). These studies converge on a range from 26 to 32 GPa as the
threshold for partial to complete amorphization of calcic plagioclase (9) (Fig. 1). Yet shock
pressures exceeding 30 GPa for maskelynitized shergottites are inconsistent with the increasing
recognition that their high-pressure (HP) mineral assemblages have stability fields limited to <25
GPa (16, 17). Moreover, shock pressure substantially above 30 GPa is expected to enhance local
melting (/8) and cause transformation and reversion of baddeleyite to and from HP polymorphs
with the potential for Pb loss (79, 20). That may be inconsistent with the magmatic crystallization
U-Pb ages commonly recorded by untransformed baddeleyite grains found directly adjacent to
maskelynite in shergottites (5). This discrepancy remains an impediment to understanding the
shock disturbances and launch process experienced by shergottites. More nuanced compression
studies show that peak pressure, pulse duration, temperature, strain rate and deviatoric stress are
all important factors affecting maskelynitization (2/—24). Full amorphization of calcic plagioclase
requires 32 GPa in 20 ns laser shocks (24) but <10 GPa in longer-pulse, shockless rapid
compression (23). Hence, if the presence of maskelynite is to offer an accurate peak pressure for
shergottites, the thermobarometer needs to be based on experiments that resemble, as closely as
possible, the P (pressure)-T (temperature)-¢ (time)-€ (strain rate) path associated with natural
impacts into shergottite-like targets on Mars.

In natural impacts, initial loading to high pressure commonly occurs in a single step from
ambient to Hugoniot conditions (25). Two-wave loading due to phase transitions or shock
reflections from impedance contrasts (like metal grains) is possible but should be localized (26).
Multi-step loading to peak pressure is rare in nature and was not the path leading to pervasive
maskelynite in shergottites. However, classic shock-recovery experiments commonly utilize
multiple shock reflections across a low-impedance sample embedded in a high-impedance
chamber, whereby the sample “rings up” to a peak pressure equal to the shock pressure in the
chamber material (Fig. S1). The advantage of this reverberation technique is that peak pressure in
the sample is independent of the sample’s Hugoniot equation of state (EoS), which may be
unknown and complex to model. However, loading to a given peak pressure by reverberation also
results in lower energy, temperature and deviatoric stress than single-shock loading, thereby
differing from the P-T--€ path of natural shocks and making it harder to produce pronounced
shock metamorphism (27). This may be the primary cause of the pressure gap between the
threshold for maskelynite formation in experimentally shock-recovered samples and in naturally
impacted shergottites (9, /7). Moreover, many previous experimental studies used plagioclase
single crystals (12, 13) as starting materials. Single crystals have zero porosity and follow a
lower-temperature path than likely target materials on Mars, where shock melt pockets record at
least local high temperatures (28). In this study, we develop a new shock-recovery setup to
generate well-defined single-shock loading paths, resembling the P-7-t-€ path of natural impacts
on Mars. Based on results from a Mars rock simulant (a slightly porous natural basalt), we
propose an improved calibration of the maskelynitization conditions in shergottites.

Results and Discussion
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Hugoniot EoS of basalt

To approach shock conditions matching shergottites, we used Saddleback basalt,
the source of Mojave Mars Simulant (29), which is rich in phenocrysts of Anes labradorite
(Table S1). To design recovery experiments that achieve single-shock loading and to
know the pressure precisely in such experiments, we measured the Hugoniot EoS of
Saddleback basalt (Fig. 2; Methods), i.e. the family of shock states achieved by shocks of
varying strength into this starting material. The shock velocity (Us) and particle velocity
(up) of Saddleback basalt were measured using the inclined mirror technique (see
Methods); the data are shown in pressure-volume (P-V)) space in Fig. 2.

In the absence of phase change or elastic-plastic transition during shock, the Us-uj
Hugoniot is empirically linear and the P-V Hugoniot is derivable. In contrast, Saddleback
basalt shows a fast low-pressure (LP) wave and a slow high-pressure (HP) wave (Fig. 2¢),
interpreted to be a density transition to a denser state. That results in a piecewise Hugoniot
with LP, HP, and mixed regimes (Fig. 2c). The density transition occurs in the range of
15.4 to 16.6 GPa. Although not all published Hugoniots of basalts show this transition
clearly, a phase change is observed in Kinosaki basalt at 13-18 GPa (30). Even in a study
that found final shock states along a nearly-linear Hugoniot (37) (Fig. 2c), time-resolved
wave velocities indicate stepped pressure rise and complex wave structures in this range
(Fig. S3). Our experimental determination of the Hugoniot EoS of Saddleback basalt
enables precise interpretation of shock pressures in our recovery experiments.

