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Abstract—This paper tackles the fundamental passive eaves-
dropping problem in modern wireless communications in which
the location and the channel state information (CSI) of the
attackers are unknown. In this regard, we propose deploying
an unmanned aerial vehicle (UAV) that serves as a mobile
aerial relay (AR) to help ground base station (GBS) support
a subset of vulnerable users. More precisely, our solution (1)
clusters the single-antenna users in two groups to be either
served by the GBS directly or via the AR, (2) employs optimal
multi-user beamforming to the directly served users, and (3)
optimizes the AR’s 3D position, its multi-user beamforming
matrix and transmit powers by combining closed-form solutions
with machine learning techniques. Specifically, we design a plain
beamforming and power optimization combined with a deep
reinforcement learning (DRL) algorithm for an AR to optimize
its trajectory for the security maximization of the served users.
Numerical results show that the multi-user multiple input, single
output (MU-MISO) system split between a GBS and an AR
with optimized transmission parameters without knowledge of
the eavesdropping channels achieves high secrecy capacities that
scale well with increasing the number of users.

Index Terms: UAV-assisted, beamforming, DRL, eavesdrop-
ping, MU-MISO, physical layer security, power control, trajec-
tory optimization.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) are envisioned to improve
the next generation of wireless communication systems, 6G
and beyond, by providing flexible, intelligent, secure, and
limitless connectivity [1]–[3]. Steps to identify the challenges
and solutions of emerging cellular networks to serve UAVs are
being undertaken by the 3rd Generation Partnership Project
(3GPP) [4]. A prominent use case for a UAV is the aerial
relay (AR) which supports extended coverage or higher system
capacity at low-cost. However, the largely line of sight (LoS)
air-to-ground (A2G) communications between UAVs and user
equipment (UEs) make the system vulnerable to a variety
of attacks [5]. Eavesdropping is a major passive attack that
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can compromise communications channels and gain access to
private and sensitive user information.

Physical layer security has been introduced as a powerful
tool to secure communication links by using the physical
characteristics of wireless communication channels [6]–[8].
UAVs can benefit from physical layer security by applying the
latest technologies such as artificial intelligent (AI) methods
as well as various communication techniques to mitigate the
compromise of malicious behavior in the network. However,
applying such techniques is complicated by three factors: (i)
requiring to coordinate between a ground base station (GBS)
and the AR to determine which users should be served by
which stations, (ii) handling resource limitations and trajectory
of ARs to serve specific UE(s), and (iii) choosing the well-
suited learning and communication techniques for the GBS
and the AR to dynamically maximize the security metrics.

A. Related Work

The recent related works can be classified into three groups:
i) beamforming-aided secure communications; ii) UAV-aided
secure communications; iii) beamforming and UAV-aided se-
cure communications. Table I provides a summery of the prior
art and proposed research related to the work presented in this
paper.

Beamforming-aided Secure Communications: Transmit
beamforming limit the radio frequency (RF) propagation foot-
print and thus implicitly enable a secure the propagation chan-
nel without high computational requirements a the receiver as
compared to cryptographic security schemes. Carefully design-
ing the beam patterns of antennas at the transmitter, receiver,
or both can enhancing system performance and security pa-
rameter, such as signal-to-interference plus noise ratio (SINR)
and secrecy rate, respectively. Researchers have studied how
to leverage and optimize beamforming for improving the PLS
of current and future wireless communication networks. The
work presented in [9] investigates the achieved secrecy sum
rate for a multi-cell multiple-input multiple-output (MIMO)
system which is under a passive eavesdropper attack. The
power allocation between artificial noise (AN) and information
signal is managed to maximize the sum secrecy rate with im-
perfect channel state information (CSI), which is derived using
regularized channel inversion (RCI) precoding. Reference [10]
proposes strategies of combining AN and beamforming to
achieve high secrecy performance for massive MIMO systems
in spite of single-antenna active eavesdropping attacks that
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Table I: Prior Art and Proposed Research.

Category Ref. Objective Metric Attack type Strategy Attackers’ CSI
Beamforming [9] Secrecy sum rate Passive eavesdroppers RCI is adopted to drive the power al-

location between AN and information
signal.

Perfect CSI with
channel errors

[10] Secrecy rate Active eavesdropper Analytical framework to find the best
combination of AN and beamforming.

Perfect CSI

[11] Secrecy rate Active and passive
eavesdroppers

Analytical framework to design the
beamforming.

Statistical CSI

UAV [12] Average secrecy rate Passive eavesdropper Optimizing the UAV’s trajectory and
AN allocation via iterative algorithm.

Perfect CSI

[13] Secrecy rate Passive eavesdropper Jointly optimizing the source/ UAV
relay transmit power and the UAV tra-
jectory through an iterative algorithm.

Perfect CSI

[14] Secrecy rate Passive eavesdropper The UAV’s trajectory and transmit
power allocation are jointly optimized
by applying DQL algorithm.

Unknown CSI

Beamforming
and UAV

[15] Minimum secrecy
rate

Passive eavesdropper Jointly optimizing the UAV beam-
forming and position to enhance UE’s
secrecy rate through applying multi-
objective dragonfly algorithm.

Perfect CSI

[16] Secrecy capacity Passive eavesdroppers A DRL is proposed to optimize the
UAV trajectory and transmitter and
jammer UAVs beamforming.

Perfect CSI

[17] Secrecy rate Passive eavesdropper Jointly optimize the beamforming of
multi-beam satellite and the power al-
location of UAV through an iterative
alternating optimization approach.

Perfect CSI

This work Secrecy sum capac-
ity

Passive eavesdroppers User clustering for association with
the GBS and AR, where a DQL is
designed to optimize the UAV trajec-
tory, beamforming, and power control
without knowledge of the wiretap CSI.

Unknown CSI

attempt to spoil the channel estimation acquisition at the
BS. Reference [11] derives the multiple-input, single-output
(MISO) beamforming design for random wireless networks
with statistical CSI in an environment with eavesdroppers and
interferers.

UAV-aided Secure Communications: Reference [12]
demonstrates the applicability of maximizing the achievable
average secrecy rate by optimizing the AN transmission and
UAV trajectory. Reference [13] proposes using the UAV as
a relay to improve the secrecy rate by jointly optimizing
the source/relay transmit power and the UAV trajectory. In
our previous work [14], we have proposed a deep Q-learning
(DQL) algorithm to optimize the secrecy rate by optimizing
the trajectory of the UAV relay and the transmit power without
the availability of the CSI of the wiretap channel.

Beamforming Plus UAV-Aided Secure Communications:
Combining both beamforming and UAV has been consid-
ered as an enhanced PLS technique in advanced wireless
communications. For example, [15] introduces the multi-
objective dragonfly algorithm (MODA) to solve the multi-
objective optimization problem for enhancing the minimum
secrecy rate between the UAV node and a single UE for
different clusters. The work presented in that paper assumes
perfect CSI conditionsfor the BS and focuses on optimizing
the UAV performance. Reference [16] proposes a multi-agent
deep reinforcement learning (DRL) algorithm to maximize
the secrecy capacity of a multi user system by optimizing

the trajectory of the aerial BS and the beamforming matrix
of the jammer UAV interfering with the eavesdroppers. The
authors of [17] propose an iterative optimization approach that
alternately optimizes the beamforming of satellite transmitters
and the power allocation of the UAV acting as an aerial relay
and friendly jammer supporting multi-beam satellite-enabled
vehicle communication in the presence of eavesdropping.

B. Contribution

In this paper, we aim to mitigate passive eavesdropping
attacks, where an eavesdropper illegitimately wiretaps the
legitimate wireless communications links. To this end, we pro-
pose a combination of machine learning, deep reinforcement
learning, and multi-antennas techniques at the BS and the AR
to maximize the security of UEs in a wireless communication
network. The contributions of this paper are:
• We define a practical optimization problem to maximize

the channel secrecy capacity without CSI knowledge of the
wiretap channel.

