A Novel Approach to Error Resilience in Online
Reinforcement Learning

Chandramouli Amarnath and Abhijit Chatterjee
School of Electrical and Computer Engineering
Georgia Institute of Technology
Atlanta, Georgia 30332-0250
Email: chandamarnath@gatech.edu, abhijit.chatterjee @ece.gatech.edu

Abstract—Online reinforcement learning (RL) based systems
are being increasingly deployed in a variety of safety-critical
applications ranging from drone control to medical robotics.
These systems typically use RL onboard rather than relying
on remote operation from high-performance datacenters. Due
to the dynamic nature of the environments they work in,
onboard RL hardware is vulnerable to soft errors from radiation,
thermal effects and electrical noise that corrupt the results of
computations. Existing approaches to on-line error resilience in
machine learning systems have relied on availability of the large
training datasets to configure resilience parameters, which is
not necessarily feasible for online RL systems. Similarly, other
approaches involving specialized hardware or modifications to
training algorithms are difficult to implement for onboard RL
applications. In contrast, we present a novel error resilience
approach for online RL that makes use of running statistics
collected across the (real-time) RL training process to configure
error detection thresholds without the need to access a reference
training dataset. In this methodology, statistical concentration
bounds leveraging running statistics are used to diagnose neuron
outputs as erroneous. These erroneous neurons are then set to
zero (suppressed). Our approach is compared against the state
of the art and validated on several RL algorithms involving the
use of multiple concentration bounds on CPU as well as GPU
hardware.

Index Terms—Neural Networks, Fault Tolerance, Resilience,
Soft Errors, Reinforcement Learning

I. INTRODUCTION AND PRIOR WORK

Reinforcement Learning (RL) leveraging Deep Neural Net-
works (DNNs) is being increasingly deployed in a wide
range of fields, including safety-critical applications such
as autonomous systems [1]. Such RL systems (e.g. robotic
controllers) run on onboard hardware and require a high level
of accuracy and reliability for mission performance. However,
uncertainties in hardware operation due to the unpredictable
nature of the environments these systems work in can induce
malfunctions due to soft errors in hardware. Typical causes
include radiation, thermal effects, noise due to low voltage
hardware and field electrical degradation. To maintain the
reliability of such systems in the field, work is needed on low-
overhead on-line methods for RL to provide resilience against
soft errors that can impact RL system performance.

On-line soft error resilience in standard DNNs has been

979-8-3503-4135-5/23/$31.00 ©2023 IEEE

examined in prior work. As discussed in [2], [3], the use of a
parallel DropOut training methodology for neuron outputs or
weights with specified failure modes allows for increased DNN
error resilience at the cost of increased training time. In [4], the
authors alter DNN training to generate invariant relationships
between neuron outputs, setting neuron outputs that violate
these invariants to zero (error suppression). Later work [5]
applied median filtering to neuron outputs to filter out extreme
erroneous values, altering DNN training to prevent median fil-
tering from degrading DNN inference. Statistical thresholding
of inter-neuron gradients to diagnose erroneous neuron outputs
for on-line error suppression without modifying DNN training
was explored in [6], but not applied to RL systems.

Error resilience through restriction of output ranges has been
examined in [7]. Layer-wise quantization is used, adding a
regularization term to DNN loss functions to prevent outlier
values from being generated. Dynamic fixed-point quantization
of the DNN network and a random variability-aware training
methodology for RRAM based DNNs has been examined in
[8]. Later work [9] presented Ranger, a method for restricting
output ranges of neurons in inference by clamping them to
the extrema observed across a fraction (approx. 20%) of the
training dataset. As opposed to traditional learning paradigms,
the neuron output statistics of RL systems evolve over time
with the training the RL system has undergone based on
stimulus it has seen and corresponding decisions made. This
is different from the training of traditional DNNs and CNNs,
which are trained on a fixed dataset with corresponding labels
prior to deployment. Hence, error resilience approaches in
an RL system need to evolve with the amount of learning
performed. This requires a rethink of prior error resilience
approaches, as approaches such as [9] and [4] relying on
training statistics or fully trained DNN behavior on training
data are unreliable.

Hardware-level resilience to compute errors and device
faults has been examined in [10] through resilience-aware
scheduling, running vulnerable computations on more error re-
silient parts of the hardware. However, this assumes the avail-
ability of error-hardened computational resources. Extensions
to Algorithm-Based Fault Tolerance (ABFT) [11] to detect
errors in convolutional neural network computations [12] and
detect and correct errors in matrix multiplications on GPUs
[13] allowed fast, accurate detection of errors and correction of

a restricted range of errors. Error correction using extensions
of ABFT [11] remains a problem due to limitations in the
ability to correct multiple errors with one or a small number of
algorithmic checks without correction being compromised by
error aliasing effects. The work of [14] presents a framework
for per-layer voltage underscaling to balance error rate and
energy use by modulating erroneous neuron computations.
Extensions of Algorithmic Noise Tolerance (ANT) to DNNs
[15], [16] use low-precision redundant computations to correct
for errors, again focusing more on voltage scaling effects
rather than soft errors.

