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ABSTRACT

Interpretation of chemical zoning within igneous minerals is critical to many petrologic studies.
Zoning in minerals, however, is commonly observed in thin sections or grain mounts, which are random
2D slices of a 3D system. Use of these 2D sections to infer 3D geometries requires a set of assumptions,
often not directly tested, introduces several issues, and results in partial loss of zoning information.
Computed X-ray microtomography (microCT) offers a way to assess 3D zoning in minerals at high
resolution. To observe 3D mineral zoning using microCT, however, requires that zoning is observable
as differences in X-ray attenuation. Sanidine, with its affinity for Ba in the crystal lattice, can display
large, abrupt variations in Ba that are related to various magma reservoir processes. These changes in
Ba also significantly change the X-ray attenuation coefficient of sanidine, allowing for discrete mineral
zones to be mapped in 3D using microCT. Here we utilize microCT to show 3D chemical zoning within
natural sanidines from a suite of volcanic eruptions throughout the geologic record. We also show
that changes in microCT grayscale in sanidine are largely controlled by changes in Ba. Starting with
3D mineral reconstructions, we simulate thin-section making by generating random 2D slices across
a mineral zone to show that slicing orientation alone can drastically change the apparent width and
slope of composition transitions between different zones. Furthermore, we find that chemical zoning in
sanidine can commonly occur in more complex geometries than the commonly interpreted concentric
zoning patterns. Together, these findings have important implications for methodologies that rely on
the interpretation of chemical zoning within minerals and align with previously published numerical
models that show how chemical gradient geometries are affected by random sectioning during com-

mon sample preparation methods (e.g., thin sections and round mounts).
Keywords: Computed X-ray microtomography, mineral zoning, sanidine, barium

INTRODUCTION

Chemical zoning is nearly ubiquitous in igneous minerals, and
the compositions of zoned crystals preserve records of magmatic
conditions and compositions when mineral growth occurred.
Therefore, documenting and interpreting such zoning, as well as
relating compositional variations to textural features, is a crucial
pillar upon which modern igneous petrology is based. Studies of
mineral chemical zoning provide important insights into common
igneous processes such as magma mixing (e.g., Streck et al. 2005;
Kent et al. 2010; Eichelberger 1975; Anderson 1976; Simonetti et
al. 1996); frequency and origins of magma recharge (e.g., Tepley
et al. 2000; Davidson et al. 2001; Davidson and Tepley 1997,
Singer et al. 1995); thermal evolution of magma reservoirs (e.g.,
Cooper and Kent 2014; Rubin et al. 2017; Shamloo and Till
2019); and the rates of igneous processes (e.g., Costa and Dungan
2005; Ruprecht and Plank 2013; Costa et al. 2003; Morgan and
Blake 2006). Changes in mineral chemistry can also be used to
understand the temporal sequence and evolution of these and
other processes (Cooper 2017). When applied to a sufficiently
large and representative population of grains, this approach then
allows the long-term physicochemical conditions within a given
magmatic system to be constrained.
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Many mineral zoning studies, however, only investigate the
interplay between chemical zoning and mineral textures using
2D exposures (i.e., thin sections or mineral mounts). However,
use of 2D mineral zoning patterns to represent 3D systems can
also introduce several artifacts and other issues (e.g., incorrect
estimates of mineral size and shape, width of compositional
zones, modification of compositional gradients, etc.), potentially
leading to incomplete and or inaccurate characterization and
interpretation of igneous processes (e.g., Higgins 2000). For
example, recent studies have numerically investigated the effects
of sectioning 3D zoned crystals using modeling approaches for
the purposes of documenting diffusion gradients (e.g., Shea et
al. 2015; Krimer and Costa 2017; Couperthwaite et al. 2021).
This shows that many 2D sections suffer from partial loss of
zoning information, requiring a careful evaluation of each crystal
studied to avoid a distorted view of the true concentration gra-
dient between chemical zones and obtain reliable results (e.g.,
diffusion timescales). Despite this realization, however, studies
of 3D zoning in natural mineral examples have been relatively
underutilized to address 2D sectioning issues.

To observe natural mineral chemical zoning in 3D, previous
studies have used serial sectioning combined with either electron
probe (e.g., Spear and Daniel 2003), focused ion beam time of
flight secondary ion mass spectrometry (FIB ToF SIMS) (Wirth
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2009; Taj¢émanova et al. 2012), or atom probe tomography (APT)
(Reddy et al. 2020; Rickard et al. 2020), however these approach-
es: (1) often only produce 3D imaging/chemical information for
an extremely small volume and are difficult to apply to an entire
mineral (e.g., FIB ToF SIMS, APT); (2) can only create coarse
3D reconstructions based on limited 2D slices (electron probe
serial sections); (3) necessitate the destruction of the sample
being studied; and (4) are extremely time consuming making it
challenging to be representative of an entire magmatic system.

In recent years, technological developments in high-resolu-
tion imaging via absorption (e.g., Uesugi et al. 2010; Tsuchiyama
et al. 2013; Pankhurst et al. 2018; Mourey and Shea 2019) and
phase contrast (e.g., Arzilli et al. 2015, 2016) computed X-ray
microtomography (microCT) have provided new opportunities to
observe textural and zoning characteristics throughout individual
minerals in 3D. These studies show there is great potential to
further use microCT and related techniques [e.g., Diffraction
Contrast Tomography; Pankhurst et al. (2019)] to document and
understand compositional zoning in igneous minerals, but there
remains a need to develop a greater understanding of the potential
for using microCT in different mineral systems, and to establish
what the 3D variations in X-ray attenuation revealed by microCT
correspond to in terms of compositional variations for specific
minerals. In this study, we use absorption microCT to document
intracrystalline 3D chemical zoning of natural sanidine crystals
and explore the geochemical controls responsible for changes
in X-ray attenuation throughout this mineral.

X-RAY MICROTOMOGRAPHY

When X-rays interact with a sample, they are attenuated ac-
cording to Lambert-Beer’s Law:

I=Iexp(—uD) 1)

where [ is the attenuated intensity of X-rays after they pass
through a sample of thickness D, /; is the incident radiation
(X-ray) intensity, and p is the linear attenuation coefficient of the
material the X-rays are interacting with. The linear attenuation
coefficient is a constant that describes the fraction of attenuated
incident photons in a monoenergetic beam per unit thickness of
amaterial and varies with beam energy, atomic electron density,
and the bulk density of the material (Wildenschild and Shep-
pard 2013). Although attenuation mechanisms also vary with
beam energy (i.e., Compton scattering for 5 < [, < 10 MeV; pair
production /, > 10 MeV), for geologic materials, a beam energy
of 50-100 keV is typically used and the photoelectric effect
dominates (Mccullough 1975). This is an extremely useful ob-
servation as both the photoelectric effect and Compton scattering
are sensitive to the atomic number of an element (Van Grieken
and Markowicz 2002), allowing for the possibility of correlating
changes in linear attenuation coefficient to changes in chemical
composition of minerals and other geologic materials. Earlier
attempts to use absorption contrast microCT to quantify intrac-
rystalline chemical heterogeneity within olivine and pyroxene
from meteorites were successfully made by Uesugi et al. (2010)
and Tsuchiyama et al. (2013), respectively; however, attempts
to apply this methodology to terrestrial igneous minerals have
been underutilized (Pankhurst et al. 2014, 2018) and largely
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aimed at textural analysis (e.g., Pamukcu and Gualda 2010;
Zandomeneghi et al. 2010; Giachetti et al. 2011; Voltolini et
al. 2011). Phase contrast tomography has also been utilized on
geologic materials to help distinguish between similarly attenu-
ating phases (i.e., feldspar and matrix glass; Arzilli et al. 2016)
by improving signal-to-noise ratios; however, it is important to
note that grayscale images produced from the reconstruction
using this method contain values that do not correlate directly
with linear attenuation coefficients (Boone et al. 2012). As we
are concerned with not only observing chemical zoning in 3D,
but understanding which elements are largely responsible for
controlling X-ray attenuation in sanidine (e.g., those that change
the linear attenuation coefficient significantly), we have not
explored phase-contrast tomography in this study. Furthermore,
our image segmentation pipeline (see Image Processing section
below) has been successful at increasing signal-to-noise ratios
within our data to sufficiently allow for the accurate segmentation
of unique phases (i.e., feldspar, glass, epoxy). Thorough reviews
further expanding on previous applications of X-ray computed
tomography within the geosciences can be found in Hanna and
Ketcham (2017) as well as Cnudde and Boone (2013). For a more
comprehensive description of photon interaction with matter, the
reader is referred to Mccullough (1975) and Van Grieken and
Markowicz (2002).