• We introduce a framework for effectively solving this prob-
lem by means of user clustering, beamforming and power
control, and AR trajectory optimization. We design a DRL
solution for the trajectory optimization and leverage the
closed form solutions for the beamforming and transmit and
relay power allocation.

• We provide a comprehensive numerical analysis that demon-
strates the effectiveness of the proposed tools.
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The rest of paper is organized as follows. Section II presents
the system model. Section III formulates the problem and
defines the relevant metrics. Section IV derives the solution.
Numerical results and analyses are presented in Section V.
Section VI provides the concluding remarks.

II. SYSTEM MODEL

We consider a ground base station (GBS) serving ground
UEs where the communication links are subject to passive
eavesdropping attacks. The eavesdroppers have a radio re-
ceiver and can wiretap the downlink transmission. A UAV
acting as an AR is dispatched to support secure communica-
tions. This scenario is illustrated in Fig. 1.

Figure 1: System model.

We use the following notation: lower-case letters represent
scalars and bold lower-case letters denote vectors. Bold upper-
case letters are used for matrices. Tr(S) and S−1 represent
the trace and the inverse of a square matrix S, respectively.
The operator (.)T denotes transpose, and the operator (.)†

denotes conjugate transpose. S(i, j) shows the (i, j)th element
of matrix S and Rank(S) shows the rank of the matrix. ||v||
represents the Euclidean norm of a complex vector v. Also, |v|
denotes the norm of a complex number v. Ca×b denotes the
dimension of a× b for a complex vector or matrix. Complex
normal distribution vector with the mean vector m and the
covariance matrix Σ is denoted by CN (m,Σ), and ∼ implies
”distributed as”.

A. Channel model

1) Air-to-ground: In terms of modelling the A2G com-
munication channel between the UAV and ground receivers,
we consider small-scale Rician fading where the line of
sight (LoS) component coexist with non-LoS (NLoS) com-
ponents [18]. The GBS and AR have both a uniform linear
array (ULA) of M and N antennas, respectively. The A2G
channel model,

GTR =

√
λ0

dαTR

(√
β

1 + β
GLoS

TR +

√
1

β + 1
GNLoS

TR

)
, (1)

is obtained as the superposition of the LoS and NLoS channel
components, where λ0 is the path loss at the reference distance
of 1 m, dTR is the 3D distance between the GBS and AR, α
is the path loss exponent, and β is the Rician factor. Without

loss of generality, the entries of GNLoS
TR are assumed to be

independent and identically distributed (i.i.d.) zero-mean and
unit variance circularly symmetric complex Gaussian (CSCG),
i.e., ∼ CN (0, 1). The LoS component,

GLoS
TR = g

(A)
TR g

(D)
TR , (2)

where
g
(A)
TR =

[
1, e−j 2π

λ ΥΛTR

, · · · , e−j 2π
λ (N−1)ΥΛTR

]
(3)

and
g
(D)
TR =

[
1, e−j 2π

λ ΥΓTR

, · · · , e−j 2π
λ (M−1)ΥΓTR

]
(4)

correspond to channel contributions from the angel-of-arrival
(AoA) and angel-of-departure (AoD) between the GBS and the
AR. Parameter λ is the carrier wavelength, Υ is the antenna
separation, ΛTR = cos Θ sin φ is the AoA component (Θ–
azimuth and φ–elevation AoA), and ΓTR = sin ϑ cos ψ is
the AoD component (ϑ–elevation and ψ–azimuth AoD) of the
transmitted signal from the GBS to the AR.

The A2G channel between the AR and the ground users,

GRK =

√
λ0

dα
RK

(√
β

1 + β
gLoS
RK +

√
1

β + 1
GNLoS

RK

)
, (5)

has an LoS and an NLoS term, where dRK is the 3D distance
between the AR and the ground user cluster. The GNLoS

RK

entries follow the same CSCG distribution as GNLoS
TR . The

LoS term,
gLoS
RK =

[
1, e−j 2π

λ ΥχRK

, · · · , e−j 2π
λ (N−1)ΥχRK

]
, (6)

defines the AoD components χRK = cos Φ sin Ω (Φ–azimuth
and Ω–elevation AoD) of the transmitted signal from the ULA
of the AR to the single-antenna users.

2) Ground-to-ground: the Alpha-beta-gamma (ABG) [19]
channel model is adopted for the ground-to-ground (G2G)
communication channels between the GBS and the eaves-
dropper and between the UEs and the eavesdropper. It is the
closest path-loss model approximation to the actual 5G ground
communications measurement results and it is employed by
standard organizations such as ITU-R, 3GPP, mmMAGIC, and
QuaDRiGa [20]. It is defined as

hG2G(f, d) = 10 ρG × log
( dgg
1m

)
+ ȷ

+ 10 γG × log
( fc
1GHz

)
+ χG2G

σ ,

(7)

where dgg is the 2D distance between the transmitter and
receiver nodes, ȷ is the intercept, and ρG and γG correspond to
the distance and the frequency-dependent exponents. Shadow
fading, χG2G

σ , is modeled as a Gaussian random variable of
zero-mean and standard deviation σsh.

B. Communication Model for Legitimate Users

The M -antenna GBS can communicate with the K single-
antenna UEs either directly or using the N -antenna AR at
the same frequency, employing space-division multiple access
(SDMA) and time-division multiple access (TDMA) [21]. The
GBS serves Kb users directly and Kr users via the AR, where
K = Kb+Kr. In what follows, we provide the corresponding
communication models and channel capacities.

1) Direct communication from GBS: For the direct com-
munication, the GBS forms multiple simultaneous beams to
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spatially separated users employing SDMA. The transmit
beamforming assigns one beam vector for each user. However,
transmit power leakage can occur between beams causing
multi-user interference.

We consider the downlink transmission, where the GBS
transfers Kb data streams to Kb users. The transmitted signal
model is

xb =

Kb∑
k=1

wb,k sk, (8)

where xb ∈ CM×1, wb,k ∈ CM×1 is the beamforming
vector and sk the transmitted information symbol for the kth
user. The beamforming, or precoding, matrix of the GBS
contains Kb beamforming vectors, W bk ∈ CM×Kb , where
W bk = [wb,1, · · · ,wb,Kb

]. The allocated transmit power for
the kth user can then be calculated by the squared norm of
the beamforming vector ∥ wb,k ∥2. The received signal at the
Kb users can is expressed as

y0 = H0 xb + n0, (9)

where y0 ∈ CKb×1, H0 ∈ CKb×M represents the channel
between the M antennas of the GBS and the Kb single-antenna
users, and n0 ∈ CKb×1 represents noise. It is assumed that the
distribution of noise at each user is complex normal with zero-
mean and unit variance, i.e., nk ∼ CN (0, 1). The received
signal at user k,

y0,k = h0,k xb + nk,

= h0,k

( Kb∑
k=1

wb,k sk

)
+ nk,

= h0,kwb,k sk + h0,k

( Kb∑
i=1
i̸=k

wb,i si

)
+ nk (10)

has the signal-to-interference-plus-noise-ratio (SINR)

γb,k =
| h0,kwb,k |2∑

i̸=k

| h0,kwb,i |2 +1
, (11)

where h0,k ∈ C1×M denotes the MISO channel from the
GBS to the kth user. The channel capacity of the direct link
is obtained from

Cb,k = log2
(
1 + γb,k

)
. (12)

2) Indirect communication via AR: We assume a time-slot
based synchronization between the GBS transmission and the
AR transmission [22], [23]. In odd time-slots (phase), the BS
transmits Kr data streams to the AR, each of which is destined
to one UE. The transmission between the GBS and AR can be
modeled as a standard point-to-to-point MIMO channel. The
received signal at the AR can be written as

y1 = H1xb + n1,

= H1

( Kr∑
k=1

wb,k sk

)
+ n1, (13)

where y1 ∈ CN×1, H1 ∈ CN×M is the MIMO commu-
nication channel between the BS and the AR, and n1 ∼
CN (0, I) ∈ CN×1 is the noise vector.