Prior reinforcement learning work in the resilience space
has to the best of our knowledge, not examined on-line soft
error resilience in the RL system itself, focusing mainly on
resilience to input and action perturbations. Recent work [17]
uses causal learning frameworks to filter out and minimize the
effects of input space perturbations, marking perturbed inputs
in training with ‘interference labels’ and allowing the system
to estimate the true output label and confounder (perturbation)
latent state in inference. Action space perturbations such
as actuator attacks in robotics are rectified in [18] through
‘robustifying’ the trained RL system via adversarial training.
Actuator degradation correction through reinforced re-learning
is addressed in [19]. The effects of hardware-induced noise
in quantum RL is examined in [20], and mitigated in part by
altering the training process to reduce the number of measure-
ments needed to update the model. However, this examination
focuses on quantum hardware rather than conventional digital
systems.

Key Contributions: The key contributions of this work are:

e Our approach provides an on-line error resilience ap-
proach that evolves over time with the amount of learning
performed in the network, providing a statistical method
that evolves with RL network training to provide on-line
error resilience without the need for a fixed represen-
tative training dataset, unlike earlier methods built for
traditional DNNs and CNNs.

e Our approach is a statistically grounded method for
thresholding neuron outputs and suppressing erroneous
values to zero in online RL systems. It does not require
modification of the core RL training algorithm itself. This
approach is validated on two benchmarks using different
RL approaches for a variety of test cases.

Section II presents preliminaries regarding RL training and
inference and an overview of the proposed approach. Section
IIT discusses the proposed approach in detail, while Section
IV presents experimental results. We conclude in Section V.

II. OVERVIEW
A. Preliminaries: Reinforcement Learning

Reinforcement Learning is commonly framed [21] as an
interaction learning paradigm. The RL agent when training
interacts with the environment, evaluates the reward from the
actions it takes, and uses this to adjust its future actions.
The RL agent balances exploration, taking random decisions

Updated RL Agent:
se1 = Tse0151,a0)

Action space A

State s pace s State

transition|
Sty St+1 v ¥

Action
1

! state

! transition
_!Btssr‘-“!-l Reward:
Reward R R(si,ae5001)

1
! f .
o RL Policy DNN:

m: 8 = p(d =alS)

Discounted

past |
rewards |_

Discounted past rewards:
Rig i =R

Fig. 1: RL training process overview: Dotted lines indicate the
quantities used for updating the weights of the DNN used to generate
the RL policy .

to generate new strategies, and exploitation, iterating on past
experience to optimize its current strategy. This can be framed
as a Markov Decision Process, where the RL agent has a
set of states S with associated distribution of starting states
p(s), a set of possible actions A and a state transition function
T(S¢41]8¢, at) (as shown in Fig. 1) that yields new states s;1
from current states s; and actions a; taken at time step t.
Furthermore, the RL agent gains a reward R(s¢, at, S¢+1) from
its actions taken at the current time step and the following
state. The past rewards are modulated by a discount factor
v € [0,1] (as seen in Fig. 1), which emphasizes more
immediate rewards. The RL agent in this manner learns a
policy w, mapping from states to a distribution of actions
w8 = p(A = alF). A complete interaction with the
environment from an initial to an end state, generating an
aggregate reward over the series of states for the RL agent
that leads to a policy update is termed an episode. The optimal
policy maximizing the expected reward function is termed
the optimal policy 7* = argmax_E[R|x]. This policy can be
learned or approximated using a Deep Neural Network (DNN).
The DNN updates its weights during training based on the
reward function to predict the optimal action for each state
to maximize expected reward (as in Fig. 1’s RL agent). This
is done using standard optimizers and a training loss function
designed to maximize expected reward.

B. Approach Overview

As shown in Figure 2, the proposed error resilience ap-
proach for RL DNNs consists of two major parts: (1) Statistics
collection, and (2) Thresholding-based error suppression. The
statistics collected in (1) are used to set periodically-updated
flexible statistical thresholds for (2) to enable error resilience.
The statistical thresholds are updated after a set number of RL
training episodes to adapt to changing RL agent behavior.