Shock-recovered maskelynite in basalt

Seven recovery experiments span the transition between density regimes along the
Hugoniot (Table S3). For three single/double-shock experiments, we employed
sample/flyer thickness ratios greater than 2 to prevent reverberation (see Methods); this
allows time for at most one shock reflection to partially transit the sample before a release
wave arrives to attenuate the shock. The sample region that released after only one shock
transit and the region that released after one shock reflection can be identified
unambiguously in this geometry (Fig. 3A).

S1240 is the shot with the lowest impact velocity. The front of the sample
experienced a single loading pulse to 15.8 GPa, maintained for 1.8 us before release wave
arrival (Fig. S5). The single-shocked central front area of the recovered sample contains
almost all birefringent plagioclase (Fig. 3B) and shows a white color in thick section (Fig.
3A). The back of the sample in the same experiment experienced one reshock from the
steel back-wall and reached 21.7 GPa. This reshocked area displays isotropic maskelynite
(Fig. 3B) and transparent grains in thick section (Fig. 3A). The visual boundary between
zones of amorphized and crystalline plagioclase is plainly visible in both thin and thick
section (dashed line in Fig. 3A-3B) and coincides with the intersection of the reshock with
the release wave.

Two more recovery experiments help to refine the nature of the glass transition
upon single- and double-shock loading. S1244 captures the onset of partial
maskelynitization in the front single-shock region at 17.4 GPa (Fig. 3C). Multiple
plagioclase grains in this region are divided into areas that are isotropic and areas that
display curved twin planes and low birefringence (Fig. 3C). All plagioclase grains in the
reshocked region (peak pressure 29.2 GPa) are amorphized. The corners of the capsule,
which experience edge effects and strong shear heating, contain complete maskelynite that
formed at poorly known P-T conditions somewhat different than the central part (Fig. S6).
S1245, with slightly higher impact velocity and peak pressure of 19.3 GPa in the single-
shock region, shows a noticeably higher degree of partial maskelynitization than S1244.
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Some large (~500 um) feldspathic domains are completely isotropic and other plagioclase
grains show very low birefringence that makes twinning unobservable. Most feldspar
domains look transparent in thick section (Fig. S7), resembling the fully maskelynitized
regions in other recovered samples (e.g. Fig. 3A). To ensure the correct identification of
weakly birefringent plagioclase, we employed electron back-scatter diffraction (EBSD) to
map out feldspathic domains with diffraction patterns (Fig. S7). Diffraction band-contrast
maps of S1245 indicate that some feldspar domains in the back of the single-shock region,
whose shock pulse is 0.5 pus shorter than that of the sample front (Fig. S5), still retain
some level of crystalline structure, despite showing very low birefringence in cross-
polarized light. In both S1244 and S1245, the single-shock regions contain scarce
instances of glass displaying flow and schlieren features, presumed to be quenched from
local melting of plagioclase (plus some pyroxene). This feldspathic normal glass shows
notably lower fracture density than the surrounding maskelynite or plagioclase (Fig. S6
and S7), indicating viscous relaxation of shear stress before shock release.

The results of the three thick-sample recovery shots spanning the glass-transition
interval along the Hugoniot demonstrate the onset of maskelynitization occurs around 17
GPa, with maskelynite becoming predominant above 19 GPa and complete transition by
22 GPa. The pressures are slightly higher than the transition point in the Hugoniot (Fig. 1),
likely because some excess pressure is needed to preserve the amorphization upon
recovery (24, 32). The onset pressure of maskelynitization for single shocks of our target
material is 17 GPa, much lower than the 25-27 GPa in reverberation experiments (Fig. 1).
Our thin-sample experiments replicated previous results, showing that reverberation
causes complete maskelynitization of Saddleback basalt at around 30 GPa or above (Table
S3 and Fig. S8).