In the even time-slots, the AR transmits
xr = W r y1, (14)

where xr ∈ CN×1 and W r ∈ CN×N is the beamforming
matrix. The received signals at the Kr UEs are modeled as

y2 = H2 xr + n2,

= H2

(
W r

(
H1

( Kr∑
k=1

wb,k sk

)
+ n1

))
+ n2, (15)

where y2 ∈ CKr×1, H2 ∈ CKr×N is the A2G com-
munication channel between the AR and the Kr UEs, and
n2 ∼ CN (0, I) ∈ CKr×1 is the noise vector. The kth user
receives y2,k = h2,kW r H1 wb,k sk

+ h2,kW r H1

( Kr∑
i̸=k

wb,i si

)
+ h2,kW rn1 + n2,k, (16)

where h2,k ∈ C1×N denotes the MISO channel from the AR
to the kth UE and n2,k ∼ CN (0, 1) is the additive noise. The
SINR of this relayed communication link from the BS to the
kth UE via the AR can then be calculated as

γr,k =
| h2,kW rH1wb,k |2∑

i̸=k

| h2,kW rH1wb,i |2 +∥h2,kW r∥2 + 1
. (17)

The channel capacity Cr,k of the indirect link is obtained
from (12) using γr,k instead of γb,k. Note that H1 and H2

are directly influenced by UAV mobility due to changes in
distance, altitude, and orientation relative to ground receivers.

C. Communication Model for Eavesdroppers
1) Eavesdropping on the direct communication link: The

eavesdropper listens on the the direct link between the GBS
and the associated UEs and receives

y0,e = h0,e xb + ne,

= h0,e

( K∑
k=1

wb,k sk
)
+ ne,

= h0,ewb,k sk + h0,e

( K∑
i=1
i̸=k

wb,i si

)
+ ne, (18)

where h0,e ∈ C1×M is the G2G communication channel
between the BS and the eavesdropper and ne is the noise at the
eavesdropper such that ne ∼ CN (0, 1). The SINR associated
with the direct link between the GBS and the eavesdropper—
for the beam formed to user k—can be calculated as

γb,e,k =
| h0,ewb,k |2∑

i̸=k

| h0,ewb,i |2 +1
. (19)

Consequently, the capacity of the eavesdropper associated with
the direct link from the BS to the kth user can be derived as

Cb,e,k = log2
(
1 + γb,e,k

)
,

= log2

(
1 +

| h0,ewb,k |2∑
i̸=k

| h0,ewb,i |2 +1

)
. (20)

2) Eavesdropping from relay communication link: The
eavesdropper can wiretap the A2G relay communication link
between the UAV and the UEs. Similar to the section II-B2,
the capacity of the eavesdropper associated with the relay link
can be derived as
Cr,e = log2(1 + γr,e)

= log2

(
1 +

| h2,eW rH1wb,k |2∑
i̸=k

| h2,eW rH1wb,i |2 +∥h2,eW r∥2 + 1

)
,

(21)
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where γr,e is the SINR, and h2,e ∈ C1×N denotes the A2G
channel between the UAV and the eavesdropper, and n2,e is
the noise at the eavesdropper such that n2,e ∼ CN (0, 1).

D. Secrecy Capacity

The term secrecy capacity is a measure of the information
rate that can be transmitted securely without being intercepted.
It is obtained as the difference between the achievable data
rate of a legitimate receiver and the achievable data rate of an
eavesdropper, taking into account the channel conditions and
the employed security measures. It corresponds to the rate at
which no data will be decoded by the eavesdropper [24].

For the system model of Section II, the average sum-secrecy
capacity of the Kb UEs that are directly served by the GBS
over T time slots is

Csec,b =
1

T

T∑
t=1

Kb∑
k=1

(
Cb,k − Cb,e

)+
=

1

T

T∑
t=1

Kb∑
k=1

[
log2

(
1 +

| h0,kwb,k |2∑
i̸=k

| h0,kwb,i |2 +1

)
−

log2

(
1 +

| h0,ewb,k |2∑
i̸=k

| h0,ewb,i |2 +1

)]+
.

(22)
Likewise, the average sum-secrecy capacity of the Kr UEs
served via the AR over T time slots is obtained as

Csec,r =
1

T

T∑
t=1

Kr∑
k=1

(
Cr,k − Cr,e

)+

=
1

T

T∑
t=1

Kr∑
k=1

[
log2

(
1 +

| h2,kW rH1wb,k |2∑
i̸=k

| h2,kW rH1wb,i |2 +∥h2,kW r∥2 + 1

)
− log2

(
1 +

| h2,eW rH1wb,k |2∑
i̸=k

| h2,eW rH1wb,i |2 +∥h2,eW r∥2 + 1

)]+

.

(23)
where [ω]+ ≜ max(ω, 0). The total secrecy capacity is

CT = Csec,b + Csec,r. (24)
Formulas (22)-(24) are derived from information theory and

provide quantitative measures of the level of secrecy achieved
in the communications channels according to the system model
of Fig. 1. The secrecy capacity is maximized when maximizing
the SINRs at the legitimate receivers and minimizing the
SINRs at the eavesdroppers.

III. PROBLEM FORMULATION

This paper aims to maximize the total secrecy capacity
of the UEs whether they are directly served by the GBS
or through the AR. Considering the degrees of freedom
for serving UEs directly or via the AR, we formulate two
optimization problems.

1) Direct communication: For the directly served UEs, the
optimization problem is defined as

max
wb,k

Csec,b

subject to (s.t.) Pb ≤ Pb,max,
(25)

where Csec,b is the secrecy capacity defined in (22), Pb,max

is the maximum transmit power of the GBS, and Pb is the
transmit power of the GBS, that is, Pb = Tr

(
xbx

†
b

)
.

Problem (25) requires the knowledge of the eavesdropping
channel. We assume the location of the eavesdropper and thus
its CSI to be unknown, which is the scenario of interest in
practice where it is difficult to detect or estimate the presence,
location, or channel of eavesdroppers because of their passive
nature. Therefore, we can only consider the capacity of the
legitimate user and reformulate the optimization problem:

max
wb,k

1

T

T∑
t=1

K∑
k=1

[
log2

(
1 +

| h0,kwb,k |2∑
i̸=k

| h0,kwb,i |2 +1

)]
s.t. Tr

(
xbx

†
b

)
≤ Pb,max.

(26)

The eavesdropper location and channel are used only for
calculating the resulting secrecy capacity for performance
evaluation.

2) Relay communication: For the UEs that are served via
the AR, the optimization problem is defined as

max
{wb,k,xr,yr,zr}

Csec,r

s.t. Pr ≤ Pr,max
(xr, yr, zr) ≤ (Lx, Ly, Lz),

(27)

where Csec,r is the secrecy capacity defined in (23), Pr,max

is the maximum transmit power of the AR, Pr = Tr
(
xrx

†
r

)
is the transmit power of the AR and Pr,max the maximum
transmit power, and (xr, yr, zr) are the 3D coordinates of
the UAV bound to (Lx, Ly, Lz). Because of the unknown
eavesdropper location and CSI, the optimization problem is
rewritten as

max
{W r,xr,yr,zr}

1

T

T∑
t=1

K∑
k=1

[
log2

(
1+

| h2,kW rH1wb,k |2∑
i̸=k

| h2,kW rH1wb,i |2 +∥h2,kW r∥2 + 1

)]
s.t. Tr

(
xrx

†
r

)
≤ Pr,max

(xr, yr, zr) ≤ (Lx, Ly, Lz). (28)
Although we have incorporated practical system constraints

in our model, we acknowledge that there are additional oper-
ational aspects, such as UAV energy consumption, flight time,
and speed [25], which are not optimized in this paper.