To create tomographic images of a material, X-rays must pass
through the sample from many directions and then be combined
through reconstruction methods to produce a stack of 2D “slices.”
Aslice is compiled from X-ray intensity measurements at a given
height for a full 360° rotation around the sample and, when mono-
chromatic X-ray beams are used, can be thought of as a spatial
distribution of linear attenuation coefficient (i) values (Denison
et al. 1997). Each slice represents a finite thickness based on
setup conditions, and these slices can then be further combined
to construct a 3D rendering of the sample that can then be quanti-
tatively investigated. Although there are a few types of scanning
in commercial microCT setups, the method used in this study
employs helical scanning from a conical X-ray source which
improves the signal-to-noise ratio by allowing for an increased
cone angle and, subsequently, a closer source-to-sample distance
to be utilized compared to circular scanning setups (Wildenschild
and Sheppard 2013). Furthermore, although extremely sensitive
to sample misalignments, this allows for faster scan times, longer
specimen scans, and allows for theoretically exact reconstruc-
tion of the sample that is free of artifacts (Varslot et al. 2011a,
2011b). A more in-depth explanation of both microCT equipment
configurations and helical scanning reconstruction can be found
in Wildenschild and Sheppard (2013) and (Varslot et al. 2011a,
2011b), respectively.

SANIDINE

Feldspars are the most abundant constituents of common ig-
neous rocks and, as such, are integral to many petrologic studies.
Sanidine ([K,Na]AlSi;Os; Ors;_190) is the dominant alkali feldspar
found in volcanic rocks and frequently displays frequent chemi-
cal zoning. As it typically equilibrates at higher temperatures
than other alkali feldspars, sanidine is prone to having greater
amounts of elemental substitution (typically Ba?*, Sr**, Ti*", Fe*,
Fe¥, Mg?) in its crystal structure (Deer et al. 1966). Of these,
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Ba?" substitution is the most common because of similar atomic
radii between K* and Ba?" and is accommodated into sanidine
in the following substitution (Icenhower and London 1996):

(Ba®, SP") + K + AP" = 2Na* + Si*". )

Thus, Ba is a highly compatible element in sanidine and
is often present at concentrations that range from hundreds of
ug/g to weight percent levels. Barium zoning is also commonly
observed in sanidine and other alkali feldspars from plutonic and
volcanic rocks (e.g., Chambers et al. 2020; Rout et al. 2021).
Specifically, sanidine populations that display frequent high
(>1 wt%) Ba zones occur in many large ignimbrites (e.g.,
Bachmann et al. 2014; Szymanowski et al. 2017, 2019; Forni
et al. 2018; Lubbers et al. 2020) from throughout the geologic
record, implying that the processes responsible for forming them
is also of importance in understanding the evolution of many
silicic systems capable of producing large volcanic eruptions.
Commonly proposed mechanisms for formation of these high-Ba
zones are either localized cumulate melting (e.g., Bachmann et
al. 2014; Wolff et al. 2015, 2020), mass transfer from a more
mafic magma relatively enriched in Ba (e.g., Ginibre et al. 2004),
or temperature cycling (Rout et al. 2021), however reconciling
these mechanisms with other types of data (i.e., major element
zoning, other trace element zoning, diffusive equilibration tim-
escales, thermodynamic modeling) often introduces additional
ambiguity, such that it is difficult to definitively discern between
competing models (Shamloo and Till 2019). Interpretations are
also complicated by the relatively slow rates of Ba diffusion in
silicate melts (Singer et al. 1995; Zhang 2010), which can result
in a decoupling of major and minor element behavior, and also
by lack of accurate description of Ba partitioning as a function
of pressure, temperature, and composition (P-7-X), reflecting the
fact that alter-valent (i.e., 2+ to 1+) Ba partitioning into K sites in
sanidine is also highly sensitive to changes in melt composition
(Mcintire 1963). As a result, although Ba zoning has also been
shown to be useful for understanding the timescales associated
with recharge leading up to an eruption (Morgan and Blake 2006;
Chamberlain et al. 2014; Till et al. 2015; Shamloo and Till 2019),
the ultimate causes of this zonation remains incompletely under-
stood. Furthermore, in addition to its petrologic importance, Ba
also has a significantly higher mass attenuation coefficient than
any other major stoichiometric component in sanidine (Table 1).
We, therefore, hypothesize that changes in CT grayscale will
largely correspond to changes in Ba concentration in sanidine,
ultimately allowing us to better constrain 3D zoning of Ba in
sanidine, potentially leading to a better understanding of the
magmatic processes responsible for forming Ba zoning as well
as their associated timescales, furthering our understanding of
igneous systems in which sanidine is present.

METHODS

Samples

To observe the relationship between CT data and sanidine composition,
sanidines from several different volcanic rocks have been studied: the 35.3 Ma
Kneeling Nun Tuff (Szymanowski et al. 2017) from the Mogollon-Datil Volcanic
Field (MDVF); the 27.55 Ma Carpenter Ridge Tuff (Lipman and McIntosh 2008)
from the Southern Rocky Mountain Volcanic Field (SRMVF); the 631 ka Lava
Creek Tuff (Matthews et al. 2015) from Yellowstone caldera; and recent dome

TABLE 1. List of major stoichiometric cations found in sanidine, their
atomic weight, and mass attenuation coefficient (u-p") at
80 keV (i.e., the energy used in this experiment) showing
that Ba has a significantly higher mass attenuation coefficient
than all other cations

Element Atomic weight 80 keV mass attenuation
(Amu) coefficient (cm?g™")
Na 22.990 0.1796
Al 26.982 0.2018
Si 28.085 0.2228
K 39.098 0.3251
Ca 40.078 0.3656
Fe 55.845 0.5952
Ba 137.330 3.9630

Note: Mass attenuation coefficients taken from Chantler (2000).

lavas from Taapaca volcano in northern Chile (e.g., Rout et al. 2021). These
samples were chosen because they all show significant zoning in Ba contents and
collectively also span a large range in both bulk rock compositions (i.e., dacite
to rhyolite) and BaO (i.e., 0 to ~3.5 wt%) concentrations. Sanidine grains were
mechanically separated and hand-picked using conventional crushing and picking
methods. Once picked, selected sanidine grains were then mounted vertically in a
thin epoxy rod ~3 mm in diameter and 40 mm tall such that they were completely
encased by epoxy (Fig. 1). This geometry was selected to produce a shorter X-ray
source to sample distance compared to 25 mm epoxy round mounts, while still
allowing for many grains to be scanned at once using helical scanning. The shorter
source-to-sample distance allows for higher spatial resolution data to be gathered
as microCT data voxel size is proportional to sample distance from a conical X-ray
source (Sheppard et al. 2014).

MicroCT

MicroCT scans were acquired using Oregon State University’s microCT facility
(microct.oregonstate.edu). The OSU microCT X-ray source consists of a cone-
beam setup using a Hamamatsu L10711-19 specifically customized to microCT
applications. The focal spot size is 630 nm, and X-rays are projected directly onto
a 3000 x 3000 pixel Varex Paxscan amorphous silicon detector that incorporates
a high-sensitivity Csl scintillator. Instrument settings utilized in this study are a
voltage of 80 kV, current of 60 pA, and source to sample distance of 5 mm. While
image resolution may be subject to debate, these settings resulted in a voxel size
of 2.1-2.2 pum. Using helical scanning, the instrument captured a total of 5628
projections of the sample as it rotates through 360°. Maps of X-ray intensities for
each sequential 2D frame were reconstructed using custom-built software that al-
lows for helical retrieval and auto-focus alignment following the methodology of
Varslot et al. (2011a). When fully reconstructed, a full scan produces a 3D volume
that consists of a series of 2D digital grayscale images. A total of three scans were
completed for this study over the span of 18 months, and throughout we found no
issue with either beam hardening or ring artifacts in our data.

