

1 FRONT MATTER

2 Title

- 4 Shock-recovered maskelynite indicates low-pressure ejection of shergottites from Mars.
- 5 Low shock pressure in Martian meteorites.

7 Authors

8 Jinping Hu^{1*}, Paul D. Asimow¹, Yang Liu², Chi Ma¹

10 Affiliations

11 ¹Division of Geological and Planetary Sciences, California Institute of Technology,
12 Pasadena, CA 91125, USA.

13 ²Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109,
14 USA.

15 *corresponding author. Email: jinping@caltech.edu

17 Abstract

18 Diaplectic feldspathic glass, commonly known as maskelynite, is a widely-used impact
19 indicator, notably for shergottites, whose shock conditions are key to their geochemistry and
20 launch mechanism. However, classic reverberating shock-recovery experiments show
21 maskelynitization at higher shock pressures (>30 GPa) than the stability field of the high-pressure
22 minerals found in many shergottites (15-25 GPa). Most likely, differences between experimental
23 loading paths and those appropriate for Martian impacts have created this ambiguity in shergottite
24 shock histories. Shock-reverberation yields lower temperature and deviatoric stress than single-
25 shock planetary impacts at equivalent pressure. Here, we report the Hugoniot equation of state of
26 a Martian analogue basalt and single-shock recovery experiments, indicating partial-to-complete
27 maskelynitization at 17-22 GPa, consistent with the high-pressure minerals in maskelynitized
28 shergottites. This pressure explains the presence of intact magmatic accessory minerals, used for
29 geochronology in shergottites, and offers a new pressure-time profile for modeling shergottite
30 launch, likely requiring greater origin depth.

31 Teaser

32 Experiments on shock amorphization of plagioclase in Mars-like basalt reconcile the
33 pressure scale for martian meteorites

36 MAIN TEXT

39 Introduction

40 The feldspar-to-maskelynite transformation is one of the most widely observed shock-
41 metamorphic features in impacted rocks (1). Although the original 19th century identification of
42 maskelynite in the Shergotty meteorite as a new mineral was inaccurate because of the
43 shortcomings of 19th century analytical techniques (2, 3), the term has subsequently come to
44 describe isotropic feldspathic glass created by pressure-induced solid-state transformation
45 (diaplectic glass) (4), whereas quenched feldspathic melt is empirically referred to as normal

46 glass. The shock pressure (P)-temperature (T)-pulse duration (t) conditions indicated by the
47 formation and preservation of maskelynite offer essential constraints on the thermal (5) and
48 launch history (6–8) of shergottites, a subgroup of Martian meteorites in which plagioclase is
49 always partially or fully maskelynitized, supposedly due to the shock experienced during impact-
50 driven acceleration to the escape velocity of Mars (9, 10).

51 The shock conditions required for maskelynitization have been investigated in shock-
52 recovery experiments (4, 11–15). These studies converge on a range from 26 to 32 GPa as the
53 threshold for partial to complete amorphization of calcic plagioclase (9) (Fig. 1). Yet shock
54 pressures exceeding 30 GPa for maskelynitized shergottites are inconsistent with the increasing
55 recognition that their high-pressure (HP) mineral assemblages have stability fields limited to <25
56 GPa (16, 17). Moreover, shock pressure substantially above 30 GPa is expected to enhance local
57 melting (18) and cause transformation and reversion of baddeleyite to and from HP polymorphs
58 with the potential for Pb loss (19, 20). That may be inconsistent with the magmatic crystallization
59 U-Pb ages commonly recorded by untransformed baddeleyite grains found directly adjacent to
60 maskelynite in shergottites (5). This discrepancy remains an impediment to understanding the
61 shock disturbances and launch process experienced by shergottites. More nuanced compression
62 studies show that peak pressure, pulse duration, temperature, strain rate and deviatoric stress are
63 all important factors affecting maskelynitization (21–24). Full amorphization of calcic plagioclase
64 requires 32 GPa in 20 ns laser shocks (24) but <10 GPa in longer-pulse, shockless rapid
65 compression (23). Hence, if the presence of maskelynite is to offer an accurate peak pressure for
66 shergottites, the thermobarometer needs to be based on experiments that resemble, as closely as
67 possible, the P (pressure)- T (temperature)- t (time)- $\dot{\epsilon}$ (strain rate) path associated with natural
68 impacts into shergottite-like targets on Mars.

69 In natural impacts, initial loading to high pressure commonly occurs in a single step from
70 ambient to Hugoniot conditions (25). Two-wave loading due to phase transitions or shock
71 reflections from impedance contrasts (like metal grains) is possible but should be localized (26).
72 Multi-step loading to peak pressure is rare in nature and was not the path leading to pervasive
73 maskelynite in shergottites. However, classic shock-recovery experiments commonly utilize
74 multiple shock reflections across a low-impedance sample embedded in a high-impedance
75 chamber, whereby the sample “rings up” to a peak pressure equal to the shock pressure in the
76 chamber material (Fig. S1). The advantage of this reverberation technique is that peak pressure in
77 the sample is independent of the sample’s Hugoniot equation of state (EoS), which may be
78 unknown and complex to model. However, loading to a given peak pressure by reverberation also
79 results in lower energy, temperature and deviatoric stress than single-shock loading, thereby
80 differing from the P - T - t - $\dot{\epsilon}$ path of natural shocks and making it harder to produce pronounced
81 shock metamorphism (27). This may be the primary cause of the pressure gap between the
82 threshold for maskelynite formation in experimentally shock-recovered samples and in naturally
83 impacted shergottites (9, 17). Moreover, many previous experimental studies used plagioclase
84 single crystals (12, 13) as starting materials. Single crystals have zero porosity and follow a
85 lower-temperature path than likely target materials on Mars, where shock melt pockets record at
86 least local high temperatures (28). In this study, we develop a new shock-recovery setup to
87 generate well-defined single-shock loading paths, resembling the P - T - t - $\dot{\epsilon}$ path of natural impacts
88 on Mars. Based on results from a Mars rock simulant (a slightly porous natural basalt), we
89 propose an improved calibration of the maskelynitization conditions in shergottites.

90

91 Results and Discussion

92

Hugoniot EoS of basalt

93 To approach shock conditions matching shergottites, we used Saddleback basalt,
94 the source of Mojave Mars Simulant (29), which is rich in phenocrysts of An₆₅ labradorite
95 (Table S1). To design recovery experiments that achieve single-shock loading and to
96 know the pressure precisely in such experiments, we measured the Hugoniot EoS of
97 Saddleback basalt (Fig. 2; Methods), i.e. the family of shock states achieved by shocks of
98 varying strength into this starting material. The shock velocity (U_s) and particle velocity
99 (u_p) of Saddleback basalt were measured using the inclined mirror technique (see
100 Methods); the data are shown in pressure-volume (P - V) space in Fig. 2.

101 In the absence of phase change or elastic-plastic transition during shock, the U_s - u_p
102 Hugoniot is empirically linear and the P - V Hugoniot is derivable. In contrast, Saddleback
103 basalt shows a fast low-pressure (LP) wave and a slow high-pressure (HP) wave (Fig. 2c),
104 interpreted to be a density transition to a denser state. That results in a piecewise Hugoniot
105 with LP, HP, and mixed regimes (Fig. 2c). The density transition occurs in the range of
106 15.4 to 16.6 GPa. Although not all published Hugoniots of basalts show this transition
107 clearly, a phase change is observed in Kinosaki basalt at 13-18 GPa (30). Even in a study
108 that found final shock states along a nearly-linear Hugoniot (31) (Fig. 2c), time-resolved
109 wave velocities indicate stepped pressure rise and complex wave structures in this range
110 (Fig. S3). Our experimental determination of the Hugoniot EoS of Saddleback basalt
111 enables precise interpretation of shock pressures in our recovery experiments.

112

Shock-recovered maskelynite in basalt

113 Seven recovery experiments span the transition between density regimes along the
114 Hugoniot (Table S3). For three single/double-shock experiments, we employed
115 sample/flyer thickness ratios greater than 2 to prevent reverberation (see Methods); this
116 allows time for at most one shock reflection to partially transit the sample before a release
117 wave arrives to attenuate the shock. The sample region that released after only one shock
118 transit and the region that released after one shock reflection can be identified
119 unambiguously in this geometry (Fig. 3A).

