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Abstract For n > 2, we prove that a finite volume complex hyperbolic
n-manifold containing infinitely many maximal properly immersed totally
geodesic submanifolds of real dimension at least two is arithmetic, paralleling
our previous work for real hyperbolic manifolds. As in the real hyperbolic
case, our primary result is a superrigidity theorem for certain representations
of complex hyperbolic lattices. The proof requires developing new general
tools not needed in the real hyperbolic case. Our main results also have a num-
ber of other applications. For example, we prove nonexistence of certain maps
between complex hyperbolic manifolds, which is related to a question of Siu,
that certain hyperbolic 3-manifolds cannot be totally geodesic submanifolds
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of complex hyperbolic manifolds, and that arithmeticity of complex hyper-
bolic manifolds is detected purely by the topology of the underlying complex
variety, which is related to a question of Margulis. Our results also provide
some evidence for a conjecture of Klingler that is a broad generalization of
the Zilber—Pink conjecture.

1 Introduction

Throughout this paper, a geodesic submanifold will always mean a properly
immersed totally geodesic subspace, and a geodesic submanifold is called
maximal if it is not contained in a proper geodesic submanifold of larger dimen-
sion. Here and throughout a finite volume complex hyperbolic n-manifold will
always have complex dimension 7. In this paper, we will prove the following.

Theorem 1.1 (Arithmeticity) Suppose that n > 2 and M is a finite volume
complex hyperbolic n-manifold containing infinitely many maximal totally
geodesic submanifolds of real dimension at least 2. Then M is arithmetic.

In previous work, we proved arithmeticity of real hyperbolic manifolds
containing infinitely many maximal geodesic subspaces of dimension at least
two [2, Thm. 1.1], which answered a question independently due to Alan
Reid and Curtis McMullen [19]. As in that case, Theorem 1.1 can be restated
purely in terms of homogeneous dynamics, where one obtains the exact same
statement as [2, Thm. 1.5]. We also note that, after learning of our result, Baldi
and Ullmo recently gave a very different proof of Theorem 1.1 in the special
case of totally geodesic complex subvarieties [5].

To answer Reid and McMullen’s question we introduced the notion of com-
patibility of an algebraic group H over a local field k£ with a semisimple Lie
group G and used this with G = SOg(n, 1) to prove a superrigidity theorem
for certain representations of real hyperbolic lattices [2, Thm. 1.6]. However,
for G = SU(n, 1) superrigidity with compatible targets is not enough to prove
arithmeticity. Thus, in this paper we introduce new tools for proving super-
rigidity theorems in rank one with target groups that are not compatible with
G. While these new tools can be used for SOg(n, 1), see for instance Remark
6.8, our focus will be to apply these ideas in the case G = SU(x, 1) to prove
Theorem 1.1 and the other applications described later in this introduction.

It is well-known that if G is a connected adjoint semisimple Lie group
with no compact factors and I' < G is an irreducible nonarithmetic lattice,
then G is necessarily isomorphic to either POg(n, 1) or PU(n, 1) for some
n > 2. Therefore, combining [2, Thm. 1.1] and Theorem 1.1 with the fact that
geodesic subspaces of arithmetic manifolds are arithmetic yields:

Corollary 1.2 (Finiteness) Let M be a nonarithmetic finite volume irreducible
locally symmetric space of noncompact type. Then
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(1) M contains only finitely many maximal geodesic subspaces of real dimen-
sion at least 2, and

(2) M contains only finitely many nonarithmetic geodesic subspaces of real
dimension at least 2.

Note that a complex hyperbolic n-manifold can contain geodesic subman-
ifolds of real dimension k that are real hyperbolic (2 < k < n) or complex
hyperbolic (2 < k < 2n —2 even), see Sect. 9.1 for examples. We also remark
that there are currently only 24 known commensurability classes of nonarith-
metic complex hyperbolic manifolds of finite volume, twenty-two in complex
dimension 2 and two in complex dimension 3 [20]. Finding more examples
or any examples in complex dimension 4 and higher is an important open
problem, e.g., see [40, Prob. 9] or [30, Conj. 2.6].

We also note that the current technology for building nonarithmetic exam-
ples is consistent with the strategies in the real hyperbolic setting in that it
produces examples with special geodesic subspaces. In particular, all known
nonarithmetic complex hyperbolic lattices are commensurable with complex
reflection groups; see [21] for a comprehensive discussion for PU(2, 1). There
are also some attempts to use a hybrid construction inspired by the work of
Gromov and Piatetski-Shapiro [25], for example [30, Conj. 2.7] or [S1]. In this
direction Theorem 1.1 can be viewed as a criterion for (non)arithmeticity that
can be applied when one has intimate knowledge of the collection of geodesic
submanifolds, and we will interpret this criterion in terms of the topology of
M as an algebraic variety in Theorem 1.6 below.

We now state our general superrigidity result. Part (1) mirrors [2, Thm. 1.6].
However, the tools developed in [2] cannot be used to prove part (2). The heart
of this paper develops new tools for proving superrigidity and applies them to
prove part (2).

Theorem 1.3 (Superrigidity) Let G be SU(n, 1) forn > 2, W < G be a
noncompact connected almost simple subgroup, and I' < G be a lattice.
Suppose that k is a local field, H is a connected adjoint k-algebraic group,
and p : I' — H(k) is a homomorphism with unbounded, Zariski dense image.
Moreover, suppose that there is a faithful irreducible representation of H(k)
on a k-vector space V of dimension at least two and a W -invariant, ergodic
measure v on (G x P(V))/ I that projects to Haar measure on G/ I. If either

(1) the pair consisting of k and H is compatible with G, or
(2) k=Rand HR) ZPU(n, 1),

then p extends to a continuous homomorphism from G to H(k).

We briefly recall the definition of compatibility from [2]. Let P be a mini-
mal parabolic subgroup of G and U its unipotent radical (see Sect. 2.2). A pair
consisting of a local field k and a k-algebraic group H is said to be compatible

@ Springer



172 U. Bader et al.

with G if for every nontrivial k-subgroup J < H and any continuous homo-
morphism t : P — Ng(J)/J(k), where Ng(J) is the normalizer of J in H,
we have that the Zariski closure of t(U’) coincides with the Zariski closure
of 7(U) for every nontrivial subgroup U’ < U. Note that minimal parabolic
subgroups are unique up to conjugation, so this is a property of G, not just P.
We will extend this definition and elaborate on it in Sect. 3.

Remark 1.4 Margulis asked when superrigidity holds for arithmetic complex
hyperbolic lattices [40, Prob. 9], and our results provide a partial answer to his
question. Indeed, Theorem 1.3 proves superrigidity of certain representations
of arithmetic complex hyperbolic lattices, and we will describe applications
of this later in the introduction. We also note that there are a number of previ-
ous superrigidity results for particular representations of complex hyperbolic
lattices. For example, see the famous work of Toledo [61] and Corlette [17] on
what are now known as maximal representations, and see more recent work
of Burger—lozzi [11], Pozzetti [52], and Koziarz—Maubon [36] for more on
results of this kind and historical remarks. Another famous example is the
proof by Klingler of superrigidity of low-dimensional representations of fun-
damental groups of fake projective planes, which he then used to deduce their
arithmeticity [33]; see [34] for a more general result along these lines.

We now describe the general ideas behind the proof of Theorem 1.3(2). The
failure of PU(n, 1) to be compatible with SU(#, 1) can be measured precisely,
and we describe this in Sect. 3. Specifically, we define an incompatibility
datum for a group G with respect to an algebraic group H over a local field
k as a measure of the failure of compatibility. When G is a real semisimple
group, Proposition 3.2 shows that the only relevant case is when & is R or C
and Lemma 3.3 proves that an incompatibility datum for the pair (k, H) is
associated with a particular parabolic subgroup Q of H(k).

When G = SU(n, 1), k = R, and H(k) = PU(n, 1), we use this general
setup to produce a measurable self-map of the boundary of complex hyperbolic
space having certain equivariance properties. A delicate fiber product argument
translates the original map into an incidence geometry problem about chains
on the boundary of complex hyperbolic space. This problem was solved by
Pozzetti [52, Thm. 1.6] (see Theorem 6.5 for a statement in our language), and
this allows us to complete the proof of Theorem 1.3(2). More generally, the
tools developed in Sect. 3 can be used to turn some superrigidity questions into
problems about incidence geometry on boundaries. This is reminiscent of both
Mostow’s proof of strong rigidity in higher rank and the proof by Margulis
and Mohammadi of the analogue of Theorem 1.1 for compact hyperbolic 3-
manifolds [44] (see Remark 6.8).

The basic strategy for proving Theorem 1.1 is to employ the general outline
for Margulis’s proof of arithmeticity of higher rank lattices [41,42]. This is
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the same strategy used in [2] for the real hyperbolic case; see Sect. 8.2 for
discussion. However, we need more than Theorem 1.3 to prove Theorem 1.1
and we now describe the additional input we require.

Suppose that M is a finite volume complex hyperbolic n-manifold, n > 2,
and that ' < SU(n, 1) is a lattice so that M is biholomorphic to I'\B".
Canonically associated with I' is its adjoint trace field £, and the Zariski
closure of I under the adjoint representation is an adjoint simple ¢-algebraic
group G. The projection I' — PU(n, 1) is determined by a real place vg of ¢
so that ﬁ(ZUO) = PU(n, 1), where ¢, denotes the completion of ¢ at a place
v. Then T is arithmetic if and only if " is precompact in G(£,) for all places
v # v of £.

In proving the analogue of Theorem 1.1 in the real hyperbolic setting, the
pairs £, and G one encounters are always compatible with SOg(n, 1) and so
the analogue of Theorem 1.3(1) is all we needed. Certain pairs of interest to
us in the proof of Theorem 1.1, particularly (R, PU(r, s)) with2 <s <r <n
and r + s = n + 1, are compatible with SU(n, 1). Theorem 1.3(2) takes care
of the additional case where £, = R and G(¢,) = PU(n, 1). However, the
above is not sufficient to handle the pair (C, SL,11(C)).

To finish the proof of Theorem 1.1, we apply Simpson’s celebrated results
on linear representations of Kahler groups [58] and their generalization to the
quasi-projective case. These methods actually lead to a more general theorem
about the possibilities for the adjoint trace field £ of a lattice I in SU(n, 1)
and the associated £-algebraic group, namely the ¢-Zariski closure of I" under
the adjoint representation (see Sect. 7 for the precise definition). In Sect. 7 we
will prove the following, which is known to experts but is not in the literature.

Theorem 1.5 (Hodge type and integral) Let I' < SU(n, 1) be a lattice, £ be
its adjoint trace field, and G be the absolutely almost simple simply connected
L-algebraic group canonically associated with U. Then:

(1) ¢ is totally real and the quadratic extension €' /€ associated with G as a
group of type *A,, is totally complex;

(2) for each real place v of £, G(£ ®, R) is isomorphic to SU(ry, s,) for some
v, Sy = O0withry +s, =n+1;

(3) T is integral, i.e., there is an action of G(£) on an £-vector space V and
an Og-lattice L C 'V so that a finite index subgroup of T stabilizes L.

In particular, if vy is the place of £ associated with the lattice embedding of
I" in SU(n, 1), then T is arithmetic if and only if G(£,) = SU(n + 1) for all
archimedean places v # vg of £.

The first two statements and their proofs were described to us by Domingo
Toledo, and the third follows from work of Esnault-Groechenig [22]. To prove
Theorem 1.1, we only need parts (1) and (2) of Theorem 1.5, and in the cocom-
pact case these are immediate from Simpson’s result that rigid representations
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of Kihler groups are of Hodge type [58, Lem. 4.5]. There is in fact consider-
able overlap between the cases in Theorem 1.1 covered by Theorems 1.3(1)
and 1.5. Theorem 1.5(3) rules out the cases where £, is nonarchimedean, but
these cases are perhaps more easily handled by Theorem 1.3(1), since any
simple algebraic group over a nonarchimedean local field is compatible with
G by Proposition 3.2.

We now describe some other applications and interpretations of our results
in the language of algebraic and complex geometry.

One application of Theorem 1.1 is to provide evidence for a conjecture
of Klingler [32, Conj. 1.12]. Let M = B"/T be a finite volume complex
hyperbolic manifold of complex dimension n > 2. As discussed above, there
exists a totally real number field with fixed embedding vp : £ — R and an
almost simple £-algebraic group G with G(£ ®,, R) = SU(n, 1) such that, up
to passing to a subgroup of finite index, I' € G(O;), where O, denotes the ring
of integers of £. Let H denote the Weil restriction of scalars from £ to Q of G,
which is a semisimple Q-group with I' € H(Z). Any faithful representation
o : H — GL(V) defined over Z induces a polarizable Z-variation of Hodge
structure V on M.

As soon as I' is nonarithmetic, the group H(¢ ®g R) admits at least two
noncompact factors and one easily checks that any totally geodesic subvariety
of M is atypical for (M, V) in the sense of [32, Def. 1.7]. One can in fact check
that maximal totally geodesic subvarieties of M are optimal in the sense of
[32, Def. 1.8]. Then [32, Conj. 1.12] implies that M contains at most finitely
many maximal totally geodesic subvarieties. Therefore, our results confirm this
consequence of [32, Conj. 1.12]. See [5] for more about these connections.

An application in another direction is to Margulis’s question as to whether
arithmeticity can be detected at the topological level. We explain in Sect. 9.2
how Theorem 1.1 can be interpreted as saying that arithmeticity is detected by
the topology of the complex variety underlying a complex hyperbolic manifold.
In fact, arithmeticity is recognized by the structure of the intersection product
on cohomology. For simplicity, we state our result for complex dimension 2n
here and refer to Sect. 9.2 for more on the higher-dimensional case.

Suppose X is a smooth complex projective variety with canonical divisor
Kx and D C X is a (possibly empty) smooth divisor such that M = X \ D is
a complex hyperbolic 2-manifold for which X is a smooth toroidal compacti-
fication of M. We recall that any complex projective curve C on X satisfies

3C-C+3deg(DNC)>—-Kx-C+2D-C, (1)

with respect to the intersection pairing on H?(X), and equality holds if and
only if C is totally geodesic. Note that D is empty if and only if M is compact,
where Equation (1) reduces to
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3C-C>—-Kyx-C.

We also note that every complex hyperbolic manifold admits a finite covering
with a compactification as assumed in Theorem 1.6; see the proof of Theo-
rem 1.5 for a precise discussion. Therefore, up to finite covers there is no loss
of generality in making the assumptions we make in the following result.

Theorem 1.6 (Arithmeticity and the intersection pairing) Suppose that X is
the smooth toroidal compactification of a complex hyperbolic 2-manifold with
(possibly empty) compactification divisor D. If X contains infinitely many
complex projective curves C where equality holds in (1) then M is arithmetic.
Equivalently, if M is nonarithmetic, then there are only finitely many curves
C on X for which equality holds in (1).