(@] 5mm
Sample
(san + epoxy)
3

FIGURE 1. Schematic of the sample setup used in the microtomographic
scanning. Sanidine grains were mounted vertically in a thin epoxy rod and
placed in the sample holder on the helical rotation stage. This allowed
for a source to sample distance of 5 mm, and the helical trajectory
subsequently allowed for numerous grains to be scanned in one single
(long) scan at high resolution. (Color online.)
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TABLE 2. Standards utilized in EPMA experiment calibration for each
element measured, along with the relative standard error
and detection limit for each element measured

Standard Element Relative standard error (%) Detection limit (ug/g)
ALBI Na 0.40 334
SANI Al 0.14 336
SANI Si 0.12 684
SANI K 0.17 438
NMNH 115900 Ca 21.61 357
NMNH 113498-1 Fe 4.77 812
SANI Ba 0.28 309

Notes: ALBI and SANI standards are synthetic albite and sanidine standards
made by Astimex Scientific Ltd. and NMNH standards are from the collection
at the Smithsonian Museum of Natural History. Established concentrations can
be found in the Online Materials' Appendix 1.

Electron probe microanalyzer

Backscatter electron (BSE) images and major element analyses of sanidine
grains were obtained using a Cameca SX100 electron probe microanalyzer (EPMA)
at Oregon State University. For all analyses, a focused beam of 5 um, 15 kV accel-
erating voltage, and 30 nA current was used. Reference materials used as standards
and detection limits for each element can be found in Table 2. Two approaches
were taken to facilitate a direct comparison of data and 2D images from the EPMA
to 3D microCT images. Initially, individual crystals were sectioned, polished, and
imaged using BSE after microCT images were taken, and we then selected the
section in the microCT volume that most closely matched the 2D section. This
proved challenging in some cases, however, and for subsequent analyses, crystals
were sectioned and analyzed via EPMA prior to microCT to locate crystals with
the largest amount of variation of Ba contents for analysis. After CT scans, cor-
responding BSE and CT 2D sections were chosen for comparison. To maintain
as close as a 1:1 comparison between EPMA and CT data, CT grayscale profiles
mimicked the size of the EPMA beam as close as possible (i.e., profile values are
the average of 3 pixels along the same path as the EPMA transect and spot values
are the average of a 3 x 3 pixel area). This produces CT transects that have a width
of 6.2 um and spots that have an area of 37.21 pm? compared to 5 pm and 25 pm?
on the EPMA, respectively. Uncertainties in CT grayscale value were determined
by taking the standard deviation of a 3 X 3 pixel area (e.g., approximately the size
of one EPMA spot) and range from 40 to 300. In all plots and calculations, we
assume maximum observed uncertainty and report the mean grayscale value + 300,
which is 1-2% of the overall attenuation signal.

Image processing

In microCT data, variations in the linear attenuation coefficient of a material
are observed as changes in grayscale intensity in the reconstructed 3D volumes
(Denison et al. 1997). Linear attenuation coefficients of sanidine areas analyzed
by EPMA in this study were also predicted using Mccullough (1975):

M1 = Hinctotal)Pmineral 3)

where p,, is the mass attenuation coefficient taken from Chantler (2000) and p is
the density of the mineral. Mass attenuation coefficients of mixtures (i.e., sanidine)
were also calculated using (McCullough 1975):

“’m(lolal) = z; ; (Hm ) i )

where p,, is the mass attenuation coefficient and w is the proportion by weight of
stoichiometric component i. Chemical zoning in minerals, if sufficiently different,
will be observed as changes in X-ray attenuation (Eqs. 3-4).

The software/coding packages used for image processing in this project are
shown in Table 3. Data sets generated from the initial 3D volume were cropped
into smaller, more manageable sizes that: (1) reflect individual minerals; and
(2) reduce file size substantially to make subsequent processing achievable on a

standard personal laptop. One of the goals of this project was also to make the
methodology as open source and accessible as possible. Because of this, all the
image processing besides the cropping and slicing of data sets (Avizo) was done in
either Fiji/Image] or via scripting in Python. While we note both Python and Fiji/
Imagel are capable of cropping and resampling data sets on personal computers,
the large file size of an individual scan (i.e., >100GB) necessitated the use of the
OSU microCT lab processing workstation. Built on top of the Python package
scikit-image [https://scikit-image.org/ (Van Der Walt et al. 2014)], we have also
created a Python module, CTPy [https://github.com/jlubbersgeo/ctpy (Lubbers
2020)], to help make the image segmentation process more streamlined.

To quantify the number of distinct phases or regions within a sample, a
histogram was generated where each peak generally corresponds to a specific
phase/region. For materials with different attenuation (e.g., sanidine, epoxy, air),
the histogram peaks of CT grayscale were typically distinct (e.g., Fig. 2). When
dealing with intracrystalline zoning in minerals, however, we found that although
there are observable differences in grayscale within minerals (Fig. 2a: right) the
histogram created from these two zones still overlapped significantly (Fig. 2a:
left). To refine these histograms by removing inherent noise from the data while
still preserving crucial textural information, we applied a non-local means (NLM)
algorithm (Buades et al. 2005; Van Der Walt et al. 2014) to each individual 2D
image. This was implemented using scikit-image and was completed using a block
size of 10 pixels and a search window of 10 pixels. After this filter was applied, we
typically observed four peaks in the slice data (background, epoxy, mineral zone 1,
mineral zone 2; Fig. 2b left) that match what we qualitatively see in grayscale
(Fig. 2b right). This approach allowed us to better quantify areas and volumes of
individual mineral zones via image segmentation (i.e., partitioning the image into
distinct regions/segments based on a set of characteristics).

Image segmentation was completed using the watershed algorithm (Vincent
and Soille 1991; Roerdink and Meijster 2000; Van Der Walt et al. 2014). Using
predefined markers, the watershed algorithm identifies the spatial extent of the two
regions of interest. For our sanidine grains, we create these markers by applying the
Sobel gradient operator to create an image mask where pixel values correspond to
their intensity gradient (Jahne et al. 1999; Van Der Walt et al. 2014). With sanidines
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F1GURE 2. Individual CT slices extracted from the 3D data set and
their corresponding histograms. (a) Raw, unfiltered data that shows
changes in pixel value within the mineral, however there is significant
overlap between the mineral peaks (3 and 4). (b) Same slice processed
using a non-local means filter (using Python’s scikit-image). The slice
histogram now has resolvable peaks that better correspond to distinct
mineral regions and allows for reliable image segmentation, and
subsequent quantification. (Color online.)

TABLE 3. List of programs/software used in this research and what each was used for

Program/software

Use

Avizo Data set cropping, 2D slicing of data set (both random and non-random).

Fiji/image)J (Schneider et al. 2012)
Python/JupyterLab

Image measurement functions (i.e., linear grayscale profiles, ROl histograms), adjusting image brightness/contrast.
Data set cropping, image denoising, image segmentation, image statistics, interactive volume reconstructions.

Utilizes the package scikit-image (Van Der Walt et al. 2014) and volume reconstructions require package K3D-jupyter.
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FIGURE 3. 3D rendering of a segmented sanidine from the Kneeling Nun Tuff and the same grain shown in Figure 2. (a, b, and ¢) All have
the same orientation. (a) Whole mineral. (b) Mineral zone that corresponds to peak 4 in the post denoising histogram. (¢) Mineral zone that
corresponds to peak 3 in the post denoising histogram. (d) Raw CT data histogram and (e) denoised histogram justifying the segments used to

train the watershed algorithm. (Color online.)

segmented into distinct regions based on both grayscale value and location, three-
dimensional reconstructions of these volumes were made (Figs. 3a-3c).

RESULTS

Histograms for each sanidine crystal can be found in Online
Materials' Figure OM1 and compositional data for each crystal
gathered using EPMA can be found in Online Materials' Ap-
pendix 1. Most samples display multiple CT grayscale feldspar
peaks after passing through the non-local means denoising filter
(e.g., Fig. 3e), except for Lava Creek Tuff (LCT-B) sanidines
which typically only display one. Likewise, backscattered
electron (BSE) imaging of LCT-B sanidines also shows little to
no grayscale zoning, whereas sanidines from the other samples
display frequent grayscale zoning (Fig. 4). BaO concentrations in
sanidines measured range from near detection limit (~300 ppm)
to 3.7 wt% and brighter BSE zones correspond to higher BaO
contents in all 2D sections analyzed. In the following section,
the relationship between CT grayscale and sanidine composition
is further explored.