120 S1240 is the shot with the lowest impact velocity. The front of the sample
121 experienced a single loading pulse to 15.8 GPa, maintained for 1.8 μ s before release wave
122 arrival (Fig. S5). The single-shocked central front area of the recovered sample contains
123 almost all birefringent plagioclase (Fig. 3B) and shows a white color in thick section (Fig.
124 3A). The back of the sample in the same experiment experienced one reshock from the
125 steel back-wall and reached 21.7 GPa. This reshocked area displays isotropic maskelynite
126 (Fig. 3B) and transparent grains in thick section (Fig. 3A). The visual boundary between
127 zones of amorphized and crystalline plagioclase is plainly visible in both thin and thick
128 section (dashed line in Fig. 3A-3B) and coincides with the intersection of the reshock with
129 the release wave.

130 Two more recovery experiments help to refine the nature of the glass transition
131 upon single- and double-shock loading. S1244 captures the onset of partial
132 maskelynitization in the front single-shock region at 17.4 GPa (Fig. 3C). Multiple
133 plagioclase grains in this region are divided into areas that are isotropic and areas that
134 display curved twin planes and low birefringence (Fig. 3C). All plagioclase grains in the
135 reshocked region (peak pressure 29.2 GPa) are amorphized. The corners of the capsule,
136 which experience edge effects and strong shear heating, contain complete maskelynite that
137 formed at poorly known P - T conditions somewhat different than the central part (Fig. S6).
138 S1245, with slightly higher impact velocity and peak pressure of 19.3 GPa in the single-
139 shock region, shows a noticeably higher degree of partial maskelynitization than S1244.

140 Some large (~500 μm) feldspathic domains are completely isotropic and other plagioclase
141 grains show very low birefringence that makes twinning unobservable. Most feldspar
142 domains look transparent in thick section (Fig. S7), resembling the fully maskelynitized
143 regions in other recovered samples (e.g. Fig. 3A). To ensure the correct identification of
144 weakly birefringent plagioclase, we employed electron back-scatter diffraction (EBSD) to
145 map out feldspathic domains with diffraction patterns (Fig. S7). Diffraction band-contrast
146 maps of S1245 indicate that some feldspar domains in the back of the single-shock region,
147 whose shock pulse is 0.5 μs shorter than that of the sample front (Fig. S5), still retain
148 some level of crystalline structure, despite showing very low birefringence in cross-
149 polarized light. In both S1244 and S1245, the single-shock regions contain scarce
150 instances of glass displaying flow and schlieren features, presumed to be quenched from
151 local melting of plagioclase (plus some pyroxene). This feldspathic normal glass shows
152 notably lower fracture density than the surrounding maskelynite or plagioclase (Fig. S6
153 and S7), indicating viscous relaxation of shear stress before shock release.

154 The results of the three thick-sample recovery shots spanning the glass-transition
155 interval along the Hugoniot demonstrate the onset of maskelynitization occurs around 17
156 GPa, with maskelynite becoming predominant above 19 GPa and complete transition by
157 22 GPa. The pressures are slightly higher than the transition point in the Hugoniot (Fig. 1),
158 likely because some excess pressure is needed to preserve the amorphization upon
159 recovery (24, 32). The onset pressure of maskelynitization for single shocks of our target
160 material is 17 GPa, much lower than the 25–27 GPa in reverberation experiments (Fig. 1).
161 Our thin-sample experiments replicated previous results, showing that reverberation
162 causes complete maskelynitization of Saddleback basalt at around 30 GPa or above (Table
163 S3 and Fig. S8).

164 Low shock-pressure and temperature of shergottites

165 The pressure threshold for conversion of plagioclase to maskelynite is not a simple
166 function of peak pressure but depends on the P - T - t - $\dot{\epsilon}$ loading path (21, 23, 24). Evaluation
167 of the peak pressure of shergottites therefore requires experiments that approach the
168 conditions of natural impacts on Mars. Unfortunately, natural impacts, laboratory shocks
169 (propellant- or laser-driven), static and rapid compression experiments all populate
170 different regimes in P - T - t - $\dot{\epsilon}$ space. Planetary impacts related to shergottites are thought to
171 involve pulses of 10^{-3} to 10^{-2} s duration and strain rates greater than $\sim 10^5 \text{ s}^{-1}$ (17, 33–35).
172 Reproducing that duration and strain rate simultaneously is challenging. Shock recovery
173 experiments provide the correct strain rate but a shorter pulse duration, $< 10^{-5}$ s (Fig. S5),
174 whereas anvil compression provides longer pulse durations but much lower strain rates,
175 $< 10^{-1} \text{ s}^{-1}$ (21, 23). Our propellant shock experiments with microsecond pulses demonstrate
176 maskelynitization pressures intermediate between estimates from laser shocks of 20 ns
177 duration (24) and anvil compression experiments lasting at least seconds (23), suggesting
178 a negative correlation between transformation pressure and pulse duration. Therefore, the
179 pressure thresholds (17.4–21.7 GPa) observed in our experiments are probably slightly
180 higher than the actual pressure of partially maskelynitized shergottites (Fig. 3D) launched
181 by Martian impacts. In other word, our experiments set a new upper bound for the
182 maskelynitization of calcic plagioclase in natural impacts. This upper bound also applies
183 to most terrestrial impact sites, whose pulses last $> 10^{-3}$ s.

184 Increasing temperature favors maskelynite formation at lower pressure. Static
185 compression experiments observe this effect (21) (Fig. 1). Likewise, preheating of basalt
186 to 1073 K lowers the threshold for partial maskelynitization in reverberation experiments
187 from > 26 GPa to ~ 22 GPa (36). The higher shock temperatures achieved by single shocks
188 compared to previous reverberation-shock paths might therefore explain the observation

189 of maskelynite formation at ~17 GPa. However, calculated shock temperatures for single-
190 shock and reverberating shock loading paths (Fig. 1A) are negligibly different in the range
191 where we find the onset of maskelynite formation, becoming more different only above 30
192 GPa. Although one-step loading of a target with the appropriate porosity does offer a
193 better match to the shock temperatures experienced by shergottites than reverberation-
194 shocking single crystals, temperature does not appear to solely explain the dramatically
195 lower maskelynitization threshold in our experiments compared to reverberation studies.

196 Another key difference between single and reverberating shock loading is the
197 magnitude of deviatoric stress experienced by the sample. Reverberating shocks that peak
198 at 25-30 GPa typically have first shock fronts with pressure amplitudes of ~10 Gpa that
199 overdrive the Hugoniot Elastic Limit (HEL, ~5 Gpa) by about 5 Gpa before material
200 failure (37). It is likely that subsequent shocks raise the pressure in a nearly hydrostatic
201 fashion without material strength effects and cause limited increases in deviatoric stress.
202 In contrast, a single shock directly to the peak pressure creates transient deviatoric stress
203 several times larger by overdriving the HEL more strongly (38). Large deviatoric stresses
204 are likely to facilitate low-pressure maskelynitization (39). Hydrocode simulation also
205 shows that shear stress varies temporally and spatially for regions of the same peak
206 pressure during impact cratering, which plays an important role in producing meter-scale
207 features such as shutter cones (40). Hence, the single-shock experiments better resemble
208 this aspect of the P - T - t - $\dot{\epsilon}$ path of Martian impacts. In an actual planetary impact, the
209 longer duration (33), shock turbulence (41) and extensive shear flows (42) may all
210 contribute to further lowering the pressure threshold for maskelynitization.

211 Raman spectra of feldspars in shergottites demonstrate broadening of diagnostic
212 peaks with increasing shock and maskelynitization level (10, 43). The pressure associated
213 with such peak broadening has been calibrated using reverberating shock experiments and
214 assigned to shock pressures of 26 to >45 GPa. However, this spectroscopic shock level
215 barometer, like the maskelynite threshold, likely requires a systematic pressure shift to
216 account for the differences between natural shock loading and reverberation experiments
217 (43).