In statistics collection (Block-1 of Fig. 2), the mean and
variance of each neuron output in each layer except the
final layer are recorded in an on-line manner during training
episodes while the RL system learns the optimal policy. Due
to the lack of an explicit, fixed dataset and the need for the RL
system to interact with its environment while training, methods
such as [9] and [4] are inapplicable. On-line methods are thus

Alternatively: Can record MAC output statistics _ (1)-Statistics
— == == == = = Collection (During
Layer [Irainng Episode) {2) Mean and
Input X' f(x) Y ({c) Record Continue == Standard Deviation
:;}):;Ia it P Lerer | Layer Output —>» DNN Calculation
putations Activation Statisti 2
tatistics Computation I
Upper threshold U,
lower threshold L from
— =—— = =] meanand standard
r deviation
Layer Y
INPUEX (a) Layer MAC fp{}; (b) Layer Yi (c) Statistical > ytg‘] '?:t[?]"to _)CDS::UE
Computations Activation Thresholding) ze‘r,o Computation
T
T EeniE SRTRTT St S "'* 3) Error Suppression: RL DNN
Alternatively: Can threshold MAC outputs (3 Fo PR T ¥

Fig. 2: Flow of statistical threshold-based error resilience in RL Deep Neural Networks. For clarity, statistics collection (Block-1) is shown
separately from error suppression during the forward (inference) pass (Block-3).

needed to compute statistical bounds for neuron outputs. This
can be done after layer MAC operations from the MAC output
f(X) (Block la), per the dotted line in Block 1 of Fig. 2,
or after the layer activation functions from layer outputs Y
(Block 1c). These layer output statistics are used to calculate
the mean and standard deviation of neuron outputs for each
layer after training (Block 2). The process of RL DNN training
is unaffected by the statistics collection process.

The mean and standard deviation calculated on completion
of training are then used to build an upper and lower statistical
threshold for error suppression during RL DNN inference
(thresholds fed to Block-3c in Fig. 2). These thresholds are
based on standard concentration inequalities, allowing adjust-
ment of the threshold sensitivity to detect less severe errors
(tight threshold, high sensitivity) or minimize impact on per-
formance from false alarms (low sensitivity, looser threshold).
These thresholds are updated as the statistics collected in
(1) change, with a user-chosen number of training episodes
between threshold updates (using statistics from Block-2 to up-
date Block-3c). Depending on the activation function, different
inequalities can be used to set thresholds - for a linear layer
two-sided bounds can be used, while for a ReLU activation
(zero for all negative inputs), a one-sided (upper) bound is used
and the output is lower-bounded at zero. These thresholds are
applied to neuron outputs during the network forward pass,
and any neuron output violating these thresholds is deemed to
be erroneous and set to zero (suppressed). As we see in Fig. 2
Block-3, the thresholding is applied to the same location as the
statistics are collected. This can be done after activation (Block
3c¢) if statistics are collected from layer outputs Y, or after the
MAC operations (dotted line from Block 3b) if the statistics
are collected from MAC outputs f(X). The proposed zeroing
approach cannot be used at the final (output) layer. Due to
the output layer’s small size we propose to use conventional
methods such as TMR [22] for resilience.

The proposed resilience framework is examined in more
detail in the following section, beginning with a discussion of
DNN computations in Section III-A.

III. APPROACH DETAILS
A. Neural Network Computations: Overview

RL DNNs considered in this work can use both dense
and convolutional layers. The layer input is denoted by X
and the output of the layer’s Multiply-Accumulate (MAC)
computations is denoted by f(X) (as in Fig. 2). For a dense
layer, this is done through weight-bias matrix multiplication
such that f(X) = W.X + b, where W is the layer weight
matrix and b is the layer bias vector.

In a convolutional layer, the layer itself consists of C\,:
convolutional neurons (output channels) having Cj, inputs,
so that the layer input tensors have a shape (Ciyn, I, In)
where for each of the C;, input channels there is an image
of dimension I, x Ij,. The MAC output tensor f(X) thus has
dimension (Cyyt, O, Op,), where for each of the C,,; output
channels there is an output image of dimension O, X Oj.
Each of the convolutional neurons is associated with a kernel
W and a bias b, so that the output of the ith neuron MAC
computations is denoted by f;(X) = k;"ofl Wi * Xj, + b,
where * is the 2-D convolution operator.

DNN activation follows the MAC operations. In this work,
two activations are used in the networks examined. Each of
them is applied elementwise to f(X) to give the layer output
Y as in Fig. 2. The ReLU activation takes the form y
maz(0,), giving a one-sided output. The hyperbolic tangent

activation takes the form y = ilij,:, ranging from -1 to 1.