Another application of Theorem 1.3 is to ruling out existence of certain
mappings between complex hyperbolic manifolds. For example, Siu asked
whether or not there are surjective holomorphic mappings M; — M; between
ball quotients with 2 < dim¢(M>3) < dimc (M) [59]. The only progress thus
far is by Koziarz and Mok, who ruled out the case of holomorphic submersions
[38]. Using Theorem 1.3 we prove the following in Sect. 9.3.

Theorem 1.7 (Nonexistence of certain maps) Let M be a finite volume com-
plex hyperbolic manifold of complex dimensionn > 2 containing a family {Z;}
of geodesic submanifolds, all of real dimension at least two, that are equidis-
tributed in the sense of Proposition 8.1. Suppose that N is a finite volume
complex hyperbolic manifold N withdimc(N) =d <nand f : M — Nisa
continuous map such that f (Z;) is contained in a proper geodesic submanifold
of N for alli and

fe(m(M)) =mi(N) < PU, 1)

is Zariski dense. Then d = n and f is homotopic to a finite cover.

An example application of Theorem 1.7 is to the maps between Deligne—
Mostow orbifolds, described in detail in work of Toledo [62, Thm. 1]. There
are surjective holomorphic maps f : M — N between complex hyperbolic 2-
orbifolds that are not homotopic to a finite cover where M is arithmetic with a
family {Z;} asin Theorem 1.7. The maps are additionally surjective on the level
of orbifold fundamental groups, hence Theorem 1.7 implies that f,(7w1(Z;))
must be Zariski dense in PU(2, 1) for all but finitely many i. However, note
that it is possible that some finite number of Z; are contracted by the map,
hence f,(1(Z;)) is trivial for those i.

Our last application is the following. There are lattices ' < SL,(C) such
that there are y € I' so that Tr(Ad(y)) is not an algebraic integer. See [39,
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Section 5.2.2] and [15] for many examples. In Sect. 9.4 we will show that part
(3) of Theorem 1.5 has the following consequence pointed out to us by lan
Agol.

Theorem 1.8 (Restricting geodesic submanifolds) There are both closed and
noncompact finite volume hyperbolic 3-manifolds that are not isometric to an
immersed totally geodesic submanifold of a complex hyperbolic n-manifold
for any n.

We now discuss the organization of this paper. Section 2 starts by discussing
SU(n, 1) and some of its subgroups. In Sect. 3 we introduce the notion of an
incompatibility datum, define compatibility, and prove some general results.
We also prove compatibility of SU(n, 1) with certain algebraic groups over
local fields and study the failure of PU(n, 1) to be compatible with SU(n, 1).
In Sect. 4 we discuss existence of equivariant maps and algebraic representa-
tions. In Sect. 5 we make the necessary modifications to the arguments in [2] to
prove Theorem 1.3(1). We continue in Sect. 6 with the proof of our main tech-
nical result, Theorem 1.3(2). In Sect. 7, we prove Theorem 1.5 and give some
additional algebraic setup for the proof of Theorem 1.1, which is contained
in Sect. 8. Then Sect. 9 contains examples that exhibit the possible behavior
of geodesic submanifolds of arithmetic complex hyperbolic manifolds, the
proofs Theorems 1.6, 1.7, and 1.8, and some final questions.

2 Preliminaries on SU(n, 1)
Throughout this section and the remainder of the paper we fix the group

G = SU(n, 1) with n > 2. We will consider G as being the group of real
points of a real algebraic group.

2.1 The group G and its standard subgroups.
In this subsection we fix some notation and give convenient coordinates for
certain subgroups of G that will be important in what follows.

We start by giving a convenient matrix representation for G. The group
U (n, 1) is often described as the automorphism group of the hermitian form

n
2 2
ho(x1, -, X)) = ) Ixil* = gl
i=1
on C"*!. Under the linear change of variables

2 2
v = 7(}61 +Xn41)s Y2 =X2, ooy Yn = Xp, Y4l = 7()61 — Xpt1)
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this form becomes

n
ROV s Yabt) = V1Vt + Ynr1 V1 + ) il 2)
i=2

Hereafter, we will view G as the subgroup of SL,,{(C) preserving A.

Remark 2.1 For n = 1, the stabilizer of & in SL,(C) is the image of the
homomorphism:

SLy(R) — SL,(C)
ab a ib
cd e —ic d

This explicitly realizes the well-known isomorphism SU(1, 1) = SL,(R). We
will tacitly assume from here forward that n > 2.

In what follows, let ¢; denote the i” standard basis vector in C"*! given by
yi = land y; = O for j # i. Note that the restriction of 4 to the complex line
spanned by the vector e; — ¢,,41 is negative definite. We denote by K < G the
stabilizer in G of this line. Then K also stabilizes the #-orthogonal complement
of this line, namely the complex hyperplane spanned by the vectors e, . . ., e,
and e; + e, +1, and note that / is positive definite on this hyperplane. One sees
easily that

K=SWUm)xUQ)) =U(n),

and that it is a maximal compact subgroup of G. In particular, every compact
subgroup of G is conjugate to a subgroup of K.

For 1 <m < nlet W;, < G be the subgroup of G fixing each of the n —m
standard basis vectors e;,41, ..., €, € C"+1 and note that we = SU@m, 1).
We also consider the subgroup

WS N GLy41(R) < GLy41(C),

which is isomorphic to SO(m, 1) and we denote its identity component by
W, thus W) = SOq(m, 1).

Definition 2.2 The subgroups Wy, ..., WS and W], ..., W of G defined
above are said to be the standard almost simple subgroups, or for short just
the standard subgroups of G.

Identifying K\G with complex hyperbolic n-space B", the standard sub-
groups of G have a special relationship with its totally geodesic subspaces. It
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is shown in §3.1 of Goldman’s book [24] (see in particular §3.1.11) that every
totally geodesic subspace of complex hyperbolic n-space with real dimension
at least two is isometric to either real hyperbolic m-space forsome 2 <m < n
or complex hyperbolic m-space for some 1 < m < n.

Moreover, the group G acts transitively on the collection of totally geodesic
subspaces of any given type, where the type of a totally geodesic subspace
describes whether it is isometric to real or complex hyperbolic space of a given
fixed dimension. We note that a real hyperbolic 2-plane has a different type
from a complex hyperbolic line. Indeed, under the restriction of the complex
hyperbolic metric the former has a constant sectional curvature —1/4 while
the latter has curvature —1.

It is evident that for every standard subgroup W < G, W N K is a maximal
compact subgroup of W and that

(WNK)\W — K\KW C K\G,

is a totally geodesic embedding of a real or complex hyperbolic space of the
corresponding type in K\ G. The following proposition summarizes the above
discussion.

Proposition 2.3 ( [24, Section 3.1]) The totally geodesic subspaces of (real)
dimension at least two in the symmetric space K\G are exactly the subsets of
the form K\KWg for an element g € G and a standard subgroup W < G
corresponding to the type of the given totally geodesic subspace.

Proposition 2.3 will play a prominent role in Sect. 8.1, along with Lemma 2.7
below in which we will record some basic facts about standard subgroups. First
we state an important corollary of Proposition 2.3 regarding the classification
of almost simple subgroups of G, which follows from the fact that every
noncompact, almost simple subgroup stabilizes a totally geodesic subspace
constructed by inclusion of maximal compact subgroups.

Proposition 2.4 The standard subgroups of G are noncompact, connected,
almost simple, closed subgroups generated by unipotent elements, and every
noncompact, connected, almost simple, closed subgroup of G generated by
unipotent elements is conjugate to a unique standard subgroup of G.

Definition 2.5 Given a noncompact, connected, almost simple, closed sub-
group of G generated by unipotent elements, we say that its fype is the type of
the unique standard subgroup of G to which it is conjugate.

Remark 2.6 The analogue of Proposition 2.4 for SOg(n, 1) holds as well:
every noncompact, connected, almost simple, closed subgroup of SOg(n, 1)
is conjugate to a unique standard subgroup of the form SOg(m, 1) for some
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2 < m < n. The proof of this fact is similar to the proof of Proposition 2.4 to
be presented below, only it is easier and well-known, so we will omit it.

The proof of Proposition 2.4 will be derived simultaneously with the proof
of Lemma 2.7 given below. For a subgroup § < G, we use the notation
ST to denote the closed subgroup of G generated by all the one-dimensional
unipotent subgroups of S. We note that S is necessarily connected, and it
is either a unipotent subgroup or a noncompact, almost simple subgroup of
G. This follows from the fact that G has rank 1. Indeed, if ST is contained
in a parabolic subgroup P then it is contained in P, which is the unipotent
radical of P, hence ST is unipotent. Otherwise, ST has a trivial unipotent
radical, hence it is semisimple, and since it has no compact factor, it follows
that it is almost simple and noncompact.

Lemma 2.7 Fixastandard subgroup W < G andlet N < G be its normalizer.
Then the following results hold.

(1) If S < G is a connected, almost simple, closed subgroup generated by
unipotent elements that preserves K\ KW and acts transitively on it, then
S=Ww.

(2) The stabilizerin G of the totally geodesic subspace K\K W is N. Moreover,
N C KW thus N/W is compact and NT = W.

(3) Assume that S < G is a closed intermediate subgroup W < S < N. Then
ST =W and K\KW = K\KS = K\KN.

(4) Let S < G be a closed subgroup containing W. Then there exists k € K
and a standard subgroup Wo < G such that kSTk—! = Wy and

K\KS = K\KST = K\K Wok.

Moreover, K\K S is a totally geodesic subspace of K\G whose volume
measure coincides, up to normalization, with the push-forward of Haar
measure on S to (SN K)\S ~ K\KS.

Proof of Proposition 2.4 and Lemma 2.7 We first prove part (1) of the lemma.
Let Ny be the stabilizer in G of K\ KW and observe that S is a subgroup of
Nopand S = ST < NJ . Since it contains the almost simple subgroup S, NJ
is not unipotent, thus it is connected and almost simple. We will show that in
fact § = NJ .

Since Np acts by isometries on the symmetric space
Z = WnNK\W >~ K\KW we have a natural continuous homomorphism
from Ny to the group of isometries, Isom(Z), endowed with the compact open
topology. It goes back to Elie Cartan that the image of S coincides with the
identity component of Isom(Z), as S is semisimple connected group of isome-
tries of the symmetric space Z [26, Thm. V.4.1]. The same holds for N(;r . Since
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both S and NJ are almost simple, the restriction of the above homomorphism
to each has a finite kernel. It follows that S has finite index in N, S’ , hence indeed
S = Nar , since Nar is connected.

In the above discussion S was arbitrary, thus applying it in the special case
S = W we conclude that W = N(;“ . Therefore S = W holds a priori and this
proves part (1).

Next we prove part (2) of the lemma. By the previous discussion we have
that N9 < N, since W = NJ is normal in Ng. Observe that K\ KW is
the unique W-invariant totally geodesic subspace of its type. Indeed, given
any W-invariant totally geodesic subspace of the same type Z € K\G and
z € Z,the function d (-, zW) measuring distance to the W-orbit of z is constant
on K\KW. This implies that zW and K\ K W have identical boundaries in
the visual compactification of K\G. Since K\G has negative curvature, this
implies that zW C K\K W, hence Z = K\KW.

It also follows that N < Np, so N = Ny and N is indeed the stabi-
lizer in G of the totally geodesic subspace K\ K W. We furthermore see that
Nt = Nj = W.Forevery n € N, it also follows that K\Kn = K\Kw for
some w € W, thus N € K W. This proves part (2).

Part (3) of the lemma follows immediately from part (2). Indeed, notice that
W =Wt < ST < N" = W implies that ST = W and the sequence of
inclusions

K\KW C K\KS C K\KN C K\K(KW) = K\KW

then has equality everywhere.

We now turn to the proof of Proposition 2.4. The fact that the standard
subgroups are pairwise nonconjugate, noncompact, connected, almost simple,
closed subgroups of G generated by unipotent elements is obvious, so we
only need to show that any other such group is conjugate to a standard one.
Let S < G be a noncompact, connected, almost simple, closed subgroup
generated by unipotent elements. By the Karpelevich—-Mostow Theorem [31,
47] for some i € G the S-orbit K\KhS C K\G is totally geodesic. Thus, by
Proposition 2.3, there exist an element g € G and a standard subgroup Wy < G
such that K\KhS = K\ K Wyg. Rewriting we have K\Khg~'58 = K\KW,
and we conclude that S¢ preserves K \ K Wy and acts transitively on it. By part
(1) we get that S8 = Wy and this proves Proposition 2.4,

We are now in a position to prove part (4) of the lemma. Note that W < §
implies that W = W™ < ST, It follows that ST is not unipotent, thus it is
connected and almost simple. Using Proposition 2.4 there exist an element
g € G and a standard subgroup Wy < G such that (ST)8 = W,. We conclude
that W& < Wj. We claim that the group W#, which is a noncompact, con-
nected, almost simple, closed subgroup of Wy, is conjugate in W to a standard

@ Springer



Arithmeticity and superrigidity for SU(n, 1) 181

subgroup of Wy. Indeed, when Wy = W, for some 1 < m < n this follows
from Proposition 2.4, replacing the role of G by Wy = SU(m, 1), and when
Wo = W,, for some 2 < m < n this follows from Remark 2.6 applied to
Wo = SOg(m, 1). In any case, this standard subgroup of Wy must be of the
same type as W¥, so it must be W itself.

Therefore, there is an i € Wy such that W8 = (W8)" = W. It follows
that hg € N, thus by part (2), hg = kw for some k € K and w € W. The
sequence of equations

kST~ = kwSTw k™! = hgSTeTh = hwoh ! = W,
implies that (kSk~ 1)t = kStk—! = W), and therefore
Wo < kSk™' < Ny,
where Ny is the normalizer of Wy in G. By part (3) we get
K\KStk™!' = K\K(ST)* = K\KWy = K\K S* = K\K Sk~!,
and upon applying k on the right we conclude that indeed
K\KS = K\KST = K\K Wyk.

This is a totally geodesic subspace of K\G by Proposition 2.3. The final
statement follows from the essential uniqueness of an S-invariant measure on
(SN K)\S ~ K\KS. This proves part (4) and thus completes the proof. O

2.2 Parabolic subgroups of G and some of their subgroups

In this subsection we continue the discussion of special subgroups of G begun
in the previous one. See [35, Section VIIL.7] for definitions and properties of
the structure theory for simple Lie groups and their parabolic subgroups. Now
we focus mostly on parabolic subgroups of G and some of their subgroups.
Recall that ey, .. ., e,41 denotes the standard basis of C"*+! and that G is the
subgroup of SL,,4+(C) preserving the form & given in Equation (2).