IV. PROPOSED SOLUTION

Given the available resources, which are one multi-antenna
GBS and one multi-antenna AR, the secrecy capacity opti-
mization problem becomes a user association and transmission
parameter optimization problem. We perform UE clustering
for user association, followed by GBS and AR beamforming
and transmit power control, and UAV trajectory optimiza-
tion. Figure 2 illustrates this. It is important to mention
that the beamforming/power control and the UAV trajectory
optimization are done through an iterative process. That is,
the algorithm obtains the optimal power coefficients for every
3D location of the UAV. Hence, the beamforming and transmit
power control of the UAV affects its trajectory adjustment. The
details are discussed in Sections IV.B and IV.C

A. User Clustering
The goal of user clustering is to divide K users into two

clusters, one cluster is to be served by the GBS and the other
cluster is served the UAV.
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Figure 2: Proposed solution flowchart.

For solving the user clustering problem, we can employ an
exhaustive search, but it entails a high computational complex-
ity, which increases exponentially with the number of users.
We instead apply K-means clustering, a unsupervised machine
learning algorithm that is used for grouping a set of objects
so that the similarity criterion of members in a group and the
dissimilarity with members of other groups is maximized. K-
mean works with any single or multi-dimensional metric that
the data captures and user-defined target number of clusters
[26]. It is a computationally efficient method compared to
other techniques such as graph theory, fuzzy c-means clus-
tering, and hierarchical clustering [27].

We consider the characteristics of wireless communication
systems to determine the similarities of the data points. Be-
cause the objective it to associate users to base stations, one
fixed (GBS) and one mobile (UAV), we take the normalized
channel coefficients between UEs and GBS as the data points
of the K-means clustering algorithm. This captures the varia-
tions of channel gains resulting from different RF propagation
effects such as small-scale fading and shadow fading. Hence,
we can define

hnb,k =
hb,k

∥ hb,k ∥2
, (29)

where hnb,k is the normalized channel gain, hb,k is the channel
gain between the GBS and k-th UE, and ∥ . ∥2 is the L2 vector
norm. Having these channel gains as data points, we apply
K-mean clustering algorithm to determine the cluster centers,
or centroids, and consequently the UEs associated with each
centroid. The goal is to leverage the similarity of channels
between the GBS and the UEs to create two UE clusters, where
the UEs of one cluster are to be served by the GBS and the UEs
of the other cluster by the UAV. This approach is applying the

same clustering principle as other studies in the literature [28]–
[31].

The K-mean clustering algorithm can be done as follows
[32], [33]: (i) the initial centroids C = {c1, c2, . . . cn} are
randomly selected as the n cluster centers of the K available
data points: U = {u1, u2, . . . , uk . . . , uK}. Here, we consider
two clusters c1 and c2 for the GBS and the UAV, and K users
where uk = hnb,k can be considered as a data point of the
k-th user. (ii) Distance between each data point, e.g., channel
status, and the cluster centers is calculated to assign the data
point to the nearest center. Different metrics can be used to
measure the distance between data points such as Euclidean
distance, Manhattan distance, etc. In this paper, we use L2

2

norm or Euclidean distance. (iii) the centroids are updated to
minimize the sum of squared distances between a user and its
centroid,

min
C

∑
k

min
r∈R

dr,k (30)

where dr,k = ∥ uk − cr ∥22 is the Euclidean distance between
C ≜ {cr | r ∈ R} and R = 2 represents the number of clus-
ters. For example, the distance between the normalized channel
gains and the centroids is dr,k = ∥ hnb,k − cr ∥22. Algorithm 1
represents a pseudocode for the K-mean clustering algorithm.
The implementation of algorithm 1 for one scenario is shown
in Figure 3 wherein data points are hnb,k

In addition to UEs’ channel status, other data points can
also be considered in the algorithm to study the problem. For
example, distance based clustering or rate based clustering,
where UEs with the nearest distance to the GBS and the
highest downlink rates, respectively, would be grouped. Each
scenario can have an effect on the system performance and
should be chosen based on the objective and the ability or
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simplicity to obtain the necessary information to calculate the
value for each UE. In Section V.C, we discuss about the results
of different scenarios.

Algorithm 1 K-means user clustering in MU-MISO environ-
ment.
Input: U and C
Output: Kc and C, ∀ c ∈ C
1 Initialize cluster head set CCH = ∅ and c = 1;
2 while c ≤ C do
3 Randomly select a cluster head CHc from U ;
4 Update CCH = {CHc, ∀ c ∈ C};
5 c = c + 1;

end
6 repeat
7 For each user m ∈ U , calculate the minimum distance

from the CHc;
8 Fit each user to the closest cluster;
9 Update the cluster head CHc by taking the average of all

the users m;
until The cluster members do not change;
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Figure 3: Channel-based clustering.

B. Optimal Beamforming and Power Control
Problem (26) is a traditional beamforming power control

problem between a GBS and a user. This problem has been
extensively studied in the literature [34], [35]. The beamform-
ing vectors of the GBS are obtained by applying the weighted
minimum mean square error (WMMSE) algorithm [36]. The
WMMSE is an iterative closed form solution that optimizes
the transmitter and receiver precoding vectors to maximize the
sum rate of all UEs for a GBS power constraint. The precoding
solution for the direct communication links is then [37]

Wbk =
(
HH

0 QHFQH0 +
Tr(FQQH)

Pb,max
IM

)−1

HH
0 QHF

(31)
where Q = diag{q1, · · · , qk} is the receiver precoding,
F = diag{f1, · · · , fk} is the weight matrix, and IM is the
covariance matrix.

The beamforming and power control for the relay commu-
nications problem is solved in the remainder of this section.
Inspired by the zero-forcing (ZF) criterion and the channel sin-
gular value decomposition (SVD) based structure introduced

in [21], we first propose a beamforming matrix structure for
the UAV (i.e., W r) to eliminate interference among users.
This converts the optimization problem (28) into a simplified
convex optimization problem. Then, we solve the modified op-
timization problem using the Lagrangian function and Karush-
Kuhn-Tucker (KKT) conditions to obtain the UAV’s optimal
beamforming matrix.

1) Beamforming Matrices: Beamforming is done at the
GBS and the AR, each serving a distinct set of users. By
using the concepts of channel inversion, ZF, and linear algebra,
the multi-user interference can be minimized. From (15), the
received signal at K UEs transmitted from the UAV can be
written as

y2 = H2W rH1W br sK + H2W r n1 + n2, (32)
where sK ∈ CK×1 corresponds to the K transmit signals to
the K UEs. The ZF criterion requires that H2W rH1W br

is to be a diagonal matrix with rank K, which implies that
Rank(H1) ≥ K and Rank(H2) ≥ K [21]. By applying the
SVD, H2 and H1 can be expressed as

H1 = U1 Σ1 V
†
1, (33)

H2 = U2 Σ2 V
†
2, (34)

where U i and V i, for i = 1, 2, are unitary matrices and
Σi ∈ CK×K is a diagonal matrix with positive diagonal
elements. Knowing the channel coefficients at the BS and at
the UAV, to satisfy the ZF criterion, we propose the following
beamforming matrices for the GBS and the UAV

W br = V 1 Λb U
†
2, (35)

W r = V 2 Λ̂r U
†
1 Λr, (36)

where Λb, Λ̂r, and Λr are all K × K diagonal matrices.
Without loss of generality, it can be assumed that the elements
of these two diagonal matrices are non-negative, representing
the allocated beamforming power at the BS and the UAV,
respectively.

2) Optimal AR Transmit Power Allocation:

Lemma IV.1. The objective function defined in (28) can be
written as

1

T

T∑
t=1

K∑
k=1

log2

(
1 +

λ2r,k
λ2r,k + 1

)
, (37)

where λr,k is the Λr(k, k).