DiscussioN
Geochemical controls on X-ray attenuation in sanidine

A first-order observation in the denoised histograms of
sanidine microCT data is that there are multiple peaks corre-
sponding to regions within the minerals that attenuate X-rays to
different degrees (Fig. 3e). To translate this observation to useful
3D compositional information, we first need to investigate the
controls on X-ray attenuation in sanidine. Equation 3 shows that
the mass attenuation coefficient (u,,), and subsequently linear
attenuation coefficient (), of a mixture can be predicted based
on the stoichiometric proportions of all elements within a mixture
and individual mass attenuation coefficients for a given energy.
Because major element chemistry totals measured via EPMA
sum to close to 100 wt% (Online Materials' Appendix 1), they
are sufficient to estimate mass attenuation coefficients. Trace
elements present in lower concentrations (e.g., Sr, Mg, REE, Pb,
etc.) can also be included in this calculation, although typically
the lower concentrations mean that attenuation characteristics
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image segmentation methods. (Color online.)

will have a lesser impact on overall attenuation.

In Figures 5 and 6, we compare the composition of the sani-
dine with its calculated linear attenuation coefficients and the
observed CT grayscale values, respectively. Calculated linear
attenuation values and CT grayscale values correlate strongly
with observed sanidine composition (Figs. 5 and 6). This is
consistent with grayscale intensity being directly related to
the linear attenuation coefficient for a given voxel (Denison
et al. 1997). Moreover, although calculated linear attenuation
coefficients show weak correlations with SiO,, CaO, and Na,O
in some samples, for all samples Ba contents are very strongly

American Mineralogist, vol. 108, 2023

correlated (Fig. 5), suggesting that Ba is the primary control on
X-ray attenuation and that changes in Ba contents are reflected
in the observed changes in grayscale. Other elements display no
clear relationship between changes in concentration and changes
in calculated linear attenuation coefficient or voxel grayscale in
sanidine (Fig. 5). Although Ba is present at lower concentra-
tions than other stoichiometrically important components, the
relatively high atomic weight and resulting photoelectric X-ray
attenuation above the K-shell edge of Ba (particularly relative
to the other elements present) coupled with the large variations
evident in Ba strongly suggest that Ba is the primary control
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on X-ray attenuation in sanidine under the scanning conditions
used in this study.

To further test this hypothesis, we have also compared
measured CT grayscale and measured Ba contents along tran-
sects across regions where Ba contents change substantially
(Fig. 7). In these examples, we again observe that CT grayscale
is strongly correlated with Ba contents, and not with other ele-
ments. Figure 8 quantifies both the global and local relationships
observed between BaO in the different sanidines studied for this
experiment. The data suggest that overall increases in BaO will
result in an increase in CT grayscale (Fig. 8a) and follows the
relationship:

BaO (wi%) = (3.4x 10+ 1.28 x 10%)X — (5.974 £ 0.25) (5)

where X is the CT grayscale value. The RMSE for this relation-
ship is 0.275. Rewritten in terms of ppm Ba, the relationship is:

(6)

with a RMSE of 86. Although a single relationship can be used
to define the impact of Ba contents of X-ray attenuation, the
relatively high RMSE and the observation that sanidine from
different samples fall into distinct regions on the plot of BaO vs.
CT grayscale (and define different trends) in Figure 8b suggest
that there may be additional minor controls on X-ray attenua-
tion. As all CT scans were done with the same setup conditions,

Ba (ppm) = (0.1055 + 0.004).X — (1867.067 + 78.023)

303

we hypothesize that the small variations in the exact relation
between BaO and X-ray attenuation are due to other elements
also contributing more minor changes to the linear attenuation
coefficient, although it is also possible that this variation may be
due in some part to slight changes in detector sensitivity across
different scans. For example, we see in both the LCTB and
CRT that CaO and Na,O also have linear relationships with CT
grayscale value (Fig. 6); however, the slope of this relationship
is much greater in the CRT than it is in the LCTB.

To further quantify the influence other elements have on the
overall CT attenuation, we utilized several supervised machine
learning regression algorithms, specifically, the random forest
(Breiman 2001) and extremely randomized trees (ERT; Geurts
et al. 2006) algorithms as they performed the best out of all
algorithms tested (e.g., highest R? and lowest RMSE values).
These algorithms were employed via the scikit-learn package
[https://scikit-learn.org/ (Pedregosa et al. 2011)] in Python as
it is: (1) open-source and (2) allows one to easily implement
both supervised and unsupervised machine learning algorithms
(e.g., Petrelli et al. 2020). In brief, our data was split randomly
into both training and test data sets, where they consisted of
random subsamples from each system studied in this experi-
ment to be representative of a wide range of both geochemical
characteristics and geologic settings. Once split into training and
test data sets, each was standardized and further separated into
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FIGURE 5. Calculated linear attenuation coefficient (p) plotted against major element compositions for each analysis. While the Carpenter
Ridge Tuff displays weak linear correlations between p and CaO and Na,O, BaO shows strong linear correlations with p for all sanidines studied

in this project. (Color online.)
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features (i.e., wt% oxide measurements) and a target (i.e., CT
grayscale value). While multiple linear regression also offers a
way to incorporate the influence of multiple features on a given
target, we prefer the ERT and random forest algorithms as they
have both better performance metrics (Fig. 9) and allow us to
quantify the relative importance each feature has on predicting
a target value without having to deal with issues related to mul-
ticollinearity (e.g., SiO,, Al,O;) that cause multiple regression
coefficients to have limited predictive power. We find that both
ERT and random forest algorithms predict observed CT values
well (Fig. 10a) as well as further reinforce the importance of Ba
in controlling attenuation Figure 10b.

Observing chemical zoning in 3D

Having established the geochemical controls on X-ray attenua-
tion in sanidine now allows us to both observe and quantify chemi-
cal zoning in 3D. Using image segmentation previously outlined
in the “Image Processing” section, we segment individual sanidine
grains into “high” (e.g., Fig. 3e peak 4) and “low” (e.g., Fig. 3¢
peak 3) Ba zones for KNT and LCT-B sanidines (Fig. 11). While
the number of segmented regions is ultimately user defined and
specific to individual data sets, the designation of distinct high-
and low-Ba zones are justified based on: (1) CT data histograms
(e.g., Fig. 3e); and (2) previous literature illustrating high- and
low-Ba zones found in sanidines from many of the systems studied

(Bachmann et al. 2014; Shamloo and Till 2019; Szymanowski et
al. 2019; Rout et al. 2021).

Defining two zones based on Ba also allows us to study the
3D geometry of these regions, and although our sample set is still
somewhat limited, we observe a range of different zoning types.
Some high-Ba zones were observed as concentric rims (Figs. 11a
and 11c), consistent with a simple view of progressive crystal
growth from magmas with different Ba contents, but other zones
also display more complex geometric relationships, such as in
intermediate zones between the crystal core and rim, (Figs. 11b,
11d, and 11e). The observation of intermediate high-Ba zones is
important, as it implies that the magma reservoir processes respon-
sible for producing these zones are not tied to eruption or initiation
of eruption but rather that they occur within a magma reservoir dur-
ing ongoing magma storage and evolution. This aligns with recent
thermal models, showing that large silicic magma reservoirs can
reside in the upper crust long periods of time (Gelman et al. 2013)
and accommodate volume/pressure changes related to rejuvenation
to promote growth rather than eruption (de Silva and Gregg 2014).

