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Abstract
Interpretation of chemical zoning within igneous minerals is critical to many petrologic studies. 

Zoning in minerals, however, is commonly observed in thin sections or grain mounts, which are random 
2D slices of a 3D system. Use of these 2D sections to infer 3D geometries requires a set of assumptions, 
often not directly tested, introduces several issues, and results in partial loss of zoning information. 
Computed X‑ray microtomography (microCT) offers a way to assess 3D zoning in minerals at high 
resolution. To observe 3D mineral zoning using microCT, however, requires that zoning is observable 
as differences in X‑ray attenuation. Sanidine, with its affinity for Ba in the crystal lattice, can display 
large, abrupt variations in Ba that are related to various magma reservoir processes. These changes in 
Ba also significantly change the X‑ray attenuation coefficient of sanidine, allowing for discrete mineral 
zones to be mapped in 3D using microCT. Here we utilize microCT to show 3D chemical zoning within 
natural sanidines from a suite of volcanic eruptions throughout the geologic record. We also show 
that changes in microCT grayscale in sanidine are largely controlled by changes in Ba. Starting with 
3D mineral reconstructions, we simulate thin-section making by generating random 2D slices across 
a mineral zone to show that slicing orientation alone can drastically change the apparent width and 
slope of composition transitions between different zones. Furthermore, we find that chemical zoning in 
sanidine can commonly occur in more complex geometries than the commonly interpreted concentric 
zoning patterns. Together, these findings have important implications for methodologies that rely on 
the interpretation of chemical zoning within minerals and align with previously published numerical 
models that show how chemical gradient geometries are affected by random sectioning during com-
mon sample preparation methods (e.g., thin sections and round mounts).
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Introduction
Chemical zoning is nearly ubiquitous in igneous minerals, and 

the compositions of zoned crystals preserve records of magmatic 
conditions and compositions when mineral growth occurred. 
Therefore, documenting and interpreting such zoning, as well as 
relating compositional variations to textural features, is a crucial 
pillar upon which modern igneous petrology is based. Studies of 
mineral chemical zoning provide important insights into common 
igneous processes such as magma mixing (e.g., Streck et al. 2005; 
Kent et al. 2010; Eichelberger 1975; Anderson 1976; Simonetti et 
al. 1996); frequency and origins of magma recharge (e.g.,Tepley 
et al. 2000; Davidson et al. 2001; Davidson and Tepley 1997; 
Singer et al. 1995); thermal evolution of magma reservoirs (e.g., 
Cooper and Kent 2014; Rubin et al. 2017; Shamloo and Till 
2019); and the rates of igneous processes (e.g., Costa and Dungan 
2005; Ruprecht and Plank 2013; Costa et al. 2003; Morgan and 
Blake 2006). Changes in mineral chemistry can also be used to 
understand the temporal sequence and evolution of these and 
other processes (Cooper 2017). When applied to a sufficiently 
large and representative population of grains, this approach then 
allows the long-term physicochemical conditions within a given 
magmatic system to be constrained.

Many mineral zoning studies, however, only investigate the 
interplay between chemical zoning and mineral textures using 
2D exposures (i.e., thin sections or mineral mounts). However, 
use of 2D mineral zoning patterns to represent 3D systems can 
also introduce several artifacts and other issues (e.g., incorrect 
estimates of mineral size and shape, width of compositional 
zones, modification of compositional gradients, etc.), potentially 
leading to incomplete and or inaccurate characterization and 
interpretation of igneous processes (e.g., Higgins 2000). For 
example, recent studies have numerically investigated the effects 
of sectioning 3D zoned crystals using modeling approaches for 
the purposes of documenting diffusion gradients (e.g., Shea et 
al. 2015; Krimer and Costa 2017; Couperthwaite et al. 2021). 
This shows that many 2D sections suffer from partial loss of 
zoning information, requiring a careful evaluation of each crystal 
studied to avoid a distorted view of the true concentration gra-
dient between chemical zones and obtain reliable results (e.g., 
diffusion timescales). Despite this realization, however, studies 
of 3D zoning in natural mineral examples have been relatively 
underutilized to address 2D sectioning issues.

To observe natural mineral chemical zoning in 3D, previous 
studies have used serial sectioning combined with either electron 
probe (e.g., Spear and Daniel 2003), focused ion beam time of 
flight secondary ion mass spectrometry (FIB ToF SIMS) (Wirth * E-mail: jelubber@gmail.com. Orcid 0000-0002-3566-5091
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2009; Tajčmanová et al. 2012), or atom probe tomography (APT) 
(Reddy et al. 2020; Rickard et al. 2020), however these approach-
es: (1) often only produce 3D imaging/chemical information for 
an extremely small volume and are difficult to apply to an entire 
mineral (e.g., FIB ToF SIMS, APT); (2) can only create coarse 
3D reconstructions based on limited 2D slices (electron probe 
serial sections); (3) necessitate the destruction of the sample 
being studied; and (4) are extremely time consuming making it 
challenging to be representative of an entire magmatic system.

In recent years, technological developments in high-resolu-
tion imaging via absorption (e.g., Uesugi et al. 2010; Tsuchiyama 
et al. 2013; Pankhurst et al. 2018; Mourey and Shea 2019) and 
phase contrast (e.g., Arzilli et al. 2015, 2016) computed X‑ray 
microtomography (microCT) have provided new opportunities to 
observe textural and zoning characteristics throughout individual 
minerals in 3D. These studies show there is great potential to 
further use microCT and related techniques [e.g., Diffraction 
Contrast Tomography; Pankhurst et al. (2019)] to document and 
understand compositional zoning in igneous minerals, but there 
remains a need to develop a greater understanding of the potential 
for using microCT in different mineral systems, and to establish 
what the 3D variations in X‑ray attenuation revealed by microCT 
correspond to in terms of compositional variations for specific 
minerals. In this study, we use absorption microCT to document 
intracrystalline 3D chemical zoning of natural sanidine crystals 
and explore the geochemical controls responsible for changes 
in X‑ray attenuation throughout this mineral.