218 The HP mineral assemblages in many fully maskelynitized shergottites, such as
219 Tissint, Zagami and DaG 735, are stable at <25 GPa in basaltic bulk compositions (16)
220 (Fig. 1). In distinct contrast, these shergottites mostly contain full maskelynite with no
221 birefringent plagioclase, which has been assigned to pressure >30 GPa on the basis of
222 previous reverberation shock experiments (Fig. 1). This discrepancy is problematic — if
223 all the shergottites were truly shocked beyond 30 GPa, then post-spinel transformation,
224 recrystallization and local melting would be pervasive. Although complete
225 maskelynitization sets a lower bound of shock pressure in shergottites, more heavily
226 shocked rocks such as ALH 77005 and NWA 1950 that reached 35-40 GPa (18, 44)
227 commonly contain brown olivine with shock-induced planar deformation features (36) and
228 quenched vesicular feldspathic glass instead of maskelynite (Fig. 1B; Fig. S10). These
229 textures are reproduced by the extensive deformation and melting (Fig. S8) observed in
230 one of our higher-pressure experiments (S1238, 42.4 GPa). The potential HP minerals in
231 these strongly-shocked rocks are likely annealed (25), resulting from post-shock
232 temperature high enough for retro-metamorphism, in contrast to the maskelynitized
233 shergottites shocked to <25 GPa. Even for the rare examples of partially maskelynitized
234 shergottites, such as NWA 8159 (17) (Fig. 3), the previously determined threshold
235 pressure was still above 25 GPa (Fig. 1). Our single-shock recovery experiments
236 reproduce partial maskelynite textures like those in NWA 8159 (Fig. 3C-3D; Fig. S10)
237 and yield a new partial-to-complete maskelynitization threshold, 17.4-21.7 GPa, that is

238 consistent with the majorite-pyroxene assemblage in the same meteorite (17) (Fig. 1).
239 Based on new pressure thresholds, the pressure of <25 GPa inferred from HP phase
240 assemblages of shergottites that reached the onset of post-spinel transformation, such as
241 Zagami and Tissint, are therefore sufficient for the observed complete maskelynitization.

242 The new low-pressure maskelynitization threshold is also more consistent with
243 untransformed accessory minerals in shergottites, such as baddeleyite (5). Zircon and
244 baddeleyite undergo several displacive transitions with low activation energy and fast
245 kinetics (19, 20), allowing transition at low temperature (45). Previous maskelynitization
246 barometry indicated shock compression above 30 GPa and 600 °C bulk temperature in
247 shergottites (Fig. 1). Such conditions should have caused pervasive transformation of
248 baddeleyite to orthorhombic and tetragonal structures, followed by reversion to
249 polycrystalline monoclinic aggregates upon release, as observed in terrestrial target rocks
250 that experienced similar long-pulse impact events. The neighborhoods around plagioclase
251 crystals likely experience local temperature even higher than the bulk rock (27), due to the
252 compressibility of feldspar and the volume decrease associated with maskelynite
253 formation (Fig. 1A and 2C). In fact, martian baddeleyite can be found entrained in fully
254 maskelynitized feldspar in shergottites and retains magmatic crystallinity, zoning patterns,
255 and U-Pb ages, which has previously been seen as inconsistent with peak shock pressure >
256 30 GPa (46). The lower maskelynitization pressure, 17.4–21.7 GPa, in our study is
257 compatible with these undisturbed zirconium minerals. Although the mechanism of Pb
258 loss during shock deformation and ZrO_2 transformation is not fully understood (47),
259 moderate values of shock pressure, shock temperature and post-shock temperature, in
260 association with our new maskelynitization threshold are more consistent with the
261 observed crystallography and limited resetting of the zircon and baddeleyite. In turn, this
262 result strengthens the case that the <0.6 Ga ages of shergottites are primary crystallization
263 ages and not partially reset values.

264

265 Launch of shergottite from greater depth

266 Finding agreement between the peak pressures implied by feldspar transformation
267 and those recorded by HP minerals crystallized in melt veins also eliminates the need for
268 complex partial release scenarios featuring an excess pressure spike (for
269 maskelynitization) followed by a stable shock pulse (for HP minerals). Instead, a unified
270 shock pressure of <25 GPa for maskelynite and HP minerals in many shergottites favors
271 models in which the melt veins record plateau conditions at peak pressure lasting 10–100
272 ms (17, 33, 34). Thus, the whole P - t profile extracted from analysis of shergottites
273 becomes simple and well-constrained and potentially more suitable for modeling the
274 launch of shergottites from Mars.

275 Because particle velocity of several $km\ s^{-1}$ corresponds to excessive pressure close
276 to whole rock melting, impact spallation models are proposed for accelerating Martian
277 meteorites to escape velocity while limiting the intensity of shock metamorphism that they
278 experience (6, 7). Kurosawa et al. (7) extracted pressure and velocity histories of multiple
279 tracers in hydrocode spallation simulations and demonstrated that ejection from depth 1–
280 2% of the impactor radius is most probable for achieving escape with a plateau-like P - t
281 profile. Although their modeled impactor of 10 km radius corresponds to a very large
282 crater, the same scaled depth in the case of a smaller impactor would still be consistent
283 with the absolute depth needed to explain the differences noted between Martian
284 meteorites and surficial lithologies (48) and with the absence of 2π irradiation (49). By
285 contrast, in previous scenarios requiring multistage P - t histories, ejecta likely originate at

286 depth <0.5% of the impactor radius. In such models, satisfying the absolute depth, pulse
287 duration, and pressure constraints requires an impactor of several km radius and crater
288 diameter >100 km (8). Such a crater size is even greater than the largest candidate craters
289 for the origin of the shergottites, like Mojave (58 km) and Kotka (29 km) (50).

290 Bowling et al. (8) demonstrate that there is a correlation between impact size and
291 dwell time at a given pressure. Quantitatively, for a peak pressure of ~30 GPa, launched
292 material has a ratio of HP dwell time to impactor radius of up to 20 $\mu\text{s m}^{-1}$, whereas for 20
293 GPa peak pressure this ratio decreases to <15 $\mu\text{s m}^{-1}$. Hence ejection at peak pressure of
294 ~20 GPa rather than 30 GPa implies a 30% larger impactor for the same dwell time (Fig.
295 S11). One remaining issue here is that peak pressure may increase to >30 GPa in material
296 ejected from greater depth close to the impact center. Elliot et al. (48) applied a
297 fragmentation model in their simulations and found that a 20 m layer of tuff on top of
298 basalt enhances the overall ejection capability of a 1 km impactor, compared to pure basalt
299 targets, potentially launching material from depth to escape at a lower peak pressure. In
300 sum, somewhat counterintuitively, a decrease in the estimate of peak pressure recorded by
301 the shergottites implies an increase in diameter of the crater from which they were ejected.
302 Low-pressure ejection increases the need for special geometries of oblique impact and for
303 mechanisms such as ejecta pileup recognized in recent high-resolution simulations (7). In
304 turn, a decrease in the estimate of shock pressure in the shergottites increases the rarity of
305 ejection of unmelted rocks and increases the probability that the known shergottites were
306 ejected by fewer impact events, given their narrow range of cosmic ray exposure ages
307 (51). Low-pressure maskelynitization combined with HP mineral stability fields indicates
308 that future hydrocode simulations of shergottite launch should focus on a plateau-like P - t
309 profile and increased depth of origin.

310 Because maskelynitization of feldspar depends on many variables, including
311 mineral composition, target porosity, and the P - T - t - ϵ path of shock compression, it is
312 important to calibrate shock conditions with suitable experiments. The high deviatoric
313 stress, high strain rate and well-defined shock temperature realized in a one-step shock-
314 loading setup are appropriate for interpreting shocked meteorites from impacts on Mars
315 and other basaltic targets like Vesta and the Earth. The methodology of EoS measurement
316 combined with single-shock recovery experiments can be applied to terrestrial basalts,
317 HEDs and lunar rock analogues to better constrain the pressure of the maskelynitized
318 rocks in their corresponding groups.

321 Materials and Methods

323 Martian analogue sample

324 To reproduce the shock conditions in shergottites, we used Saddleback basalt
325 (Table S1-S2) from the Mojave Desert in southern California (29). This nearly
326 holocrystalline basalt, with low porosity (3%) and <10% groundmass, was selected for
327 testing the mechanical design of the Curiosity rover (the Mojave Mars Simulant), because
328 of the similarity of its physical properties to Martian rocks (29).

330 Hugoniot measurement in shock experiments

331 The Hugoniot EoS of material is most commonly expressed as an empirical linear
332 (or piecewise-linear) relationship $U_s = C_o + su_p$, where U_s and u_p are the velocity of the
333 shock front and the particle velocity in the shocked material; C_o is expected to be the zero-
334 pressure bulk sound speed and s is a dimensionless factor related to the pressure derivative
335 of the bulk modulus. Knowing the U_s - u_p relationship for each material involved in an

336 experimental impact, one can calculate the shock-state pressure and volume (V) via the
337 Rankine-Hugoniot conservation equations and the assumption of velocity and stress
338 continuity across interfaces. With additional constraints on the isochoric heat capacity and
339 thermodynamic Grüneisen parameter, the temperature increases across a shock can also be
340 estimated (25) (Fig. 1; supplementary section S1 and S5).