We also find that some KNT sanidine crystals have high-Ba
zones that were largely discontinuous (i.e., they did not form a
zone around/throughout the entire grain), did not have a uniform
thickness, and were never cores of grains. While we note that the
markers used for the watershed algorithm may influence the final
geometry of mineral zone reconstructions, these observations hold
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FIGURE 6. Observed CT grayscale for the same location on a given sanidine that EPMA analyses were completed, plotted against major
element compositions for the same location. The shape of the observed CT grayscale vs. major element relationships qualitatively looks like that
described by the p vs. major element relationships shown in Figure 5. This agrees with Denison et al. (1997), which shows that CT grayscale is

linearly related to p. (Color online.)
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> FIGURE 7.
Comparison of BSE image
and CT grayscale image
for the same plane through
a KNT sanidine that was
scanned via microCT prior
to EPMA analysis. Yellow
lines illustrate location
of the EPMA and CT
transects that are plotted
below. Both show the
same relative changes in
magnitude and have similar
slopes. This further adds
to the relationships shown
in Figure 4 by adding in
a spatial component and
shows that CT grayscale
is largely controlled by Ba
concentrations throughout
the mineral. (Color online.)
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however suggest that although BaO is largely responsible for controlling X-ray attenuation in sanidine, its influence on each system is not the

same. (Color online.)

true for all grains scanned from the KNT, suggesting that they are
representative of features of the sanidines from this system. Previ-
ously, these high-Ba zones have been interpreted as the result of
cumulate remelting in a thermally heterogeneous magma reservoir
prior to eruption (Szymanowski et al. 2019). Our 3D reconstructions

of high-Ba zones agree with this interpretation, as we argue that
progressive mineral growth in a closed system is unlikely to produce
the wide array of geometries observed here. Rather, as mineral zon-
ing reflects the thermochemical conditions in which the mineral
grew, the heterogeneous mineral zoning geometries observed are
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learning algorithm for predicting CT values was run 1000 times. For every iteration, the splitting, training, and validation steps for each algorithm
were randomized to remove bias of any one iteration on the overall interpretation of a given algorithm’s accuracy and precision. The extremely
random trees (ERT) regression algorithm performs the best by both R* (u = 0.86) and RMSE (p = 487) metrics, therefore making it the preferred
algorithm for predicting CT grayscale in this study. (Color online.)
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the random iterations of the Monte Carlo simulation shown in Figure 9 illustrating that they: (1) accurately predict the observed CT values (e.g.,
falls along a 1:1 predicted vs. observed line); and (2) produce low-RMSE values relative to the overall attenuation signal (i.e., <3%). (b) Bar charts
displaying the relative importance of each feature used in the regression algorithms. The height of the bars is the mean value of each feature’s
importance from the Monte Carlo simulation and error bars are 16 uncertainties for each mean value. Note, the total height of all the bars is equal
to 1. Single feature values closer to 0 are not as useful at predicting the target and values closer to 1 are extremely useful at predicting the target.
Barium displays the highest feature importance in both algorithms and accounts for most of the information required to accurately predict CT
grayscale values, suggesting it is largely responsible for controlling X-ray attenuation in sanidine. (Color online.)
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Ficure 11. 3D volume
reconstructions of chosen sanidines

segmented in this study. Left column
is entire mineral outline, center
column green isosurfaces represent
extent of zones classified as “low-Ba”
within the grain, and right column
yellow isosurfaces outline extent of

areas within the grain classified as
“high-Ba.” Rows A-D are grains from
the Kneeling Nun Tuff and row E is
a Lava Creek Tuff-B sanidine. Note
that zoning patterns are frequently:
(1) not always concentric and (2)
not always on the rims of the grain.

(Color online.)
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most likely the result of reservoir scale heterogeneities. Further
CT-based works offer the potential for quantitatively examining
the shape and distribution of high-Ba zones in these samples and in
other igneous rocks to test models for magma genesis and evolution.

IMPLICATIONS FOR MINERAL ZONING STUDIES
Gradient variability between two zones

Assessing the shape of the concentration gradient between
two chemical zones is critical for understanding magma evolution
and also for petrologic approaches such as diffusion chronometry.
Commonly this approach utilizes either thin sections or mineral
grain mounts to analyze the 1D changes in chemistry across a
concentration gradient (i.e., chemical zone boundary) within a
mineral. Production of thin sections or grain mounts commonly
produces random or near-random sectioning of crystals, and
this can strongly influence the nature of a given concentration
gradient (Shea et al. 2015). Slices that are near perpendicular
to compositional zoning will have a steeper gradient between
zones than slices that are more oblique. At their extremes, slic-
ing perpendicular to zoning will reflect the true gradient shape,
while slicing parallel to zoning will show no zoning at all. This
effect has been studied numerically using synthetic crystals (Shea

et al. 2015; Krimer and Costa 2017), however, our information
on the 3D distribution of Ba in sanidine allows us to also study
this in natural crystals, and simulate the 2D sectioning process
by randomly slicing a 3D CT volume. We can then compare
this with the profile extracted from a slice perpendicular to the
gradient to see how the shape of that gradient changes with the
slicing orientation.

As expected, significant variability can be introduced into the
shape of gradients between zones simply by randomly slicing
the same grain through its center (Fig. 12). When combined with
slicing orientation information, we see that as slices become more
perpendicular to the 2D plane that represents the true gradient,
profiles both increase in slope and decrease in width (Fig. 13).
Looking at the distribution of slopes across a range of random
slice numbers it becomes clear that the highest number of random
slices are not centered around the true slope, but rather much
shallower (Fig. 14c) implying that the majority of 2D section
profiles from random slices do not reflect the true shape of the
concentration gradient between zones.

Similarly, we find that the width of a given concentration gra-
dient is not accurately represented by the mean of random slices
and overestimates the true width (Fig. 14a). Random slicing of
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Fi1GURE 12. Random 2D slices through the CT stack for grain LCTB-1 shown in Figure 11e and their corresponding 1D CT grayscale profiles.
CT grayscale profiles were chosen by making a transect perpendicular to observed grayscale zoning in each random slice. The slope for each profile
is indicated by the red line and is calculated chosen based where there is an abrupt change in grayscale values and the grayscale values on each
side of the gradient. Grayscale profiles display a wide range of widths and slopes, illustrating the effect that random slicing through a grain has on

the interpretation of chemical zoning. (Color online.)
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F1GURE 13. Stereonet of 150 random slices through crystal LCTB-1
shown in Figure 11e, where each pole to the plane for a given random
slice is a spot on the stereonet. Here, degrees are in arbitrary 3D space,
not cardinal directions. Colors of each spot are mapped to the slope of
the concentration gradient, while the size of each spot is mapped to the
width. Overall, shallower slopes and longer profile widths are associated
with slices that are more parallel to the true gradient orientation (e.g.,
upper left on the stereonet). (Color online.)

grain across a concentration gradient, however, does accurately
capture the height of a concentration gradient (Fig. 14b). To ac-
curately obtain concentration gradient information (e.g., slope,
width, height), Shea and others (2015) suggest that by following
a list of criteria (e.g., discarding small grains, constructing pro-
files away from crystal corners, avoiding profiles with dipping
plateaus, when concentric zoning is present avoid zoning that is
asymmetric), constructing profiles from 2D sections can more
accurately portray the true gradient shape if ~20 well-chosen
analytical profiles are constructed. However, it is also true that

American Mineralogist, vol. 108, 2023

when 3D information is available, it is possible to no longer
speculate about the shape of the concentration gradient between
zones but rather to directly observe it by going into the CT stack
and extracting a slice perpendicular to CT grayscale zoning. If
CT grayscale is governed by changes in a specific element (e.g.,
Ba in sanidine, Fe-Mg differences in olivine), then accurate
1D, 2D, and 3D diffusion modeling can be completed without
ambiguity as to whether or not we are measuring the true shape
of the concentration gradient.

Beyond barium in sanidine

While it has been shown here that 3D chemical zoning in Ba
can be observed in sanidine, in theory, this methodology should
not be limited to just sanidine if chemical zones within minerals
have a sufficient difference in linear attenuation coefficient. The
absolute difference required to observe chemical zoning using
microCT, however, depends on the voxel resolution used for
imaging and the machine settings (i.e., voltage, current, exposure
time) used, which affect image contrast (signal-to-noise ratio).
Because the photoelectric effect (and its sensitivity to atomic
number) and density are the dominant attenuation mechanisms
for energies used in scanning geologic samples, large changes in
heavy elements should be relatively easy to observe. This makes
minerals with proportionally high concentrations and zoning of
heavier elements, such as rare earth elements, actinides (U, Th),
and heavier transition metals (e.g., Pb), likely candidates for
observing chemical zoning using microCT if they are present
in sufficient quantity. Different Fe-Mg olivine populations have
already been successfully identified using both monochromatic
(Pankhurst et al. 2018) and polychromatic microCT (Pankhurst
et al. 2014), making the intracrystalline investigation of Fe-Mg
zoning another worthwhile pursuit (cf. NIST Standard Reference
Database 66, Chantler 2000).