X‑ray microtomography
When X‑rays interact with a sample, they are attenuated ac-

cording to Lambert-Beer’s Law:

I = I0exp(–μD)	 (1)

where I is the attenuated intensity of X‑rays after they pass 
through a sample of thickness D, I0 is the incident radiation 
(X‑ray) intensity, and µ is the linear attenuation coefficient of the 
material the X‑rays are interacting with. The linear attenuation 
coefficient is a constant that describes the fraction of attenuated 
incident photons in a monoenergetic beam per unit thickness of 
a material and varies with beam energy, atomic electron density, 
and the bulk density of the material (Wildenschild and Shep-
pard 2013). Although attenuation mechanisms also vary with 
beam energy (i.e., Compton scattering for 5 < I0 < 10 MeV; pair 
production I0 > 10 MeV), for geologic materials, a beam energy 
of 50–100  keV is typically used and the photoelectric effect 
dominates (Mccullough 1975). This is an extremely useful ob-
servation as both the photoelectric effect and Compton scattering 
are sensitive to the atomic number of an element (Van Grieken 
and Markowicz 2002), allowing for the possibility of correlating 
changes in linear attenuation coefficient to changes in chemical 
composition of minerals and other geologic materials. Earlier 
attempts to use absorption contrast microCT to quantify intrac-
rystalline chemical heterogeneity within olivine and pyroxene 
from meteorites were successfully made by Uesugi et al. (2010) 
and Tsuchiyama et al. (2013), respectively; however, attempts 
to apply this methodology to terrestrial igneous minerals have 
been underutilized (Pankhurst et al. 2014, 2018) and largely 

aimed at textural analysis (e.g., Pamukcu and Gualda 2010; 
Zandomeneghi et al. 2010; Giachetti et al. 2011; Voltolini et 
al. 2011). Phase contrast tomography has also been utilized on 
geologic materials to help distinguish between similarly attenu-
ating phases (i.e., feldspar and matrix glass; Arzilli et al. 2016) 
by improving signal-to-noise ratios; however, it is important to 
note that grayscale images produced from the reconstruction 
using this method contain values that do not correlate directly 
with linear attenuation coefficients (Boone et al. 2012). As we 
are concerned with not only observing chemical zoning in 3D, 
but understanding which elements are largely responsible for 
controlling X‑ray attenuation in sanidine (e.g., those that change 
the linear attenuation coefficient significantly), we have not 
explored phase-contrast tomography in this study. Furthermore, 
our image segmentation pipeline (see Image Processing section 
below) has been successful at increasing signal-to-noise ratios 
within our data to sufficiently allow for the accurate segmentation 
of unique phases (i.e., feldspar, glass, epoxy). Thorough reviews 
further expanding on previous applications of X‑ray computed 
tomography within the geosciences can be found in Hanna and 
Ketcham (2017) as well as Cnudde and Boone (2013). For a more 
comprehensive description of photon interaction with matter, the 
reader is referred to Mccullough (1975) and Van Grieken and 
Markowicz (2002).

To create tomographic images of a material, X‑rays must pass 
through the sample from many directions and then be combined 
through reconstruction methods to produce a stack of 2D “slices.” 
A slice is compiled from X‑ray intensity measurements at a given 
height for a full 360° rotation around the sample and, when mono-
chromatic X‑ray beams are used, can be thought of as a spatial 
distribution of linear attenuation coefficient (µ) values (Denison 
et al. 1997). Each slice represents a finite thickness based on 
setup conditions, and these slices can then be further combined 
to construct a 3D rendering of the sample that can then be quanti-
tatively investigated. Although there are a few types of scanning 
in commercial microCT setups, the method used in this study 
employs helical scanning from a conical X‑ray source which 
improves the signal-to-noise ratio by allowing for an increased 
cone angle and, subsequently, a closer source-to-sample distance 
to be utilized compared to circular scanning setups (Wildenschild 
and Sheppard 2013). Furthermore, although extremely sensitive 
to sample misalignments, this allows for faster scan times, longer 
specimen scans, and allows for theoretically exact reconstruc-
tion of the sample that is free of artifacts (Varslot et al. 2011a, 
2011b). A more in-depth explanation of both microCT equipment 
configurations and helical scanning reconstruction can be found 
in Wildenschild and Sheppard (2013) and (Varslot et al. 2011a, 
2011b), respectively. 

Sanidine
Feldspars are the most abundant constituents of common ig-

neous rocks and, as such, are integral to many petrologic studies. 
Sanidine ([K,Na]AlSi3O8; Or37–100) is the dominant alkali feldspar 
found in volcanic rocks and frequently displays frequent chemi-
cal zoning. As it typically equilibrates at higher temperatures 
than other alkali feldspars, sanidine is prone to having greater 
amounts of elemental substitution (typically Ba2+, Sr2+, Ti4+, Fe2+, 

Fe3+, Mg2+) in its crystal structure (Deer et al. 1966). Of these, 
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Ba2+ substitution is the most common because of similar atomic 
radii between K+ and Ba2+ and is accommodated into sanidine 
in the following substitution (Icenhower and London 1996): 

(Ba2+, Sr2+) + K+ + Al3+ = 2Na+ + Si4+.	 (2)