Lemma IV.2. The beamforming power constraint defined in
(28) can be expressed as

2
K∑

m=1

K∑
n=1

|U2(m,n)|2 σ−2
2,n λ

2
r,m ≤ Pr,max, (38)

where σ2,n is the Σ2(n, n).

The lemmas are proved in the Appendix (Section VI).
Leveraging (37) and (38), the beamforming power optimiza-
tion problem for the UAV at any location can be written as

max
{λr,m}

1

T

T∑
t=1

K∑
m=1

log2

(
1 +

λ2r,m
λ2r,m + 1

)
(39)

s.t. 2
K∑

m=1

K∑
n=1

|U2(m,n)|2 σ−2
2,n λ

2
r,m ≤ Pr,max, (40)

0 ≤ λr,m ≤ λr,max, m ∈ {1, ...,K}, (41)
where Pr,max is the maximum available transmit power at the
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UAV, and λr,max is the maximum allocated power for each
antenna.

The Lagrangian function of the optimization problem can
be expressed as

L(λr,l, α1, α2,l, α3,l) = +
K∑
l=1

log2

(
1 +

λ2r,l
λ2r,l + 1

)
− α1

(
2

K∑
l=1

K∑
n=1

|U2(l, n)|2 σ−2
2,n λ

2
r,l − Pr,max

)
−
(
α2,l

( K∑
l=1

λr,l − λr,max

))
−
(
α3,l

K∑
l=1

−λr,l
)
, (42)

where α1, α2,l, and α3,l are the non-negative Lagrangian mul-
tipliers corresponding to the first and the second constraints,
respectively.

Theorem IV.3. The optimal beamforming power for the lth
antenna of the UAV can be obtained as

λ∗r,l =


0 λ†r,l ≤ 0, (α∗

1 F ln 2) > 0.25

λ†r,l 0 < λ†r,l < λr,max

λr,max λ†r,l ≥ λr,max

in which

λ†r,l =

√√√√1

4

(√
1 +

2

α∗
1 F ln 2

− 3
)
, (43)

where F is a constant and equals to
K∑

n=1
|U2(l, n)|2 σ−2

2,n, and

the Lagrangian multiplier α∗
1 can be obtained by replacing

(43) into the first constraint of (40) when the equality holds.

The optimal beamforming matrix and transmit power for-
mulations for the AR defined above are used for the UAV
trajectory optimization.

C. UAV Trajectory Optimization
The objective function of (28) is non-convex with respect

to parameters xr, yr, zr, P , and the constraints, and the
problem is NP-hard [21], [38]–[40]. We, therefore, propose
a machine learning solution where the UAV trajectory is
updated through a transition process based on the current
system state. Since the next system state is independent from
the previous state and action, the process can be modeled as a
Markov decision process (MDP). In order to avoid intractably
high dimensionality for the high state-action space, we propose
a DQN. It is noteworthy that the following proposed DQN is
based on basic reinforcement learning algorithms such as Q-
learning and deep reinforcement learning. The aim is to use
DQN as an alternative tool for solving this NP-hard optimiza-
tion problem while consuming less power and computational
resources [41]–[43]. Depending on an application, one can
extend the following framework to more advanced learning
models that suit particular use cases.

1) MDP Settings: The MDP for the UAV agent is com-
posed of the state space S , the action space A, the reward
space R, and the transition probability space T . At time slot
t, the agent observes the state st ∈ S , and takes action at ∈ A
based on its policy. Depending on the distribution of the transi-
tion probability T (st+1|st, at), the agent is then transferred to
the new state st+1. Since the transition probability is specific to

the operational environment, we choose the Q-learning method
as a model-free algorithm to find the best policy for each action
in each state. This means that we do not need to know T , but
we need to carefully define the states, the actions, and the
reward.

State: The set of states is defined as S =
{s1, s2, ..., st, .., sT }, where t is the time slot index.
Each state st corresponds to the 3D coordinates of the UAV
and the users served by the AR.

Action: The states are transitioned according to the defined
set of actions defined as A = {a1, a2, ..., at, .., aT }, where
each action consists of three parts related to the UAV move-
ment, at = {δx, δy, δz}, where δx , δy , and δz represent
the movement in the x, y and z directions. The movement
along each axis is assumed to change positively or negatively,
or remain in the original position. Hence, here we consider
3 possible directional movements for the 3 axes of the AR
trajectory, resulting in 27 possible actions for the AR.

Reward: After taking action at in state st, the UAV agent
will receive a reward Rt(st, at). The UAV gets more rewards
for actions that lead to higher legitimate user rates. We define
the reward function accordingly:

Rt(st, at) =

Kr∑
k=1

Cr,k (44)

2) Deep Q-Network Method: The DQN, initially proposed
by Google Deep Mind [44], integrates the RL and deep
learning methods. This technique uses the power of nonlinear
functions, specifically DNNs, in order to approximate the Q-
values and handle highly dimensional state-action problems.

There are two DNNs of the same structure: a training
network and a target network. The training network outputs
the Q-values associated with the actions of the UAV in each
state. The target network supervises the training network by
providing the target Q-values obtained from the Bellman
equation [45],

Q∗(s, a) = Es′

[
R(s, a) + γ ×max

a∈A
Q(s′, a′)

]
, (45)

which provides the optimal state-action pairs, where s′ and
a′ symbolize the next state and action. Parameter γ ∈ (0, 1)
denotes the discount factor that affects the importance of the
future reward.

The target values are compared with the outputs of the
training network to minimize the loss function,

L(θ) = E

[([
rt + γ ×max

a∈A
Q(st+1, at+1; θ

†)
]
−

[
Q(st, at; θ)

])2
]
, (46)

where the Q-value of the first term is obtained from
the target network and the Q-value of the second term
is obtained from the training network. Parameters θ† and
θ denote the weights of the target network and train-
ing network, respectively. The θ† coefficients are updated
every few time slots in order to ensure the stability of
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the target values and, hence, facilitate stable learning.

Algorithm 2 DQN for UAV trajectory optimization.
1 Initialize ϵstart, ϵend, decay
2 Initialize T time slots, J episodes
3 Initialize replay memory M to capacity N
4 Initialize θ, θ†, γ, α, B
5 for episode = 1, 2, ..., J do
6 Reset Environment
7 for t = 1, 2, ..., T do
8 Obtain the initial observation st
9 if ϵ > random(0 , 1 ) then

10 | Select random at ∈ A
11 else
12 | at = argmaxa∈A Q(st , a; θ)
13 end
14 UAV executes action at in the environment
15 Observe transition st+1, rt
16 Store transition in M: M ← M ∪ {st, at, rt, st+1}
17 Sample mini-batch from M: ei = (si, ai, ri, si+1)
18 Train the DNN and compute the estimated Q-value
19 Calculate the loss between estimated and calculated Q-value
20 Derive loss gradient and update θ in training network
21 Every B steps, copy θ to θ† to update target network

end
22 ϵ ← updated via ϵ-greedy algorithm
23 Store reward for each episode

end
Result: Optimal UAV trajectory

As the UAV takes an action, the system generates a record of
experience. At time step t, the experience contains the current
state st, the action at, the reward rt, and the next state st+1,
formed as a tuple et = (st, at, rt, st+1). Each such experience
is stored in a replay memory with the capacity of N , such
that M = {e1, ..., et, ..., eN}. The memory is a queue-like
buffer that stores the latest N experience vectors. We use a
mini-batch sample from the replay memory to feed the input
of the training network. The main reason for using the mini-
batch samples from the reply memory is to break possible
correlations between sequential states of the environment, and
thereby facilitate generalization.

The UAV applies a gradient descent algorithm,

∇θ L(θ) = −E

[
2 ∇θQ(st, at; θ)

(
rt + γ ×

max
a∈A

Q(st+1, at+1; θ
†)−Q(st, at; θ)

)]
, (47)

to update θ an θ† as the weights of the DNNs with the aim
of minimizing the prediction error.