Let P < G be the stabilizer of the isotropic line spanned by e;. This is a
parabolic subgroup of G and all proper parabolic subgroups of G are conjugate
to P, since G has real rank 1. Some important subgroups of P are
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Al 0 |0
A= O I,-1| O cAeR*
of o [a!
60 |0
0 eU(),
mM=1{lolTlo]|: TeUmn-1 },
02 = det(T)~!
o[ole
—v* |ib — % ||v|?
U= 0| I,—1 v cveC" ' beR
of o 1

Here v* denotes the complex conjugate transpose of v. Note that U is isomor-
phic to the real (2n — 1)-dimensional Heisenberg group Hy,_1(R) and that
A =R*

One checks that P is generated by M, A, and U. Note that A is a maximal R-
split torus of G, U is the unipotent radical of P, and M is a compact reductive
group that commutes with A. Thus the Langlands decomposition of P is given
by P = MAU.

Every element of P can be represented in an obvious way by parameters
(A, 0, T, v, b) using the coordinates introduced above. Such a representation
is unique up to the order two intersection group M N A, thatis, (A, 60, T, v, b)
represents the same element as (—A, —6, T, v, b). In the remainder of this sub-
section we will use this representation often. We will also represent elements
of M, A,and U by (6, T), A, and (v, b) in the obvious way.

Let C < M be the subgroup of scalar matrices in G. These scalars are the
(n + 1) roots of unity, thus C is a cyclic group of order n + 1. Note that C
is the center of G, and it is easy to see that it is also the center of P.

The group U is a two step nilpotent group with center

11 0 |ib
Z= 01,0 ]| beR
0] 0|1

This is a characteristic subgroup of U, hence it is a normal subgroup of P.
Under the identification Z = R, the conjugation action of P on Z is given by
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the homomorphism:

P - RI <R*=GL{(R)
(A, 0,T,v,b) > \?

Since R has no nontrivial compact subgroups, we obtain the following, which
we record for future reference.

Lemma 2.8 Every compact subgroup of P commutes with Z.

The quotient group U/Z is naturally identified with C"~! by the map
(v, b) — v. Under this identification, the conjugation action of P on U/Z is
given by the homomorphism:

P—>R*-Umn—1) <GL,_(C)
(A, 0,T,v,b) > A0~'T

Here R* < GL,_1(C) is considered as the group of real scalar matrices.
Note that this homomorphism induces isomorphisms M/C = U(n — 1) and
MA/C Z R*.-U(n — 1). In particular, the conjugation action of M A/C on
(U/Z) \ {0} is transitive and faithful. This is crucial in proving the following
lemma, which describes the normal subgroups of P.

Lemma 2.9 If N < P is a normal subgroup, either U < N or N < CZ.

Proof Consider the quotient map o : P — P/CZ. Then o(N) N o(U)
is normal in P/CZ, hence transitivity of the M A/C conjugation action on
(U/Z) ~ {0} implies that this intersection is either trivial or all of o (U).
Assume the latter case. We getthat UC < NCZ,thus UC < (UCNN)CZ.
Taking commutators and using the centrality of CZ in CU, we get

Z=[U,U]=[UC,UC]
<[(UCNN)CZ,(UCNN)CZ]=[CUNN,CUNN]

and we deduce that Z < N. It follows that UC < CN, but U is connected
and CN/N is totally disconnected, hence U < N and we are done.
Therefore, it remains to consider the case where o (N) N o (U) is trivial. It
follows that o (N) commutes with o (U), as they are both normal subgroups
of P/CZ. Since the actionof 6 (MA) = MA/C ono (U) = U/Z is faithful,
we deduce that N is in the kernel of the natural map P = MAU — MA/C,
thatis N < UC. By triviality of 6 (N)No(U) = o (N)No (UC), we see that
N is in the kernel of o, hence N < CZ as desired. O
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Let D < G be the subgroup stabilizing the plane spanned by e and e, 1.
Thus D also stabilizes the #-orthogonal complement of this plane, the subspace
spanned by ey, ..., e,, and we have:

6a | 0 [i0b
a,b,c,d eR, ad —bc =1,
D= 0O |T|O 0eU), TeUm-1),
6% = det(T)~!
—i0c| 0 |6d

We will be particularly interested in the group P N D stabilizing both the
line spanned by e; and the plane spanned by e; and e, 1.

Lemma 2.10 We have PN D = MAZ.
Proof This is easily deduced from the matrix representations of P and D. O

The following lemma is easy, nevertheless we give a detailed proof due to
its importance to our considerations.

Lemma 2.11 Fix d > 1 and consider the group
R* . U(d) x C? < GL4(C) x C.

Its group of outer automorphisms, Out(R* - U (d) x C%), is of order 2 and its
nontrivial element corresponds to complex conjugation of GL4(C) x CY.

Proof For brevity, we set S = R* - U(d) and V = C?. We consider an
automorphism 7 : S X V — § x V and will show that, up to an inner
automorphism, t is either trivial or complex conjugation.

Identifying V with R?? in the standard way, we identify its group of con-
tinuous automorphisms with the the real general linear group GLy4(R). For
an operator ¢ € GLy4(R) and v € V we denote the corresponding action by
t - v. We identify the conjugation action of S on V as the linear action of
S < GLyy(R) and for s € Sand v € V, define s - v = svs ! = v°.

We have that t(S) < S x V is a Levi subgroup. See [10, Section 6.8] for
details about Levi decompositions (at the level of Lie algebras). As all Levi
subgroups are conjugate, we assume as we may that t(S) = S. Let « denote
the automorphism of S induced by 7. Since V is a characteristic subgroup of
S x V, we have t(V) = V. Thus 7 induces a continuous automorphism of V
corresponding to a fixed element t € GL4(R). Fors € S and v € V we have

tsv=t-v"=1(") =t()"® = (1 - )Y = a(s)r - v.
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Thus a(s) = s*. We conclude that ¢ is contained in N, where N is the normal-
izer of S in GL,4(R), and « is the automorphism of S obtained by conjugating
by ¢.

We claim that S < N is of index two, where the nontrivial coset is gener-
ated by complex conjugation. We fix g € N and argue that, up to complex
conjugation, g is in S. Note that N commutes with the group of real scalars
R* < § and the group U(1) < S consisting of modulus 1 complex scalars is
characteristic. Indeed, U (d) < S is characteristic, as it is the unique maximal
compact subgroup of §, and U (1) is its center. Thus g normalizes U (1).

Since the unique nontrivial automorphism of U (1) is complex conjugation,
we can assume that g acts trivially on U (1). We conclude that g commutes
with the group of complex scalars C*, hence g is C-linear, i.e., g € GL;(C).
Ifd = 1then g € GL;(C) = §, and we are done. We thus assume d > 2.
Since the derived subgroup SU(d) < U (d) is also characteristic, we get that
g normalizes it as well. However, SU(d) is a maximal subgroup of SL;(C),
hence it equals its own normalizer in SL4(C). It follows that the normalizer
of SU(d) in GL4(C) is C* - SU(d) = S, thus g € S. This proves the claim.

We conclude that indeed, up to an inner automorphism, 7 is either trivial or
complex conjugation. |

Proposition 2.12 Consider P = P/CZ = R* - U(n — 1) x C"~! and let
T : P — P be a continuous homomorphism with one-dimensional kernel.
Then there exists an inner automorphismi : P — P such that

either T=00i or T=cofol,

where 6 : P — P is the obvious quotient map and ¢ : P — P corresponds to
complex conjugation on R* - U(n — 1) x C"! as discussed in Lemma 2.11.

In particular, T is surjective, ker(t) = ker(0) = CZ and, up to precom-
posing T by an inner automorphism of P, t(P N D) = 6(P N D).

Proof We first note that Lemma 2.9 implies that Z < ker(r) < CZ, since
dim(U) = 2n — 1 > 3 and Z = R is the identity component of CZ. By
dimension considerations, T (P) is Zariski dense in P, as P is Zariski connected
[29, Section 23.1, Cor. B]. Thus C < ker(7), as P has trivial center, hence
ker(r) = CZ and T induces a continuous injection 7 : P — P such that
T=Tof.

A continuous injective endomorphism of a Lie group with finitely many
connected components is surjective, so T is necessarily an automorphism. By
Lemma 2.11 we get that either T = ¢ o inn(g) or 7 = inn(g) for some g € P,
where ¢ denotes complex conjugation. Fixing g € P such that g = 6(g) we
get that either t = c 0 6 o inn(g) or T = 6 o inn(g), proving the first part of
the proposition.
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It remains to show that T (P N D) = 6(P N D) up to an inner automorphism.
This follows from Lemma 2.10, since 8 (P N D) = 6(M A) corresponds to the
subgroup C* - SU(n — 1) € C*- SU(n — 1) x C"~!, which is invariant under
complex conjugation. O

3 Compatibility and measuring incompatibility

While much of this section applies more broadly, in what follows G will
always denote SU(n, 1). We fix its matrix presentation as discussed in Sect.
2 and freely use the notation introduced there. In this section, we recall the
definition of compatibility from [2, Section 3.4] and study compatibility of
certain groups over local fields with G. In this paper, we will also need to
measure the extent to which compatibility fails. This leads us to begin with
the following sequence of definitions.

Definition 3.1 Let P be a minimal parabolic subgroup of G and U its unipotent
radical. An incompatibility datum for G is a tuple (k, H, J, U’, ), where k
is a local field, H is a k-algebraic group, J < H is a nontrivial k-subgroup,
U’ < U is a nontrivial proper subgroup, and t : P — NgJ)/J(k) is a
continuous homomorphism such that the Zariski closure of £(U") is not equal
to the Zariski closure of 7(U). Here Ng(J) denotes the normalizer of J in H.
We then have:

e When k, H, and J are fixed, 7 is an incompatible homomorphism for J if
there exists U’ < U as above so the corresponding tuple forms an incom-
patibility datum for G. If no such U’ exists, then 7 is called a compatible
homomorphism.

e When k and H are fixed, J is an incompatible subgroup if there exists an
incompatible homomorphism for J. Otherwise J is a compatible subgroup.

e When £ is fixed, H is an incompatible k-group for G if there is a nontrivial
k-subgroup J < H that is an incompatible subgroup for the pair (k, H).
Otherwise we call H a compatible k-group.

e A local field k is incompatible with G if there exists an incompatible k-
group. Otherwise k is called compatible.

We will see an example of an incompatibility datum in Proposition 3.4. First
we prove some general results. To stay as notationally consistent with [4] as
possible, if A, B are k-algebraic groups we use the notation A/B(k) to mean
(A/B)(k), that is, the k-points of A/B.

Proposition 3.2 Every nonarchimedean local field is compatible with G.

Proof If k is a nonarchimedean local field, then for any k-group H and
k-subgroup J < H, Ng(J)/J (k) is totally disconnected. Therefore every con-
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tinuous homomorphism t : P — Ny (J)/J (k) must be trivial on the connected
subgroup U < P. Compatibility clearly follows. O

In view of Proposition 3.2 we will be concerned in the rest of this subsection
with archimedean local fields, i.e., k = R or k = C. We then have the following
general lemma.

Lemma 3.3 Let (k, H, J, U’, 1) be an incompatibility datum for G where k is
R or C. Suppose that S is the Zariski closure in H of the preimage of T (P) under
the map Ng(J)(k) — Na(J)/J(k). Then S is not reductive. In particular, if H
is reductive then S is contained in a proper parabolic subgroup of H.

Proof We first observe that if H is reductive and S is not reductive then S is
contained in a proper parabolic subgroup of H by [9, Section 3]. It then suffices
to show that S is not reductive.

By extending scalars if necessary, we can assume that k = C. We identify
algebraic groups with their C-points, writing H for H(C) with similar notation
for the other groups. We assume that § is reductive and will prove that its Lie
algebra has a noncentral nilpotent ideal, which is a contradiction.

Incompatibility of T implies that 7(U) is nontrivial, since 7(U’) must be a
proper subgroup of (U). Note that[ P, U] = U, thus t(U) is anoncentral nor-
mal nilpotent subgroup of 7(P). We now consider G, H, and their subgroups
as Lie groups, T as a morphism of Lie groups, and denote their Lie algebras
by the corresponding Gothic letters. Since s is reductive, the ideal j < s has a
direct complement i < s, i.e., s = i @ j. The image of the composition

u—>s/j—>i—s

defines a nontrivial noncentral nilpotent ideal in s, giving the desired contra-
diction and thus proving the lemma. m|

To prove Theorem 1.5(1) we will be concerned exclusively with the case
k = R and H(R) = PU(r, s) with r + s = n + 1. For the proof of Theorem
1.7, we will care about the case r + s < n + 1. In particular, we will need the
following technical result.

Proposition 3.4 Let the tuple (k, H, J, U’, T) be an incompatibility datum for
Gwithk =Rand H = PU(r,s) wherer +s <n+1,r >s > 1. Then

() r=nands =1, ie, H=PU(n,1), and
(2) J is the center of the unipotent radical of a proper parabolic subgroup of
H and t has one-dimensional kernel.

In particular, H = PU(r, s) is compatible with G for eitherr +s <n + 1 or
s > 1.
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Proof We work directly with real points of real algebraic groups and abandon
the bold face notation. We again let S denote the Zariski closure of the preim-
age of 7(P) under the map Ny(J) — Npg(J)/J. Lemma 3.3 implies that
S < Ny (J) is contained in some maximal proper parabolic subgroup Q < H.
Set N = Ng(J) and note that § < N < Q. Restricting the codomain, we
consider T as a map from Pto N/J < Nyg(J)/J.

The group U (r, s) acts on C" preserving the hermitian form

r s

2 2

hr,s(xla ce Xpgl) = E lx; | — E |xXr4il°,
i=1 i=1

and Q is the projectivization of the stabilizer in U (r, s) of a totally isotropic
complex subspace V C C'.Letd = dimc (V) and note thatd < s, as s is the
dimension of a maximal h, s-isotropic subspace C"*5. A parabolic subgroup
of H is conjugate to Q if itis the stabilizer of a d-dimensional totally isotropic
subspace. A parabolic subgroup is opposite to Q if it is the stabilizer of a
maximal totally isotropic subspace V' disjoint from V such that the restriction
of h, s to V @ V' is nondegenerate.

A Levi factor of Q is obtained by intersecting Q with an opposite parabolic
subgroup Q’. If V' is the totally isotropic subspace associated with Q’, then
L = QN Q' stabilizes the subspaces V, V' and (V @ V'), and these subspaces
form a direct sum decomposition of C'+5. Taking V @ V' and (V @ V') with
the induced forms, we identify GL(V) with the stabilizer of V in U(V & V')

under the action T (v, v') = (T'v, (7_1)*1/ ). This leads to the identification
L=PGL(V) x U((V® V) ZPGLY(C) x U(r —d, s — d)),

and we see that K Z P(U(d) x U(r —d) x U(s — d)) is a maximal compact
subgroup of L.