Thus, Ba is a highly compatible element in sanidine and 
is often present at concentrations that range from hundreds of 
µg/g to weight percent levels. Barium zoning is also commonly 
observed in sanidine and other alkali feldspars from plutonic and 
volcanic rocks (e.g., Chambers et al. 2020; Rout et al. 2021). 
Specifically, sanidine populations that display frequent high 
(>1  wt%) Ba zones occur in many large ignimbrites (e.g., 
Bachmann et al. 2014; Szymanowski et al. 2017, 2019; Forni 
et al. 2018; Lubbers et al. 2020) from throughout the geologic 
record, implying that the processes responsible for forming them 
is also of importance in understanding the evolution of many 
silicic systems capable of producing large volcanic eruptions. 
Commonly proposed mechanisms for formation of these high-Ba 
zones are either localized cumulate melting (e.g., Bachmann et 
al. 2014; Wolff et al. 2015, 2020), mass transfer from a more 
mafic magma relatively enriched in Ba (e.g., Ginibre et al. 2004), 
or temperature cycling (Rout et al. 2021), however reconciling 
these mechanisms with other types of data (i.e., major element 
zoning, other trace element zoning, diffusive equilibration tim-
escales, thermodynamic modeling) often introduces additional 
ambiguity, such that it is difficult to definitively discern between 
competing models (Shamloo and Till 2019). Interpretations are 
also complicated by the relatively slow rates of Ba diffusion in 
silicate melts (Singer et al. 1995; Zhang 2010), which can result 
in a decoupling of major and minor element behavior, and also 
by lack of accurate description of Ba partitioning as a function 
of pressure, temperature, and composition (P-T-X), reflecting the 
fact that alter-valent (i.e., 2+ to 1+) Ba partitioning into K sites in 
sanidine is also highly sensitive to changes in melt composition 
(Mcintire 1963). As a result, although Ba zoning has also been 
shown to be useful for understanding the timescales associated 
with recharge leading up to an eruption (Morgan and Blake 2006; 
Chamberlain et al. 2014; Till et al. 2015; Shamloo and Till 2019), 
the ultimate causes of this zonation remains incompletely under-
stood. Furthermore, in addition to its petrologic importance, Ba 
also has a significantly higher mass attenuation coefficient than 
any other major stoichiometric component in sanidine (Table 1). 
We, therefore, hypothesize that changes in CT grayscale will 
largely correspond to changes in Ba concentration in sanidine, 
ultimately allowing us to better constrain 3D zoning of Ba in 
sanidine, potentially leading to a better understanding of the 
magmatic processes responsible for forming Ba zoning as well 
as their associated timescales, furthering our understanding of 
igneous systems in which sanidine is present.

Methods
Samples

To observe the relationship between CT data and sanidine composition, 
sanidines from several different volcanic rocks have been studied: the 35.3 Ma 
Kneeling Nun Tuff (Szymanowski et al. 2017) from the Mogollon-Datil Volcanic 
Field (MDVF); the 27.55 Ma Carpenter Ridge Tuff (Lipman and McIntosh 2008) 
from the Southern Rocky Mountain Volcanic Field (SRMVF); the 631 ka Lava 
Creek Tuff (Matthews et al. 2015) from Yellowstone caldera; and recent dome 

lavas from Taapaca volcano in northern Chile (e.g., Rout et al. 2021). These 
samples were chosen because they all show significant zoning in Ba contents and 
collectively also span a large range in both bulk rock compositions (i.e., dacite 
to rhyolite) and BaO (i.e., 0 to ~3.5 wt%) concentrations. Sanidine grains were 
mechanically separated and hand-picked using conventional crushing and picking 
methods. Once picked, selected sanidine grains were then mounted vertically in a 
thin epoxy rod ~3 mm in diameter and 40 mm tall such that they were completely 
encased by epoxy (Fig. 1). This geometry was selected to produce a shorter X‑ray 
source to sample distance compared to 25 mm epoxy round mounts, while still 
allowing for many grains to be scanned at once using helical scanning. The shorter 
source-to-sample distance allows for higher spatial resolution data to be gathered 
as microCT data voxel size is proportional to sample distance from a conical X‑ray 
source (Sheppard et al. 2014). 

MicroCT
MicroCT scans were acquired using Oregon State University’s microCT facility 

(microct.oregonstate.edu). The OSU microCT X‑ray source consists of a cone-
beam setup using a Hamamatsu L10711-19 specifically customized to microCT 
applications. The focal spot size is 630 nm, and X‑rays are projected directly onto 
a 3000 × 3000 pixel Varex Paxscan amorphous silicon detector that incorporates 
a high-sensitivity CsI scintillator. Instrument settings utilized in this study are a 
voltage of 80 kV, current of 60 µA, and source to sample distance of 5 mm. While 
image resolution may be subject to debate, these settings resulted in a voxel size 
of 2.1–2.2 µm. Using helical scanning, the instrument captured a total of 5628 
projections of the sample as it rotates through 360°. Maps of X‑ray intensities for 
each sequential 2D frame were reconstructed using custom-built software that al-
lows for helical retrieval and auto-focus alignment following the methodology of 
Varslot et al. (2011a). When fully reconstructed, a full scan produces a 3D volume 
that consists of a series of 2D digital grayscale images. A total of three scans were 
completed for this study over the span of 18 months, and throughout we found no 
issue with either beam hardening or ring artifacts in our data.

Table 1.	 List of major stoichiometric cations found in sanidine, their 
atomic weight, and mass attenuation coefficient (µ·ρ–1) at 
80  keV (i.e., the energy used in this experiment) showing 
that Ba has a significantly higher mass attenuation coefficient 
than all other cations

Element	 Atomic weight	 80 keV mass attenuation
	 (Amu)	 coefficient (cm2·g–1)
Na	 22.990	 0.1796
Al	 26.982	 0.2018
Si	 28.085	 0.2228
K	 39.098	 0.3251
Ca	 40.078	 0.3656
Fe	 55.845	 0.5952
Ba	 137.330	 3.9630
Note: Mass attenuation coefficients taken from Chantler (2000).