341 The basalt EoS shots were performed on the 40 mm propellant gun in the Caltech
342 Lindhurst Laboratory for Experimental Geophysics. More details of experimental setup
343 are in supplementary section S1. Shock arrivals at the silvered surface of each mirror
344 generate sharp cutoffs on the Hadland Imacon 790 streak-camera image (Fig. 2B). The
345 travel time of the shock wave across the sample is determined by the average of the time
346 differences between the light cutoffs at the two sample flat mirrors and at the adjacent
347 driver plate mirrors (t_1-t_0 in Fig. 2B), converted to travel time and then shock-wave speed
348 (U_s). The impedance match solution (which imposes continuity of particle velocity and
349 normal stress at the driver-sample interface), the known Hugoniot of the driver, and the
350 measured U_s yield the sample particle velocity u_p .

351 Assuming the pre-shock velocity of the sample is zero, the Rankine-Hugoniot
352 equations for conservation of mass, momentum and energy (E) across the shock front can
353 be written as:

$$\rho_0 U_s = \rho (U_s - u_p) \quad (1a)$$

$$(P - P_0) = \rho_0 U_s u_p \quad (1b)$$

$$E - E_0 = (P + P_0)(V - V_0)/2 \quad (1c)$$

357 These equations allow calculation of P , ρ , and $(E - E_0)$ in the shock state given
358 measurements of U_s , u_p , and initial density ρ_0 . In the case of a two-wave structure, the
359 high-pressure slow wave also follows the impedance match at driver-sample interface.

360 When the target material undergoes an elastic-plastic or low-density to high-
361 density transition, a two-wave structure forms, whereby the slower second wave has a
362 higher pressure. In this case, only the arrival of the faster first wave can be captured by the
363 streak camera, but the impedance match at the driver-sample interface needs the P , U_s and
364 u_p of the second wave. For such cases, we measure the slow wave and fast wave(s) by
365 adding an inclined mirror behind the sample at an angle ϕ , in addition to the regular flat
366 mirrors on the driver and basalt sample disc (Fig. 2A). The inclined mirror is wedge-
367 shaped to so that its refraction and reflection offsets cancel out and light is reflected back
368 to the center of the camera sensor. When a shock wave arrives at the rear free surface of
369 the sample, decompressed material traverses the vacuum at free-surface velocity U_{fs} and
370 hits the inclined mirror, creating an oblique cutoff (γ in Fig. 2B) along the inclined-mirror
371 streak. U_{fs} is determined from the corresponding angle γ on the streak cutoff using

$$U_{fs} = (W \cdot \tan\phi) / (m \cdot \tan\gamma) \quad (2)$$

373 where W and m are the writing rate and magnification of the streak image,
374 respectively (37). Thus, the arrival of the second wave, with higher u_p and U_{fs} than the first
375 wave, is shown by the change in γ angle on the streak cutoff (t_2 in Fig. 2B). Assuming the
376 release adiabat is exactly a reflected Hugoniot, U_{fs} is expected to be $2 \cdot u_p$ (supplementary
377 section S1). The timing of the slope transition also approximately indicates the second
378 wave velocity by

$$U_{s2} = (d + (t_2 - t_1) \cdot U_{fs1}) / (t_2 - t_0) \quad (3)$$

380 where d is the sample thickness and the meaning of each time t_i is indicated on
381 Figure 2B. In the case that $U_{fs} \neq 2u_p$, which is common for a wave in a transformed phase,
382 the final particle velocity can be calculated by iteration between U_{s2} and the impedance
383 match solution at the sample-driver interface (Fig. S1).

384 In our first two EoS shots (1123 and 1124), we observed U_s decreasing from 6136
385 m s^{-1} to 5232 m s^{-1} as flyer velocity U_{fp} increases from 1394 m s^{-1} to 1598 m s^{-1} (Fig. S2),

386 indicating that in this range the sample undergoes a density transition to a higher density
387 state that produces a two-wave structure; the slower, higher-pressure wave is not captured
388 by the flat mirror streak cutoffs.

389 To determine U_s and u_p for both the first and second wave, the third shot (1126),
390 fired at an intermediate U_{fp} of 1479 m s^{-1} , employed an inclined-mirror method to measure
391 multiple wave velocities. The first wave has $U_{s1} = 5766 \text{ m s}^{-1}$ and $u_{p1} = 1009 \text{ m s}^{-1}$,
392 whereas the second and final wave has $U_{s2} = 5232 \text{ m s}^{-1}$ and $u_{p2} = 1297 \text{ m s}^{-1}$. Interpreting
393 this two-wave structure as recording a density transition, we find that the density transition
394 is complete at 16.6 GPa , (much higher than the Hugoniot elastic limit (HEL), which can
395 generate a similar two-wave structure in weaker shocks). The data from all three EoS
396 shots can be summarized by a piecewise-linear fit, with negative slope $U_s = 9594 - 3.72u_p$
397 for u_p between 900 and 1200 m s^{-1} and a high-density phase at $u_p \geq 1200 \text{ m s}^{-1}$
398 characterized by $U_s = 3603 + 1.256u_p$. The transition pressure interval extends from 15.4
399 to 16.6 GPa and results from incomplete density transition and mixing of low- and high-
400 density states along the Hugoniot. The EoS shots are summarized in Figure S2 and Table
401 S3. These fits are sufficient to enable calculation of pressures in our recovery experiments.
402 The low-pressure Hugoniot is estimated (Fig. 2c) using the zero-pressure sound speed of
403 Saddleback basalt²⁷ and does not affect the pressure calculation of recovery experiments
404 (Fig. S2). Comparison among Hugoniots from Saddleback basalt and other feldspar rocks
405 is discussed in the supplementary section S2.

406 407 Shock recovery experiments

408 Discs of Saddleback basalt with a diameter of 5 or 7.6 mm and thickness d_{sample} of
409 1.0 to 5.0 mm were used for total of 7 shock recovery experiments. The samples were
410 embedded in 304 stainless steel (SS304) chambers and impacted by tantalum flyer plates
411 of thickness d_{flyer} from 1.5 to 2.1 mm (Table S3; supplementary section S3). In practice, a
412 thickness ratio $d_{\text{sample}}/d_{\text{flyer}} < 1$ allows enough shock transits across the sample and
413 chamber to effectively achieve an ultimate peak pressure by reverberation, before the
414 rarefaction wave from the back of the flyer arrives. In 4 out of the total 7 recovery shots,
415 the sample experienced full reverberation to peak pressures from 33 to 42 GPa after first
416 shock pressures from 16 to 19 GPa (Table S3 and Fig. S5). Three more recovery shots
417 with similar impact velocities and $d_{\text{sample}}/d_{\text{flyer}} > 2$ were performed. In this geometry, wave
418 propagation calculations show that the front portion of the sample is shocked only once
419 before release, to the same range of initial pressures, 16 - 19 GPa . In each of these three
420 non-reverberating experiments, some part of the sample near the steel back wall also
421 experienced one reflected shock (Fig. 3; Figs. S5-S8).

422 The impacted target assemblies were cut parallel to the impact direction into two
423 equal halves. One half was polished into a thick section for reflected light imaging. The
424 other half was sliced and mounted in Petropoxy 154 to make a standard $30 \text{ }\mu\text{m}$ thin section
425 for examination in cross-polarized transmitted light. Both thick and thin sections were
426 analyzed with a Zeiss 1550VP field emission scanning electron microscope in the
427 Division of Geological and Planetary Sciences at Caltech. Backscattered and secondary
428 electron (BSE and SE) images are employed to observe the micro-textures of the shocked
429 basalt. Energy dispersive X-ray spectroscopy (EDS) with an Oxford X-max silicon drift
430 detector was used to measure the chemical composition at 15 kV accelerating voltage and
431 4 - 6 nA beam current, achieving more than 200 counts/channel and 40% dead time. We
432 also employed electron backscatter diffraction (EBSD) to investigate the crystallinity of
433 shocked minerals. Regions with resolved diffraction bands were indexed with mean
434 angular deviation (MAD) values less than 0.8° (Fig. S7). Regions showing no resolvable
435 diffraction bands are considered amorphous. The band contrast metric quantifies the

436 degree of crystallinity at the EBSD point analysis. Quantitative chemical analyses of rock-
437 forming minerals and glasses were performed using a JEOL 8200 electron microprobe
438 (WDS: 15 kV; 5-10 nA; beam in focused mode) interfaced with the Probe for EPMA
439 program from Probe Software, Inc. Standards for these analyses were synthetic fayalite
440 ($SiK\alpha$ for olivine, $FeK\alpha$), Shankland forsterite ($MgK\alpha$), synthetic Mn_2SiO_4 ($MnK\alpha$),
441 synthetic anorthite ($AlK\alpha$, $SiK\alpha$ for feldspar, $CaK\alpha$), Amelia albite ($NaK\alpha$), Asbestos
442 microcline ($KK\alpha$), synthetic TiO_2 ($TiK\alpha$), and synthetic Cr_2O_3 ($CrK\alpha$). Quantitative
443 elemental microanalyses were processed with the CITZAF correction procedure (Table
444 S1).