We use the notation introduced in Sect. 2.2 and recall that M < P is locally
isomorphic to U(n —1). Themap § — S§/J is real algebraic, thus the compact
subgroup t(M) < §/J has acompactlift M < S such that the map § — S/J
restricts to alocal isomorphism M — t(M). Incompatibility of T means that U
cannot be in the kernel of 7, and it follows from Lemma 2.9 that ker(t) < CZ.
In particular, 7 is almost injective on M.

We therefore get that M is locally isomorphic to 7(M), which is locally
isomorphic to M, therefore M is locally isomorphic to U(n — 1). Let L be
a Levi factor of Q Jhat contains M and Ko < L be a maximal compact sub-
group containing M. We conclude that d, s, r and n are parameters satisfying
1l <d <s <r <nadr+s < n+ 1 such that the group
P(U) x U(r —d) x U(s — d)) contains a subgroup locally isomorphic
toUm —1).
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We claim that » = n, which will imply s = 1 and will prove (1). Assume for
a contradiction that r < n — 1. Note that the possibility d = s = r is excluded.
Indeed, in this case P(U (d) x U (r —d) x U (s —d)) = PU(d) does not contain
a subgroup locally isomorphic to U(n — 1) by dimension considerations, as
d <r <n-—1.If n =2 we necessarily have 1 = d = s = r, which gives
a contradiction. We thus have n > 3. Thus the commutator subgroup of the
subgroup of P(U (d) x U(r —d) x U(s —d)), which is locally isomorphic to
U(n — 1), is almost simple, hence it projects almost injectively to one of the
groups PU(d), PU(r — d), or PU(s — d). Since this commutator subgroup is
locally isomorphic to SU(n — 1), it follows by dimension considerations that
n — 1 is less than or equal to one of the three numbers d, r —d, or s — d. Since
s —d <r —d <n—2 we must have that n — 1 < d and we conclude that
d = s =r = n — 1. This gives a contradiction. Hence we must have r = n,
completing the proof of (1).

We now have that H = PU(n, 1). In particular, we have a natural surjection

G=SU@mn,1) - G/C=PUn,1)=H,

with finite kernel. Let P’ be the preimage of Q under this surjection. Then
P’ < G is a proper parabolic subgroup, and hence is conjugate to P. Precom-
posing the above map with the corresponding conjugation we get a surjection
0:G — Hsuchthat P =0~1(Q) and C =07 (e).

Therefore P is locally isomorphic to Q and dim(Q) = dim(P). Note that
7 factors through an injection P/ker(t) — N/J = Ng(J)/J. Recalling that
ker(t) < CZ, we have that dim(ker(t)) < 1. We then have the following
chain of inequalities

dim(P) — 1 < dim(P) — dim(ker(t)) = dim(P/ ker(r))
< dim(N) — dim(J) = dim(N/J)
< dim(Q) — dim(J)
= dim(P) — dim(J) 3)

that all follow easily from the above observations.

We claim that dim(N) = dim(Q). If not, then dim(N) < dim(Q) and we
see from (3) that dim(P) — 1 < dim(P) — dim(J) so dim(J) = 0. In other
words, J < Q is finite, and so 6~1(J) < P is also finite, hence compact.
Then 6~!(J) commutes with Z < P by Lemma 2.8. Setting Z=002),J
commutes with Z < @, and in particular Z < N.

Since Z <1 P is normal, Z <1 Q is normal and hence JZ <1 N is normal.
Consider the natural map 7 : N/J — N/JZ. Since Z is one-dimensional, Z
is one-dimensional, and so ker(w) = J f/ J is one-dimensional. Recall that
ker(r) < CZ, so it is at most one-dimensional. We conclude that ker(;r o 7)
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is at most two-dimensional. However, dim(U) > 3, thus ker(wr o t) < CZ by
Lemma 2.9, and in particular ker(r o t) is at most one-dimensional.

Considering the injective map P/ker(w o t) — N/JZ, we obtain the
contradictory chain of inequalities:

dim(P) — 1 < dim(P) — dim(ker(w o 7)) = dim(P/ker(w o 1))
< dim(N) — dim(JZ) = dim(N/JZ)

=dim(N) — 1
< dim(Q) — 1
=dim(P) — 1

Therefore dim(N) = dim(Q) as claimed.

We now have that N < Q and dim(N) = dim(Q). Since Q is Zariski
connected (again, see [29, Section 23.1]), we conclude that N = Q and J <1 Q
is normal. From Equation (3) we get that dim(J) < 1. If J was finite, it
would be central in Q, since J <1 Q is normal, Q is Zariski connected, and
any discrete normal subgroup of a connected group is central. However Q has
trivial center and J is nontrivial by the incompatibility assumption, thus we
have that dim(J) = 1.

Then 6~'(J) is normal in P and one-dimensional. Lemma 2.9 implies that
6~1(J) < CZ and we conclude that J < Z = 6(CZ). Since dim(J) = 1
and Z = Z = R is connected, we must have J = Z. Noting that Q < H is
a proper parabolic subgroup and Z < Q is the center of its unipotent radical,
we have shown that J is indeed the center of the unipotent radical of a proper
parabolic subgroup of H. Finally, using the fact that dim(J) = 1 we get from
Equation (3) that dim(ker(z)) = 1. This completes the proof of (2). O

4 Preliminaries for the proof of Theorem 1.3
4.1 Existence of equivariant maps

Assume that £ is a local field and H is a connected adjoint k-algebraic group.
Let ' < G be a lattice and consider a homomorphism p : I' — H(k) with
unbounded, Zariski dense image. Assume that W < G is a closed noncompact
subgroup for which there exists a faithful irreducible representation of H(k)
on a k-vector space V of dimension at least two and a W-invariant ergodic
measure v on the bundle (G x P(V))/I" that projects to Haar measure on
G/ T, where the action of W is induced by the left action of W on G. The
proof of the following result is exactly the same as the proof of [2, Prop. 4.1].

Proposition 4.1 Under the assumptions above, there is a proper noncom-
pact k-algebraic subgroup L. < H and a measurable W-invariant and
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["-equivariant map ¢ : G — H/L(k). We can also view ¢ as a measurable
["-map from W\G to H/L(k).

4.2 Algebraic representations

Here we recall the work of Bader and Furman [4] that will be used in the proof
of Theorem 1.3. We also refer to [2, Section 4.2] for further discussion. We
again assume that k is a local field and H is a connected adjoint k-algebraic
group.

We fix a lattice I' < G and a Zariski dense representation p : I' — H(k).
For a closed subgroup T < G, a T-algebraic representation of G consists of:

e a k-algebraic group I,

e a k-(H x I)-algebraic variety V that is a left H-space and a right I-space
on which the I-action is faithful,

e a Zariski dense homomorphism 7 : 7" — I(k),

e an algebraic representation of G on V, by which we mean an almost-
everywhere defined measurable map ¢ : G — V(k) such that

o(tgy ™) = p()p(@T(®)!

forevery y € I', every ¢t € T, and almost every g € G.

The data for a T-algebraic representation is denoted by Iy, tv, and ¢v.

A T-algebraic representation is coset T-algebraic representation when V
is the coset space H/J for some k-algebraic subgroup J < H and I is a k-
subgroup of Ng(J)/J, where Ng(J) is the normalizer of J in H and H/J
is endowed with the standard right action of Ng(J)/J. The collection of T'-
algebraic representations of G forms a category. The Howe—Moore theorem
implies that if 7" is noncompact then the 7 -action on G/ I' is mixing, hence
weakly mixing. In this case, by [4, Thm. 4.3], the above category has an initial
object which is a coset T-algebraic representation.

Definition 4.2 Suppose that G, I', and T are as above. An initial object in
the category of T'-algebraic representations of G is called the gate or, when
wishing to emphasize its dependence on 7', the T-gate.

Remark 4.3 As remarked in [3, Def. 4.4] there is not a unique 7-gate in the
category of T-algebraic representations. Indeed any conjugate of an initial
coset T -algebraic representation will yield another T -gate (see [4, Rem. 4.5]).
The gate is easily seen to be unique up to unique isomorphism and for this
reason, and to remain consistent with the discussion in [3], we continue to
refer to such a choice as the T-gate.
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We recall one last definition from [2, Section 4.2]. Given closed noncom-
pact subgroups S, T < G, consider their gates ¢5, Vs and ¢, V7. We say
that these gates have the same map if Vg = Vr and ¢r, ¢ps agree almost
everywhere. We then have the following.

Lemma 4.4 (cf. [2, Lem. 4.4]) Assume that T < G is a closed noncompact
subgroup. Assume T =Ty < Ty < --- <1 T, = T is a sequence of subgroups
of G such that T;_1 is normal in T; for eachi = 1, ..., n. Then the gates for
T and T' can be chosen to have the same map.

Proof By induction we can assume thatn = 1,thatisT < T’ < Ng(T). Then
[2, Lem. 4.4] implies we can assume that the gates for 7 and Ng (T') have the
same map ¢ : G — H/J(k). Since ¢ is an Ng (T )-algebraic representation,
it is also a T'-algebraic representation. Let ¢’ : G — H/J (k) be the gate in
the category of T’-algebraic representations. It follows that we can find an H-
equivariant k-map H/J' — H/J. Viewing ¢’ as a T -algebraic representation,
we can also find an H-equivariant k-map H/J — H/J'. By [4, Cor. 4.7] we
see that the gates for 7 and 7"’ can indeed be chosen to have the same map. O

5 The proof of Theorem 1.3(1)

In this section we state and prove Proposition 5.1 and then use it to prove Theo-
rem 1.3(1). Proposition 5.1 will also be used in the proof of Theorem 1.3(2) in
the next section. Throughout this section we rely on the notation, definitions,
and results of the previous sections, particularly the notion of incompatibility
given in Definition 3.1 and the notion of a gate from Definition 4.2.

Proposition 5.1 Let G be SU(n, 1) for somen > 2, I' < G be a lattice,
and W < G be a noncompact connected almost simple subgroup. Suppose
that k is a local field, H is a connected adjoint k-algebraic group, and that
p : I' — H(k) is a homomorphism with unbounded, Zariski dense image.
Assume moreover that there is a faithful irreducible representation of H(k)
on a k-vector space V of dimension at least two and a W -invariant, ergodic
measure v on (G x P(V))/ I that projects to Haar measure on G/ T.

Suppose that U' < W is a nontrivial unipotent subgroup, consider the cat-
egory of U'-algebraic representations of G, and let ¥ : G — H/J(k) be
the corresponding gate, where J < H is a k-algebraic subgroup and ¥V is
a measurable map that is (U’ x T')-equivariant with respect to a homomor-
phismt : U — Ny(J)/J(k). Then T extends to a continuous homomorphism
T: P — Nu())/J(k) withT|y = t such that V is (P x I')-equivariant with
respect to T. Furthermore:

(1) If J is trivial, then p extends to a continuous homomorphism from G to
H(k).
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(2) If J is nontrivial, then it is an incompatible subgroup of H and T is an
incompatible homomorphism.

We note that Proposition 5.1 is essentially proved in [2, Section 4.3]. The
main difference is that here we emphasize (in)compatibility of J and T, rather
than compatibility of the group H. Apart from that and minor differences due
to the fact that G = SU(n, 1) here rather than SO(n, 1), the proofs are the
same. Nevertheless, we include the full proof for the reader’s convenience.

Proof of Proposition 5.1 By [9, Section 3] we can find a proper parabolic
subgroup P < G containing U'. Let M, A, U, and Z be as in Sect. 2.2. Since
G has real rank 1, P is minimal parabolic and all its unipotent elements are
contained in U, hence U’ < U.

Now consider the group U'Z < U, where Z is the center of U. We then
have U' < U'Z < U < P, and applying Lemma 4.4 we see that the gates
for U’ and P can be chosen to have the same map. Therefore, T extends to a
continuous homomorphism 7 : P — Ng(J)/J(k) with respect to which W is
(P x I')-equivariant.

Assume J is trivial. As A < P, W is A-equivariant through 7| 4. Triviality
of J implies that this must be the gate in the category of A-algebraic rep-
resentations. Then Lemma 4.4 implies that T|4 extends to a homomorphism
Ng(A) — H(k) for which W is Ng(A)-equivariant, where Ng(A) is the
normalizer of A in G.

Since Ng(A) contains a Weyl element for A (i.e., a generator for the Weyl
group) we have that the group (P, Ng(A)) generated by P and Ng(A) is G.
Since W is equivariant for both P and N (A), using [4, Prop. 5.1] and following
the end of the proof of [4, Thm. 1.3], we conclude that p : I' — H(k) extends
to a continuous homomorphism p : G — H(k). This proves the proposition
when J is trivial.

We now assume that J is nontrivial but T is compatible and derive a con-
tradiction. Compatibility of T implies that the Zariski closures of T(U’) and
T(U) coincide. Proposition 4.1 implies that there exists a proper noncompact
k-algebraic subgroup L < H and a measurable W-invariant, I"-equivariant
map ¢ : G - H/L(k).

The W-invariant map ¢ is also U’-invariant, as U’ < W. Thus it factors
through ¥ : G — H/J (k) and

G — H/J(k) - H/1)/T(U) (k) = H/T)/T(U)(k)

by U’-invariance, where T(U’) = T(U) are the corresponding Zariski closures.
Since W is U -equivariant, the above composition is U-invariant, and it follows
that ¢ is also U-invariant. Since ¢ is also W-invariant and (U, W) = G, we
obtain that ¢ : G — H/L(k) is an essentially constant I"-equivariant map,
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hence p(I") has a fixed point on H/L(k). This is impossible since p(I") is
Zariski dense in H and L is a proper algebraic subgroup of the connected
adjoint group H. This is a contradiction, which completes the proof. O

We are now prepared to prove part (1) of Theorem 1.3.

Proof of Theorem 1.3(1) Suppose U’ < W is a nontrivial unipotent sub-
group and consider the category of U’-algebraic representations with gate
v : G — H/J(k), where J < H is a k-algebraic subgroup and W is a mea-
surable map that is (U’ x I')-equivariant with respect to a homomorphism
1: U — Nu(d)/J (k).

We claim that J is trivial. Indeed, if it was nontrivial then it would be
incompatible by Proposition 5.1, contradicting the compatibility of H with
SU(n, 1). Applying Proposition 5.1 again, we see that p extends to a continuous
homomorphism from G to H(k). This completes the proof. O

6 The proof of Theorem 1.3(2)

We begin by stating Proposition 6.1 and then use it and Proposition 5.1 to
prove Theorem 1.3(2). The rest of this section is then devoted to the proof of
Proposition 6.1.