Rotation
Stage

Sample

5mm

(san + epoxy)

Figure 1

Figure 1. Schematic of the sample setup used in the microtomographic 
scanning. Sanidine grains were mounted vertically in a thin epoxy rod and 
placed in the sample holder on the helical rotation stage. This allowed 
for a source to sample distance of 5  mm, and the helical trajectory 
subsequently allowed for numerous grains to be scanned in one single 
(long) scan at high resolution. (Color online.)
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Electron probe microanalyzer
Backscatter electron (BSE) images and major element analyses of sanidine 

grains were obtained using a Cameca SX100 electron probe microanalyzer (EPMA) 
at Oregon State University. For all analyses, a focused beam of 5 µm, 15 kV accel-
erating voltage, and 30 nA current was used. Reference materials used as standards 
and detection limits for each element can be found in Table 2. Two approaches 
were taken to facilitate a direct comparison of data and 2D images from the EPMA 
to 3D microCT images. Initially, individual crystals were sectioned, polished, and 
imaged using BSE after microCT images were taken, and we then selected the 
section in the microCT volume that most closely matched the 2D section. This 
proved challenging in some cases, however, and for subsequent analyses, crystals 
were sectioned and analyzed via EPMA prior to microCT to locate crystals with 
the largest amount of variation of Ba contents for analysis. After CT scans, cor-
responding BSE and CT 2D sections were chosen for comparison. To maintain 
as close as a 1:1 comparison between EPMA and CT data, CT grayscale profiles 
mimicked the size of the EPMA beam as close as possible (i.e., profile values are 
the average of 3 pixels along the same path as the EPMA transect and spot values 
are the average of a 3 × 3 pixel area). This produces CT transects that have a width 
of 6.2 µm and spots that have an area of 37.21 µm2 compared to 5 µm and 25 µm2 
on the EPMA, respectively. Uncertainties in CT grayscale value were determined 
by taking the standard deviation of a 3 × 3 pixel area (e.g., approximately the size 
of one EPMA spot) and range from 40 to 300. In all plots and calculations, we 
assume maximum observed uncertainty and report the mean grayscale value ± 300, 
which is 1–2% of the overall attenuation signal.

Image processing
In microCT data, variations in the linear attenuation coefficient of a material 

are observed as changes in grayscale intensity in the reconstructed 3D volumes 
(Denison et al. 1997). Linear attenuation coefficients of sanidine areas analyzed 
by EPMA in this study were also predicted using Mccullough (1975):

μ1 = μm(total)ρmineral	 (3)

where µm is the mass attenuation coefficient taken from Chantler (2000) and ρ is 
the density of the mineral. Mass attenuation coefficients of mixtures (i.e., sanidine) 
were also calculated using (McCullough 1975):

  m(total) i mi

n

i
   1 	 (4)

where µm is the mass attenuation coefficient and ω is the proportion by weight of 
stoichiometric component i. Chemical zoning in minerals, if sufficiently different, 
will be observed as changes in X‑ray attenuation (Eqs. 3–4).

The software/coding packages used for image processing in this project are 
shown in Table 3. Data sets generated from the initial 3D volume were cropped 
into smaller, more manageable sizes that: (1) reflect individual minerals; and 
(2) reduce file size substantially to make subsequent processing achievable on a 

standard personal laptop. One of the goals of this project was also to make the 
methodology as open source and accessible as possible. Because of this, all the 
image processing besides the cropping and slicing of data sets (Avizo) was done in 
either Fiji/ImageJ or via scripting in Python. While we note both Python and Fiji/
ImageJ are capable of cropping and resampling data sets on personal computers, 
the large file size of an individual scan (i.e., >100GB) necessitated the use of the 
OSU microCT lab processing workstation. Built on top of the Python package 
scikit-image [https://scikit-image.org/ (Van Der Walt et al. 2014)], we have also 
created a Python module, CTPy [https://github.com/jlubbersgeo/ctpy (Lubbers 
2020)], to help make the image segmentation process more streamlined.

To quantify the number of distinct phases or regions within a sample, a 
histogram was generated where each peak generally corresponds to a specific 
phase/region. For materials with different attenuation (e.g., sanidine, epoxy, air), 
the histogram peaks of CT grayscale were typically distinct (e.g., Fig. 2). When 
dealing with intracrystalline zoning in minerals, however, we found that although 
there are observable differences in grayscale within minerals (Fig. 2a: right) the 
histogram created from these two zones still overlapped significantly (Fig. 2a: 
left). To refine these histograms by removing inherent noise from the data while 
still preserving crucial textural information, we applied a non-local means (NLM) 
algorithm (Buades et al. 2005; Van Der Walt et al. 2014) to each individual 2D 
image. This was implemented using scikit-image and was completed using a block 
size of 10 pixels and a search window of 10 pixels. After this filter was applied, we 
typically observed four peaks in the slice data (background, epoxy, mineral zone 1, 
mineral zone 2; Fig. 2b left) that match what we qualitatively see in grayscale 
(Fig. 2b right). This approach allowed us to better quantify areas and volumes of 
individual mineral zones via image segmentation (i.e., partitioning the image into 
distinct regions/segments based on a set of characteristics).