Low shock-pressure and temperature of shergottites

The pressure threshold for conversion of plagioclase to maskelynite is not a simple
function of peak pressure but depends on the P-T-t-€ loading path (217, 23, 24). Evaluation
of the peak pressure of shergottites therefore requires experiments that approach the
conditions of natural impacts on Mars. Unfortunately, natural impacts, laboratory shocks
(propellant- or laser-driven), static and rapid compression experiments all populate
different regimes in P-7-¢-€ space. Planetary impacts related to shergottites are thought to
involve pulses of 10~ to 107 s duration and strain rates greater than ~10° s7' (17, 33-35).
Reproducing that duration and strain rate simultaneously is challenging. Shock recovery
experiments provide the correct strain rate but a shorter pulse duration, <10~ s (Fig. S5),
whereas anvil compression provides longer pulse durations but much lower strain rates,
<10's7' (21, 23). Our propellant shock experiments with microsecond pulses demonstrate
maskelynitization pressures intermediate between estimates from laser shocks of 20 ns
duration (24) and anvil compression experiments lasting at least seconds (23), suggesting
a negative correlation between transformation pressure and pulse duration. Therefore, the
pressure thresholds (17.4-21.7 GPa) observed in our experiments are probably slightly
higher than the actual pressure of partially maskelynitized shergottites (Fig. 3D) launched
by Martian impacts. In other word, our experiments set a new upper bound for the
maskelynitization of calcic plagioclase in natural impacts. This upper bound also applies
to most terrestrial impact sites, whose pulses last >107 s.

Increasing temperature favors maskelynite formation at lower pressure. Static
compression experiments observe this effect (27) (Fig. 1). Likewise, preheating of basalt
to 1073 K lowers the threshold for partial maskelynitization in reverberation experiments
from >26 GPa to ~22 GPa (36). The higher shock temperatures achieved by single shocks
compared to previous reverberation-shock paths might therefore explain the observation
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of maskelynite formation at ~17 GPa. However, calculated shock temperatures for single-
shock and reverberating shock loading paths (Fig. 1A) are negligibly different in the range
where we find the onset of maskelynite formation, becoming more different only above 30
GPa. Although one-step loading of a target with the appropriate porosity does offer a
better match to the shock temperatures experienced by shergottites than reverberation-
shocking single crystals, temperature does not appear to solely explain the dramatically
lower maskelynitization threshold in our experiments compared to reverberation studies.

Another key difference between single and reverberating shock loading is the
magnitude of deviatoric stress experienced by the sample. Reverberating shocks that peak
at 25-30 GPa typically have first shock fronts with pressure amplitudes of ~10 Gpa that
overdrive the Hugoniot Elastic Limit (HEL, ~5 Gpa) by about 5 Gpa before material
failure (37). It is likely that subsequent shocks raise the pressure in a nearly hydrostatic
fashion without material strength effects and cause limited increases in deviatoric stress.
In contrast, a single shock directly to the peak pressure creates transient deviatoric stress
several times larger by overdriving the HEL more strongly (38). Large deviatoric stresses
are likely to facilitate low-pressure maskelynitization (39). Hydrocode simulation also
shows that shear stress varies temporally and spatially for regions of the same peak
pressure during impact cratering, which plays an important role in producing meter-scale
features such as shutter cones (40). Hence, the single-shock experiments better resemble
this aspect of the P-T-t-€ path of Martian impacts. In an actual planetary impact, the
longer duration (33), shock turbulence (47) and extensive shear flows (42) may all
contribute to further lowering the pressure threshold for maskelynitization.

Raman spectra of feldspars in shergottites demonstrate broadening of diagnostic
peaks with increasing shock and maskelynitization level (10, 43). The pressure associated
with such peak broadening has been calibrated using reverberating shock experiments and
assigned to shock pressures of 26 to >45 GPa. However, this spectroscopic shock level
barometer, like the maskelynite threshold, likely requires a systematic pressure shift to
account for the differences between natural shock loading and reverberation experiments
(43).