445 Because our impedance match calculations assume one-dimensional flow, we
446 focused on the central portion of the sample when determining the abundance of
447 completely or partially amorphized domains, to avoid regions affected by possible edge
448 effects and rock-metal friction (Fig. S6). Although additional amorphous material
449 commonly occurs along large fractures and at the capsule edges (Fig. 3A and Fig. S6),
450 these are considered to be associated with edge conditions and are not considered when
451 defining thresholds for maskelynite formation. The difference between maskelynitization
452 thresholds obtained by shocking Saddleback basalt with those from other compression
453 techniques is discussed in the main text and supplementary section S4.

457 References

1. A. E. Rubin, Maskelynite in asteroidal, lunar and planetary basaltic meteorites: An indicator of shock pressure during impact ejection from their parent bodies. *Icarus*. **257**, 221–229 (2015).
2. G. Tschermak, Die Meteoriten von Schergotty und Gopalpur. *Sitz-Ber. Akad. Wiss. Wien., math.-naturw. Kl., Abt. I*. **65**, 122–146 (1872).
3. L. Ferrière, F. Brandstätter, What is Maskelynite? Back to the Original Description and Thin Sections in Which it was First Described. *78th Annual Meeting of the Meteoritical Society*. 1856, 5184 (2015).
4. D. J. Milton, P. S. De Carli, Maskelynite: Formation by Explosive Shock. *Science*. **140**, 670–671 (1963).
5. D. E. Moser, K. R. Chamberlain, K. T. Tait, A. K. Schmitt, J. R. Darling, I. R. Barker, B. C. Hyde, Solving the Martian meteorite age conundrum using micro-baddeleyite and launch-generated zircon. *Nature*. **499**, 454–457 (2013).
6. J. N. Head, H. J. Melosh, B. A. Ivanov, Martian Meteorite Launch: High-Speed Ejecta from Small Craters. *Science*. **298**, 1752–1756 (2002).
7. K. Kurosawa, T. Okamoto, H. Genda, Hydrocode modeling of the spallation process during hypervelocity impacts: Implications for the ejection of Martian meteorites. *Icarus*. **301**, 219–234 (2018).
8. T. J. Bowling, B. C. Johnson, S. E. Wiggins, E. L. Walton, H. J. Melosh, T. G. Sharp, Dwell time at high pressure of meteorites during impact ejection from Mars. *Icarus*. **343**, 113689 (2020).

479 9. D. Stöffler, R. Ostertag, C. Jammes, G. Pfannschmidt, P. R. S. Gupta, S. B. Simon, J. J.
480 Papike, R. H. Beauchamp, Shock metamorphism and petrography of the Shergotty
481 achondrite. *Geochimica et Cosmochimica Acta*. **50**, 889–903 (1986).

482 10. J. Fritz, A. Greshake, D. Stöffler, Micro-Raman spectroscopy of plagioclase and maskelynite
483 in Martian meteorites: Evidence of progressive shock metamorphism. *Antarctic Meteorite*
484 *Research*. **18**, 96 (2005).

485 11. S. W. Kieffer, R. B. Schaal, R. Gibbons, R. Horz, D. J. Milton, A. Dube, Shocked basalt
486 from Lonar Impact Crater, India, and experimental analogues. *Lunar and Planetary Science*
487 *Conference Proceedings 7th*, 1391–1412 (1976).

488 12. R. V. Gibbons, T. J. Ahrens, Effects of shock pressures on calcic plagioclase. *Phys Chem*
489 *Minerals*. **1**, 95–107 (1977).

490 13. R. Ostertag, Shock experiments on feldspar crystals. *J. Geophys. Res.* **88**, B364–B376
491 (1983).

492 14. J. R. Johnson, F. Hörz, Visible/near-infrared spectra of experimentally shocked plagioclase
493 feldspars. *J. Geophys. Res.* **108**, 5120 (2003).

494 15. J. Fritz, V. Assis Fernandes, A. Greshake, A. Holzwarth, U. Böttger, On the formation of
495 diaplectic glass: Shock and thermal experiments with plagioclase of different chemical
496 compositions. *Meteoritics & Planetary Science*. **54**, 1533–1547 (2019).

497 16. N. Tomioka, M. Miyahara, High-pressure minerals in shocked meteorites. *Meteorit Planet*
498 *Sci.* **52**, 2017–2039 (2017).

499 17. T. G. Sharp, E. L. Walton, J. Hu, C. Agee, Shock conditions recorded in NWA 8159 martian
500 augite basalt with implications for the impact cratering history on Mars. *Geochimica et*
501 *Cosmochimica Acta*. **246**, 197–212 (2019).

502 18. E. L. Walton, C. D. K. Herd, Dynamic crystallization of shock melts in Allan Hills 77005:
503 Implications for melt pocket formation in Martian meteorites. *Geochimica et Cosmochimica*
504 *Acta*. **71**, 5267–5285 (2007).

505 19. O. Ohtaka, H. Fukui, T. Kunisada, T. Fujisawa, K. Funakoshi, W. Utsumi, T. Irifune, K.
506 Kuroda, T. Kikegawa, Phase relations and equations of state of ZrO₂ under high temperature
507 and high pressure. *Phys. Rev. B*. **63**, 174108 (2001).

508 20. L. F. White, J. R. Darling, D. E. Moser, C. Cayron, I. Barker, J. Dunlop, K. T. Tait,
509 Baddeleyite as a widespread and sensitive indicator of meteorite bombardment in planetary
510 crusts. *Geology*. **46**, 719–722 (2018).

511 21. T. Kubo, M. Kimura, T. Kato, M. Nishi, A. Tominaga, T. Kikegawa, K. Funakoshi,
512 Plagioclase breakdown as an indicator for shock conditions of meteorites. *Nature Geosci.* **3**,
513 41–45 (2010).

514 22. A. R. Huffman, W. U. Reimold, Experimental constraints on shock-induced microstructures
515 in naturally deformed silicates. *Tectonophysics*. **256**, 165–217 (1996).

516 23. M. Sims, S. J. Jaret, E.-R. Carl, B. Rhymer, N. Schrodt, V. Mohrholz, J. Smith, Z.
517 Konopkova, H.-P. Liermann, T. D. Glotch, L. Ehm, Pressure-induced amorphization in
518 plagioclase feldspars: A time-resolved powder diffraction study during rapid compression.
519 *Earth and Planetary Science Letters*. **507**, 166–174 (2019).

520 24. A. E. Gleason, S. Park, D. R. Rittman, A. Ravasio, F. Langenhorst, R. M. Bolis, E.
521 Granados, S. Hok, T. Kroll, M. Sikorski, T.-C. Weng, H. J. Lee, B. Nagler, T. Sisson, Z.
522 Xing, D. Zhu, G. Giuli, W. L. Mao, S. H. Glenzer, D. Sokaras, R. Alonso-Mori, Ultrafast
523 structural response of shock-compressed plagioclase. *Meteoritics & Planetary Science*. **57**,
524 635–643 (2022).

525 25. J. Hu, T. G. Sharp, Formation, preservation and extinction of high-pressure minerals in
526 meteorites: temperature effects in shock metamorphism and shock classification. *Prog Earth
527 Planet Sci.* **9**, 6 (2022).

528 26. J.-G. Moreau, T. Kohout, K. Wünnemann, Melting efficiency of troilite-iron assemblages in
529 shock-darkening: Insight from numerical modeling. *Physics of the Earth and Planetary
530 Interiors*. **282**, 25–38 (2018).

531 27. T. G. Sharp, P. S. DeCarli, "Shock effects in meteorites" in *Meteorites and the early solar
532 system II*, D. S. Lauretta, H. Y. McSween Jr., Eds. (The University of Arizona Press,
533 Tucson, 2006), 653–677.