Proposition 6.1 Suppose that G is SU(n, 1) forn > 2 and I' < G is a
lattice. Let H = PU(n, 1), Z < H be the center of the unipotent radical of
a proper parabolic subgroup Q < H, and p : I' — H be a homomorphism
with unbounded, Zariski dense image. Assume that there exists a continuous
homomorphismt : P — Q/Z with one-dimensional kernel and a measurable
map ® : G — H/Z that is (P x I')-equivariant with respect to the left T-
action and the right P-action on H/Z via t. Then p extends to a continuous
homomorphism from G to H.

Using this, we prove part (2) of Theorem 1.3.

Proof of Theorem 1.3(2) given Proposition 6.1 Here k = R and H is the k-
algebraic group corresponding to H. Let U’ < W be a nontrivial unipotent
subgroup and consider the category of U’-algebraic representations of G and
the corresponding gate ¥ : G — H/J(k), where J < H is a k-algebraic
subgroup and W is a measurable map that is (U’ x I')-equivariant with respect
to a homomorphism t : U" — Ng(J)/J (k). By Proposition 5.1, T extends to
a continuous homomorphism T : P — Ng(J)/J(k) such that ¥ is (P x I')-
equivariant with respect to 7.

If J is trivial then we are done by Proposition 5.1. We therefore assume
that J is nontrivial. It follows, again by Proposition 5.1, that T is incompatible.
Proposition 3.4 implies that J is the center of the unipotent radical of a proper
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parabolic subgroup of H and ker(7) is one-dimensional. By Proposition 6.1
we conclude that p indeed extends to a continuous homomorphism from G to
H(k) = PU(n, 1). This completes the proof. O

The proof of Proposition 6.1 will be given in Sect. 6.5. Before giving the
proof, we require preliminary subsections discussing the notion of fiber prod-
ucts in the measured category and the incidence geometry of chains on the
ideal boundary of complex hyperbolic space.

6.1 Fiber products

We begin by recalling some standard definitions. We will consider the cate-
gory of Lebesgue spaces and their morphisms, where a Lebesgue space is a
standard Borel space endowed with a measure class. An almost everywhere
defined measurable map between Lebesgue spaces is said to be measure class
preserving if the preimage of every null set is null. A morphism of Lebesgue
spaces is an equivalence class of almost everywhere defined measure class pre-
serving measurable maps, where two such maps are equivalent if they agree
almost everywhere.

We now recall the definition of the fiber product in this category. Suppose
that X, Y, Z are Lebesgue spaces endowed with probability measures uy, 1y,
and 7z, respectively. Let ¢ : X — Z and ¢ : Y — Z be maps such that the
measures are compatible in the sense that ¢,y and Y,y are in the same
measure class as pz. The corresponding set theoretic fiber product is

XxzV={x,y) eXxY ¢(x)=9y (NS X xV.

For 1z almost every z € Z, disintegration of ¢ and ¥ give measures vy , and
vy.. on the corresponding fibers ¢ ~!(z) € X and ¥ ~'(z) C Y such that

nx :/ vx  diz Wy 2/ vy dpz.
z z
We then define a measure
WX Xz py = / (vx,z X vy )duz,
z

on X x Y whose equivalence class is supported on the set theoretic fibered
product X xz Y. Further, note that this measure class is independent of the
choices of representatives for ¢ and i and the choices of representatives for
uwx, wy, and pz. We thus view this measure as a measure classon X xz Y
and call it the fiber product measure. For details, see for instance [55, p. 265].
We will need the following lemma.
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Lemma 6.2 Consider Lebesgue spaces X, Y, and Z endowed with morphisms
X > Zand Y — Z. Assume X', Y', and Z' are standard Borel spaces
endowed with Borel maps X' — Z' and Y' — Z', and moreover that there
are almost everywhere defined measurable maps f : X — X', g: Y — Y/,
and h : Z — 7' such that the following diagram commutes:

Y/

T

X/
/
X \ Y
N
\ Z/
i
V4
Consider the product map f x g : X x Y — X' x Y’ and the fiber product

measure class ux Xz py on X Xz Y C X x Y. Then for ux Xz wy almost
every (x,y), one has that (f x g)(x,y) € X' xz Y.

Proof Using the choices and notation introduced above, we have

(f x @s(ux Xz pmy) :/ (f*VX,z X gxVy,7) dhypz,
Z/

and conclude that (f x g)«(x Xz uy) = fullx Xz g«my- That is, the push
forward of the fiber product measure is the fiber product of the push forward
measures. It follows that this measure is indeed supported on the set theoretical
fiber product X’ x 7 Y’. We then get that:

(x xz my) ((f x 0 NX' x Y)Y N (X %z Y')))
= (f X ©slpx Xz uy)(X' x YV (X x2 Y')
= (furtx Xz gety) (X' x Y) N (X' xz Y'))
=0

This proves the lemma. O

6.2 Real algebraic varieties as Lebesgue spaces

Assume V is a real algebraic variety. Any choice of smooth volume form on
the nonsingular locus of V gives rise to a same measure class on V which
we will call the volume measure class and denote py. Thus V has a natural
structure as a Lebesgue space. We will use the following fact.
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Lemma 6.3 Let X, Y, and Z be real algebraic varieties and let ¢ : X — Z,
Y Y — Z be real rational maps that are surjective on real points such
that ¢.uux and YLy are in the same measure class as (z. Consider the
corresponding fiber product X x z Y in the category of real algebraic varieties.
Then the volume measure class on X Xz Y coincides with the corresponding
fiber product measure class of the volume measure classes on X, Y, and Z.

6.3 The incidence geometry of chains

Let B"” denote complex hyperbolic n-space, and recall the notation from Sect.
2.2. Then G = SU(n, 1) acts transitively on B" with point stabilizers conju-
gates of K = S(U(n) x U (1)), the maximal compact subgroup of G. We can
also identify B with the unit ball in C" with its Bergman metric. Note that BB
is naturally identified with the Poincaré disk model of hyperbolic 2-space.

Let 9B" denote the ideal boundary of B”, which is homeomorphic to the
(2n — 1)-sphere $?*~!. Identify B" with the space of isotropic lines in C"*+!
with respect to a hermitian form £ of signature (n, 1), thus with the real alge-
braic variety P\G for P < G a minimal parabolic subgroup. The space of
pairs of points dB” x 0B" is then identified with P\G x P\G and the Zariski
open subset (9B")? consisting of pairs of distinct points is identified with
M A\G, i.e., the space of oriented geodesics in B".

A totally geodesic holomorphic embedding f : B! < B” induces an
embedding

foo s B! ~ ST < 3B",

and foo (3B') is called a chain on dB". Denote the space of chains on 0B"
by C. Chains were originally studied by Cartan [13] and we refer to [24] for
basic facts about them. Chains are in one-to-one correspondence with two-
dimensional subspaces of C"*! on which & is nondegenerate of signature
(1, 1). In particular, the G-action on C is transitive and the stabilizers are
conjugate in G to D = S(U(1,1) x U(n — 1)). Therefore, we have the
identification C >~ D\G.

Given a natural number k, we denote by Cy the space whose elements are a
chain and k points lying on that chain. That is,

Ck ={(c,x1,...,xx) ceC, x1,...,xr €c}.
Let C(x) denote the subset of C; where the points are distinct, i.e.,
Ciy = {(c,xl,...,xk) €Cr x; #xjfori # ]}
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Note that Cop = C and C; = C(y) is the set of pairs consisting of a chain and a
point on that chain. Thus Cp >~ D\G andC; ~ (PND)\G = M AZ\G.Inpar-
ticular, these spaces have real algebraic variety structures and we endow them
with the corresponding volume measure classes, which are also the unique
G-invariant measure classes. We have the projection C; — C forgetting the
point, which corresponds to the projection (P N D)\G — D\G. This map
is real algebraic and G-equivariant. The space Cj can be seen as the k" fiber
power of the above projection and is thus also endowed with a natural real
algebraic variety structure and a corresponding measure class. The space C )
is a dense Zariski open subset of C; and then is also endowed with a real alge-
braic variety structure and a corresponding measure class. In particular, the
inclusion C(x) C Cx is an isomorphism of Lebesgue spaces.

In this paper we will primarily be concerned with C(2) and C(3). A distinct
pair of points x, y € dB" determines a unique chain, which is easily seen by
considering x and y as isotropic lines in C"*! and taking their span. Thus
there are G-equivariant isomorphisms M A\G ~ (3B")? ~ Co.

We now consider the subset

Cl={(c,x1,...,x) € Ck x; # x; forsomei # j} C Ck

consisting of k-tuples of points containing at least two distinct points and the
subset

C,l ={(c,x1,...,xx) € Ck x; # x1 fori # 1} CC,?
where the first point in each chain is different from the others. We note that
Cu CClccca,

and these are all dense Zariski open subsets of Ci. In particular, they are all
isomorphic in the category of Lebesgue spaces.

Remark 6.4 The space C,? can be alternatively described as:
{(xl, X)) X C C"*! an isotropic line, dimg span{xy, ..., x,} = 2} .

It is this space that is considered in Pozzetti’s chain rigidity theorem, which is
Theorem 6.5 below.

We now make an observation that will be useful later. For each & we define
oy - C,l — Cy by (¢, x1,...,xk) = (¢, x1). In particular we have the map
ay:Cp) = 621 — (; that forgets the second point of each chain. We observe
that oy : C,! — () can be identified in the category of algebraic varieties with
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the (k—1)%" fibered power of a,. It follows by Lemma 6.3 that C,l is isomorphic
to the (k — 1)*' fibered power of a also in the category of Lebesgue spaces.

Note that C(2) > M A\G, but G is not transitive on C, already for k = 3.
Indeed, C(3y has two G-orbits distinguished by the cyclic orientations of the
given triple of points on each chain. The stabilizer in G of each element of
C(3) is a compact subgroup, namely a conjugate of M < G. It follows that the
measure class on C(3) is the sum of the unique G-invariant measure classes
on the two G-orbits. Each of C?, C»l, and C3 are obtained by adding some
lower-dimensional manifolds, which are null sets, to C3).

6.4 Pozzetti’s chain rigidity theorem

In [13], Cartan studied the incidence geometry of chains in dB” and showed
that a map preserving this geometry must come from an isometry of B". His
work was later generalized by Burger—lozzi to almost everywhere defined mea-
surable maps under the added assumption that the map preserves orientation
[11]. This assumption was later removed by Pozzetti [52], and this is the result
we will need.

In the formulation of the theorem below we use the notation introduced in
Sect. 6.3. Recall that 3B" represents the variety of isotropic lines in C"*!,
and under this identification, Cg represents triples of isotropic lines that span
a two-dimensional subspace. Briefly, Pozzetti’s chain rigidity theorem is that
a measurable map from dB" to dB" that takes triples of points on a chain to
triples of points on a chain is necessarily rational; for more on rationality in
this general context see [69, Ch. 3]. Restated precisely in our language, this is
the following.

Theorem 6.5 (Thm. 1.6 [52]) Forn > 2, let ¢ : 0B" — 0B" be a measurable
map whose essential image is Zariski dense. Endow (3B")3 with the measure
class [j1] associated with the volume form on Cg and consider the induced map
o> (0B — (0B"). If the []-essential image ofq‘)3 is contained in C9,
then ¢ agrees almost everywhere with a rational map.

On the proof of Theorem 6.5 The statement of [52, Thm. 1.6] assumes that the
target of ¢ is the Shilov boundary S, », associated with SU(m 1, m2) when
1 < m; < my. However, nowhere in the proof of the theorem does Pozzetti
use the assumption that 1 < mj, and hence her result also holds for Sj .,
m > 1, and in particular for S; . The Shilov boundary is the space of maximal
isotropic subspaces for the relevant hermitian form, hence S; , >~ 9B". In other
words, Pozzetti’s proof applies without alteration to give Theorem 6.5 as stated.
The reason for Pozzetti’s assumption that m > 1 is that the analogue of her
main result was previously proved by Burger—lozzi [11], however Burger and

@ Springer



200 U. Bader et al.

lozzi did not need a statement as strong as Theorem 6.5 to prove their main
result. O

We recall from Sect. 6.3 that C31 can be identified with the fibered square of
the forgetful map a» : C(2) — C; and that C(p) =~ (OB")@. Upon making this
identification, we consider the map o : (dB")® — C; and regard C3l as the
fibered square of «. We then obtain the following corollary of Theorem 6.5.

Corollary 6.6 Let G be SU(n, 1) forn > 2, ' < G be a lattice, H be
PUW, 1), and p : T' — H be a homomorphism with unbounded, Zariski
dense image. Assume that ¢ : 0B" — 0B" and  : C1 — Cy are measurable,
I'-equivariant maps, where I" acts on the domain through its inclusion into G
and on the target via p. Then the following assertions hold.

(1) The essential image of $> : (dB")> — (dB")? is contained in the set
(OB™)? of distinct points.

(2) Considering the restricted map ¢» : (3B")? — (B")P, ifa 0 ¢® and
¥ oa agree almost everywhere as maps from (9B")® to C, then p extends
to a continuous homomorphism from G to H.

The content of (2) in Corollary 6.6 is that the boundary map ¢ sends chains
to chains and that the induced map on chains is .

Proof We first prove (1). Note that (3B")® c (89B")? is open and Zariski
dense, hence of full measure. Moreover (3B")@ is isomorphic to M A\G as
a G-space and so it is I'-ergodic by Howe—Moore. It follows that the essential
image of ¢ is either contained in (3B")® or in its complement, which is
the diagonal in (3B™)2. If the latter were true then ¢ would be essentially
constant, and its essential image is invariant under I'. This would imply that
p(I") is contained in a proper parabolic subgroup of H, contradicting Zariski
density of p(I"). It therefore follows that the essential image of ¢ is contained
in the set of pairs of distinct points, (dB™)@ . This proves (1).

To prove (2), assume that & o ¢ and ¥ o o agree almost everywhere. By
a well-known lemma of Margulis [69, Lem. 5.1.3], to show that p extends it
suffices to show that ¢ is rational. Therefore it suffices to show that Theorem 6.5
applies.

Endow (3B")3 with the measure class [] associated with the volume form
on Cg. We will show that the [ ]-essential image of (/53 is contained in Cg. In
fact, we will show that it is contained in the subset C31 of Cg. Since C31 is conull
in Cg , we view [u] as the measure class associated with the volume form on
cl.

As indicated above, we identify C31 with the fibered square of the map «
from (3B")® to Cy, which is naturally a subset of (3B")® x (8B")?, even
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though C31 is a subset of (9B")3 by its original definition. This is clarified by
the commutative diagram

(OBM@ x¢, 0BMHP — {(x,y), (x,2) € OBHP y,z #x}

- -

C3 » {(x,y,2) € OB")? y,z # x}

in which the top two spaces are subsets of (OB™)? x (3B")@ and the bottom
two spaces are subsets of (3BB")3 containing the support of []. Notice that
this diagram also commutes with applying ¢ x ¢® to the top line and ¢>
to the bottom line.