B. On-Line Statistical Threshold Generation and Resilience

During the training of the RL system, we use Welford’s
online algorithm [23] to collect the mean and standard devi-
ation of neuron outputs. These statistics are collected at the
same locations in the network at which thresholding is later
performed. Welford’s algorithm works in three major steps:
(1) First, we initialize the aggregate triple of [sample count
(N), mean (u), M2] as [0,0,0], where sample count refers
to the number of outputs seen, the mean refers to the mean
of the outputs and M2 denotes the sum of squared squared
differences from the mean. In step (2) this aggregate is updated

at each forward pass conducted by the RL network using the
network layer outputs Y, so that in each forward pass: (2a)
N=N+1,20) 6 =Y —p, (2) p = p+2,2d) d2 = Y —ps,
and finally (2e) M2 = M2 + § x d5 for each neuron output.
Finally in step (3) we finalize the neuron output statistics
to generate [u,0,05] where o denotes the standard deviation
and o denotes the sample standard deviation. The mean p is
directly taken from the aggregate vector generated above, and
the standard deviations are calculated as:

[M2
Os = ﬁ (2

In the case of a convolutional layer, this yields two tensors
of identical dimension to the convolutional outputs, one tensor
for averages and the other for the standard deviation of neuron
outputs. For a dense layer these statistics form two vectors of
identical dimension to the dense layer outputs, one vector of
averages and one vector of standard deviations.

The 1 and o values from the training statistics are then used
to set statistical thresholds for error detection and suppression.
The statistical thresholds are tuned using confidence parame-
ters to flag and enable suppression of extreme values indicative
of errors (discussed further in Section III-C). In this work,
the thresholds are applied during RL DNN inference. For a
ReLU function this is simply a single upper threshold, with
the lower threshold set at zero due to the one-sided nature of
the ReLU output (see Section III-A). In the case of hyperbolic
tangent (tanh) activation, the thresholding and suppression
(and by extension statistics collection) is performed at the
linear layer preceding activation, as the tanh’s bounded nature
allows thresholds at the activation to be used for suppressing
activation errors. Suppression of linear layer errors prevents
these errors from causing the tanh activation to saturate at 1
or -1, which can affect RL performance.

In the event that a neuron output breaches either statistical
bound (lower or upper), that output is deemed erroneous and
set to zero (suppressed). The bounds are set such that values
at the extreme tails of the distributions are suppressed.

C. Neuron Output Statistical Thresholding

The statistical thresholds for flagging erroneous neuron
outputs are set using different concentration inequalities de-
pending on the location of error suppression. For two sided
outputs such as those from a linear layer, we use Chebyshev’s
concentration inequality [24] to flag and suppress errors:

Pr(]Y — p| = ko) < w2 3)
where Y indicates the neuron outputs being thresholded (or
the MAC outputs for a tanh activation), p is the mean from
Section III-B, o is the corresponding standard deviation (see
Equation 1) and £k is a user-defined tuning parameter that sets
the ‘tail’ thresholded by the inequality.

For single sided neuron outputs such as those from a ReL.U
activation, Chebyshev’s inequality is insufficiently tight. We
instead use Cantelli’s inequality [25] for one-sided bounds

Disturbance dF

1
Mass m,,, ‘/QN '
Length L 19=981m/s?
P
1
Massm_ H
Damping K, E
1
Input F X

(a) Inverted pendulum
model (image source: Mathworks)

state-space(b) Atari Pong game (image source

[21])

Fig. 3: Error injection test cases: (a) The inverted pendulum state-
space system, and (b) The Atari Pong game. RL methods used for
each are discussed in Section IV-A. Reward details are discussed in
Section IV-B and IV-C respectively for each.

(since ReLLU outputs are greater than or %qual to zero always):
Pr(Y —u>k) < 5 @)

. . o2 + k2
where k is again a tunable parameter and Y, p and o are
identical to Equation 3. The & values in Equations 3 and 4 are

used to set the ‘tail’ probability of the left hand side, allowing
thresholding and suppression of extreme (erroneous) outputs.

IV. EXPERIMENTAL RESULTS
A. Experimental Details
1) Test Platform Details

Our proposed RL DNN error resilience approach has been
validated on two different reinforcement learning benchmarks.
The first test platform is a policy gradient network using the
REINFORCE [26] algorithm for learning the optimal policy
distribution directly to swing up and balance an inverted pen-
dulum. The second test platform is the Atari Pong benchmark
for Deep Q-Learning [21]. The REINFORCE test platform is
trained using the Gymnasium library code [27] with statistics
collection for threshold generation and compared against a
baseline using median feature selection [5]. Difficulties in
adapting training of the Atari Pong neural network (memory
and convergence issues) prevented the use of a median feature
selection baseline. The Pong network is trained using the
CleanRL library [28] with statistics collection for threshold
generation. All networks were implemented in PyTorch [29].
REINFORCE for inverted pendulum: REINFORCE aims to
maximize the Monte Carlo reward [26] by swinging up and
balancing an inverted pendulum as long as possible (See Fig.
3a). This RL approach parameterizes the policy using a neural
network (run on a CPU), estimating the mean and standard
deviation of the policy distribution (assumed Gaussian). The
action is then sampled from this distribution. The network in
this case is a linear DNN with two hidden layers (the first
using 16 neurons and the second using 32 neurons), each
using a hyperbolic tangent activation, followed by two output