The HP mineral assemblages in many fully maskelynitized shergottites, such as
Tissint, Zagami and DaG 735, are stable at <25 GPa in basaltic bulk compositions (/6)
(Fig. 1). In distinct contrast, these shergottites mostly contain full maskelynite with no
birefringent plagioclase, which has been assigned to pressure >30 GPa on the basis of
previous reverberation shock experiments (Fig. 1). This discrepancy is problematic — if
all the shergottites were truly shocked beyond 30 GPa, then post-spinel transformation,
recrystallization and local melting would be pervasive. Although complete
maskelynitization sets a lower bound of shock pressure in shergottites, more heavily
shocked rocks such as ALH 77005 and NWA 1950 that reached 35-40 GPa (18, 44)
commonly contain brown olivine with shock-induced planar deformation features (36) and
quenched vesicular feldspathic glass instead of maskelynite (Fig. 1B; Fig. S10). These
textures are reproduced by the extensive deformation and melting (Fig. S8) observed in
one of our higher-pressure experiments (S1238, 42.4 GPa). The potential HP minerals in
these strongly-shocked rocks are likely annealed (25), resulting from post-shock
temperature high enough for retro-metamorphism, in contrast to the maskelynitized
shergottites shocked to <25 GPa. Even for the rare examples of partially maskelynitized
shergottites, such as NWA 8159 (17) (Fig. 3), the previously determined threshold
pressure was still above 25 GPa (Fig. 1). Our single-shock recovery experiments
reproduce partial maskelynite textures like those in NWA 8159 (Fig. 3C-3D; Fig. S10)
and yield a new partial-to-complete maskelynitization threshold, 17.4-21.7 GPa, that is
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consistent with the majorite-pyroxene assemblage in the same meteorite (/7) (Fig. 1).
Based on new pressure thresholds, the pressure of <25 GPa inferred from HP phase
assemblages of shergottites that reached the onset of post-spinel transformation, such as
Zagami and Tissint, are therefore sufficient for the observed complete maskelynitization.

The new low-pressure maskelynitization threshold is also more consistent with
untransformed accessory minerals in shergottites, such as baddeleyite (5). Zircon and
baddeleyite undergo several displacive transitions with low activation energy and fast
kinetics (19, 20), allowing transition at low temperature (45). Previous maskelynitization
barometry indicated shock compression above 30 GPa and 600 °C bulk temperature in
shergottites (Fig. 1). Such conditions should have caused pervasive transformation of
baddeleyite to orthorhombic and tetragonal structures, followed by reversion to
polycrystalline monoclinic aggregates upon release, as observed in terrestrial target rocks
that experienced similar long-pulse impact events. The neighborhoods around plagioclase
crystals likely experience local temperature even higher than the bulk rock (27), due to the
compressibility of feldspar and the volume decrease associated with maskelynite
formation (Fig. 1A and 2C). In fact, martian baddeleyite can be found entrained in fully
maskelynitized feldspar in shergottites and retains magmatic crystallinity, zoning patterns,
and U-Pb ages, which has previously been seen as inconsistent with peak shock pressure >
30 GPa (46). The lower maskelynization pressure, 17.4-21.7 GPa, in our study is
compatible with these undisturbed zirconium minerals. Although the mechanism of Pb
loss during shock deformation and ZrO; transformation is not fully understood (47),
moderate values of shock pressure, shock temperature and post-shock temperature, in
association with our new maskelynitization threshold are more consistent with the
observed crystallography and limited resetting of the zircon and baddeleyite. In turn, this
result strengthens the case that the <0.6 Ga ages of shergottites are primary crystallization
ages and not partially reset values.

Launch of shergottite from greater depth

Finding agreement between the peak pressures implied by feldspar transformation
and those recorded by HP minerals crystallized in melt veins also eliminates the need for
complex partial release scenarios featuring an excess pressure spike (for
maskelynitization) followed by a stable shock pulse (for HP minerals). Instead, a unified
shock pressure of <25 GPa for maskelynite and HP minerals in many shergottites favors
models in which the melt veins record plateau conditions at peak pressure lasting 10-100
ms (17, 33, 34). Thus, the whole P-¢ profile extracted from analysis of shergottites
becomes simple and well-constrained and potentially more suitable for modeling the
launch of shergottites from Mars.