Image segmentation was completed using the watershed algorithm (Vincent 
and Soille 1991; Roerdink and Meijster 2000; Van Der Walt et al. 2014). Using 
predefined markers, the watershed algorithm identifies the spatial extent of the two 
regions of interest. For our sanidine grains, we create these markers by applying the 
Sobel gradient operator to create an image mask where pixel values correspond to 
their intensity gradient (Jähne et al. 1999; Van Der Walt et al. 2014). With sanidines 

Table 3. List of programs/software used in this research and what each was used for
Program/software	 Use
Avizo	 Data set cropping, 2D slicing of data set (both random and non-random).
Fiji/ImageJ (Schneider et al. 2012)	 Image measurement functions (i.e., linear grayscale profiles, ROI histograms), adjusting image brightness/contrast.
Python/JupyterLab	 Data set cropping, image denoising, image segmentation, image statistics, interactive volume reconstructions. 
	 Utilizes the package scikit-image (Van Der Walt et al. 2014) and volume reconstructions require package K3D-jupyter.

Table 2.	 Standards utilized in EPMA experiment calibration for each 
element measured, along with the relative standard error 
and detection limit for each element measured 

Standard	 Element	 Relative standard error (%)	 Detection limit (µg/g)
ALBI 	 Na	 0.40	 334
SANI	 Al	 0.14	 336
SANI	 Si	 0.12	 684
SANI	 K	 0.17	 438
NMNH 115900	 Ca	 21.61	 357
NMNH 113498-1	 Fe	 4.77	 812
SANI	 Ba	 0.28	 309
Notes: ALBI and SANI standards are synthetic albite and sanidine standards 
made by Astimex Scientific Ltd. and NMNH standards are from the collection 
at the Smithsonian Museum of Natural History. Established concentrations can 
be found in the Online Materials1 Appendix 1.
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Figure 2. Individual CT slices extracted from the 3D data set and 
their corresponding histograms. (a) Raw, unfiltered data that shows 
changes in pixel value within the mineral, however there is significant 
overlap between the mineral peaks (3 and 4). (b) Same slice processed 
using a non-local means filter (using Python’s scikit-image). The slice 
histogram now has resolvable peaks that better correspond to distinct 
mineral regions and allows for reliable image segmentation, and 
subsequent quantification. (Color online.)
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segmented into distinct regions based on both grayscale value and location, three-
dimensional reconstructions of these volumes were made (Figs. 3a–3c).

Results
Histograms for each sanidine crystal can be found in Online 

Materials1 Figure OM1 and compositional data for each crystal 
gathered using EPMA can be found in Online Materials1 Ap-
pendix 1. Most samples display multiple CT grayscale feldspar 
peaks after passing through the non-local means denoising filter 
(e.g., Fig. 3e), except for Lava Creek Tuff (LCT-B) sanidines 
which typically only display one. Likewise, backscattered 
electron (BSE) imaging of LCT-B sanidines also shows little to 
no grayscale zoning, whereas sanidines from the other samples 
display frequent grayscale zoning (Fig. 4). BaO concentrations in 
sanidines measured range from near detection limit (~300 ppm) 
to 3.7 wt% and brighter BSE zones correspond to higher BaO 
contents in all 2D sections analyzed. In the following section, 
the relationship between CT grayscale and sanidine composition 
is further explored.

Discussion
Geochemical controls on X‑ray attenuation in sanidine

A first-order observation in the denoised histograms of 
sanidine microCT data is that there are multiple peaks corre-
sponding to regions within the minerals that attenuate X‑rays to 
different degrees (Fig. 3e). To translate this observation to useful 
3D compositional information, we first need to investigate the 
controls on X‑ray attenuation in sanidine. Equation 3 shows that 
the mass attenuation coefficient (µm), and subsequently linear 
attenuation coefficient (µl), of a mixture can be predicted based 
on the stoichiometric proportions of all elements within a mixture 
and individual mass attenuation coefficients for a given energy. 
Because major element chemistry totals measured via EPMA 
sum to close to 100 wt% (Online Materials1 Appendix 1), they 
are sufficient to estimate mass attenuation coefficients. Trace 
elements present in lower concentrations (e.g., Sr, Mg, REE, Pb, 
etc.) can also be included in this calculation, although typically 
the lower concentrations mean that attenuation characteristics 
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Figure 3. 3D rendering of a segmented sanidine from the Kneeling Nun Tuff and the same grain shown in Figure 2. (a, b, and c) All have 
the same orientation. (a) Whole mineral. (b) Mineral zone that corresponds to peak 4 in the post denoising histogram. (c) Mineral zone that 
corresponds to peak 3 in the post denoising histogram. (d) Raw CT data histogram and (e) denoised histogram justifying the segments used to 
train the watershed algorithm. (Color online.)
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will have a lesser impact on overall attenuation.
In Figures 5 and 6, we compare the composition of the sani-

dine with its calculated linear attenuation coefficients and the 
observed CT grayscale values, respectively. Calculated linear 
attenuation values and CT grayscale values correlate strongly 
with observed sanidine composition (Figs. 5 and 6). This is 
consistent with grayscale intensity being directly related to 
the linear attenuation coefficient for a given voxel (Denison 
et al. 1997). Moreover, although calculated linear attenuation 
coefficients show weak correlations with SiO2, CaO, and Na2O 
in some samples, for all samples Ba contents are very strongly 

correlated (Fig. 5), suggesting that Ba is the primary control on 
X‑ray attenuation and that changes in Ba contents are reflected 
in the observed changes in grayscale. Other elements display no 
clear relationship between changes in concentration and changes 
in calculated linear attenuation coefficient or voxel grayscale in 
sanidine (Fig. 5). Although Ba is present at lower concentra-
tions than other stoichiometrically important components, the 
relatively high atomic weight and resulting photoelectric X‑ray 
attenuation above the K-shell edge of Ba (particularly relative 
to the other elements present) coupled with the large variations 
evident in Ba strongly suggest that Ba is the primary control 
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Figure 4. Representative sanidine grains from each system studied comparing BSE (left) and CT (middle) grayscale images for similar 2D 
slices through the same grain. Yellow spots annotated on BSE images indicate locations for EPMA spot analyses and BaO concentrations are listed 
next to each spot. The right panel shows histograms of normalized CT grayscale values for both raw data (red line) and denoised data (black line 
with gray fill) for each grain and illustrates its ability to sufficiently remove Gaussian noise such that mineral zoning in CT can be quantified via 
image segmentation methods. (Color online.)
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on X‑ray attenuation in sanidine under the scanning conditions 
used in this study.