1000 1000
B

950 2(900
&
900 o 800

©
850 o| 700

Average Reward

800 600

0 0.01005 01 05 1
Error Rate (%
—Using Chebyshev Thresholding
No Resilience Approach
Using Median Filtering

0 0.01005 01 05 1

Error Rate (%)
—Using Chebyshev Thresholding
No Resilience Approach
Using Median Filtering

(a) 4-bit error injection results, average(b) 8-bit error injection results, average

accuracy accuracy
.S 250
‘® 200
2 < 300
2 150 2
5 100 .% 200
[} =)
'g 50 ° 100
20 S
- 2
& 0 0.010.05 0'1 05 1 @ 0 0.01005 01 05 1
3 Error Rate (% g Error Rate (%
. . ® (%)
& W Using Chebyshev Thresholding 5 M Using Chebyshev Thresholding
-3

No Resilience Approach
Using Median Filtering

No Resilience Approach
Using Median Filtering

(c) 4-bit error injection results, standard(d) 8-bit error injection results, standard
deviation deviation

Fig. 4: Error injection results for the Inverted Pendulum swingup
REINFORCE benchmark.

linear layers. One output layer yields the mean of the policy
distribution and the other yields the standard deviation.

Atari Pong Q-Learning: Deep Q-Networks (DQNs) are used
to train RL agents to be as effective as possible at winning
games of Atari Pong, minimizing misses by the agent and
maximizing misses by the opposing player in [21] (See Fig.
3 for screenshot). This is done by using DNNs (running on
a CPU) to learn an approximation of the optimal action-
value function Qx = max, E[r; + yrei1 + Y2repo + ...|s¢ =
s,a; = a, |, maximizing the sum of rewards r; subject to
the discount factor v and achieved by a policy 7 that is not
explicitly estimated. The method implemented here (that of
[21] as in [28]) uses experience replay, randomly sampling
from prior observations (state-action pairs in prior timesteps)
to remove correlations in data. It iteratively updates the Q-
values, adjusting them towards periodically updated target
values to further reduce correlations with the target. Unlike
the REINFORCE DNN, the DQN uses ReLU activation.

2) Experimental Parameters and Metrics

The REINFORCE test platform was trained for 8000
episodes with statistics collection for threshold generation
and 10K episodes using median feature selection. The REIN-
FORCE network used statistical thresholds after each linear
layer (before tanh activation). Here, k& was set to 31.62
(thresholding the 0.1% tails of the distribution) in Chebyshev’s
bound (Equation 3). This network used 32-bit floating point.

The Atari Pong DQN was trained for 10 million episodes
normally with statistics collection for threshold generation.
The DQN used statistical thresholds for error resilience after
each ReLU activation, with the upper bound provided by
Cantelli’s inequality (Equation 4) and lower bound set to zero

(ReLU lower bound). Here, the inequality thresholded at the
0.025% upper tail of the distribution (Pr(Y — p > k) <
0.00025). This network used 16-bit floating point.

Error injection into RL DNN inference post-training was
done using the PyTorchFI [30] library. Error injection was
governed by an error rate parameter, denoting the probability
of each neuron output in each layer (except the final layer)
being erroneous. Erroneous neuron outputs were subject to
varying error severity, varying the number of bits flipped.

Each error injection experiment recorded average and stan-
dard deviation of reward over a number of test (inference)
episodes, varying error rate and error severity. Over the
REINFORCE test platform, overhead was recorded using CPU
program counter measurements via the PyPAPI library [31].

B. Error Injection: REINFORCE for Inverted Pendulum

Figure 4 shows results for error injection into the inverted
pendulum using REINFORCE. The reward here consists of +1
for each timestep the inverted pendulum remains upright, up to
a maximum episode length of 1000. The average reward over
600 test episodes is shown in Fig. 4, for a range of error rates
and 4- and 8-bit errors. It was found that 1-bit errors caused
little to no drop in performance until high error rates even in
the absence of any error resilience method. Fig. 4a and Fig.
4c show the mean and standard deviation of reward under 4-
bit error injection for the proposed approach, median filtering
(baseline) and the case of no error resilience enabled. Figs. 4b
and 4d show the same quantities for 8-bit error injection.

We see that the average performance of the RL DNN
degrades as error rate and error severity increase in the absence
of error resilience methods, shown by a gradual decline in
average reward both across error rates (in Figures 4a and 4b)
and across error severity (a greater decrease in reward is seen
in Fig. 4b than Fig. 4a). Median filtering shows a similar trend
with more graceful degradation, ending in a slight average loss
of performance at the cost of nominal reward. When using
the proposed resilience method we see no material change in
average reward across the error rates and severity.