Because particle velocity of several km s™! corresponds to excessive pressure close
to whole rock melting, impact spallation models are proposed for accelerating Martian
meteorites to escape velocity while limiting the intensity of shock metamorphism that they
experience (6, 7). Kurosawa et al. (7) extracted pressure and velocity histories of multiple
tracers in hydrocode spallation simulations and demonstrated that ejection from depth 1-
2% of the impactor radius is most probable for achieving escape with a plateau-like P-¢
profile. Although their modeled impactor of 10 km radius corresponds to a very large
crater, the same scaled depth in the case of a smaller impactor would still be consistent
with the absolute depth needed to explain the differences noted between Martian
meteorites and surficial lithologies (48) and with the absence of 2= irradiation (49). By
contrast, in previous scenarios requiring multistage P-¢ histories, ejecta likely originate at
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depth <0.5% of the impactor radius. In such models, satisfying the absolute depth, pulse
duration, and pressure constraints requires an impactor of several km radius and crater
diameter >100 km (8). Such a crater size is even greater than the largest candidate craters
for the origin of the shergottites, like Mojave (58 km) and Kotka (29 km) (50).

Bowling et al. (8) demonstrate that there is a correlation between impact size and
dwell time at a given pressure. Quantitatively, for a peak pressure of ~30 GPa, launched
material has a ratio of HP dwell time to impactor radius of up to 20 us m'!, whereas for 20
GPa peak pressure this ratio decreases to <15 ps m™!. Hence ejection at peak pressure of
~20 GPa rather than 30 GPa implies a 30% larger impactor for the same dwell time (Fig.
S11). One remaining issue here is that peak pressure may increase to >30 GPa in material
ejected from greater depth close to the impact center. Elliot et al. (48) applied a
fragmentation model in their simulations and found that a 20 m layer of tuff on top of
basalt enhances the overall ejection capability of a 1 km impactor, compared to pure basalt
targets, potentially launching material from depth to escape at a lower peak pressure. In
sum, somewhat counterintuitively, a decrease in the estimate of peak pressure recorded by
the shergottites implies an increase in diameter of the crater from which they were ejected.
Low-pressure ejection increases the need for special geometries of oblique impact and for
mechanisms such as ejecta pileup recognized in recent high-resolution simulations (7). In
turn, a decrease in the estimate of shock pressure in the shergottites increases the rarity of
ejection of unmelted rocks and increases the probability that the known shergottites were
ejected by fewer impact events, given their narrow range of cosmic ray exposure ages
(51). Low-pressure maskelynitization combined with HP mineral stability fields indicates
that future hydrocode simulations of shergottite launch should focus on a plateau-like P-¢
profile and increased depth of origin.

Because maskelynitization of feldspar depends on many variables, including
mineral composition, target porosity, and the P-7-¢-€ path of shock compression, it is
important to calibrate shock conditions with suitable experiments. The high deviatoric
stress, high strain rate and well-defined shock temperature realized in a one-step shock-
loading setup are appropriate for interpreting shocked meteorites from impacts on Mars
and other basaltic targets like Vesta and the Earth. The methodology of EoS measurement
combined with single-shock recovery experiments can be applied to terrestrial basalts,
HEDs and lunar rock analogues to better constrain the pressure of the maskelynitized
rocks in their corresponding groups.

Materials and Methods

Martian analogue sample

To reproduce the shock conditions in shergottites, we used Saddleback basalt
(Table S1-S2) from the Mojave Desert in southern California (29). This nearly
holocrystalline basalt, with low porosity (3%) and <10% groundmass, was selected for
testing the mechanical design of the Curiosity rover (the Mojave Mars Simulant), because
of the similarity of its physical properties to Martian rocks (29).

Hugoniot measurement in shock experiments

The Hugoniot EoS of material is most commonly expressed as an empirical linear
(or piecewise-linear) relationship Us = Co + sup, where Us and uj are the velocity of the
shock front and the particle velocity in the shocked material; C, is expected to be the zero-
pressure bulk sound speed and s is a dimensionless factor related to the pressure derivative
of the bulk modulus. Knowing the Us-u, relationship for each material involved in an
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experimental impact, one can calculate the shock-state pressure and volume (V) via the
Rankine-Hugoniot conservation equations and the assumption of velocity and stress
continuity across interfaces. With additional constraints on the isochoric heat capacity and
thermodynamic Griineisen parameter, the temperature increases across a shock can also be
estimated (25) (Fig. 1; supplementary section S1 and S5).