To further test this hypothesis, we have also compared 
measured CT grayscale and measured Ba contents along tran-
sects across regions where Ba contents change substantially 
(Fig. 7). In these examples, we again observe that CT grayscale 
is strongly correlated with Ba contents, and not with other ele-
ments. Figure 8 quantifies both the global and local relationships 
observed between BaO in the different sanidines studied for this 
experiment. The data suggest that overall increases in BaO will 
result in an increase in CT grayscale (Fig. 8a) and follows the 
relationship:

BaO (wt%) = (3.4 × 10–4 ± 1.28 × 10–5)X – (5.974 ± 0.25)	 (5)
where X is the CT grayscale value. The RMSE for this relation-
ship is 0.275. Rewritten in terms of ppm Ba, the relationship is:

Ba (ppm) = (0.1055 ± 0.004)X – (1867.067 ± 78.023)	 (6)

with a RMSE of 86. Although a single relationship can be used 
to define the impact of Ba contents of X‑ray attenuation, the 
relatively high RMSE and the observation that sanidine from 
different samples fall into distinct regions on the plot of BaO vs. 
CT grayscale (and define different trends) in Figure 8b suggest 
that there may be additional minor controls on X‑ray attenua-
tion. As all CT scans were done with the same setup conditions, 

we hypothesize that the small variations in the exact relation 
between BaO and X‑ray attenuation are due to other elements 
also contributing more minor changes to the linear attenuation 
coefficient, although it is also possible that this variation may be 
due in some part to slight changes in detector sensitivity across 
different scans. For example, we see in both the LCTB and 
CRT that CaO and Na2O also have linear relationships with CT 
grayscale value (Fig. 6); however, the slope of this relationship 
is much greater in the CRT than it is in the LCTB.

To further quantify the influence other elements have on the 
overall CT attenuation, we utilized several supervised machine 
learning regression algorithms, specifically, the random forest 
(Breiman 2001) and extremely randomized trees (ERT; Geurts 
et al. 2006) algorithms as they performed the best out of all 
algorithms tested (e.g., highest R2 and lowest RMSE values). 
These algorithms were employed via the scikit-learn package 
[https://scikit-learn.org/ (Pedregosa et al. 2011)] in Python as 
it is: (1) open-source and (2) allows one to easily implement 
both supervised and unsupervised machine learning algorithms 
(e.g., Petrelli et al. 2020). In brief, our data was split randomly 
into both training and test data sets, where they consisted of 
random subsamples from each system studied in this experi-
ment to be representative of a wide range of both geochemical 
characteristics and geologic settings. Once split into training and 
test data sets, each was standardized and further separated into 

Figure 5

Figure 5. Calculated linear attenuation coefficient (µ) plotted against major element compositions for each analysis. While the Carpenter 
Ridge Tuff displays weak linear correlations between µ and CaO and Na2O, BaO shows strong linear correlations with µ for all sanidines studied 
in this project. (Color online.)
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features (i.e., wt% oxide measurements) and a target (i.e., CT 
grayscale value). While multiple linear regression also offers a 
way to incorporate the influence of multiple features on a given 
target, we prefer the ERT and random forest algorithms as they 
have both better performance metrics (Fig. 9) and allow us to 
quantify the relative importance each feature has on predicting 
a target value without having to deal with issues related to mul-
ticollinearity (e.g., SiO2, Al2O3) that cause multiple regression 
coefficients to have limited predictive power. We find that both 
ERT and random forest algorithms predict observed CT values 
well (Fig. 10a) as well as further reinforce the importance of Ba 
in controlling attenuation Figure 10b.

Observing chemical zoning in 3D
Having established the geochemical controls on X‑ray attenua-

tion in sanidine now allows us to both observe and quantify chemi-
cal zoning in 3D. Using image segmentation previously outlined 
in the “Image Processing” section, we segment individual sanidine 
grains into “high” (e.g., Fig. 3e peak 4) and “low” (e.g., Fig. 3e 
peak 3) Ba zones for KNT and LCT-B sanidines (Fig. 11). While 
the number of segmented regions is ultimately user defined and 
specific to individual data sets, the designation of distinct high- 
and low-Ba zones are justified based on: (1) CT data histograms 
(e.g., Fig. 3e); and (2) previous literature illustrating high- and 
low-Ba zones found in sanidines from many of the systems studied 

(Bachmann et al. 2014; Shamloo and Till 2019; Szymanowski et 
al. 2019; Rout et al. 2021). 

Defining two zones based on Ba also allows us to study the 
3D geometry of these regions, and although our sample set is still 
somewhat limited, we observe a range of different zoning types. 
Some high-Ba zones were observed as concentric rims (Figs. 11a 
and 11c), consistent with a simple view of progressive crystal 
growth from magmas with different Ba contents, but other zones 
also display more complex geometric relationships, such as in 
intermediate zones between the crystal core and rim, (Figs. 11b, 
11d, and 11e). The observation of intermediate high-Ba zones is 
important, as it implies that the magma reservoir processes respon-
sible for producing these zones are not tied to eruption or initiation 
of eruption but rather that they occur within a magma reservoir dur-
ing ongoing magma storage and evolution. This aligns with recent 
thermal models, showing that large silicic magma reservoirs can 
reside in the upper crust long periods of time (Gelman et al. 2013) 
and accommodate volume/pressure changes related to rejuvenation 
to promote growth rather than eruption (de Silva and Gregg 2014).