534 28. Y. Liu, Y. Chen, Y. Guan, C. Ma, G. R. Rossman, J. M. Eiler, Y. Zhang, Impact-melt
535 hygrometer for Mars: The case of shergottite Elephant Moraine (EETA) 79001. *Earth and
536 Planetary Science Letters*. **490**, 206–215 (2018).

537 29. G. H. Peters, W. Abbey, G. H. Bearman, G. S. Mungas, J. A. Smith, R. C. Anderson, S.
538 Douglas, L. W. Beegle, Mojave Mars simulant—Characterization of a new geologic Mars
539 analog. *Icarus*. **197**, 470–479 (2008).

540 30. S. Nakazawa, S. Watanabe, M. Kato, Y. Iijima, T. Kobayashi, T. Sekine, Hugoniot equation
541 of state of basalt. *Planetary and Space Science*. **45**, 1489–1492 (1997).

542 31. T. Sekine, T. Kobayashi, M. Nishio, E. Takahashi, Shock equation of state of basalt. *Earth
543 Planet Sp.* **60**, 999–1003 (2008).

544 32. I. Daniel, P. Gillet, P. F. McMillan, G. Wolf, M. A. Verhelst, High-pressure behavior of
545 anorthite: Compression and amorphization. *J. Geophys. Res.* **102**, 10313–10325 (1997).

546 33. P. Beck, P. Gillet, A. El Goresy, S. Mostefaoui, Timescales of shock processes in chondritic
547 and martian meteorites. *Nature*. **435**, 1071–1074 (2005).

548 34. E. L. Walton, T. G. Sharp, J. Hu, J. Filiberto, Heterogeneous mineral assemblages in martian
549 meteorite Tissint as a result of a recent small impact event on Mars. *Geochimica et
550 Cosmochimica Acta*. **140**, 334–348 (2014).

551 35. J. Fritz, A. Greshake, High-pressure phases in an ultramafic rock from Mars. *Earth and
552 Planetary Science Letters*. **288**, 619–623 (2009).

553 36. A. Takenouchi, T. Mikouchi, T. Kobayashi, T. Sekine, A. Yamaguchi, H. Ono, Fine-
554 structures of planar deformation features in shocked olivine: A comparison between Martian

555 meteorites and experimentally shocked basalts as an indicator for shock pressure.
556 *Meteoritics & Planetary Science*. **54**, 1990–2005 (2019).

557 37. T. J. Ahrens, V. Gregson Jr, Shock compression of crustal rocks: Data for quartz, calcite,
558 and plagioclase rocks. *Journal of Geophysical Research*. **69**, 4839–4874 (1964).

559 38. N. K. Bourne, J. C. F. Millett, J. E. Field, On the strength of shocked glasses. *Proceedings of*
560 *the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences*.
561 **455**, 1275–1282 (1999).

562 39. F. Langenhorst, P. Joreau, J. C. Doukhan, Thermal and shock metamorphism of the Tenham
563 chondrite: A TEM examination. *Geochimica et Cosmochimica Acta*. **59**, 1835–1845 (1995).

564 40. A. S. P. Rae, M. H. Poelchau, T. Kenkmann, Stress and strain during shock metamorphism.
565 *Icarus*. **370**, 114687 (2021).

566 41. C. T. Adcock, O. Tschauner, E. M. Hausrath, A. Udry, S. N. Luo, Y. Cai, M. Ren, A.
567 Lanzirotti, M. Newville, M. Kunz, C. Lin, Shock-transformation of whitlockite to merrillite
568 and the implications for meteoritic phosphate. *Nat Commun*. **8**, 14667 (2017).

569 42. A. Greshake, J. Fritz, U. Böttger, D. Goran, Shear-induced ringwoodite formation in the
570 Martian shergottite Dar al Gani 670. *Earth and Planetary Science Letters*. **375**, 383–394
571 (2013).

572 43. S. Shkolyar, S. J. Jaret, B. A. Cohen, J. R. Johnson, O. Beyssac, J. M. Madariaga, R. C.
573 Wiens, A. Ollila, S. Holm-Alwmark, Y. Liu, Identifying Shocked Feldspar on Mars Using
574 Perseverance Spectroscopic Instruments: Implications for Geochronology Studies on
575 Returned Samples. *Earth Moon Planets*. **126**, 4 (2022).

576 44. E. L. Walton, S. P. Kelley, C. D. K. Herd, Isotopic and petrographic evidence for young
577 Martian basalts. *Geochimica et Cosmochimica Acta*. **72**, 5819–5837 (2008).

578 45. H. Leroux, W. Reimold, C. Koeberl, U. Hornemann, J.-C. Doukhan, Experimental shock
579 deformation in zircon: a transmission electron microscopic study. *Earth and Planetary
580 Science Letters*. **169**, 291–301 (1999).

581 46. L. G. Staddon, J. R. Darling, W. H. Schwarz, N. R. Stephen, S. Schuindt, J. Dunlop, K. T.
582 Tait, Dating martian mafic crust; microstructurally constrained baddeleyite geochronology
583 of enriched shergottites Northwest Africa (NWA) 7257, NWA 8679 and Zagami.
584 *Geochimica et Cosmochimica Acta*. **315**, 73–88 (2021).

585 47. T. Niihara, H. Kaiden, K. Misawa, T. Sekine, T. Mikouchi, U–Pb isotopic systematics of
586 shock-loaded and annealed baddeleyite: Implications for crystallization ages of Martian
587 meteorite shergottites. *Earth and Planetary Science Letters*. **341–344**, 195–210 (2012).

588 48. J. R. Elliott, H. J. Melosh, B. C. Johnson, The role of target strength on the ejection of
589 martian meteorites. *Icarus*. **375**, 114869 (2022).

590 49. P. H. Warren, Lunar and Martian Meteorite Delivery Services. *Icarus*. **111**, 338–363 (1994).

591 50. A. Lagain, G. K. Benedix, K. Servis, D. Baratoux, L. S. Doucet, A. Rajšić, H. a. R.
592 Devillepoix, P. A. Bland, M. C. Towner, E. K. Sansom, K. Miljković, The Tharsis mantle

593 source of depleted shergottites revealed by 90 million impact craters. *Nat Commun.* **12**, 6352
594 (2021).

595 51. R. Wieler, L. Huber, H. Busemann, S. Seiler, I. Leya, C. Maden, J. Masarik, M. M. M.
596 Meier, K. Nagao, R. Trappitsch, A. J. Irving, Noble gases in 18 Martian meteorites and
597 angrite Northwest Africa 7812—Exposure ages, trapped gases, and a re-evaluation of the
598 evidence for solar cosmic ray-produced neon in shergottites and other achondrites.
599 *Meteoritics & Planetary Science*. **51**, 407–428 (2016).

600 62. K. Hirose, Y. Fei, Y. Ma, H.-K. Mao, The fate of subducted basaltic crust in the Earth's
601 lower mantle. *Nature*. **397**, 53–56 (1999).

602 63. A. Takenouchi, A. Yamaguchi, T. Mikouchi, A Newly Found Unique Shergottite Asuka
603 12325: Comparison in Petrology and Shock Metamorphism with Other Poikilitic
604 Shergottites, *Lunar and Planetary Science Conference* LI, 1326 (2020).

605 64. J. D. Piercy, J. C. Bridges, L. J. Hicks, J. L. MacArthur, R. C. Greenwood, I. A. Franchi,
606 Terrestrial alteration mineral assemblages in the NWA 10416 olivine phric shergottite.
607 *Geochimica et Cosmochimica Acta*. **280**, 26–45 (2020).

608 65. T. J. Ahrens, C. F. Petersen, J. T. Rosenberg, Shock compression of feldspars. *J. Geophys.
609 Res.* **74**, 2727–2746 (1969).

610 66. M. E. Kipp, R. J. Lawrence, WONDY V: A one-dimensional finite-difference wave-
611 propagation code. *NASA STI/Recon Technical Report N.* **83** (1982)

612 67. A. Navrotsky, R. Hon, D. F. Weill, D. J. Henry, Thermochemistry of glasses and liquids in
613 the systems $\text{CaMgSi}_2\text{O}_6$ - $\text{CaAl}_2\text{Si}_2\text{O}_8$ - $\text{NaAlSi}_3\text{O}_8$, SiO_2 - $\text{CaAl}_2\text{Si}_2\text{O}_8$ - $\text{NaAlSi}_3\text{O}_8$ and SiO_2 -
614 Al_2O_3 - CaO - Na_2O . *Geochimica et Cosmochimica Acta*. **44**, 1409–1423 (1980).