Finally, we apply the ϵ−greedy algorithm to select an action
while balancing the exploration and the exploitation of the
UAV in the environment. In this algorithm, the UAV explores
the environment with the probability of ϵ by choosing a ran-
dom action. More precisely, the UAV exploits the environment
with the probability of 1−ϵ by choosing the actions that max-
imize the Q-value function, i.e., a∗ = argmaxa∈A Q(s, a; θ).
A high value of ϵ is initially set in the model for the
UAV to spend more time for the exploration. As the agent
obtains more knowledge about the environment, the ϵ value
is gradually decreased to leverage the experience and choose
the best actions for the UAV, rather than continuing with the
exploration.

Algorithm 2 details the DQN-based algorithm used by the
UAV agent for optimizing the sum-rate of the UEs that are
served via the AR.

In summary, the proposed techniques accomplish the fol-
lowing: i) User-BS association employing K-means clustering
(e.g., channel, rate, or distance based), ii) multi-user beam-
forming and power management for the GBS, iii) UAV trajec-
tory optimization in conjunction with multi-user beamforming
and power management. The objective is to maximize the
secrecy rate which can be used to evaluate the effective-
ness of the proposed security measurein protecting against
eavesdropping attacks [46], [47], especially in the context
of wireless communication [48]–[51]. Since the CSI of the
eavesdropping channel cannot be obtained for passive, receive-
only eavesdroppers, our solution maximizes the user rate for it
to be generally applicable without requiring collaboration with
eavesdroppers or wasting power for generating artificial noise
in random directions, because of the unknown eavesdropper
locations, as opposed to using this power to increase the user
rate. The secrecy capacity also provides a unified measure-
ment framework for the numerical analyses presented in the
following section.

V. NUMERICAL ANALYSIS AND DISCUSSION

In this section, we present simulation results to evaluate
the secrecy performance of the UAV-assisted communications
system, where users are clustered and served by a fixed and
a mobile access point. In the presence of an eavesdropping
attack, our solution jointly optimizes of the UAV trajectory,
GBS beamforming, and AR beamforming coefficients. The
numerical analysis quantifies the impact of different user
clustering technique, discount factor (Gamma) values, learning
rates, and number of users on the achievable secrecy capacity
of the system.

The simulation scenario is illustrated in Fig. 1 and consist
of multiple single antenna ground UEs, an AR, and a group
of malicious nodes that is performing a passive eavesdropping
attack on the downlink transmission. The terrestrial users and
the eavesdroppers are randomly distributed in a 2D area.
The AR is launched at a random location and height and
is equipped with an antenna array to enable communications
with the GBS and the UEs. Table II captures the simulation
parameters. The simulations are performed with Python 3.6
and PyTorch 1.7.

A. Hyper-parameters
The hyper-parameters of the learning algorithm need to be

optimized for our specific problem and environment. There-
fore, Fig. 4 and Fig. 5 numerically evaluate the secrecy capac-
ity of the UEs served through the AR for different discount
factors Gamma and learning rates (LRs). Additionally, Fig. 4
and Fig. 5 verify the convergence of the proposed solution
across these different settings. The results presented in both
figures are for the case of 16 ground users where there are 8
users in each clusters as shown earlier in Fig. 3. These figures
plot the total achieved secrecy capacity of the user cluster
served by the AR over the training time for different hyper-
parameter values.

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2023.3285737

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Northeastern University. Downloaded on September 03,2023 at 01:48:19 UTC from IEEE Xplore.  Restrictions apply. 



10

Table II: Simulation parameters.

Parameter Value
Area length (Lx) 20 m
Area width (Ly) 20 m
UAV height (zu) 20-80 m

UAV trajectory step along the x or y axis 0.5 m
UAV trajectory step along the z axis 2 m

GBS height (zs) 15 m
Path loss at 1 m reference distance (λ0) -40 dB [52]

Path loss exponent (α) 2
Rician factor (β) 10 dB

ABG distance-dependent exponents (ρG) 2.1
ABG intercept (ȷ) 31.7 dB

ABG frequency-dependent exponents (γG) 2
Shadow fading (χG2G

σ ) 3.9 dB
Central frequency 3.2 GHz

Noise variance 10−2

Number of ground users (K) 4-64
Number of ground eavesdroppers (E) 2-10

Number of K-means clusters (R) 2
Number of episodes 2 × 104

Number time slots per episode 200
Learning rate (LR) 10−4

Discount factor 0.9
Replay memory size 105 entries

Mini-batch size 64
Update rate of target network 10

When the discount factor is very high, the agent equally
considers the future and current rewards. Fig. 4 shows that
this leads to low performance. The best result for our sce-
nario is achieved by slightly discounting the future reward,
corresponding to a Gamma of 0.9.

By configuring higher LRs, the agent becomes increasingly
biased to take the same action that will enforce the learning
policy to be particular to a deterministic environment. On
the other hand, for very low LRs the DQL agent keeps
exploring the environment in a complete random behavior
without learning. A moderate LR provides the equilibrium
between a deterministic and stochastic environment. Fig. 5
compares the learning outcome for three LRs, where a LR of
10−4 provides the best result.

Note that one reason of DQN failure is related to the
choice of the hyperparameters. There are a number of search
techniques that can be used to adjust hyperparameters. In this
analysis, we have employed the grid search technique that
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Figure 4: DQL performance for different discount factors
Gamma for a learning rate of 10−4.

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Episodes 104

6

7

8

9

10

11

12

13

14

S
ec

re
cy

 c
ap

ac
ity

 o
f U

A
V

 c
lu

st
er

 [b
ps

\H
z]

Figure 5: DQL performance for different learning rates (LRs)
for Gamma = 0.9.
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Figure 6: Comparison of the learning performance of the DQL
and Q-learning for the UAV trajectory optimization.

involves specifying a range of values for each hyperparameter
and then training the DQN with all possible combinations
of these values. The combination of hyperparameters that
produces the best performance is then selected.

B. Learning Performance Evaluation

Figure 6 compares of learning and convergence performance
of the proposed DQL scheme with the Q-learning as a bench-
mark learning algorithm. It plots the total secrecy capacity
of the user cluster served by the AR over the number of
learning episodes for the DQL and Q-learning trajectory and
power optimization. The curves show that the total secrecy
capacity of user served by the UAV tends to increase over
the episodes until convergence. This validates our approach
to define the reward so as to maximize the user rates with
unknown CSI of the eavesdropping channel. Initially, the total
secrecy capacities match for the two algorithms. This is so
because of lacking interaction with the environment to provide
enough data for training the learning agents. As the learning
evolves, favorable actions become more easily discriminated
from the unfavorable ones by exploring the environment. It
is noticeable that the DQL performance substantially exceeds
the Q-learning performance due to its ability to approximate
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Figure 7: Comparison of the MSE (a) and MAE (b) losses of
the DQL and Q-learning over the number of episodes.

the Q-values instead of an inefficient Q-table of the QL, which
allows learning gigantic state and action in fewer episodes.

In order to further analyze the effectiveness and the conver-
gence performance of the learning performance of the DQL
design for optimizing the UAV trajectory, Fig. 7 plots the mean
square error (MSE) and mean absolute error (MAE) of the
DQL and Q-learning solutions over the number of episodes.
The results show how the loss error is minimized by adjusting
the weights of the neural network used to approximate the Q-
function. This indicates how well the proposed algorithm is
performing and illustrates its convergence toward an optimal
policy. The MSE and MAE are calculated by comparing the
estimated Q-values using the learned DQL and Q-learning
models versus their actually computed values. Those figures
reveal that the quality of the UAV actions are rather poor
during the early training phase. As the learning continues,
more measurements are accumulated that yield to improved
actions taken by the UAV agent for both algorithms. The DQL
method meets a MSE target of 50 an order of magnitude faster
than Q-learning (Fig. 7a). It converges faster and achieves a
35% higher secrecy capacity after 20000 episodes (Fig. 6).
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Figure 8: Comparison of different clustering techniques.