The standard deviation in reward for the RL. DNN shows
a similar trend - showing a rise in reward standard deviation
without any resilience method (indicating less consistent per-
formance) for rises in error rate and error severity. The use
of median filtering is seen to show a similar rise in reward
standard deivation across the 4-bit error injection (Fig. 4c)
and 8-bit errors (Fig. 4d). The use of the Chebyshev threshold
restores near-nominal reward standard deviation (consistent
performance) across the error rates on 4-bit and 8-bit errors.

Table I shows the overhead of our approach on the RL
PPO network used for the inverted pendulum, compared to the
overhead of the median filtering approach. All modules were
implemented in PyTorch using off-the-shelf functions, and run
on an Intel Xeon W-2123 CPU. Floating point operations and
vector operations incurred no overhead over the RL DNN
for both the thresholding approach and the median filtering
approach. We can see that the thresholding-based approach
incurs highest overhead for cache reads (due to threshold

N
o
w
o

[y
(%)

Average Reward
=
o
Average Reward
o

Average Reward
o

10 10
5
-20 -20
0 -30 -30
0 0.001 0.01 0.025 0.05 0.1 0 0.001 0.01 0.025 0.05 0.1 0 0.001 0.01 0.025 0.05 0.1

Error Rate (%)
—=Using Cantelli Thresholding

==No Resilience Approach

(a) 1-bit error injection results, average accuracy
6 6

0.001 0.01 0.025 0.05 0.1
Error Rate (%)

wv
wv

H
H

[
[y

Reward Standard Deviation
w

Reward Standard Deviation
w

B Using Cantelli Thresholding
M No Resilience Approach

Error Rate (%,
—=Using Cantelli Thresholding
—=No Resilience Approach

(b) 4-bit error injection results, average accuracy

0.001 0.01 0.025 0.05 0.1
Error Rate (%)

B Using Cantelli Thresholding
M No Resilience Approach

Error Rate (%)
~=Using Cantelli Thresholding

==No Resilience Approach

(c) 8-bit error injection results, average accuracy

5

0.001 0.01 0.025 0.05 0.1
Error Rate (%)

B

w

=

Reward Standard Deviation
o N
oukEk BITNUTWULaAWUM

B Using Cantelli Thresholding
M No Resilience Approach

(d) 1-bit error injection results, standard deviation (e) 4-bit error injection results, standard deviation (f) 8-bit error injection results, standard deviation

Fig. 5: Error injection results for the Atari Pong DQN benchmark.

. Statistical Thresholding | Median Filtering
Measured Indicator Overhead (%) Overhead (%)
Cache Reads (L2 and L3) | 38.271 129.03
Cache Writes (L2 and L3) | 26.21 97.43
Condmgnal Branch 19.152 64.51
Instructions
Unconditional Branch
Instructions 36.75 119.1

TABLE I: Average overhead (CPU program counter data) for
Chebyshev-based thresholding and the median filtering baseline, as
a percentage of the RL DNN overhead.

comparisons for neuron outputs) and unconditional branch
instructions (additional calls for the thresholding module), and
is still sub-40% even when using off-the-shelf PyTorch code.

C. Error Injection: Atari Pong Q-Learning

Fig. 5 shows results on the Atari DQN benchmark. Due
to the larger size of this network, its much longer training
time (10 million episodes) and its use of convolutional layers
(as opposed to the linear (dense) layers of the test case in
Section IV-B), this network was used to test the scalability of
our approach. The Atari Pong agent earns +1 reward for the
opponent missing the ball, -1 for missing the ball and zero for
neither event happening in that timestep. One episode consists
of one game of Pong, where a side wins if it reaches 21 points.
Reward thus ranges from +21 to -21 per episode.

The plots in Fig. 5a, 5b and 5c show average reward over
50 inference episodes for a range of error rates and error
severity (1, 4 and 8-bit errors). It can be seen that more severe

errors have a greater effect on average reward for the case
of no error resilience approach (comparing Fig. 5b and 5c
to Fig. 5a). Similarly, higher error rates cause greater losses
in performance (average reward) for the case of no error
resilience approach. The use of Cantelli-based thresholding
(Equation 4) restores near-nominal performance in all cases.

The plots in Fig. 5d, 5e and 5f show the standard deviation
in reward for the same 50 test episodes. For less severe
errors (1-bit errors) the DQN without any error resilience
approach sees a steady rise in reward standard deviation (less
consistent performance). For 4- and 8-bit errors, the DQN sees
a similar rise and then fall in standard deviation as the average
reward drops, indicating consistently poor performance. The
use of Cantelli-based thresholding again restores near-nominal
reward standard deviation (consistent performance).