615 68. M. B. Boslough, S. M. Rigden, T. J. Ahrens, Hugoniot equation of state of anorthite glass
616 and lunar anorthosite. *Geophysical Journal of the Royal Astronomical Society*. **84**, 455–473
617 (1986).

618 69. R. G. McQueen, S. P. Marsh, J. N. Fritz, Hugoniot equation of state of twelve rocks. *J.
620 Geophys. Res.* **72**, 4999–5036 (1967).

621 70. C. D. K. Herd, E. L. Walton, C. B. Agee, N. Muttik, K. Ziegler, C. K. Shearer, A. S. Bell,
622 A. R. Santos, P. V. Burger, J. I. Simon, M. J. Tappa, F. M. McCubbin, J. Gattacceca, F.
623 Lagroix, M. E. Sanborn, Q.-Z. Yin, W. S. Cassata, L. E. Borg, R. E. Lindvall, T. S. Kruijer,
624 G. A. Brennecke, T. Kleine, K. Nishiizumi, M. W. Caffee, The Northwest Africa 8159
625 martian meteorite: Expanding the martian sample suite to the early Amazonian. *Geochimica
et Cosmochimica Acta*. **218**, 1–26 (2017).

626 71. R. G. Berman, Internally-consistent thermodynamic data for minerals in the system Na_2O -
627 K_2O - CaO - MgO - FeO - Fe_2O_3 - Al_2O_3 - SiO_2 - TiO_2 - H_2O - CO_2 . *Journal of petrology*. **29**, 445–522
628 (1988).

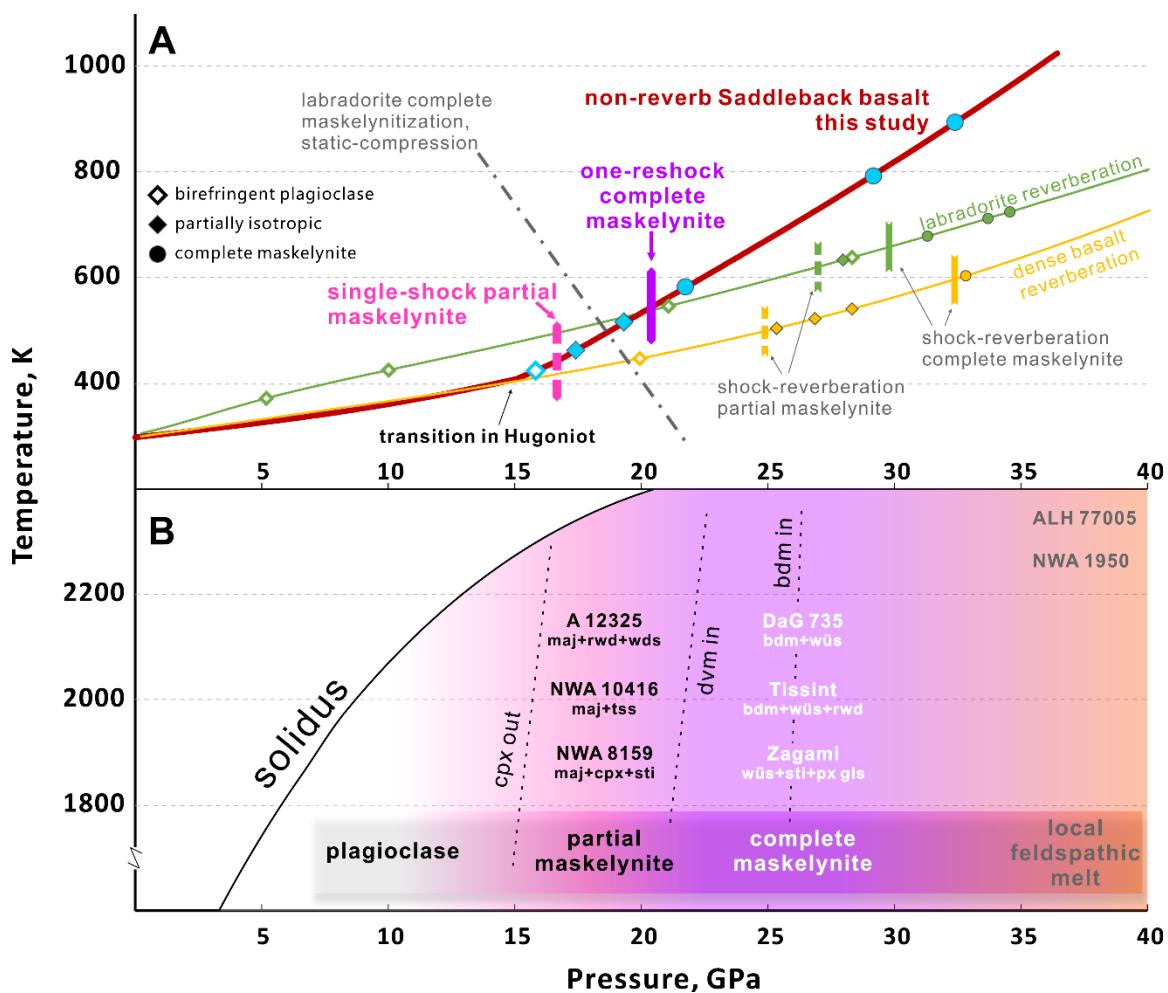
629 72. M. A. Bouhifd, P. Besson, P. Courtial, C. Gérardin, A. Navrotsky, P. Richet,
630 Thermochemistry and melting properties of basalt. *Contrib Mineral Petrol*. **153**, 689–698
631 (2007).

632 73. T. J. Ahrens, J. D. Okeefe, "Equations of state and impact-induced shock-wave attenuation
633 on the moon" in *Impact and Explosion Cratering: Planetary and Terrestrial Implications*
634 (Pergamon, New York, 1977), 639–656

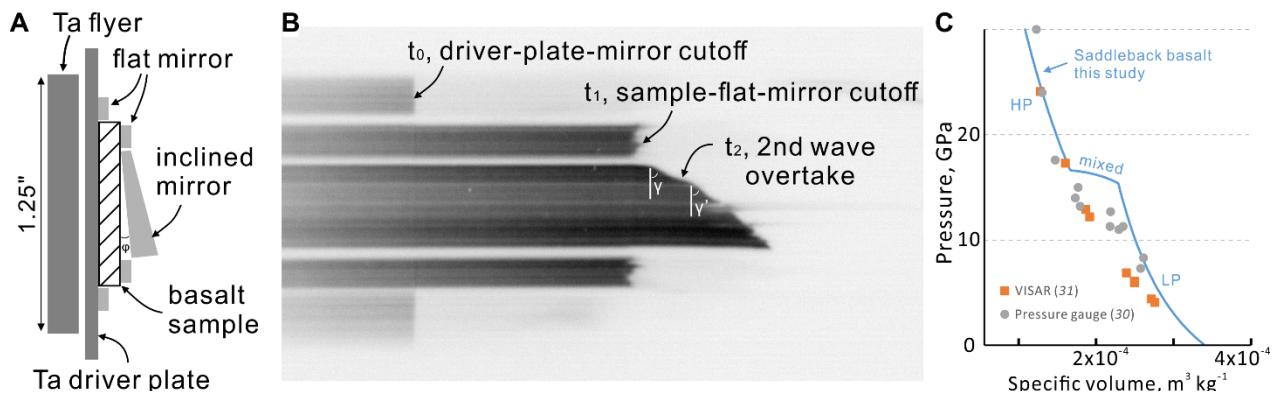
636
637
638 **Acknowledgments**

639 The authors thank Dr. Junko Isa for characterizing the initial sample of Saddleback basalt
640 and Michael Burns and Russel Oliver for expert technical help with the shock wave experiments.
641 Dr. Koeberl and two anonymous reviewers are thanked for their constructive comments.