C. Clustering Performance Evaluation

Here we evaluate the performance of the proposed user
clustering scheme and the employed metric on the total secrecy
rate performance of the system. We consider three metrics for
the clustering algorithm presented in Algorithm 1: distance
clustering, where UEs are grouped based on their distances
to the GBS, rate clustering, where UEs are grouped based
on their downlink rates while being served by the GBS, and
channel clustering, where UEs are grouped based on the
normalized channel coefficients.

Figure 8, shows the total secrecy capacity of the system after
clustering, beamforming, and UAV trajectory optimization for
the three clustering metrics. We observe that the proposed
channel clustering metric outperforms the rate and distance
clustering metrics in terms of total secrecy capacity.

D. Overall Performance Evaluation

We explain the overall performance evaluation of the pro-
posed method in two parts. In the first part, the impact of the
optimal beamforming and power control performance evalua-
tion is studied. In particular, the proposed method is compared
with three scenarios where our optimal beamforming and
power control are only partially implemented. In the second
part, the impact of the UAV trajectory on the secrecy capacity
is studied. Specifically, the UAV’s 3D movement is shown in
a scenario in which two clusters of UEs are simultaneously
served, one by the UAV, which relocates to best serve the UEs
in the cluster, and the other by the GBS.

The context that we study is unique compared to other
studies as captured in Table I. We develop a framework that
involves user clustering, multi-user beamforming, power con-
trol, and reinforcement learning for solving the problem and
there are no existing studies that propose comparable solution.
Therefore, we define our own benchmarks to evaluate the
proposed framework and the importance of each component
comprising it. The baseline techniques are: AR deployment
without optimal GBS beamforming (UAV+NoBF), no AR de-
ployment with optimal GBS beamforming (NoUAV+BF), and
no AR deployment and without optimal GBS beamforming
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Figure 9: Comparison of different techniques Vs number of
users for total secrecy capacity of the system.

(NoUAV+NoBF). In all cases where the AR is deployed the
optimal beamforming and power control of the AR is activated.

Figure 9 shows the achieved total secrecy capacity over
the number of users. The secrecy capacity improves with the
number of users for all schemes. The proposed solution clearly
outperforms the other techniques. The UAV+NoBF scheme
achieves a better secrecy capacity than the NoUAV+BF
scheme. That is, deploying an AR is more useful for im-
proving the secrecy capacity than employing optimal multi-
user beamforming at the GBS. Nevertheless, beamforming
and power control schemes have a notable contribution to the
secrecy performance of the system as can be observed when
comparing the performance of the NoUAV+NoBF scheme
with the proposed solution and other benchmark techniques.
The optimal beamforming and power control increases the
SNR and reduces the multi-user interference while minimizing
the likelihood of eavesdropping and improving the overall
secrecy capacity. The addition of the UAV as an AR allows to
serve those users effectively that have a worse channel to the
GBS. This is accomplished by the proposed clustering method
and the UAV trajectory optimization along with beamforming
and power control.

Figure 10 illustrates the dynamic 3D trajectory optimization
process for the case of 16 users where there are 8 users in
each cluster as a result of Algorithm 1 that employs channel
based clustering. We observe that the UAV moves toward the
center of the area where the users are located, and its final
position is near the minimum height to be as close as possible
to the UEs served by the AR for ensuring good channels to
be able to lower the transmission power and thus increase the
secrecy capacity, while also ensuring that the UAV stays within
its operational limits and avoids ground obstacles. Overall,
the dynamic 3D trajectory optimization process, combined
with optimal multi-user beamforming and power control, helps
achieve high secrecy capacities (Fig. 9) in the presence of
eavesdroppers.

E. Known vs. Unknown Information of Eavesdroppers

In order to put our contribution in context and provide
further justification for our optimization framework, we con-
sider the case where the location and the channel states
of eavesdroppers are known to the GBS and the UAV in
the proposed communication context. Knowning the CSI of
eavesdropping channels allows employing the secrecy capacity
(24) as the reward function.

We simulate 16 users that are clustered in two groups to
be served by the GBS or AR resulting from the channel
based clustering with known eavesdropper locations and CSI.
Figure 11 shows the resulting average secrecy capacity per
user with and without eavesdropping information available to
the network. For the case of unknown eavesdropping channels,
we employ the proposed optimization solution and reward
function based on the legitimate user rate. The UAV adjusts its
power and trajectory according to the available information.
As expected, having the information of malicious actors eaves-
dropping on the wireless links allows the network to adjust its
parameters better and increase the secrecy capacity.

Figure 11 also indicates that the secrecy capacity perfor-
mance gap of not knowing the channel characteristics of eaves-
droppers is not significant. In other words, blindly optimizing
the secrecy capacity by focusing on the legitimate user rates
produces an outcome that is very close to an optimization
framework that has and leverages the full information about
eavesdroppers. The reason for this is that the proposed prac-
tical solution with unknown CSI imperceptibly considers the
possible CSI between the base stations and the eavesdroppers.

We conclude that despite the practical assumption of not
knowing the CSI of eavesdropping channels and not exploring
methods other than optimizing the user rates, the proposition
of this paper, the proposed communications and optimization
framework can accomplish a performance that is very close to
a network that has access to the full information about eaves-
droppers. This encourages doing further research on improving
the proposed technique, for example, by considering partially
known information about eavesdroppers or other reasonable
assumptions, or even exploring new physical layer security
metrics.

F. User Mobility

In this subsection, we examine the secrecy capacity of
mobile users with a static eavesdropper. Without loss of
generality, the mobility of the ground users will be over
the x-axis with a fixed y-position. We define the distance
step parameter (dx), which corresponds to the granularity of
movement. Then, UEXt+1

C
= UEXt

C
+ dx, can be defined

to model the mobility of the ground users, where UEXt+1
C

is
the next center x-positions of all the ground users in the next
time step and for each new center the users are redistributed
randomly around the center. This process enables the users to
simulate a realistic movement pattern that reflects their actual
movement.

We consider 16 ground users to be served either directly by
the GBS or through the AR. Additionally, with each movement
of step dx , the proposed solution of Fig. 2 re-clusters the
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Figure 10: Illustration of channel based user clustering of Algorithm 1 and UAV trajectory optimization of Algorithm 2.
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Figure 11: Secrecy capacity of the proposed optimization
framework for the cases of known and unknown CSI of eaves-
droppers, employing the secrecy capacity and user capacity as
the reward function, respectively.

users, re-performs beamforming and power control for the
GBS and UAV transmissions, and re-optimizes the trajectory
of the UAV given the new positions of users. Figure 12
presents the obtained total secrecy capacity over the center
position of the moving user cluster for the proposed solution
and the benchmarks introduced in Fig. 9.

The results of Fig. 12 show that the proposed solution
achieves a higher total secrecy capacity compared to the other
schemes. By optimizing the trajectory of the UAV, the system
ensures that it flies as close as possible to the users being
served by the AR enabling good channels and lower transmit
powers. We observe that the secrecy capacity of the proposed
solution drops to zero only for the case where the center of the
user cluster matches the eavesdropper position. After the users
pass the eavesdropper, the secrecy capacity rapidly recovers.

Notice the secrecy capacity after passing the eavesdroppers
is lower than before reaching it. This is because of the lower
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Figure 12: Comparing the performance of the proposed so-
lution under user mobility scenario with other benchmark
techniques.

data rates achieved by the direct GBS links experiencing a
higher path loss with increasing distance. On the other hand,
the NoUAV+NoBF scheme has reached the zero secrecy ca-
pacity much earlier and remains at this state even after leaving
the eavesdropper behind. When comparing the performance
of the UAV+NoBF and the NoUAV+BF schemes, we again
realize the effectiveness of deploying the AR for achieving a
higher secrecy capacity.