The basalt EoS shots were performed on the 40 mm propellant gun in the Caltech
Lindhurst Laboratory for Experimental Geophysics. More details of experimental setup
are in supplementary section S1. Shock arrivals at the silvered surface of each mirror
generate sharp cutoffs on the Hadland Imacon 790 streak-camera image (Fig. 2B). The
travel time of the shock wave across the sample is determined by the average of the time
differences between the light cutoffs at the two sample flat mirrors and at the adjacent
driver plate mirrors (#1-to in Fig. 2B), converted to travel time and then shock-wave speed
(Us). The impedance match solution (which imposes continuity of particle velocity and
normal stress at the driver-sample interface), the known Hugoniot of the driver, and the
measured Us yield the sample particle velocity up.

Assuming the pre-shock velocity of the sample is zero, the Rankine-Hugoniot
equations for conservation of mass, momentum and energy (£) across the shock front can
be written as:

po Us=p (Us — up) (la)
(P —Po)=po Us up (1b)
E—Eo=(P+Po)(V-Vo)2 (1c)

These equations allow calculation of P, p, and (E — E,) in the shock state given
measurements of Us, up, and initial density p,. In the case of a two-wave structure, the
high-pressure slow wave also follows the impedance match at driver-sample interface.

When the target material undergoes an elastic-plastic or low-density to high-
density transition, a two-wave structure forms, whereby the slower second wave has a
higher pressure. In this case, only the arrival of the faster first wave can be captured by the
streak camera, but the impedance match at the driver-sample interface needs the P, Us and
up of the second wave. For such cases, we measure the slow wave and fast wave(s) by
adding an inclined mirror behind the sample at an angle ¢, in addition to the regular flat
mirrors on the driver and basalt sample disc (Fig. 2A). The inclined mirror is wedge-
shaped to so that its refraction and reflection offsets cancel out and light is reflected back
to the center of the camera sensor. When a shock wave arrives at the rear free surface of
the sample, decompressed material traverses the vacuum at free-surface velocity Ug and
hits the inclined mirror, creating an oblique cutoff (y in Fig. 2B) along the inclined-mirror
streak. Uy 1s determined from the corresponding angle y on the streak cutoff using

Uss = (W-tan¢) / (m-tany) 2)

where W and m are the writing rate and magnification of the streak image,
respectively(37). Thus, the arrival of the second wave, with higher u, and Us than the first
wave, is shown by the change in y angle on the streak cutoff (#; in Fig. 2B). Assuming the
release adiabat is exactly a reflected Hugoniot, Uy is expected to be 2*u;, (supplementary
section S1). The timing of the slope transition also approximately indicates the second
wave velocity by

Us2 = (d+H(t2-t1)* Usa1)/(t2-10) 3)

where d is the sample thickness and the meaning of each time # is indicated on
Figure 2B. In the case that Ug # 2u,, which is common for a wave in a transformed phase,
the final particle velocity can be calculated by iteration between U, and the impedance
match solution at the sample-driver interface (Fig. S1).

In our first two EoS shots (1123 and 1124), we observed U decreasing from 6136
m s~! to 5232 m s7! as flyer velocity Uy, increases from 1394 m s~ to 1598 m s! (Fig. S2),
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indicating that in this range the sample undergoes a density transition to a higher density
state that produces a two-wave structure; the slower, higher-pressure wave is not captured
by the flat mirror streak cutoffs.