One of the current limitations of industrial microCT devices
is that they emit polychromatic radiation and are subject to po-
tential imaging artifacts (e.g., beam hardening) and limitations
in X-ray output, requiring longer scan times. To overcome these,
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FIGURE 14. Breakdown of random slicing exercise in which 35, 75,
and 150 random slices were generated through the center of grain LCTB-1,
shown in Figure 10e. Slices were through the center of the grain to ensure
that the concentration gradient was intersected by the slice. (a) Kernel density
estimates (KDE) of concentration gradient widths illustrating how the true
width of a concentration gradient is overestimated by majority of slices (b)
KDE plot for gradient heights. Here, the random slicing exercise suggests that
the mean of random slicing more accurately portrays the height of a given
concentration gradient (¢) KDE plot for gradient slopes. As in a, the majority
of slices do not reflect the true slope of a given concentration gradient and
the majority of slopes generated from random slicing are significantly less
than the true slope of the concentration gradient. (Color online.)

synchrotron sources are typically used (e.g., Hanna and Ketcham
2017). The large amount of flux produced by a synchrotron
source allows for beam filtration and fine-scale “tuning” over
a given energy range (Willmott 2011). The use of this in the
petrology community is minimal (e.g., Gualda and Rivers 2006;
Gualda et al. 2010; Pamukcu and Gualda 2010; Pankhurst et
al. 2018), however, the potential is very high, as it allows for
one to theoretically focus in on a given element, and scanning
above and below the photoelectric absorption edge for that

element to allow for subtraction tomography. If utilized, the
benefit of this would be twofold: (1) better elemental resolving
power and (2) a range of lower beam energies to subject the
sample to, further increasing the contrast in grayscale between
chemical zones. This increased contrast would then lead to
more accurate segmentation of geochemically distinct phases
and allow us to better view the complexities of mineral zoning
in 3D and the interpretations that come from its investiga-
tion (e.g., diffusion chronometry, mineral growth/dissolution,
glomerocryst formation).

ACKNOWLEDGMENTS AND FUNDING

We thank the many people who provided samples for this study: Dawid Szy-
manowski and Ben Ellis (Kneeling Nun Tuff); Olivier Bachmann and Chad Deering
(Carpenter Ridge Tuff); Hannah Shamloo and Christy Till (Lava Creek Tuff). We
also thank Frank Tepley and Marie Takach for their expertise and advice gathering
microprobe data. This research was supported by National Science Foundation
grant NSF-EAR 1654275.

REFERENCES CITED

Anderson, A.T. (1976) Magma mixing: petrological process and volcanological
tool. Journal of Volcanology and Geothermal Research, 1, 3-33.

Arzilli, F., Mancini, L., Voltolini, M., Cicconi, M.R., Mohammadi, S., Giuli, G.,
Mainprice, D., Paris, E., Barou, F., and Carroll, M.R. (2015) Near-liquidus
growth of feldspar spherulites in trachytic melts: 3D morphologies and implica-
tions in crystallization mechanisms. Lithos, 216-217, 93—105.

Arzilli, F., Polacci, M., Landi, P., Giordano, D., Baker, D.R., and Mancini, L.
(2016) A novel protocol for resolving feldspar crystals in synchrotron X-ray
microtomographic images of crystallized natural magmas and synthetic ana-
logs. American Mineralogist, 101, 2301-2311.

Bachmann, O., Deering, C.D., Lipman, P.W., and Plummer, C. (2014) Building
zoned ignimbrites by recycling silicic cumulates: insight from the 1,000 km?
Carpenter Ridge Tuff, CO. Contributions to Mineralogy and Petrology, 167,
1025.

Boone, M., De Witte, Y., Dierick, M., Almeida, A., and Van Hoorebeke, L. (2012)
Improved signal-to-noise ratio in laboratory-based phase contrast tomography.
Microscopy and Microanalysis: The Official Journal of Microscopy Society
of America, Microbeam Analysis Society, Microscopical Society of Canada,
18, 399-405.

Breiman, L. (2001) Random forests. In R.E. Schapire, Ed., Machine Learning, pp.
5-32. Kluwer Academic Publishers.

Buades, A., Coll, B., and Morel, J.M. (2005) A non-local algorithm for image
denoising. In Proceedings—2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition, CVPR 2005 Vol. II, pp. 60-65.

Chamberlain, K.J., Morgan, D.J., and Wilson, C.J.N. (2014) Timescales of mixing
and mobilisation in the Bishop Tuff magma body: Perspectives from diffusion
chronometry. Contributions to Mineralogy and Petrology, 168.

Chambers, M., Memeti, V., Eddy, M.P., and Schoene, B. (2020) Half a million
years of magmatic history recorded in a K-feldspar megacryst of the Tuolumne
Intrusive Complex, California, U.S.A. Geology, 48, 400-404.

Chantler, C.T. (2000) detailed tabulation of atomic form factors, photoelectric
absorption and scattering cross section, and mass attenuation coefficients in
the vicinity of absorption edges in the soft X-ray (Z = 30-36, Z = 60-89, E =
0.1 keV-10 keV), addressing convergence issues of. Journal of Physical and
Chemical Reference Data, 29, 597-1056.

Cnudde, V., and Boone, M.N. (2013) High-resolution X-ray computed tomography
in geosciences: A review of the current technology and applications. Earth-
Science Reviews, 123, 1-17.

Cooper, K.M. (2017) What does a magma reservoir look like? the “crystal’s-eye”
view. Elements, 13, 23-28.

Cooper, K.M., and Kent, A.J.R. (2014) Rapid remobilization of magmatic crystals
kept in cold storage. Nature, 506, 480—483.

Costa, F., and Dungan, M. (2005) Short time scales of magmatic assimilation from
diffusion modeling of multiple elements in olivine. Geology, 33, 837-840.

Costa, F., Chakraborty, S., and Dohmen, R. (2003) Diffusion coupling between
major and trace elements and a model for the calculation of magma chamber
residence times using plagioclase. Geochimica et Cosmochimica Acta, 67,
2189-2200.

Couperthwaite, F.K., Morgan, D.J., Pankhurst, M.J., Lee, P.D., and Day, J.M.D.
(2021) Reducing epistemic and model uncertainty in ionic inter-diffusion
chronology: A 3D observation and dynamic modeling approach using olivine
from Piton de la Fournaise, la Réunion. American Mineralogist, 106, 481-494.

Davidson, J.P., and Tepley, F.J. (1997) Recharge in Volcanic Systems: Evidence
from Isotope Profiles of Phenocrysts. Science, 275, 826-829.

American Mineralogist, vol. 108, 2023

Downloaded from http://pubs.geoscienceworld.org/msa/ammin/article-pdf/108/2/297/5770017/am-2022-8139.pdf?guestAccessKey=896a5109-c784-4b33-b083-d8c2fed49095

by guest

on 01 February 2023



310 LUBBERS ET AL.: 3D ZONING IN ALKALI FELDSPAR

Davidson, J., Tepley, F., Palacz, Z., and Meffan-Main, S. (2001) Magma recharge,
contamination and residence times revealed by in situ laser ablation isotopic
analysis of feldspar in volcanic rocks. Earth and Planetary Science Letters,
184, 427-442.

de Silva, S.L., and Gregg, P.M. (2014) Thermomechanical feedbacks in magmatic
systems: Implications for growth, longevity, and evolution of large caldera-
forming magma reservoirs and their supereruptions. Journal of Volcanology
and Geothermal Research, 282, 77-91.

Deer, W.A., Howie, R.A., and Zussman, J. (1966) An Introduction to the Rock-
Forming Minerals. Wiley

Denison, D., Carlson, W.D., and Ketcham, R.A. (1997) Three-dimensional quantita-
tive textural analysis of metamorphic rocks using high-resolution computed
X-ray tomography: Part I. Methods and techniques. Journal of Metamorphic
Geology, 15, 29-44.