V. CONCLUSION

In this work we present an on-line, theoretically grounded
error resilience approach for RL DNNs, validating our ap-
proach on two different RL algorithms as well a variety
of error rates and error severity conditions. In all examined
tests cases in Section IV, RL agent performance degrades
under error injection, while on-line statistical error suppression
allowed more consistently optimal behavior than the baselines.

ACKNOWLEDGMENT

This research was supported by the U.S. National Science
Foundation under Grant No. 2128149.

[1]

[2]

[3]

[4]

[5]

[6]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

REFERENCES

X. Wang, S. Wang, X. Liang, D. Zhao, J. Huang, X. Xu, B. Dai, and
Q. Miao, “Deep reinforcement learning: A survey,” IEEE Transactions
on Neural Networks and Learning Systems, pp. 1-15, 2022.

E. Ozen and A. Orailoglu, “Architecting decentralization and cus-
tomizability in dnn accelerators for hardware defect adaptation,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and
Systems, vol. 41, no. 11, pp. 3934-3945, 2022.

Y. Ibrahim, H. Wang, J. Liu, J. Wei, L. Chen, P. Rech, K. Adam, and
G. Guo, “Soft errors in dnn accelerators: A comprehensive review,”
Microelectronics Reliability, vol. 115, p. 113969, 2020.

E. Ozen and A. Orailoglu, “Just say zero: Containing critical
bit-error propagation in deep neural networks with anomalous
feature suppression,” in IEEE/ACM International Conference On
Computer Aided Design, ICCAD 2020, San Diego, CA, USA,
November 2-5, 2020. 1EEE, 2020, pp. 75:1-75:9. [Online]. Available:
https://doi.org/10.1145/3400302.3415680

——, “Boosting bit-error resilience of dnn accelerators through median
feature selection,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 39, pp. 1-1, 11 2020.

C. Amarnath, M. Mejri, K. Ma, and A. Chatterjee, “Soft error resilient
deep learning systems using neuron gradient statistics,” in 2022 IEEE
28th International Symposium on On-Line Testing and Robust System
Design (IOLTS). IEEE, 2022, pp. 1-7.

E. Ozen and A. Orailoglu, “Snr: S queezing n umerical r ange defuses bit
error vulnerability surface in deep neural networks,” ACM Transactions
on Embedded Computing Systems (TECS), vol. 20, no. 5s, pp. 1-25,
2021.

Y. Long, X. She, and S. Mukhopadhyay, “Design of reliable DNN
accelerator with un-reliable reram,” in Design, Automation & Test in
Europe Conference & Exhibition, DATE 2019, Florence, Italy, March
25-29, 2019, J. Teich and F. Fummi, Eds. IEEE, 2019, pp. 1769-1774.
[Online]. Available: https://doi.org/10.23919/DATE.2019.8715178

Z. Chen, G. Li, and K. Pattabiraman, “A low-cost fault corrector for
deep neural networks through range restriction,” in 2021 51st Annual
IEEE/IFIP International Conference on Dependable Systems and Net-
works (DSN), 2021, pp. 1-13.

C. Schorn, A. Guntoro, and G. Ascheid, “Accurate neuron resilience
prediction for a flexible reliability management in neural network
accelerators,” 2018 Design, Automation & Test in Europe Conference
& Exhibition (DATE), pp. 979-984, 2018.

K.-H. Huang and J. A. Abraham, “Algorithm-based fault tolerance for
matrix operations,” IEEE transactions on computers, vol. 100, no. 6, pp.
518-528, 1984.

S. K. S. Hari, M. B. Sullivan, T. Tsai, and S. W. Keckler, “Making
convolutions resilient via algorithm-based error detection techniques,”
IEEE Transactions on Dependable and Secure Computing, vol. 19, no. 4,
pp. 2546-2558, 2022.

P. Rech, C. Aguiar, C. Frost, and L. Carro, “An efficient and experimen-
tally tuned software-based hardening strategy for matrix multiplication
on gpus,” IEEE Transactions on Nuclear Science, vol. 60, no. 4, pp.
2797-2804, 2013.

J. Zhang, K. Rangineni, Z. Ghodsi, and S. Garg, “Thundervolt: enabling
aggressive voltage underscaling and timing error resilience for energy
efficient deep learning accelerators,” in Proceedings of the 55th Annual
Design Automation Conference, 2018, pp. 1-6.

S. Zhang and N. R. Shanbhag, “Embedded algorithmic noise-tolerance
for signal processing and machine learning systems via data path de-
composition,” IEEE Transactions on Signal Processing, vol. 64, no. 13,
pp. 3338-3350, 2016.