To determine Us and u,, for both the first and second wave, the third shot (1126),
fired at an intermediate U, of 1479 m s~!, employed an inclined-mirror method to measure
multiple wave velocities. The first wave has Us1 = 5766 m s™! and up1 = 1009 m s,
whereas the second and final wave has U, = 5232 m s™! and w2 = 1297 m s7'. Interpreting
this two-wave structure as recording a density transition, we find that the density transition
is complete at 16.6 GPa, (much higher than the Hugoniot elastic limit (HEL), which can
generate a similar two-wave structure in weaker shocks). The data from all three EoS
shots can be summarized by a piecewise-linear fit, with negative slope Us = 9594 — 3.72uj,
for up between 900 and 1200 m s~ and a high-density phase at u, > 1200 m s7!
characterized by Us = 3603 + 1.256u,. The transition pressure interval extends from 15.4
to 16.6 GPa and results from incomplete density transition and mixing of low- and high-
density states along the Hugoniot. The EoS shots are summarized in Figure S2 and Table
S3. These fits are sufficient to enable calculation of pressures in our recovery experiments.
The low-pressure Hugoniot is estimated (Fig. 2¢) using the zero-pressure sound speed of
Saddleback basalt*” and does not affect the pressure calculation of recovery experiments
(Fig. S2). Comparison among Hugoniots from Saddleback basalt and other feldspar rocks
is discussed in the supplementary section S2.

Shock recovery experiments

Discs of Saddleback basalt with a diameter of 5 or 7.6 mm and thickness dsample Of
1.0 to 5.0 mm were used for total of 7 shock recovery experiments. The samples were
embedded in 304 stainless steel (SS304) chambers and impacted by tantalum flyer plates
of thickness dnyer from 1.5 to 2.1 mm (Table S3; supplementary section S3). In practice, a
thickness ratio dsampie/dnyer < 1 allows enough shock transits across the sample and
chamber to effectively achieve an ultimate peak pressure by reverberation, before the
rarefaction wave from the back of the flyer arrives. In 4 out of the total 7 recovery shots,
the sample experienced full reverberation to peak pressures from 33 to 42 GPa after first
shock pressures from 16 to 19 GPa (Table S3 and Fig. S5). Three more recovery shots
with similar impact velocities and dsample/dnyer > 2 were performed. In this geometry, wave
propagation calculations show that the front portion of the sample is shocked only once
before release, to the same range of initial pressures, 16-19 GPa. In each of these three
non-reverberating experiments, some part of the sample near the steel back wall also
experienced one reflected shock (Fig. 3; Figs. S5-S8).

The impacted target assemblies were cut parallel to the impact direction into two
equal halves. One half was polished into a thick section for reflected light imaging. The
other half was sliced and mounted in Petropoxy 154 to make a standard 30 um thin section
for examination in cross-polarized transmitted light. Both thick and thin sections were
analyzed with a Zeiss 1550VP field emission scanning electron microscope in the
Division of Geological and Planetary Sciences at Caltech. Backscattered and secondary
electron (BSE and SE) images are employed to observe the micro-textures of the shocked
basalt. Energy dispersive X-ray spectroscopy (EDS) with an Oxford X-max silicon drift
detector was used to measure the chemical composition at 15 kV accelerating voltage and
4-6 nA beam current, achieving more than 200 counts/channel and 40% dead time. We
also employed electron backscatter diffraction (EBSD) to investigate the crystallinity of
shocked minerals. Regions with resolved diffraction bands were indexed with mean
angular deviation (MAD) values less than 0.8° (Fig. S7). Regions showing no resolvable
diffraction bands are considered amorphous. The band contrast metric quantifies the
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degree of crystallinity at the EBSD point analysis. Quantitative chemical analyses of rock-
forming minerals and glasses were performed using a JEOL 8200 electron microprobe
(WDS: 15 kV; 5-10 nA; beam in focused mode) interfaced with the Probe for EPMA
program from Probe Software, Inc. Standards for these analyses were synthetic fayalite
(SiKa for olivine, FeKa), Shankland forsterite (MgKa), synthetic Mn2Si104 (MnKa),
synthetic anorthite (AlKa, SiKa for feldspar, CaKa), Amelia albite (NaKa), Asbestos
microcline (KKa), synthetic TiO; (TiKa), and synthetic Cr.O3 (CrKa). Quantitative
elemental microanalyses were processed with the CITZAF correction procedure (Table
S1).