Eichelberger, J.C. (1975) Origin of andesite and dacite: Evidence of mixing at
Glass Mountain in California and at other circum-Pacific volcanoes. Geological
Society of America Bulletin, 86, 1381-1391.

Forni, F., Petricca, E., Bachmann, O., Mollo, S., De Astis, G., and Piochi, M. (2018)
The role of magma mixing/mingling and cumulate melting in the Neapolitan
Yellow Tuff caldera-forming eruption (Campi Flegrei, Southern Italy). Con-
tributions to Mineralogy and Petrology, 173, 1-18.

Gelman, S.E., Gutiérrez, F.J., and Bachmann, O. (2013) On the longevity of large
upper crustal silicic magma reservoirs. Geology, 41, 759-762.

Geurts, P., Ernst, D., and Wehenkel, L. (2006) Extremely randomized trees. Ma-
chine Learning, 63, 3-42.

Giachetti, T., Burgisser, A., Arbaret, L., Druitt, T.H., and Kelfoun, K. (2011) Quan-
titative textural analysis of Vulcanian pyroclasts (Montserrat) using multi-scale
X-ray computed microtomography: Comparison with results from 2D image
analysis. Bulletin of Volcanology, 73, 1295-1309.

Ginibre, C., Worner, G., and Kronz, A. (2004) Structure and dynamics of the
Laacher See magma chamber (Eifel, Germany) from major and trace element
zoning in sanidine: A cathodoluminescence and electron microprobe study.
Journal of Petrology, 45, 2197-2223.

Gualda, G.A.R., and Rivers, M. (2006) Quantitative 3D petrography using X-ray
tomography: Application to Bishop Tuff pumice clasts. Journal of Volcanology
and Geothermal Research, 154, 48-62.

Gualda, G.A.R., Pamukcu, A.S., Claiborne, L.L., and Rivers, M.L. (2010) Quantita-
tive 3D petrography using X-ray tomography 3: Documenting accessory phases
with differential absorption tomography. Geosphere, 6, 782-792.

Hanna, R.D., and Ketcham, R.A. (2017) X-ray computed tomography of planetary
materials: A primer and review of recent studies. Geochemistry, 77, 547-572.

Higgins, M.D. (2000) Measurement of crystal size distributions. American Min-
eralogist, 85, 1105-1116.

Icenhower, J., and London, D. (1996) Experimental partitioning of Rb, Cs, Sr and
Ba between alkali feldspar and peraluminous melt. American Mineralogist,
81, 719-734.

Jéhne, B., HauBlecker, H., and GeiBler, P. (1999) 3D computer vision and applica-
tions. Proceedings—International Conference on Pattern Recognition Vol. 1.

Kent, A.J.R., Darr, C., Koleszar, A.M., Salisbury, M.J., and Cooper, K.M. (2010)
Preferential eruption of andesitic magmas through recharge filtering. Nature
Geoscience, 3, 631-636.

Krimer, D., and Costa, F. (2017) Evaluation of the effects of 3D diffusion, crystal
geometry, and initial conditions on retrieved time-scales from Fe-Mg zoning
in natural oriented orthopyroxene crystals. Geochimica et Cosmochimica
Acta, 196, 271-288.

Lipman, P.W., and McIntosh, W.C. (2008) Eruptive and noneruptive calderas,
northeastern San Juan Mountains, Colorado: Where did the ignimbrites come
from? Geological Society of America Bulletin, 120, 771-795.

Lubbers, J., Deering, C., and Bachmann, O. (2020) Genesis of rhyolitic melts in the
upper crust : Fractionation and remobilization of an intermediate cumulate at
Lake City caldera, Colorado, U.S.A. Journal of Volcanology and Geothermal
Research, 392, 106750.

Matthews, N.E., Vazquez, J.A., and Calvert, C.T. (2015) Age of the Lava Creek
supereruption and magma chamber assembly at Yellowstone based on *Ar/*Ar
and U-Pb dating of sanidine and zircon crystals. Geochemistry, Geophysics,
Geosystems, 16, 2508-2528.

McCullough, E.C. (1975) Photon attenuation in computed tomography. Medical
Physics, 2, 307-320.

Mclntire, W.L. (1963) Trace element partition coefficients—a review of theory and
applications to geology. Geochimica et Cosmochimica Acta, 27, 1209-1264.

Morgan, D.J., and Blake, S. (2006) Magmatic residence times of zoned pheno-
crysts: Introduction and application of the binary element diffusion modelling
(BEDM) technique. Contributions to Mineralogy and Petrology, 151, 58-70.

Mourey, A.J., and Shea, T. (2019) Forming olivine phenocrysts in basalt: A 3D
characterization of growth rates in laboratory experiments. Frontiers in Earth
Science, 7, 1-16.

Pamukcu, A.S., and Gualda, G.A.R. (2010) Quantitative 3D petrography using
X-ray tomography 2: Combining information at various resolutions. Geo-
sphere, 6, 775-781.

American Mineralogist, vol. 108, 2023

Pankhurst, M.J., Dobson, K.J., Morgan, D.J., Loughlin, S.C., Thordarson, T.H.,
Lee, P.D., and Courtois, L. (2014) Monitoring the magmas fuelling volcanic
eruptions in near-real-time using X-ray micro-computed tomography. Journal
of Petrology, 55, 671-684.

Pankhurst, M.J., Vo, N.T., Butcher, A.R., Long, H., Wang, H., Nonni, S., Harvey,
J., Gudfinnsson, G., Fowler, R., Atwood, R., Walshaw, R., and Lee, P.D.
(2018) Quantitative measurement of olivine composition in three dimensions
using helical-scan X-ray micro-tomography. American Mineralogist, 103,
1800-1811.

Pankhurst, M.J., Gueninchault, N., Andrew, M., and Hill, E. (2019) Non-destructive
three-dimensional crystallographic orientation analysis of olivine using labora-
tory diffraction contrast tomography. Mineralogical Magazine, 83, 705-711.

Pedregosa, F., Varoquaux, G., Alexandre, G., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V. and others (2011) Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research,
12, 2825-2830.

Petrelli, M., Caricchi, L., and Perugini, D. (2020) Machine learning thermo-barom-
etry: Application to clinopyroxene-bearing magmas. Journal of Geophysical
Research: Solid Earth, 125.

Reddy, S.M., Saxey, D.W., Rickard, W.D.A., Fougerouse, D., Montalvo, S.D.,
Verberne, R., and Riessen, A. (2020) Atom probe tomography: Develop-
ment and application to the geosciences. Geostandards and Geoanalytical
Research, 44, 5-50.

Rickard, W.D.A., Reddy, S.M., Saxey, D.W., Fougerouse, D., Timms, N.E., Daly, L.,
Peterman, E., Cavosie, A.J., and Jourdan, F. (2020) Novel applications of FIB-
SEM-Based ToF-SIMS in atom probe tomography workflows. Microscopy
and Microanalysis, 26, 750-757.

Roerdink, J.B.T.M., and Meijster, A. (2000) The watershed transform: defini-
tions, algorithms and parallelization strategies. Fundamenta Informaticae,
41, 187-228.

Rout, S.S., Blum-Oeste, M., and Worner, G. (2021) Long-term temperature cycling
in a shallow magma reservoir: Insights from sanidine megacrysts at Tadpaca
volcano, Central Andes ABSTRACT. Journal of Petrology, 62.

Rubin, A.E., Cooper, K.M., Till, C.B., Kent, A.J.R., Costa, F., Bose, M., Gravley,
D., Deering, C., and Cole, J. (2017) Rapid cooling and cold storage in a silicic
magma reservoir recorded in Individual Crystals. Science, 356, 1154—-1156.

Ruprecht, P., and Plank, T. (2013) Feeding andesitic eruptions with a high-speed
connection from the mantle. Nature, 500, 68-72.

Schneider, C.A., Rasband, W.S., and Eliceiri, K.W. (2012) NIH Image to Imagel:
25 years of image analysis. Nature Methods, 9, 671-675.