We also find that some KNT sanidine crystals have high-Ba 
zones that were largely discontinuous (i.e., they did not form a 
zone around/throughout the entire grain), did not have a uniform 
thickness, and were never cores of grains. While we note that the 
markers used for the watershed algorithm may influence the final 
geometry of mineral zone reconstructions, these observations hold 

Figure 6

Figure 6. Observed CT grayscale for the same location on a given sanidine that EPMA analyses were completed, plotted against major 
element compositions for the same location. The shape of the observed CT grayscale vs. major element relationships qualitatively looks like that 
described by the µ vs. major element relationships shown in Figure 5. This agrees with Denison et al. (1997), which shows that CT grayscale is 
linearly related to µ. (Color online.)
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true for all grains scanned from the KNT, suggesting that they are 
representative of features of the sanidines from this system. Previ-
ously, these high-Ba zones have been interpreted as the result of 
cumulate remelting in a thermally heterogeneous magma reservoir 
prior to eruption (Szymanowski et al. 2019). Our 3D reconstructions 

of high-Ba zones agree with this interpretation, as we argue that 
progressive mineral growth in a closed system is unlikely to produce 
the wide array of geometries observed here. Rather, as mineral zon-
ing reflects the thermochemical conditions in which the mineral 
grew, the heterogeneous mineral zoning geometries observed are 
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► F i g u r e  7 . 
Comparison of BSE image 
and CT grayscale image 
for the same plane through 
a KNT sanidine that was 
scanned via microCT prior 
to EPMA analysis. Yellow 
lines illustrate location 
of  the EPMA and CT 
transects that are plotted 
below. Both show the 
same relative changes in 
magnitude and have similar 
slopes. This further adds 
to the relationships shown 
in Figure 4 by adding in 
a spatial component and 
shows that CT grayscale 
is largely controlled by Ba 
concentrations throughout 
the mineral. (Color online.)
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Figure 8. (a) Regression for Ba vs. CT relationship for all sanidines studied in this experiment. (b) Regression for Ba vs. CT for each individual 
eruption studied in this experiment. Note there is no regression for the LCTB, as it displayed too narrow a range in BaO concentrations. While 
KNT, TP, and CRT sanidines all show a linear correlation between BaO and CT grayscale, the parameters that define each relationship vary slightly, 
however suggest that although BaO is largely responsible for controlling X‑ray attenuation in sanidine, its influence on each system is not the 
same. (Color online.)
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Figure 9. R2 and root mean squared error (RMSE) of predicted CT grayscale results of a Monte Carlo simulation in which each machine 
learning algorithm for predicting CT values was run 1000 times. For every iteration, the splitting, training, and validation steps for each algorithm 
were randomized to remove bias of any one iteration on the overall interpretation of a given algorithm’s accuracy and precision. The extremely 
random trees (ERT) regression algorithm performs the best by both R2 (µ = 0.86) and RMSE (µ = 487) metrics, therefore making it the preferred 
algorithm for predicting CT grayscale in this study. (Color online.)
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Figure 10. (a) Scatter plot of predicted vs. observed CT grayscale values from the ERT (left) and random forest (right) algorithms for one of 
the random iterations of the Monte Carlo simulation shown in Figure 9 illustrating that they: (1) accurately predict the observed CT values (e.g., 
falls along a 1:1 predicted vs. observed line); and (2) produce low-RMSE values relative to the overall attenuation signal (i.e., <3%). (b) Bar charts 
displaying the relative importance of each feature used in the regression algorithms. The height of the bars is the mean value of each feature’s 
importance from the Monte Carlo simulation and error bars are 1σ uncertainties for each mean value. Note, the total height of all the bars is equal 
to 1. Single feature values closer to 0 are not as useful at predicting the target and values closer to 1 are extremely useful at predicting the target. 
Barium displays the highest feature importance in both algorithms and accounts for most of the information required to accurately predict CT 
grayscale values, suggesting it is largely responsible for controlling X‑ray attenuation in sanidine. (Color online.)
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most likely the result of reservoir scale heterogeneities. Further 
CT-based works offer the potential for quantitatively examining 
the shape and distribution of high-Ba zones in these samples and in 
other igneous rocks to test models for magma genesis and evolution.

Implications for mineral zoning studies
Gradient variability between two zones

Assessing the shape of the concentration gradient between 
two chemical zones is critical for understanding magma evolution 
and also for petrologic approaches such as diffusion chronometry. 
Commonly this approach utilizes either thin sections or mineral 
grain mounts to analyze the 1D changes in chemistry across a 
concentration gradient (i.e., chemical zone boundary) within a 
mineral. Production of thin sections or grain mounts commonly 
produces random or near-random sectioning of crystals, and 
this can strongly influence the nature of a given concentration 
gradient (Shea et al. 2015). Slices that are near perpendicular 
to compositional zoning will have a steeper gradient between 
zones than slices that are more oblique. At their extremes, slic-
ing perpendicular to zoning will reflect the true gradient shape, 
while slicing parallel to zoning will show no zoning at all. This 
effect has been studied numerically using synthetic crystals (Shea 

et al. 2015; Krimer and Costa 2017), however, our information 
on the 3D distribution of Ba in sanidine allows us to also study 
this in natural crystals, and simulate the 2D sectioning process 
by randomly slicing a 3D CT volume. We can then compare 
this with the profile extracted from a slice perpendicular to the 
gradient to see how the shape of that gradient changes with the 
slicing orientation. 