Because our impedance match calculations assume one-dimensional flow, we
focused on the central portion of the sample when determining the abundance of
completely or partially amorphized domains, to avoid regions affected by possible edge
effects and rock-metal friction (Fig. S6). Although additional amorphous material
commonly occurs along large fractures and at the capsule edges (Fig. 3A and Fig. S6),
these are considered to be associated with edge conditions and are not considered when
defining thresholds for maskelynite formation. The difference between maskelynitization
thresholds obtained by shocking Saddleback basalt with those from other compression
techniques is discussed in the main text and supplementary section S4.
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Fig. 1. Pressure-temperature (P-7) of maskelynite formation in experiments and
Martian meteorites. (A) Solid curves are P-T estimates of shock experiments. The curve
of Saddleback basalt (Anes phenocrysts) is from this study (dark red curve); the sharp
change in slope corresponds to the phase change to a denser state. The interpolated
thresholds for partial and complete maskelynitization are indicated by the pink-dashed and
purple-solid vertical markers on the curve. The curves for single Angs labradorite crystal
(green) and dense basalt with Aneg labradorite (yellow) show P-T conditions calculated
from data of reverberating recovery experiments (//—13, 37) and corresponding
maskelynitization thresholds (vertical dash and solid markers). Open diamond, solid
diamond and solid circle on each curve indicate birefringent plagioclase, partial and full
maskelynite, respectively, for the set of experiments. The tilted dot-dash line is the
labradorite-maskelynite phase boundary from static compression (27). (B) Previously
inferred stability fields of mineral assemblages in various shergottites, including
ringwoodite (rwd), wadsleyite (wds), majorite (maj), stishovite (sti), tissintite (tss),
clinopyroxene (cpx), davemaoite (dvm), bridgmanite (bdm) and ferropericlase (fp) (16,
17, 52-54). The vertical positions are schematic because shocked meteorites experience
complex, heterogeneous, evolving temperature conditions. ALH 77005 and NWA 1950 do
not contain HP minerals but commonly have quenched feldspar glass (/8). The pink-
purple-orange background colors indicate plagioclase-maskelynite-melt transition from

this study.
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Fig. 2. Setup and results of Hugoniot EoS measurement of Saddleback basalt. (A) Ta
flyer and target assembly consisting of Ta driver plate, basalt sample disc and mirrors
silvered on the front (left) side to reflect light to streak camera. Flyer-driver-sample sizes
are to scale. (B) Color-inverted streak camera image, with time increasing to the right and
vertical axis corresponding to position across sample as shown in (A). Total streak
duration is 4 ps. The end of each dark streak shows a shock wave striking the mirror at
that position and time. #y and #; correspond to the time of shock wave entering the sample
and reaching the back of the sample. Inclined-mirror cutoff indicates the timing of
decompressed material hitting the mirror at free-surface velocity, determined by slope
angle y. The change in slope at time # is caused by a second shock wave overtaking the
first arriving wave. Irregular cutoffs result from the heterogeneity of porosity and
mineralogy of the basalt at mm scale. (C) The fitted Hugoniot in pressure-volume space.
The piecewise curve indicates low-pressure (LP), mixed-phase, and high-pressure (HP).
Curvature of the LP regime does not affect the pressure calculations for recovery shots.
The Hugoniot data of Kinosaki basalt measured by piezoresistive gauges (30) and VISAR
(31) show similar complication although not exactly matching Saddleback basalt (Fig. S2-
3).
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705 Fig. 3. Photos of shock-recovered Saddleback basalt. (A) Thick section of S1240
706 sample in steel chamber with a region that experienced a single shock to 15.8 GPa and a
707 region that experienced one reflected shock to 21.7 GPa, with boundary indicated by a
708 dashed line. Plagioclase in the single-shocked region shows its original white color but the
709 maskelynite in the reshocked region is transparent and displays deformed shapes. Two
710 oblique fractures propagated from the deformed thread of the rear chamber cap. (B)
711 Nonorthogonal (87-88°) cross-polarized light (xpl) micrograph of the pressure-transition
712 region of S1240 in thin section. All plagioclase grains transformed to maskelynite
713 (isotropic) in the reshocked zone. (C) Nonorthogonal xpl image of partial maskelynite in
714 region of recovered sample S1244 that experienced single shock to 17.4 GPa. Plagioclase
715 grains are 30-40% maskelynitized. The non-isotropic portions show lower birefringence
716 than single-shocked grains in S1240. (D) Nonorthogonal xpl image of partial maskelynite
717 in shergottite NWA 8159 (/7).
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