Further, the assumption that o o ¢® and ¥ o « agree almost everywhere
allows us to apply Lemma 6.2 with:

X=Y=X =Y =@BBH? f=
z=7=( h

This allows us to conclude that the essential image of ¢® x ¢@ is con-
tained in (9B")? X, (3B™) @ with respect to the fibered measure class of
0B @ x¢, (3B"@ on (3B")? x (3B")@. In view of the above discussion,
it follows that, with respect to the measure class associated with C31 on (815%”)3,
the essential image of ¢? is contained in C31. This completes the proof. O

6.5 Proof of Proposition 6.1

Let G be SU(n,1) for n > 2 and I' < G be a lattice. Suppose that
H = PU(n, 1), Z < H is the center of the unipotent radical of a proper
parabolic subgroup Q < H, and p : ' — H is a homomorphism with
unbounded, Zariski dense image. Assume that there exists a continuous homo-
morphism 7 : P — Q/Z with one-dimensional kernel and a measurable map
®: G — H/Z thatis (P x I')-equivariant with respect to the left I'-action
via p and the right P-action through t. We must show that p extends to a
continuous homomorphism from G to H.

We will freely use the notation introduced in Sect. 2.2. Identifying Q with
P/C we consider the natural map 6 : P — P/CZ = Q/Z. For a fixed
po € P,themap G — H/Z given by g — dD(gpo_l) is (P x I')-equivariant
with respect to the left I'-action and the right P-action via T oinn(pg). We can
then replace t with 7 o inn(pg), hence Proposition 2.12 allows us to assume
that 7 is surjective, ker(r) = CZ, and t(P N D) = 6(P N D).
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The composition of ® : G — H/Z with H/Z — H/Q is right
P-invariant, and hence gives rise to a I'-map P\G — H/Q. Upon iden-
tifying P\G with H/Q =~ 0B", we consider the above composition as a
["-equivariant measurable map ¢ : dB" — 9B". By Corollary 6.6(1), the map
¢2 : (0B™)2 — (8B")? restricts to a map ¢>(2) S (0BMH? - (B,

Next we consider the map « obtained by composing the natural identification
(E)B”)(z) >~ C(p) with the forgetful map «y : Coy — Ci. In other words, o
maps the pair of distinct points (x, y) to the pair consisting of the unique chain
through x and y and the point x. Identify M A\G with (3B")® and C; with
(H /7) /0(P N D), where the latter identification comes from the fact that
(PN D)=rt(PND).

Our goal is now to prove the existence of the dashed arrows in the following
diagram of (P x I')-equivariant measurable maps:

G

|

~ (2)
MA\G —=— 3BHD 225 GBH®@

(PADN\G —=— ¢ Vs ¢ —= 5 (H/Z)/0(P N D)

For this, the composed map G — (H /2) /6(P N D) is (P N D)-invariant,
since (P N D) = (P N D), thus it descends to a map from (P N D)\G to
(H/Z)/6(P N D), which proves the existence of 1/'. The existence of ¥ is then
obtained by pre- and post-composing with the corresponding isomorphisms.
We thus have that o o $® and v o o agree almost everywhere, and therefore
we can apply Corollary 6.6(2) and conclude that p extends to a continuous
homomorphism from G to H. This proves the proposition. O

Remark 6.7 The use of incidence geometry to prove rigidity theorems goes
back at least to Mostow’s use of work of Tits in his proof of Mostow Rigidity
[48]. Rigidity of chain preserving maps is older, going back to Cartan’s 1932
paper [13]. An important application of rigidity of chain preserving maps in
the study of representations of discrete groups was by Burger and lozziin [11].
The idea of exploiting triples of points on a chain goes back to earlier work of
Toledo on rigidity of certain surface group representations into PU(n, 1) [61],
and Toledo attributes this general idea to Thurston. As mentioned above, we
cannot use Cartan’s result because our boundary map is only measurable and
we cannot use Burger—lozzi’s because they assume orientability of the map on
chains, but Pozzetti chain rigidity theorem suffices for our purposes.
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Remark 6.8 Margulis and Mohammadi proved a version of Theorem 1.1 for
cocompact lattices in SO(3, 1) using incidence geometry. It is possible to
use the methods of this section combined with results in [2] to produce the
input for their incidence geometry result, i.e., to prove the existence of a circle
preserving map between boundaries. However, the proof of Theorem 1.1 in the
real hyperbolic case is easier to complete using compatibility as we did in [2].
More generally though, it is possible for one to apply Lemma 3.3 above and
use the methods of this paper to turn some problems about homomorphisms
from lattices in SOgq(n, 1) to incompatible targets into incidence geometry
problems for boundary maps.

7 Algebraic groups associated with lattices in SU(#n, 1) and Theorem 1.5

We begin by establishing some notation we need for the proof of Theorem 1.5.
LetI' < SU(n, 1) be a lattice, n > 2. Following the discussion of [2, Section
3], local rigidity (due to Calabi—Vesentini [12] in the cocompact case and
Raghunathan [53] otherwise) along with work of Vinberg [66] implies that the
field £ = Tr(Ad(I")) is both a number field and a minimal field of definition
for I'. Let G denote the connected adjoint £-algebraic group defined by the
Zariski closure of I under the adjoint representation.

Then G is the adjoint form of a unique simply connected ¢-group G of
type 2A,, [60]. In other words, there is a quadratic extension £’/¢ and a central
division algebra D over ¢’ of degree d | (n + 1) with involution o of the
second kind so that G is the special unitary group SU;,41)/4(D, h) for some
nondegenerate o -hermitian form z on D"+1D/4 Recall that o is of the second
kind if its restriction to the center of D is the nontrivial Galois involution
of £'/¢. The image of I" under the adjoint representation lies in G(¢) and the
kernel of SU(n, 1) — PU(n, 1) is cyclic of order (n+ 1), hence we can replace
" with a subgroup of finite index and assume that I' < G(¢).

With this setup, we now prove Theorem 1.5.

Proof of Theorem 1.5 Let I' < SU(n, 1) be a lattice, and retain all previous
definitions and notation from this section. As described above, we can assume
that I' < G(£). For each place v of £, we obtain a homomorphism

Py = Gy =G(Ly),

where ¢, is the completion of ¢ associated with v. Let v be the place associated
with the lattice embedding of I" into SU(#n, 1).

Our first goal is to prove that p, is locally rigid for all v. Recall that local
rigidity of p, is the vanishing of the cohomology group H'(p,, g»), where g,
is the Lie algebra of G,. The assumption that I' < G(£) implies that there is
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an ¢-form g, of su(n, 1) so that g, = g, Q¢ £, for all v. Note that vanishing
of Hl(pv, gy) 1s equivalent to vanishing of H\T, ge¢) since

H'(py, g0) = H'(T, g¢) ¢ L.

However, H' (T, g¢) is trivial since H'! (Pvg»> Gup) 1 trivial by local rigidity of
the lattice embedding of I" into SU(n, 1). This proves local rigidity of p, for
all v.

We now make some technical reductions needed to apply some results as
they are stated in the literature. First, without loss of generality we can pass to a
finite index torsion-free subgroup of ", since £, £/, and G are commensurability
invariants by [66]. When I' is cocompact, we can therefore assume that B” / I"
is a compact Kéhler manifold. When I' is not cocompact, we can assume
that B” /I is a smooth quasiprojective variety admitting a smooth toroidal
compactification by a smooth divisor D (e.g., see [1,45]).

More precisely in the noncompact case, we can assume by passing to a
finite index subgroup that the cusps of B"/I" are diffeomorphic to bundles
over the punctured disk with fiber an abelian variety. The associated peripheral
subgroup of I is a two-step nilpotent group with infinite cyclic center naturally
realized as a torsion-free lattice in the unipotent radical of the Borel subgroup
of PU(n, 1) (cf. the structure of U in Sect. 2.2). The center of this nilpotent
group is generated by the free homotopy class of a loop projecting to a loop
around the puncture of the disk in the base of the bundle. One can then smoothly
compactify B"/T" to obtain a smooth projective variety by adding a certain
abelian variety above the puncture in the disk. See Fig. 1 and see [28, Section
4.2] for further details in this specific case.

Suppose that v is archimedean, i.e., that £, is R or C. Rigidity of p, then
implies that the real Zariski closure of p,(I"), namely G, is a group of Hodge
type. See [58, Lem. 4.5] when I' is cocompact. In general see [43, Sec-
tion 10.2.3], which handles representations of fundamental groups of smooth
quasiprojective varieties admitting a smooth compactification, and hence by
the above assumptions applies to B”/ I". Since G is of absolute type A, con-
sidering [58, p. 50-51], we conclude that v is real and G, must be SU(r,, sy)
for an appropriate pair ry, sy, completing the proof of the first two parts of the
theorem.

It remains to prove that I' is integral. Indeed, the last statement of Theo-
rem 1.5 is an immediate consequence of the previous statements along with the
definition of arithmeticity. Integrality will follow from a theorem of Esnault—
Groechenig [22, Thm. 1.1] once we verify that their assumptions hold in our
setting.

Since p, is locally rigid and has determinant one, it remains to verify that
0y has quasi-unipotent monodromy at infinity. See [22, Section 2] for the pre-
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Fig. 1 Smooth Compactifying abelian variety
General abelian

compactification of a cusp II
variety fiber

Radial cusp cross-section ‘. Loop around |
compactifying divisor

Punctured disk base with
point at infinity at origin

cise definition. Indeed, loops around the compactifying divisor of B"/I" are
associated with central elements of peripheral subgroups of I', which are nat-
urally unipotent subgroups of G(£). These elements clearly remain unipotent
under p,, hence p, has quasi-unipotent monodromy at infinity. We then con-
clude from [22, Thm. 1.1] that I" is integral, which completes the proof of the
theorem. m|

Remark 7.1 With notation as in Theorem 1.5, if I’ < PU(n, 1) is a nonarith-
metic lattice, there is another real place v so that G(£,) = PU(p, ¢q) for some
p+qg =n+1land p > g. Whenn = 2, the only possibility is (p, g) = (2, 1).
There are only two known commensurability classes of nonarithmetic lattices,
and in each case (p, g) = (3, 1) for every noncompact G(£,) [20]. We do not
know if it is possible to have a nonarithmetic lattice with G(¢,) = PU(p, q)
with g > 2.

8 The proof of Theorem 1.1
8.1 Equidistribution on G/ T

This subsection describes the equidistribution results needed to show that
Theorem 1.3 applies to prove Theorem 1.1. Each result in this section has
a direct analogue in [2], and here we provide the necessary modifications for
the SU(n, 1) setting.

Throughout this section we fix a lattice I' < G. Recall that a measure p
on G/ T is called homogeneous if there exists a closed subgroup S < G and
a closed S-orbit in G/ I" such that p is the push-forward of Haar measure on
S along this orbit. If W < S is a closed subgroup with respect to which u is
ergodic, we call the measure W-ergodic. Given a homogeneous, W-ergodic
measure p, we will refer to its support, supp(u), as a homogeneous, W -ergodic
subspace of G/ T.
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We ask the reader to recall the notation introduced in Sect. 2.1. In particular,
we have a fixed maximal compact subgroup K < G and we consider the
symmetric space K\G. The locally symmetric space K\G/ I" will be denoted
by M. In Definition 2.2 we introduced the standard (almost simple) subgroups
of G, namely certain copies in G of the group SU(m, 1) for 1 < m < n
and SOg(m, 1) for 2 < m < n which, by Proposition 2.4, are representatives
of conjugacy classes of all noncompact, connected, almost simple, closed
subgroups of G.

In what follows “geodesic subspace” will always mean a properly immersed
totally geodesic subspace of either M or its universal cover K\ G. Our goal
in this subsection is to prove the following proposition, which translates the
existence of infinitely many maximal geodesic subspaces of M into a statement
about measures on G/ I' that are invariant under a standard subgroup of G.

Proposition 8.1 (Cf. Prop. 3.1 in [2]) The following are equivalent:

(1) The complex hyperbolic space M = K\G/T contains infinitely many
maximal geodesic subspaces of real dimension at least 2.

(2) There exists a standard subgroup W < G and an infinite sequence {|1;}
of W-invariant, W-ergodic measures on G/ 1" with proper support for
which Haar measure on G/ T is a weak-* limit of the ;.

(3) There exists a standard subgroup W < G and an infinite sequence {{1;}
of homogeneous, W -ergodic measures on G/ I for which Haar measure
on G/ T is a weak-* limit of the ;.

As noted in [2], work of Ratner [56] shows that (2) and (3) are equivalent,
and therefore it remains to prove that (1) and (3) are equivalent. For this, we
closely follow the strategy in [2, Section 3.1], adapting the statements therein
to the current setting.

For the remainder of this section, fix the notation
w : G/T — K\G/TI' = M for the natural projection map. Note that =
is a proper map. We begin with the following lemma.

Lemma 8.2 The following hold:

(1) Let S be a closed subgroup of G such that W < S for some standard sub-
group
W < G, and suppose there exists h € G for which ShU'/ T is a closed
S-orbit. Then Z = w(ShI'/T") is a closed totally geodesic subspace of
M of real dimension at least 2. Up to normalization, the dim(Z)-volume
of Z is the push-forward of Haar measure on ShI'/ " via the projection
map 7.

(2) Under the assumptions of part (1), Z = M if and only if S = G and
Z =n(Wgl'/T') for some g € G ifand only if W < S < N, where N is
the normalizer of W in G. In the latter case, NhI'/ T is also closed with
projection t(NhI'/T") = Z.
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(3) Conversely, every totally geodesic subspace Z in M of real dimension
at least 2 has finite measure. Moreover, for any such Z there is a stan-
dard subgroup W of G with normalizer N, an intermediate subgroup
W < S < N, and an element h € G such that ' N Sh_1 is a lattice in
S"" and ShT /' is a homogeneous, W-ergodic subspace of G/ 1" for
which Z = n(WhI'/T') = w(ShT/T).

Proof The fact that Z is closed follows from the fact that r is a proper map and
the assumption that ShI'/ I" is closed. By Lemma 2.7(4), K\ K Sh is a totally
geodesic subspace of K\G, thus Z, which is the image of K\ K S under the
covering map K\G — M, is a totally geodesic subspace of M. The statement
about the measure also follows from Lemma 2.7(4), and this proves part (1).

Next we consider part (2). Clearly S = G implies Z = M and the fact that
Z = M implies S = G follows by applying Lemma 2.7(1) in the special case
W=G.If W <§ < N then

Z = n(ShT/T) = 7 (WhI'/T),

by Lemma 2.7(3). Conversely, assume Z = m(WgI"/ ') forsome g € G. Then
both K\KSh and K\K Wg cover Z in K\G, thus they are totally geodesic
subspaces of the same type. Therefore K\ K Sh = K\ K Wgg for some gg € G
by Proposition 2.3, and Lemma 2.7(4) implies that K\KSh = K\KS*h.
Hence we obtain the sequence of equalities

K\Khgy ' (S1)s" " = K\KS*hg;' = K\KShg;" = K\KW,

and conclude that (SJF)goh‘l preserves K\ K W and acts transitively on it. Thus
by Lemma 2.7(1) we see that (5T = w.