As expected, significant variability can be introduced into the 
shape of gradients between zones simply by randomly slicing 
the same grain through its center (Fig. 12). When combined with 
slicing orientation information, we see that as slices become more 
perpendicular to the 2D plane that represents the true gradient, 
profiles both increase in slope and decrease in width (Fig. 13). 
Looking at the distribution of slopes across a range of random 
slice numbers it becomes clear that the highest number of random 
slices are not centered around the true slope, but rather much 
shallower (Fig. 14c) implying that the majority of 2D section 
profiles from random slices do not reflect the true shape of the 
concentration gradient between zones.

Similarly, we find that the width of a given concentration gra-
dient is not accurately represented by the mean of random slices 
and overestimates the true width (Fig. 14a). Random slicing of 
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F i g u r e  11 .  3 D  v o l u m e 
reconstructions of chosen sanidines 
segmented in this study. Left column 
is entire mineral outline, center 
column green isosurfaces represent 
extent of zones classified as “low-Ba” 
within the grain, and right column 
yellow isosurfaces outline extent of 
areas within the grain classified as 
“high-Ba.” Rows A-D are grains from 
the Kneeling Nun Tuff and row E is 
a Lava Creek Tuff–B sanidine. Note 
that zoning patterns are frequently: 
(1) not always concentric and (2) 
not always on the rims of the grain. 
(Color online.)
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Figure 12. Random 2D slices through the CT stack for grain LCTB-1 shown in Figure 11e and their corresponding 1D CT grayscale profiles. 
CT grayscale profiles were chosen by making a transect perpendicular to observed grayscale zoning in each random slice. The slope for each profile 
is indicated by the red line and is calculated chosen based where there is an abrupt change in grayscale values and the grayscale values on each 
side of the gradient. Grayscale profiles display a wide range of widths and slopes, illustrating the effect that random slicing through a grain has on 
the interpretation of chemical zoning. (Color online.)

True gradient

Figure 13

Figure 13. Stereonet of 150 random slices through crystal LCTB-1 
shown in Figure 11e, where each pole to the plane for a given random 
slice is a spot on the stereonet. Here, degrees are in arbitrary 3D space, 
not cardinal directions. Colors of each spot are mapped to the slope of 
the concentration gradient, while the size of each spot is mapped to the 
width. Overall, shallower slopes and longer profile widths are associated 
with slices that are more parallel to the true gradient orientation (e.g., 
upper left on the stereonet). (Color online.)

grain across a concentration gradient, however, does accurately 
capture the height of a concentration gradient (Fig. 14b). To ac-
curately obtain concentration gradient information (e.g., slope, 
width, height), Shea and others (2015) suggest that by following 
a list of criteria (e.g., discarding small grains, constructing pro-
files away from crystal corners, avoiding profiles with dipping 
plateaus, when concentric zoning is present avoid zoning that is 
asymmetric), constructing profiles from 2D sections can more 
accurately portray the true gradient shape if ~20 well-chosen 
analytical profiles are constructed. However, it is also true that 

when 3D information is available, it is possible to no longer 
speculate about the shape of the concentration gradient between 
zones but rather to directly observe it by going into the CT stack 
and extracting a slice perpendicular to CT grayscale zoning. If 
CT grayscale is governed by changes in a specific element (e.g., 
Ba in sanidine, Fe-Mg differences in olivine), then accurate 
1D, 2D, and 3D diffusion modeling can be completed without 
ambiguity as to whether or not we are measuring the true shape 
of the concentration gradient.

Beyond barium in sanidine
While it has been shown here that 3D chemical zoning in Ba 

can be observed in sanidine, in theory, this methodology should 
not be limited to just sanidine if chemical zones within minerals 
have a sufficient difference in linear attenuation coefficient. The 
absolute difference required to observe chemical zoning using 
microCT, however, depends on the voxel resolution used for 
imaging and the machine settings (i.e., voltage, current, exposure 
time) used, which affect image contrast (signal-to-noise ratio). 
Because the photoelectric effect (and its sensitivity to atomic 
number) and density are the dominant attenuation mechanisms 
for energies used in scanning geologic samples, large changes in 
heavy elements should be relatively easy to observe. This makes 
minerals with proportionally high concentrations and zoning of 
heavier elements, such as rare earth elements, actinides (U, Th), 
and heavier transition metals (e.g., Pb), likely candidates for 
observing chemical zoning using microCT if they are present 
in sufficient quantity. Different Fe-Mg olivine populations have 
already been successfully identified using both monochromatic 
(Pankhurst et al. 2018) and polychromatic microCT (Pankhurst 
et al. 2014), making the intracrystalline investigation of Fe-Mg 
zoning another worthwhile pursuit (cf. NIST Standard Reference 
Database 66, Chantler 2000). 

One of the current limitations of industrial microCT devices 
is that they emit polychromatic radiation and are subject to po-
tential imaging artifacts (e.g., beam hardening) and limitations 
in X‑ray output, requiring longer scan times. To overcome these, 
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synchrotron sources are typically used (e.g., Hanna and Ketcham 
2017). The large amount of flux produced by a synchrotron 
source allows for beam filtration and fine-scale “tuning” over 
a given energy range (Willmott 2011). The use of this in the 
petrology community is minimal (e.g., Gualda and Rivers 2006; 
Gualda et al. 2010; Pamukcu and Gualda 2010; Pankhurst et 
al. 2018), however, the potential is very high, as it allows for 
one to theoretically focus in on a given element, and scanning 
above and below the photoelectric absorption edge for that 

element to allow for subtraction tomography. If utilized, the 
benefit of this would be twofold: (1) better elemental resolving 
power and (2) a range of lower beam energies to subject the 
sample to, further increasing the contrast in grayscale between 
chemical zones. This increased contrast would then lead to 
more accurate segmentation of geochemically distinct phases 
and allow us to better view the complexities of mineral zoning 
in 3D and the interpretations that come from its investiga-
tion (e.g., diffusion chronometry, mineral growth/dissolution, 
glomerocryst formation). 
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