Shamloo, H.I., and Till, C.B. (2019) Decadal transition from quiescence to super-
eruption: petrologic investigation of the Lava Creek Tuff, Yellowstone Caldera,
WY. Contributions to Mineralogy and Petrology, 174, 1-18.

Shea, T., Costa, F., Krimer, D., and Hammer, J.E. (2015) Accuracy of timescales
retrieved from diffusion modeling in olivine: A 3D perspective. American
Mineralogist, 100, 2026-2042.

Sheppard, A., Latham, S., Middleton, J., Kingston, A., Myers, G., Varslot, T.,
Fogden, A., Sawkins, T., Cruikshank, R., Saadatfar, M., and others. (2014)
Techniques in helical scanning, dynamic imaging and image segmentation
for improved quantitative analysis with X-ray micro-CT. Nuclear Instruments
and Methods in Physics Research Section B: Beam Interactions with Materials
and Atoms, 324, 49-56.

Simonetti, A., Shore, M., and Bell, K. (1996) Diopside phenocrysts from nephelinite
lavas, Napak volcano, eastern Uganda: Evidence for magma mixing. Canadian
Mineralogist, 34, 411-421.

Singer, B.S., Dungan, M. A, and Layne, G.D. (1995) Textures and Sr, Ba, Mg, Fe,
K, and Ti compositional profiles in volcanic plagioclase: Clues to the dynam-
ics of calc-alkaline magma chambers. American Mineralogist, 80, 776-798.

Spear, F.S., and Daniel, C.G. (2003) Three-dimensional imaging of garnet por-
phyroblast sizes and chemical zoning: Nucleation and growth history in the
garnet zone. American Mineralogist, 88, 245.

Streck, M.J., Dungan, M. A, Bussy, F., and Malavassi, E. (2005) Mineral inventory
of continuously erupting basaltic andesites at Arenal volcano, Costa Rica:
Implications for interpreting monotonous, crystal-rich, mafic arc stratigraphies.
Journal of Volcanology and Geothermal Research, 140, 133—155.

Szymanowski, D., Wotzlaw, J.-F., Ellis, B.S., Bachmann, O., Guillong, M., and von
Quadt, A. (2017) Protracted near-solidus storage and pre-eruptive rejuvenation
of large magma reservoirs. Nature Geoscience, 10, 777-782.

Szymanowski, D., Ellis, B.S., Wotzlaw, J.-F., and Bachmann, O. (2019) Maturation
and rejuvenation of a silicic magma reservoir: High-resolution chronology of
the Kneeling Nun Tuff. Earth and Planetary Science Letters, 510, 103—115.

Tajémanova, L., Abart, R., Wirth, R., Habler, G., and Rhede, D. (2012) Intracrystal-
line microstructures in alkali feldspars from fluid-deficient felsic granulites: A
mineral chemical and TEM study. Contributions to Mineralogy and Petrology,
164, 715-729.

Tepley, F.J., Davidson, J.P., Tilling, R.I., and Arth, J.G. (2000) Magma mixing,
recharge, and eruption histories recorded in plagioclase phenocrysts from El
Chichon Volcano, Mexico. Journal of Petrology, 41, 1397-1411.

Till, C.B., Vazquez, J.A., and Boyce, J.W. (2015) Months between rejuvenation and

Downloaded from http://pubs.geoscienceworld.org/msa/ammin/article-pdf/108/2/297/5770017/am-2022-8139.pdf?guestAccessKey=896a5109-c784-4b33-b083-d8c2fed49095

by guest

on 01 February 2023



LUBBERS ET AL.: 3D ZONING IN ALKALI FELDSPAR 311

volcanic eruption at Yellowstone caldera, Wyoming. Geology, 43, 695-698.

Tsuchiyama, A., Nakano, T., Uesugi, K., Uesugi, M., Takeuchi, A., Suzuki, Y.,
Noguchi, R., Matsumoto, T., Matsuno, J., Nagano, T., and others. (2013)
Analytical dual-energy microtomography: A new method for obtaining three-
dimensional mineral phase images and its application to Hayabusa samples.
Geochimica et Cosmochimica Acta, 116, 5-16.

Uesugi, M., Uesugi, K., and Oka, M. (2010) Non-destructive observation of me-
teorite chips using quantitative analysis of optimized X-ray micro-computed
tomography. Earth and Planetary Science Letters, 299, 359-367.

Van Der Walt, S., Schonberger, J.L., Nunez-Iglesias, J., Boulogne, F., Warner, J.D.,
Yager, N., Gouillart, E., and Yu, T. (2014) Scikit-image: Image processing in
python. Peer], 2, 453

Van Grieken, R., and Markowicz, A. (2002) Handbook of X-ray Spectrometry,
2nd ed. Marcel Dekker.

Varslot, T., Kingston, A., Sheppard, A., and Sakellariou, A. (2011a) Fast high-
resolution micro-CT with exact reconstruction methods. Developments in
X-Ray Tomography VII, 7804, 780413.

Varslot, T., Kingston, A., Myers, G., and Sheppard, A. (2011b) High-resolution
helical cone-beam micro-CT with theoretically-exact reconstruction from
experimental data. Medical Physics, 38, 5459-5476.

Vincent, L., and Soille, P. (1991) Watersheds in digital spaces: An efficient algorithm
based on immersion simulations. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 13, 583-598.

Voltolini, M., Zandomeneghi, D., Mancini, L., and Polacci, M. (2011) Texture
analysis of volcanic rock samples: Quantitative study of crystals and vesicles
shape preferred orientation from X-ray microtomography data. Journal of
Volcanology and Geothermal Research, 202, 83-95.

Wildenschild, D., and Sheppard, A.P. (2013) X-ray imaging and analysis techniques
for quantifying pore-scale structure and processes in subsurface porous medium
systems. Advances in Water Resources, 51, 217-246.

Willmott, P. (2011) An Introduction to Synchrotron Radiation. Wiley

Wirth, R. (2009) Focused Ion Beam (FIB) combined with SEM and TEM:
Advanced analytical tools for studies of chemical composition, microstructure
and crystal structure in geomaterials on a nanometre scale. Chemical Geol-
ogy, 261, 217-229.

Wolff, J.A., Ellis, B.S., Ramos, F.C., Starkel, W.A., Boroughs, S., Olin, P.H., and
Bachmann, O. (2015) Remelting of cumulates as a process for producing
chemical zoning in silicic tuffs: A comparison of cool, wet and hot, dry rhyolitic
magma systems. Lithos, 236-237, 275-286.

Wolff, J.A., Forni, F., Ellis, B.S., and Szymanowski, D. (2020) Europium and
barium enrichments in compositionally zoned felsic tuffs: A smoking gun for
the origin of chemical and physical gradients by cumulate melting. Earth and
Planetary Science Letters, 540, 116251.

Zandomeneghi, D., Voltolini, M., Mancini, L., Brun, F., Dreossi, D., and Polacci, M.
(2010) Quantitative analysis of X-ray microtomography images of geomateri-
als: Application to volcanic rocks. Geosphere, 6, 793—-804.

Zhang, Y. (2010) Diffusion in minerals and melts: Theoretical background. Reviews
in Mineralogy and Geochemistry, 72, 5-59.

MANUSCRIPT RECEIVED MAY 17, 2021

MANUSCRIPT ACCEPTED JANUARY 30, 2022
ACCEPTED MANUSCRIPT ONLINE FEBRUARY 10, 2022
MANUSCRIPT HANDLED BY MAURIZIO PETRELLI

Endnote:

'Deposit item AM-23-28139, Online Materials. Deposit items are free to all
readers and found on the MSA website, via the specific issue’s Table of Con-
tents (go to http://www.minsocam.org/MSA/AmMin/TOC/2023/Feb2023_data/
Feb2023_data.html).

American Mineralogist, vol. 108, 2023

Downloaded from http://pubs.geoscienceworld.org/msa/ammin/article-pdf/108/2/297/5770017/am-2022-8139.pdf?guestAccessKey=896a5109-c784-4b33-b083-d8c2fed49095

by guest

on 01 February 2023


http://www.minsocam.org/MSA/AmMin/TOC/2023/Feb2023_data/Feb2023_data.html
http://www.minsocam.org/MSA/AmMin/TOC/2023/Feb2023_data/Feb2023_data.html