Since W < S, we have (S“L)goh_1 = W = WT < ST and deduce that
St = (§T)2"" = W. Since S normalizes S+ it follows that S < N. Then
W is cocompact in N, so S is cocompact in N by Lemma 2.7(2). It follows
that NhAI'/ T is closed in G/ T, since SAI'/I" is closed by hypothesis. That
w(NhT'/T") = Z follows from Lemma 2.7(3), and this completes the proof of
part (2).

We now prove part (3). Fix a totally geodesic subspace Z in M of real dimen-
sion at least 2. The fact that Z has a finite volume is a well-known consequence
of the existence of a thick-thin decomposition. See [23] for detailed argument
in real hyperbolic space that is easily adapted to any rank one symmetric space.

The preimage of Z under the I'-invariant map K\G — M is a collection
of mutually disjoint totally geodesic subspaces on which I" acts. We fix one of
these, which by Proposition 2.3 is of the form K\ K Wg for some g € G and a
standard subgroup W < G.ByLemma2.7(2), the subgroup of G that stabilizes
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this totally geodesic subspace is N8 _1, thus the subgroup of I" stabilizing it is
NN¢ . ByLemma2.7(4) wehave that K\K Wg = K\KNg = K\KgN¢
which is isomorphic as an N -space to (K¢ NN )\N€ . It follows that

Z=K\KgN® T/T ~ (K¢ NnN& W\NE /(CANE).

Since Z has a finite volume and K& ' N N8~ is a compact subgroup of N¢ ',
we conclude that T N N€ ' is a lattice in N8~ . By [54, Thm. 1.13] we obtain
that NgI'/ I" is closed in G/ I" and conclude that it is a closed homogeneous
N-orbit of finite volume for which the associated Haar measure on this orbit
is a homogeneous measure.

However NgI'/I" may not be W-ergodic, even though it is W-invariant.
To complete the proof, it remains to show that there exists an intermediate
subgroup W < § < N and an & € G such that SAI'/I" is a homogeneous,
W-ergodic subspace of G/I'. Let  be a W-ergodic measure in the ergodic
decomposition of Haar measure on NgI'/ I, and let S denote the stabilizer of
pwin N.Then W < § < N by W-invariance, and Ratner’s theorem implies that
w is S-homogeneous. Write the corresponding closed homogeneous space as

ShT'/T for some /i € G. Since ShT'/T ~ S/(P'NS""") we see that T N S

is a lattice in "' Since A is in the N -homogeneous space NgI'/I', we have
that Nhil'/T" = NgI'/T". Using Lemma 2.7(4) twice, we see that

a(Whl'/T') = (ShT'/T) =a(NhI'/T)
=na(Ngl'/T) =n(Wgl'/T") = Z,

which completes the proof. m|

We now collect some useful facts about limits of homogeneous, W -ergodic
measures that we need in the proof of Proposition 8.1. Despite the difference
in presentation, the next three results are direct analogues of results in the real
hyperbolic case [2, Thm 3.3] and use an essentially identical argument. All
of these results are relatively straightforward consequences of work of Dani—
Margulis [18, Thm. 6.1] and Mozes—Shah [49]. We first show that there is no
escape of mass for the sequence of measures under consideration.

Lemma 8.3 Let W < G be a closed, connected, almost simple subgroup of G
that is generated by unipotent elements. If {i1; } is a sequence of homogeneous,
W -ergodic probability measures on G/ I" that weak-* converges to a measure
W in the space of all finite Radon measures, then |1 is not the zero measure.

Proof Since the claim is invariant under conjugation, we can assume by Propo-
sition 2.4 that W is a standard subgroup of G.

@ Springer



Arithmeticity and superrigidity for SU(n, 1) 209

Let C be any fixed compact set in M whose interior contains the compact
core of M. See [6, Thm. 10.5] for the existence of a compact core in this
setting. Then C has the property that C N Z contains a nonempty open subset
of Z for any closed geodesic subspace Z of M. Set F = =~ '(C).

Applying [18, Thm. 6.1] for € = 1/2, there exists a compact set F/ C G/ T’
such that

1 T
<—A({rel0.T]|ux € F'}) = 7/0 xF (urx)dt, 4)

| =
N =

for every one-parameter unipotent subgroup {u;} of G, every x € F, and
every T > 0, where y - is the characteristic function of F” and A is Lebesgue
measure on R. We claim that w(F’) > 1/2, which proves that y is not the zero
measure.

Fix a one-parameter unipotent subgroup U = {u,} of W. Then W-ergodicity
and the Howe—Moore theorem imply that each u; is U-ergodic. The measures
i are homogeneous and W-ergodic, so Lemma 8.2(1) implies that for each
i there exists a closed totally geodesic subspace Z; of M with real dimension
at least 2 such that m, u; is a constant multiple of the volume measure on Z;.
Since C N Z; contains an open subset of Z;, we see that

i (C) = i (= 1(C)) > 0.

In particular, there exists a U-generic point x; € F for each u;. The Birkhoff
ergodic theorem applied to xz» combined with Equation (4) then implies that
wi(F") > 1/2. Therefore, u(F’) > 1/2, which completes the proof. O

Corollary 8.4 Under the assumptions of Lemma 8.3, u is a homogeneous,
W -ergodic probability measure on G/ I". Moreover, | is ergodic with respect
to any nontrivial subgroup generated by unipotent elements of its stabilizer in

G.

Proof Let S denote the stabilizer of  in G. Then u is not the zero measure by
Lemma 8.3, thus [49, Cor. 1.3] shows that u is a homogeneous, S+—ergodic
probability measure on G/I'. Since any nontrivial subgroup generated by
unipotents in S is a noncompact subgroup of S, i is ergodic with respect to
any such subgroup by the Howe—Moore theorem. In particular, this applies to
W, as W < § because the set of W-invariant measures is weak-* closed. O

We now apply [49, Thm. 1.1] to understand the relationship between the
support of the w; and the support of .

Theorem 8.5 Let W < G be a closed, connected, almost simple subgroup
generated by unipotent elements and {|1;} be a sequence of homogeneous,
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W-ergodic measures on G/ that weak-* converges to u. Then there exist
a sequence of elements {g;} in G and a natural number iy such that for all
i > 1o, the measures g; L are homogeneous, W -ergodic probability measures
on G/ T with supp(u;) S gi supp(u).

Proof We fix unipotent subgroups Uy, . . ., U, that generate W. By the Howe—
Moore theorem, u; is U j-ergodic for every i € N and every 1 < j < s.
Therefore, for each i, the set of points for which p; is Uj-generic for all
1 < j < s is of full measure and hence is dense in supp(u;).

By Corollary 8.4, u is a nonzero homogeneous W -ergodic probability mea-
sure and supp() is a nonempty, closed homogeneous subspace of G/ I'. Fix a
point x, in supp(w). Then by the above we can find a sequence of points {x;}
converging to X such that, for each i, x; € supp(u;) and x; is a U;-generic
point for every 1 < j < s. We also fix a sequence {g;} of elements of G
converging to the identity such that g;x, = x; for eachi.

Applying [49, Thm. 1.1] to each unipotent subgroup U;, we find a natu-

-1

ral number i; such that for all i > i; the measure u is U % _invariant and
. . . J

supp(ui) € gi supp(u). Letig = max{iy, ..., is}. We now have that for every

i > ip, supp(u;) C g; supp(u) and we are left to show that for every such i,

the measure g; i, which is clearly a homogeneous probability measure, is in

fact W-ergodic. Equivalently, we are left to show that for every i > i, the

. —1 .
measure p is W8i  -ergodic.
1

Fix i > ip. We have that u is U}gi -invariant for every 1 < j < 5. We
-1 -1
conclude that @ is W8 -invariant, as W& is the group generated by the
-1
unipotent subgroups Ufi , 1 < j < s. It follows from Corollary 8.4 that

indeed p is Wi 1 -ergodic, which completes the proof of the theorem. O

We finally have all of the necessary ingredients to prove Proposition 8.1,
which has an essentially identical proof to that of [2, Prop. 3.1]. As remarked
immediately following its statement, it suffices to show that (1) and (3) are
equivalent.

Proof of Proposition 8.1 We first prove that (3) implies (1). Recall that {u;} is
a sequence of homogeneous, W-ergodic measures with weak-s limit x, which
is Haar measure on G/ I'. Then m, u is the volume measure on M and hence
supp(m.p) = M. As the measures u; are homogeneous, . u; is a constant
multiple of the volume form on some closed totally geodesic subspace of M
by Lemma 8.2(1), therefore supp (s, ;) is contained in some closed maximal
geodesic subspace Z; of M. Then M = supp(m, ) is contained in closure of
UZ;, and we conclude that there must be infinitely many distinct Z; in this
union. This implies (1).
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Finally, we show that (1) implies (3). Assume there are infinitely many
distinct closed maximal totally geodesic subspaces {Z;} of M. By Lemma
8.2(3), for every i there exists a standard subgroup W; < G, a homoge-
neous W;-ergodic measure p; on G/ I, and an element h; € G such that
Z; =a(Wih;T'/T") = n(X;), where X; = supp(u;). Since the collection of
standard subgroups of G is finite, we may and do pass to a subsequence for
which the subgroups W; all coincide. We denote this common standard sub-
group by W. Upon passing to a further subsequence, which we still denote by
{wmi}, we assume that the u; weak-* converge to a probability measure u that
is homogeneous and W-ergodic by Corollary 8.4. The proof will be complete
once we show that u is Haar measure on G/ I'.

For a contradiction, assume p is not Haar measure. Since u is homogeneous,
X~ = supp(w) is a closed homogeneous subspace SAI'/I" of G/ I', where
h € G and S is the stabilizer of . By the assumption that p is not Haar
measure on G/ I', § < G is a proper subgroup. By Theorem 8.5, there exists
a sequence of elements {g;} in G and a natural number iy such that for all
i > ip, the measures g; i are homogeneous, W-ergodic probability measures
on G/ I" with supp(i;) € g; supp(u). Upon passing again to a subsequence,
we assume thatig = 1, thusforevery i, X; C gi X and g; it is ahomogeneous,
W-ergodic probability measure on G/ T'.

We will find a contradiction by showing that the spaces Z; all coincide with
7(X0), contradicting the assumption that they are all distinct. From now on
we fix a natural number i and will argue that Z; = 7 (X o).

By Lemma 8.2(1), w(gi X~ ) is a totally geodesic subspace of M, and
by Lemma 8.2(2) it is a proper subspace of M, since the stabilizer of g; u,
namely S8, is a proper subgroup of G. From X; C g; X~ we have that
Z; = n(X;) € 7w(giX~) and, by the maximality assumption on the totally
geodesic subspace Z;, we conclude that Z; = 7 (g; X~). Since gju is W-
invariant and its stabilizer is S%, we have that W < S8 . We also have
w(S8igihT’/T) = m(Wh;T'/ "), by the sequence of equations

(S8 gihT'/T) = m(gi ST/ T) = m(gi Xoo) = Zi = w(Wh; T/ T).

Lemma 8.2(2) implies that W < §8 < N, where N is the normalizer of W.
It follows from Lemma 2.7(3) that W = (S%)™. As W < S, we also have
that W8 < (S8)*t = W, hence W8 = W and in particular, g; € N. Using
Lemma 8.2(2) again, we conclude that Ng;hI'/T" is a closed homogeneous
subspace of G/ I" such that 7 (S8 g;hI"'/ ") = w(Ng;hI"/ I'). Conjugating by
g*1 € N, the inclusion W < S§8 < N implies that W < § < N and another
application of Lemma 8.2(2) gives m(X ) = 7 (ShI'/T) = a(NhT'/T).
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Therefore,

Z; =m(giXoo) = (8% g;hl"/T)
= 7(NgihT/T) = n(NhT/T) = 7 (Xo0).

Thus Z; = 7 (X ), and this completes the proof that u is Haar measure, hence
we have shown that (1) implies (3). O

Remark 8.6 1t is also worthy of mention here that there has been consider-
able previous work on equidistribution in the context of Shimura varieties and
special subvarieties. For example, see deep work of Clozel-Ullmo on equidis-
tribution for strongly special subvarieties [16]. Also see [37,46,64,65,67] for
subsequent results in this direction.

8.2 Setup for the proof of Theorem 1.1

The purpose of this section is to collect the necessary final setup so that we
can apply Theorem 1.3 in the proof of Theorem 1.1, which is given in §8.3.
Let G = SU(n, 1), and suppose that I' < G is a lattice such that the com-
plex hyperbolic orbifold K\G/I" contains infinitely many maximal geodesic
subspaces. Pass to a subsequence so that they are all either real or complex
hyperbolic subspaces of the same type. By Lemma 8.2(3), there is a fixed
standard subgroup W < G with normalizer N and elements g; € G so that

A; = N& AT,

is a lattice in N8 " associated with the i maximal geodesic subspace. Specif-
ically, A; acts on the totally geodesic subspace K\KNg; Lof K \ G with finite
covolume. We will need the following general result.

Proposition 8.7 (Cf. Prop. 3.3 [2]) In addition to the above assumptions,
suppose that k is a local field and H is a connected adjoint k-algebraic group.
If p : T' — H(k) is a representation so that p(A;) has proper Zariski closure
in H(k) for infinitely many i, then there is a k-vector space V of dimension at
least two, an irreducible representation of Hon V, and a W -invariant, ergodic
measure v on the bundle (G xIP(V))/ I that projects to Haar measure on G/ I.

Proof The proof is almost exactly the same as [2, Prop. 3.3], so we only sketch
the proof. The assumption on p(A;) implies that we can pass to a subsequence
to assume that the Zariski closures of the p(A;) are all contained in proper,
nontrivial, k-algebraic subgroups J; < H all of which have the same dimension
d > 0.Lethbethe Lie algebraof H overk andj; C hthe subalgebra associated
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with J;. We then take V to be the d'" exterior power of by, so each j; defines a
point in P(V).

Let S; be the closed subgroup of N8 l determined by Lemma 8.2(3). Then
A; is a lattice in §;. Consequently, for each i we obtain a measurable section
Si/A; — (G x P(V))/T. Let v; be the push-forward of Haar measure on
Si/A; and v be an ergodic component of the weak-* limit of the v;. Ratner’s
theorem, the assumption that the geodesic submanifolds are distinct and max-
imal, and Proposition 8.1 implies that v is a W-invariant, W-ergodic measure
that projects to Haar measure on G/ I'. O

8.3 The proof of Theorem 1.1

Suppose that I' < SU(n, 1) is a lattice so that B” /I contains infinitely many
maximal geodesic subspaces. Let £ be the adjoint trace field of I' and H be the
connected adjoint algebraic group associated with I" as in Sect. 7. Given a place
v of £, let £, be the completion of ¢ at this place and p, : ' — H({¢,) = H, be
the natural inclusion. We have a place vy so that H,, = PU(n, 1) and p,,(I") is
the lattice embedding. To prove that I" is arithmetic we must show that p, (I")
is precompact for all v # vy.