VI. CONCLUSIONS

This paper addressed the major eavesdropping problem in
present-day wireless communications. We developed a prac-
tical framework against passive eavesdroppers in multi-user
cellular networks without knowledge of the eavesdroppers’
locations and CSI channels. Considering the unknowns, we op-
timized the user rates employing advanced wireless techniques
at the physical layer to improve the sum-secrecy capacity
among all users in a cell. Specifically, we suggested employing

This article has been accepted for publication in IEEE Transactions on Vehicular Technology. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TVT.2023.3285737

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.  See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: Northeastern University. Downloaded on September 03,2023 at 01:48:19 UTC from IEEE Xplore.  Restrictions apply. 



14

multi-user beamforming and deploying a UAV that serves as
an AR. We clustered the users into two groups wherein users
are either served by the GBS or by the AR, whose 3D posi-
tion, multiuser beamforming matrix, and transmit powers are
optimized combining closed-form expressions with machine
learning techniques. Specifically, we designed and analyzed
a DQN for the UAV trajectory optimization subproblem.
Numerical results showed that the proposed system achieves
highest secrecy capacities and scales well over the number of
users to be served.

Lessons learned from this work can lead to a number of
research directions for solving open research challenges. We
will examine additional UAV specific operational constraints,
including energy consumption, flight time, and speed, in fu-
ture work. These are especially important for implementation
and deployments of ARs with today’s small UAVs. One
can prototype and validate the presented techniques on the
Aerial Experimentation and Research Platform for Advanced
Wireless (AERPAW) [53], which facilitates implementing the
proposed communications system with software radios and
conducting different types of mobility experiments by lever-
aging AERPAW’s unmanned ground vehicles.

APPENDIX

A. Proof of Lemma IV.1

Proof. The substitution of H1, H2, W br, and W r, which
are defined in (33), (34), (35), and (36), respectively, in y2

defined in (32) yields

y2 = U2 Σ2 V †
2 V 2︸ ︷︷ ︸
I

Λ̂r U
†
1 Λr U1 Σ1 V †

1 V 1︸ ︷︷ ︸
I

Λb U
†
2 sK

+ U2 Σ2 V †
2 V 2︸ ︷︷ ︸
I

Λ̂r U
†
1 Λr n1 + n2. (48)

Therefore we have

y2 = U2 Σ2 Λ̂r U
†
1︸ ︷︷ ︸

I

Λr U1 Σ1 Λb U
†
2︸ ︷︷ ︸

I

sK

+ U2 Σ2 Λ̂r U
†
1 Λr n1 + n2, (49)

where the matrices I are obtained using the ZF criterion, i.e.,
U2 Σ2 Λ̂r U

†
1 = I and U1 Σ1 Λb U

†
2 = I . As a result, the

simplified equation is
y2 = Λr sK + Λr n1 + n2 (50)

in which

Λr =


λr,1 0 . . . 0 0

...
... . . .

... 0
0 . . . λr,k 0 0

0
... . . .

... 0
0 0 . . . 0 λr,K


K×K

, sK =


s1,1

...
sk,1

...
sK,1


K×1

.

Λr is a diagonal matrix and n1,n2 ∈ CK×1 are the noise
vectors. The simplified SINR can then be written as

SINR =
λ2r,k

λ2r,k + 1
, (51)

which proves Lemma IV.1.

B. Proof of Lemma IV.2

Proof. The beamforming power at the relay can be simplified
as follows

Pr = Tr
(
xrx

†
r

)
(52)

= Tr
(
W r

(
H1W bW

†
bH

†
1︸ ︷︷ ︸

term i

+I
)
W †

r

)
, (53)

= Tr
(
W r

(
U1Σ1ΛbΛ

†
bΣ

†
1U

†
1︸ ︷︷ ︸

I

+I
)
W †

r

)
, (54)

= 2× Tr
(
W r W

†
r

)
(55)

where (53) is obtained by replacing (13) and (14) in (52), (54)
is derived by substituting (33) and (35) in term i of (53), and
(54) is obtained from U1 Σ1 Λb U

†
2 = I . Subsequently, by

replacing (36) into (55), we have
Pr = 2× Tr

(
W r W

†
r

)
= 2× Tr

(
V 2 Λ̂r U

†
1︸ ︷︷ ︸

term ii

Λ2
r U1 Λ̂r︸ ︷︷ ︸

term iii

V †
2

)
(56)

= 2× Tr
(
V 2Σ

−1
2 U †

2Λ
2
rU2Σ

−1
2 V †

2

)
(57)

= 2
K∑

m=1

K∑
n=1

|U2(m,n)|2 σ−2
2,n λ

2
r,m, (58)

where considering U2 Σ2 Λ̂r U
†
1 = I forterm ii and term iii

of (56) yields (57).

C. Proof of Theorem IV.3

Proof. We need to obtain the optimum beamforming power
elements and Lagrange multipliers, i.e., λ∗r,l, α

∗
1, α∗

2,l, and
α∗
3,l, where l = {1, · · · ,K}. To this end, we apply the Karush-

Kuhn-Tucker (KKT) conditions to this problem as has been
applied to similar ones [54] [55] [56]. From the gradient
condition and the complementary slackness condition, we have

∇λr,l
L(λ∗r,l, α∗

1, α
∗
2,l, α

∗
3,l) = 0, (59)

− α∗
1

(
2

K∑
l=1

K∑
n=1

|U2(l, n)|2 σ−2
2,n λ

∗ 2
r,l − Pr,max

)
= 0, (60)

− α∗
2,l

(
λ∗r,l − λr,max

)
= 0, (61)

− α∗
3,l

(
− λ∗r,l

)
= 0. (62)

By simplifying (59), we obtain
2λ∗r,l(

2λ∗ 2
r,l + 1

) (
λ∗ 2
r,l + 1

)
ln 2

− 4α∗
1 λ

∗
r,l

×
K∑

n=1

|U2(l, n)|2 σ−2
2,n − α∗

2,l + α∗
3,l = 0. (63)

Applying the KKT conditions yields the optimal beamforming
power as follow

λ∗r,l =


0 λ†r,l ≤ 0, (α∗

1 F ln 2) > 0.25

λ†r,l 0 < λ†r,l < λr,max

λr,max λ†r,l ≥ λr,max

in which

λ†r,l =

√√√√1

4

(√
1 +

2

α∗
1 F ln 2

− 3
)
, (64)
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where F is a constant that equals to
K∑

n=1
|U2(l, n)|2 σ−2

2,n, and

the Lagrangian multiplier α∗
1 can be obtained by replacing

(43) into the first constraint of (40) when the equality holds:
α∗
1 = f1(Pr,max,U2,Σ2). Note that if the last constraint

defined in the condition (62) is binding, i.e., if λ∗r,l = 0, then
α∗
1 = α∗

2,l = 0 due to the complementary slackness conditions.
Substituting these multipliers in (59) results in α∗

3,l = 0. Also,
replacing λ∗r,l = 0 in the objective function of (39) results in
a zero capacity rate, which is not desired. In the same way as
in [55], [56], it can be considered that λ∗r,l = λr,max for the
values of beamforming powers above than the maximum. In
addition, the value of λ†r,l in (64) can be numerically obtained
for different values of channel coefficients and the UAV’s
power limitation, i.e., U2, σ−2

2,n, and Pr,max. However, using
the Taylor series in (64) at x = 2

α∗
1 F ln 2 with negligible O(x2),

one can further simplify the obtained λ†r,l as

λ†2r,l =
1

4 f1
K∑

n=1
|U2(l, n)|2 σ−2

2,n ln 2
− 0.5, (65)

where λ†r,l is a positive number and f1 is the above defined
function of the UAV power and channel coefficients. Finally,
it is worth pointing out that if the UAV uses only one antenna
for communicating with its users, then the beamforming power
for the antenna is set to be λr,max.
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