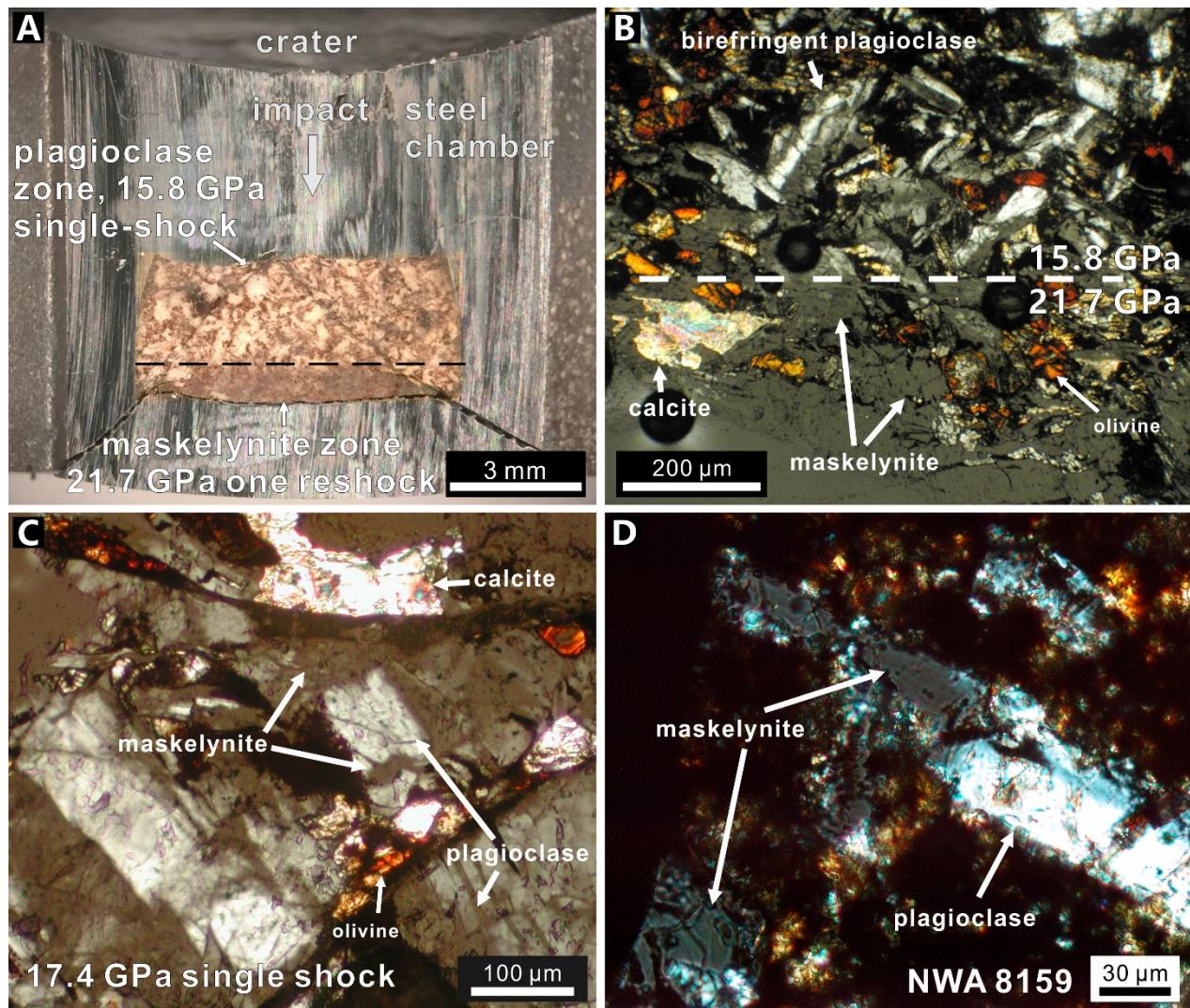
642
643 **Funding:**


644 This work was funded by NASA award 80NSSC18K0532 to JH, [NSF award](#)
645 [1947616 to PDA](#) and [NASA award 80NM0018F0612 to YL](#). Caltech-JPL President's and
646 Director's Fund [partially supported this work](#). Shock wave experiments performed in the
647 Lindhurst Laboratory for Experimental Geophysics at Caltech are supported by NSF
648 awards 1725349 and 1829277. A portion of this project was performed at Jet Propulsion
649 Laboratory, managed by California Institute of Technology under a contract with NASA.

650
651 **Author contributions:**


652 Conceptualization: JH, PDA, YL. Methodology: PDA, JH, YL. Investigation: JH,
653 YL, PDA, CM. Supervision: PDA, YL. Writing—original draft: JH. Writing—review &
654 editing: JH, PDA, YL, CM.

655
656 **Competing interests:** All other authors declare they have no competing interests.


657
658 **Data and materials availability:** All data needed to evaluate the conclusions in the paper
659 are present in the paper and/or the Supplementary Materials.

663
664 **Fig. 1. Pressure-temperature (P-T) of maskelynite formation in experiments and**
665 **Martian meteorites. (A)** Solid curves are P-T estimates of shock experiments. The curve
666 of Saddleback basalt (An₆₅ phenocrysts) is from this study (dark red curve); the sharp
667 change in slope corresponds to the phase change to a denser state. The interpolated
668 thresholds for partial and complete maskelynitization are indicated by the pink-dashed and
669 purple-solid vertical markers on the curve. The curves for single An₆₅ labradorite crystal
670 (green) and dense basalt with An₆₈ labradorite (yellow) show P-T conditions calculated
671 from data of reverberating recovery experiments (11–13, 37) and corresponding
672 maskelynitization thresholds (vertical dash and solid markers). Open diamond, solid
673 diamond and solid circle on each curve indicate birefringent plagioclase, partial and full
674 maskelynite, respectively, for the set of experiments. The tilted dot-dash line is the
675 labradorite-maskelynite phase boundary from static compression (21). **(B)** Previously
676 inferred stability fields of mineral assemblages in various shergottites, including
677 ringwoodite (rwd), wadsleyite (wds), majorite (maj), stishovite (sti), tissintite (tss),
678 clinopyroxene (cpx), dave Maoite (dvm), bridgmanite (bdm) and ferropericlite (fp) (16,
679 17, 52–54). The vertical positions are schematic because shocked meteorites experience
680 complex, heterogeneous, evolving temperature conditions. ALH 77005 and NWA 1950 do
681 not contain HP minerals but commonly have quenched feldspar glass (18). The pink-
682 purple-orange background colors indicate plagioclase-maskelynite-melt transition from
683 this study.

686
687 **Fig. 2. Setup and results of Hugoniot EoS measurement of Saddleback basalt.** (A) Ta
688 flyer and target assembly consisting of Ta driver plate, basalt sample disc and mirrors
689 silvered on the front (left) side to reflect light to streak camera. Flyer-driver-sample sizes
690 are to scale. (B) Color-inverted streak camera image, with time increasing to the right and
691 vertical axis corresponding to position across sample as shown in (A). Total streak
692 duration is 4 μs . The end of each dark streak shows a shock wave striking the mirror at
693 that position and time. t_0 and t_1 correspond to the time of shock wave entering the sample
694 and reaching the back of the sample. Inclined-mirror cutoff indicates the timing of
695 decompressed material hitting the mirror at free-surface velocity, determined by slope
696 angle γ . The change in slope at time t_2 is caused by a second shock wave overtaking the
697 first arriving wave. Irregular cutoffs result from the heterogeneity of porosity and
698 mineralogy of the basalt at mm scale. (C) The fitted Hugoniot in pressure-volume space.
699 The piecewise curve indicates low-pressure (LP), mixed-phase, and high-pressure (HP).
700 Curvature of the LP regime does not affect the pressure calculations for recovery shots.
701 The Hugoniot data of Kinosaki basalt measured by piezoresistive gauges (30) and VISAR
702 (31) show similar complication although not exactly matching Saddleback basalt (Fig. S2-
703 3).

704
Fig. 3. Photos of shock-recovered Saddleback basalt. (A) Thick section of S1240
705 sample in steel chamber with a region that experienced a single shock to 15.8 GPa and a
706 region that experienced one reflected shock to 21.7 GPa, with boundary indicated by a
707 dashed line. Plagioclase in the single-shocked region shows its original white color but the
708 maskelynite in the reshocked region is transparent and displays deformed shapes. Two
709 oblique fractures propagated from the deformed thread of the rear chamber cap. (B)
710 Nonorthogonal (87-88°) cross-polarized light (xpl) micrograph of the pressure-transition
711 region of S1240 in thin section. All plagioclase grains transformed to maskelynite
712 (isotropic) in the reshocked zone. (C) Nonorthogonal xpl image of partial maskelynite in
713 region of recovered sample S1244 that experienced single shock to 17.4 GPa. Plagioclase
714 grains are 30-40% maskelynitized. The non-isotropic portions show lower birefringence
715 than single-shocked grains in S1240. (D) Nonorthogonal xpl image of partial maskelynite in
716 shergottite NWA 8159 (17).
717
718
719
720
721
722
723
724
725