Assume p,(I") is not precompact for some v # vg. Let k = ¢,, and W and
{A;} be as in Sect. 8.2. We clearly have that p,(A;) has proper Zariski closure
in H,. Then Proposition 8.7 applies to produce a vector space V as in the
conclusion of the proposition and a W-invariant measure v on (G x P(V))/I"
that projects to Haar measure on G/ I.

Then Theorem 1.5 along with Propositions 3.2 and 3.4 imply that either
the pair (k, H,) is compatible with G, or kK = R and H, = PU(n, 1). Since
py(I') is unbounded, Theorem 1.3 applies and p, extends to a continuous
homomorphism p, : G — H,, and this is a contradiction as explained in
[2, Section 3.2]. Therefore p, (I") must be precompact for all v # vy, which
proves that I is arithmetic. O

9 Examples, other results, and final comments
9.1 Submanifolds of arithmetic manifolds

In this section, we briefly give three examples exhibiting some of the possi-
bilities for geodesic submanifolds of arithmetic quotients of B”.

The general construction is as follows. See [60]. Let £ be a totally real
number field and ¢’ a totally imaginary quadratic extension of £. Suppose that D
is a central simple division algebra over ¢’ of degree d admitting an involution
7 of second kind, i.e., so that the restriction of T to £’ is the nontrivial Galois
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involution of ¢'/¢. For r > 1, T extends to an anti-involution of the matrix
algebra M, (D) by t-conjugate transposition, denoted x — x*. Note that
under any embedding of ¢ in C, this involution extends to complex conjugate
transposition on M, (D) ®» C = M,4(C).

An element i € M, (D) is called t-hermitian if h* = h, and then we can
define the £-algebraic unitary group G with £-points

GW) ={x e SL,(D) x*hx = h}.
Choosing a maximal order O of D, we obtain an arithmetic group
ThH = {x € SL(O) x*hx = h} < G(0).
Letn = rd — 1. Choosing D and h so that
Rese/(G)(R) = SU(n, 1) x SU(n + 1IEA-1,

one has that the projection of I‘(l9 to SU(n, 1) is an arithmetic lattice. For any
n > 2, all arithmetic subgroups of SU(n, 1) are commensurable with some
such F(lg.

Example 9.1 When d = 1, we have D = £. Then & is a t-hermitian form on
an £’-vector space V of dimension n + 1, O is the ring of integers of £, and Fg,)
is sometimes called an arithmetic lattice of simplest type. For concreteness,
we take £ = Q, ¢/ = Q(«) with «* = —1, and & to be the hermitian form
fixed in Sect. 2.1. Then

T'Y = {g € SLyy1(Zla]) g*hg = h}),

is the subgroup of SL,, 1 (Z[«]) preserving the form % and G is a (Q-algebraic
group with G(R) = SU(n, 1).

We claim that B"/ 1"(19 contains all possible types of geodesic submani-
folds of a complex hyperbolic n-manifold. Indeed, let {e;} be the standard
basis for our vector space V = C"T!. Restricting the form to the span of
{e1, ..., em,eyt1} visibly gives an arithmetic subgroup A }9 < SU(m, 1) con-
tained in F(lg, where SU(m, 1) denotes the standard subgroup in the notation
of Sect. 2.1. This leads to properly immersed totally geodesic complex hyper-
bolic m-submanifolds for all m. Considering the real span of this subspace
instead, the restriction of 4 now defines a quadratic form on R”*! stabilized
by the standard SOq(m, 1) subgroup, hence one similarly finds real hyperbolic
submanifolds of every real dimension between 2 and n.

Example 9.2 At the other extreme, assume that d = n + 1 is prime, so G(¢)
is a subgroup of the group SL{(D) of units of D with reduced norm 1. Fix
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a maximal order O of D and consider the arithmetic group F(IQ < SU(n, 1).
For example, in the case n = 2 all fake projective planes arise from this
construction [14].

Were B" /T’ (19 to contain a proper geodesic subspace that is complex hyper-
bolic, then we would obtain an injection M, (D’) < D, where D’ is a central
simple £;,-division algebra of degree d’ for some totally complex subfield £,
of ¢’ whose intersection £ with £ is totally real. Moreover, rd’ divides n + 1.

Since n + 1 is prime, we claim that » = 1 and d’ = n + 1. Indeed, the
case r = d and d’ = 1 is impossible since the algebra M,, 1 ({;) contains
subalgebras of degree 1 < e < n + 1. After taking the tensor product with ¢/,
this contradicts the fact that D has prime degree and hence contains no such
subalgebras. Now we rule out the case that £, is a proper subfield of £’. To see
this, note that in this case the £-algebraic unitary group G associated with D
now contains H ®g, £, where H is the £y-algebraic unitary group associated
with D’. However, H is noncompact at exactly one real place of £y and G
is consequently noncompact at exactly [€ : €] real places of £. Since G is
noncompact at exactly one real place of £, we have that £ = £y and D = D’.

It follows that B" / F(19 contains no complex hyperbolic geodesic subspaces.
A similar argument shows that B" / F(19 also contains no real hyperbolic sub-
spaces of any dimension m > 2. In other words, the only properly immersed
geodesic subspaces of B”/ Fé,) are the closed geodesics.

Remark 9.3 We leave it to the reader to show that the case M, (D) forr > 1
and D of possibly composite degree d > 1 gives intermediate examples living
between the previous two.

9.2 Geodesic submanifolds and the intersection pairing

In this section, we give some background on the algebraic and complex geome-
try of complex hyperbolic manifolds and explain the proof of Theorem 1.6. For
simplicity we restrict to the case complex dimension two, then give references
for the analogous results in higher dimension at the end of the section.

If M is aclosed complex hyperbolic 2-manifold, then the associated complex
hyperbolic manifold M is a smooth projective surface of general type whose
Chern numbers satisfy cf(M ) = 3co(M) [27]. We recall that c%(M ) is the
self-intersection of the canonical divisor Ky € Hy(M) and cr(M) is the
Euler number of M. Moreover, Yau’s famous solution to the Calabi conjecture
says that this equality of Chern numbers holds for surfaces of general type if
and only if M = B?/ T for some torsion-free cocompact lattice I' in PU(2, 1),
where B? denotes the unit ball in C? with its complex hyperbolic metric [68].
It is a well-known consequence of Selberg’s lemma that any cocompact lattice
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I' < PU(2, 1) contains a finite index subgroup I'" so that B2/ I’ is a manifold,
hence there is no loss of generality in assuming this is the case.

In the noncompact setting, as described in detail in the proof of Theorem 1.5,
we can replace a lattice I' < PU(2, 1) with a subgroup of finite index so that
M = B?/T is a manifold of the form X \. D, where X is a smooth projective
surface and D is a certain smooth divisor on X. In this setting, one has the
logarithmic canonical divisor Kx + D € H(X), where K is the canonical
divisor on X. To unify the two cases, when M is compact we consider D to
be the empty divisor and so X = M.

Proof of Theorem 1.6 Applying a very general theorem due to Borel [8,
Thm. 3.7] to the compactification [1,45], an immersed totally geodesic com-
plex hyperbolic submanifold of M determines an irreducible complex curve
Co on M that compactifies to a curve C on X. Hirzebruch—Hofer relative pro-
portionality [7, Section B.3] is precisely the statement that a projective curve
C on X determines a totally geodesic subspace of M if and only if Equation (1)
holds with respect to the divisor Kx + D. See [50, Thm. 0.1] for our statement,
which is slightly more general than the original. In particular, the theorem is
an immediate consequence of Theorem 1.1 and Corollary 1.2. O

Remark 9.4 Margulis asked whether arithmeticity is detected purely by the
topology of the locally symmetric space. Theorem 1.6 implies that if M con-
tains a totally geodesic curve, then arithmeticity of M is completely determined
by the restriction of the intersection pairing on H» (M) to the curves on M.
In other words, arithmeticity is detected by the topology of the underlying
variety.

We now give references for where one can give a precise version of our state-
ments in higher dimensions. For the equality of (logarithmic) Chern numbers
that characterizes higher-dimensional complex hyperbolic manifolds, see [63].
A general version of relative proportionality that uniquely determines com-
plex hyperbolic totally geodesic submanifolds was given by Miiller-Stach,
Viehweg, and Zuo. See Theorem 2.3 and Addendum 2.4 in [50].

This interpretation of our main results leads to the following question.

Question 9.5 Can one classify the totally geodesic curves on nonarithmetic
Deligne—Mostow orbifolds?

This seems particularly approachable in dimension two in the sense that
the underlying spaces for these orbifolds are closely related to blowups of the
complex projective plane. In particular, one can connect geodesic curves to
classical plane curves, where immersed geodesic curves will have singularities
arising from self-intersections. One can then use relative proportionality to
detect which curves are totally geodesic.
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9.3 The proof of Theorem 1.7

Proof of Theorem 1.7 With notation as in the statement of the theorem,
suppose that f : M — N is a surjective mapping so that f(Z;) is con-
tained in a proper geodesic subspace of N for each i. By hypothesis, the
induced map on fundamental groups induces a Zariski dense homomorphism
p:I' — PU(@m, 1), where I is the lattice in SU(n, 1) associated with M and
d = dim(N). Let A < PU(d, 1) be the fundamental group of N.

We now proceed exactly as in Proposition 8.7. Let A; < I" be the subgroup
associated with Z;. The assumption on f implies that p(A;) is not a Zariski
dense subgroup of PU(d, 1). In particular, we pass to an infinite subsequence
so that each each Z; is a geodesic submanifold of M of the same type with
associated with the standard subgroup W of G and p(A;) has Zariski closure
contained in some conjugate of a fixed proper, nontrivial, positive-dimensional
J < PUU, 1).

Let S; be the closed subgroup of G associated with A; by Lemma 8.2(3).
The appropriate exterior power of the Lie algebra of H defines a vector space
V such that for each i we can construct a measurable section from S;/A;
to (G x P(V))/ T in order to build a W-invariant, W-ergodic measure on
the bundle that projects to Haar measure on G/ I'. This and Proposition 3.4
allow us to apply Theorem 1.3(1) to conclude that p extends to a continuous
homomorphism from SU(n, 1) to PU(d, 1). Therefore, d = n and p(I") is a
lattice in PU(n, 1). Since A is also a lattice and p(I") < A, we see that p(I") is
a finite index subgroup. It follows that f is homotopic to a cover. This proves
the theorem. O

9.4 The proof of Theorem 1.8

Proof of Theorem 1.8 To prove the theorem we must take care to differentiate
between Tr Ad for SL,(C) and POy (3, 1), since lattices in PU(3, 1) naturally
contain lattices in POq(3, 1), but results on nonintegral traces for Kleinian
groups typically are stated for SL;(C). We denote the two adjoint representa-
tions by Adc and Adg, respectively, as they denote the traces of the adjoint
representation for sl, (C) considered as a complex (resp. real) vector space.
There are many known hyperbolic 3-manifolds M with nonintegral traces.
See [39, Section 5.2.2] for a closed example and [15] for a hyperbolic link
complement. However, in the literature this means that for a given lift of
' = m(M) from PSL,(C) to SL,(C) there is a y € I'" with a nonintegral
trace for the associated 2 x 2 matrix, i.e., that Tr(y) is not an algebraic integer.
The embedding of I' in PSL,(C) is the lattice embedding associated with the
complete hyperbolic structure, and we can choose any lift to SL,(C), as y will
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have nonintegral trace for any chosen lift. In what follows, we identify y with
a matrix in SL,(C).

Let A*! be the eigenvalues of y. Then both have minimal polynomial
t?> — Tr(y)t + 1, and it follows that A and A~ also are not algebraic integers.
A direct calculation gives:

pEa!

Tr(Adc(y)) = A2+ 172 +1
=Tr(y)* — 1

It follows easily from the assumption that Tr(y) is not an algebraic integer
that Tr(Adc(y)) is also not an algebraic integer.

Now, suppose that M is a geodesic submanifold of a complex hyperbolic
n-manifold. When n = 3, the inclusion I' < 7{ (M) gives

I' < POp(3,1) < PU(3, 1).
When n > 3, we instead have
I' < SOp(3,1) < POy(n, 1) <PUMm, 1),

where we have chosen a lift of I" from POg(3, 1) to SOy (3, 1). In each case,
we want to show that Tr(Adgy,,1)(y)) is not an algebraic integer. This will
contradict Theorem 1.5(3) and complete the proof of the theorem.

For n = 3, we can conjugate and choose our hermitian form so that y maps
to the image in POg(3,1) < PU(3, 1) of the diagonal matrix with entries
(2,1, 1,272}, A direct calculation from the root space decomposition for
su(3, 1) gives:

Tr(Adsus,n(¥)) = 422 + 402+ 24+ 274 +5
=W +2D2+402+07H) +3

Since the above expression is a monic integral polynomial in A> 4+ A ~2, which
is not an algebraic integer, we conclude that Tr(Adgy3,1)(y)) is also not an
algebraic integer. We leave it to the reader to verify that the same proof works
for higher n where 3 is now a sum of roots of unity and 4 is changed to 2(n — 1).

0

We note that Theorem 1.8 does not apply for large families of hyperbolic
3-manifolds. For example, if M is a finite-volume hyperbolic 3-manifold com-
mensurable with anon-Haken hyperbolic 3-manifold, then r1 (M) has all traces
integral [39, Section 5.2]. More concretely, if K C S3 is a small knot, then
Tr(Ad(y)) is an algebraic integer for all y € 71(S3 ~ K). The figure-eight
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knot is the only knot whose complement is arithmetic [57], and one can show
that it is commensurable with a totally geodesic submanifold of a complex
hyperbolic manifold arising from the construction in Example 9.1. It follows
that if K is any other hyperbolic knot and M is a complex hyperbolic man-
ifold containing S3 . K as a geodesic submanifold, then M is necessarily
nonarithmetic. We know of no such example.

Question 9.6 Which knot (or link) complements are isometric to a totally
geodesic submanifold of a complex hyperbolic n-manifold for somen > 3? Are
there combinatorial/diagrammatic obstructions to a knot complement being a
geodesic submanifold of a complex hyperbolic manifold?

There are only two known commensurability classes of nonarithmetic lat-
tices in PU(3, 1) [20]. The known geometric constructions of orbifolds in each
commensurability class might allow one to at least find some examples. Of
course, Theorem 1.1 implies that only finitely many commensurability classes
of knot and link complements could be associated with each commensurability
class of nonarithmetic lattices in PU(3, 1).
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