A. Mahmoud, S. K. S. Hari, C. W. Fletcher, S. V. Adve, C. Sakr,
N. Shanbhag, P. Molchanov, M. B. Sullivan, T. Tsai, and S. W. Keckler,
“Hardnn: Feature map vulnerability evaluation in cnns,” 2020.

C. H. Yang, I. D. Hung, Y. Ouyang, and P. Chen, “Causal
inference g-network: Toward resilient reinforcement learning,” CoRR,
vol. abs/2102.09677, 2021. [Online]. Available: https://arxiv.org/abs/
2102.09677

K. L. Tan, Y. Esfandiari, X. Y. Lee, Aakanksha, and S. Sarkar, “Ro-
bustifying reinforcement learning agents via action space adversarial
training,” in 2020 American Control Conference (ACC), 2020, pp. 3959—
3964.

S. Banerjee and A. Chatterjee, “Alera: Accelerated reinforcement learn-
ing driven adaptation to electro-mechanical degradation in nonlinear

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

control systems using encoded state space error signatures,” ACM
Transactions on Intelligent Systems and Technology (TIST), vol. 10,
no. 4, pp. 1-25, 2019.

A. Skolik, S. Mangini, T. Béck, C. Macchiavello, and V. Dunjko,
“Robustness of quantum reinforcement learning under hardware errors,”
EPJ Quantum Technology, vol. 10, no. 1, p. 8, Feb 2023. [Online].
Available: https://doi.org/10.1140/epjqt/s40507-023-00166- 1

V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D. Kumaran,
D. Wierstra, S. Legg, and D. Hassabis, “Human-level control through
deep reinforcement learning,” Nature, vol. 518, no. 7540, pp. 529-533,
Feb 2015. [Online]. Available: https://doi.org/10.1038/nature14236

M. A. Hanif and M. Shafique, “Dependable deep learning: Towards cost-
efficient resilience of deep neural network accelerators against soft errors
and permanent faults,” in 2020 IEEE 26th International Symposium on
On-Line Testing and Robust System Design (IOLTS). 1EEE, 2020, pp.
1-4.

B. P. Welford, “Note on a method for calculating corrected sums
of squares and products,” Technometrics, vol. 4, no. 3, pp. 419-
420, 1962. [Online]. Available: https://www.tandfonline.com/doi/abs/
10.1080/00401706.1962.10490022

R. Vershynin, “High-dimensional probability,” 2019. [Online]. Available:
https://www.math.uci.edu/~rvershyn/papers/fHDP-book/HDP-book.pdf

B. K. Ghosh, “Probability inequalities related to markov’s theorem,”
The American Statistician, vol. 56, no. 3, pp. 186—190, 2002. [Online].
Available: http://www.jstor.org/stable/3087296

R. J. Williams, “Simple statistical gradient-following algorithms for
connectionist reinforcement learning,” Machine Learning, vol. 8, no. 3,
pp. 229-256, May 1992. [Online]. Available: https://doi.org/10.1007/
BF00992696

F. Foundation, “Gymnasium,” https://github.com/Farama-Foundation/
Gymnasium, 2022.

S. Huang, R. F. J. Dossa, C. Ye, J. Braga, D. Chakraborty, K. Mehta,
and J. G. Aratjo, “Cleanrl: High-quality single-file implementations of
deep reinforcement learning algorithms,” Journal of Machine Learning
Research, vol. 23, no. 274, pp. 1-18, 2022. [Online]. Available:
http://jmlr.org/papers/v23/21-1342.html

A. Paszke, S. Gross, F Massa, A. Lerer, J. Bradbury,
G. Chanan, T. Killeen, Z. Lin, N. Gimelshein, L. Antiga,
A. Desmaison, A. Kopf, E. Yang, Z. DeVito, M. Raison, A. Tejani,
S. Chilamkurthy, B. Steiner, L. Fang, J. Bai, and S. Chintala,
“Pytorch: An imperative style, high-performance deep learning
library,” in Advances in Neural Information Processing Systems
32, H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc,
E. Fox, and R. Garnett, Eds. Curran Associates, Inc., 2019,
pp- 8024-8035. [Online]. Available: http://papers.neurips.cc/paper/

9015-pytorch-an-imperative-style- high-performance-deep-learning-library.

pdf

A. Mahmoud, N. Aggarwal, A. Nobbe, J. R. S. Vicarte, S. V. Adve, C. W.
Fletcher, I. Frosio, and S. K. S. Hari, “Pytorchfi: A runtime perturbation
tool for dnns,” in 2020 50th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks Workshops (DSN-W), 2020, pp.
25-31.

D. Terpstra, H. Jagode, H. You, and J. Dongarra, Collecting Performance
Data with PAPI-C. Springer Berlin, 2009.

