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Abstract—Terrestrial wireless network deployment challenges
and the high associated costs encourage the exploration of aerial
base stations (ABSs). An ABS carried by an unmanned aerial
vehicle (UAV) can be dispatched at a relatively low cost to provide
coverage on demand, such as in emergency situations and during
temporary hot-spot events. While relatively inexpensive, battery-
powered UAVs have a limited flight time and can only provide
temporary service in practice. This paper therefore considers and
monitors the available energy of UAVs as a constraint for the
proposed communication architecture consisting of dynamically
dispatched ABSs that are managed by a high-altitude platform
station (HAPS) performing network optimization. We consider
a fleet of UAVs for providing secure wireless service to sparsely
distributed users in urban areas and propose an efficient coverage
strategy to satisfy the users’ data rate demands while meeting
their secrecy rate requirements. Because of the complexity,
dynamics, and distributed nature of the problem, we employ
multiple ABSs as the agents and design a deep deterministic
policy gradient (DDPG) algorithm to optimize their positions in
the ABS network with time-constrained nodes. Numerical results
illustrate how the DDPG-empowered HAPS is able to coordinate
and leverage the ABSs fleet for wide-spread secure coverage and
adjust the network deployment topology when nodes become
unavailable. While the DDPG has a higher training complexity,
it provides better performance over state-of-the-art solutions
in terms of the number of securely served users. We discuss
the practical implications of the training process and identify
opportunities for research and development.

Index Terms—Cellular communications, deep reinforcement
learning, energy constraint, HAPS, secrecy rate, security, UAV.

I. INTRODUCTION

THE emerging 5G and future 6G wireless network de-
ployments will enable advanced commerce, transporta-

tion, health, science, and defense applications. Next-generation
wireless technology will support the integration of seamless
mobility across networks and provide an overarching architec-
ture for delivering flexible and customizable networking and
end-to-end services. Such networks are much needed for scala-
bility with the increasing number of connected devices, such as
simple sensors, actuators, user devices, sophisticated industrial
control systems, medical systems, vehicles, cities, and critical
infrastructure components. Unmanned aerial vehicles (UAVs)
will play an important role as they can provide on-demand
wireless networking support.

Manuscript received 19 April 2023; revised 7 July 2023; accepted 4 August
2023. Date of publication - - 2023; date of current version 4 August 2023.
This work was supported in part by the NSF PAWR program, under grant
number CNS-1939334.
Aly Sabri Abdalla and Vuk Marojevic are with the Department of Electrical
and Computer Engineering, Mississippi State University, MS, USA e-mail:
(asa298@msstate.edu; vm602@msstate.edu).

The integration of UAVs into cellular communication net-
works is commonly known as cellular-connected UAVs or
network-connected UAVs which can be further classified into
UAVs supporting the terrestrial network infrastructure and
UAVs subscribed as user equipment (UEs) [1]. As part of
the wireless communication infrastructure, the UAV can be
deployed as an aerial base station (ABS) or an aerial relay
(AR) [2] [3].

ABSs are useful for extending wireless coverage and en-
abling capacity on demand to provide seamless communica-
tions even in difficult circumstances such as during disaster
recovery or crowded events. A number of ABSs are needed
to provide coverage and serve ground users dispatched over
dense areas without terrestrial cellular coverage. However,
such wireless communication systems create a new attack
surface and security vulnerabilities because the information is
signaled over the air with a potentially larger radio frequency
(RF) footprint than from terrestrial transmitters. Therefore, the
emerging aerial wireless communication systems enabled by a
network of ABSs must be protected against wireless security
threats [4].

The foundation of cellular network operations and its major
threats stem from the trust relationship between a UE and the
network. A UE searches for well-known control signals that
are broadcast from cell towers and it follows the instructions
coming from the network. Many control signals are sent in
the clear and can be easily reproduced for launching spoofing
attacks. 5G allows null encryption and the network can decide
whether to use encryption or not. Hence, eavesdropping is
possible not only for capturing control information but also for
user data in certain circumstances and network configurations.
The network can request 5G users to provide location updates
or their globally unique Subscription Permanent Identifier
(SUPI); a fake base station can leverage this. 5G can encrypt
the SUPI, but there may be instances where this is not
implemented [5].

An eavesdropping attack occurs when an attacker attempts
to capture data that is not intended for it and is being
transmitted between other devices in a network. Eavesdropping
attacks can compromise the confidentiality and privacy of
data. An eavesdropper can be passive (receive only) or active
(transmit and receive) [6]. An illegitimate user that can gain
access to the network, increases its ability to eavesdrop on the
network. An attacker may also eavesdrop on the control or
data channels in order to launch sophisticated attacks [7].

Intelligently controlling UAV trajectories can facilitate se-
cure wireless coverage for terrestrial users under eavesdrop-
ping attacks. UAV trajectory control is proposed for establish-
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Fig. 1: Multi ABS-assisted ground secure coverage in presence of eavesdropping attack environment.

ing high data rates with low intercept rates. Multiple ABSs
need to operate in concert for practical use cases with widely
distributed users. Apart from the limited communication
resources, it is important to also take into consideration the
limited capacity of onboard batteries of untethered ABSs. The
power limitations of the UAV are a critical aspect that bounds
the availability of the ABS; therefore, the power consumption
and remaining power levels of the ABS must be monitored and
reported for effective and timely aerial network adjustments.

This paper studies the aforementioned challenges and pro-
poses jointly optimizing the trajectories of multiple ABSs
that are coordinated through a high-altitude platform station
(HAPS) for establishing intelligent and secure coverage for
a dense urban area with dynamic wireless service needs.
The scenario of interest in this paper is illustrated in Fig.
1, which shows a HAPS coordinating multiple ABSs that
are dispatched to locations for providing wireless coverage
while meeting the user service demands in the presence
of numerous eavesdroppers. The resource-constrained multi-
UAV trajectory optimization problem is complex and using
traditional modeling and optimization tools to solve it may not
be feasible, especially for large-scale networks [8]–[10]. We
thus propose studying the applicability of deep reinforcement
learning (DRL) methods that have been shown to be effective
for solving related problems that process large state spaces and

time-varying environments [11]. Moreover, DRL techniques
are capable of delivering high-performance solutions with a
reasonable learning overhead and little or no domain knowl-
edge [12].

The contributions of this paper are summarized in continu-
ation:

• We devise an effective method for maximizing the cov-
erage over sparsely connected areas, while satisfying the
quality of service (QoS) and data rate requirements of
ground users.

• We design a framework for UAV trajectory optimization
for effectively serving users while minimizing the effec-
tiveness of eavesdroppers.

• We develop a protocol for replacing the UAVs running
our of battery to maintain the wireless connectivity during
the entire mission.

• We numerical analyze the performance of the proposed
aerial radio access network architecture and the optimiza-
tion process.

• We study the effect of UAV speed and user mobility
on the convergence performance of the DRL model and
identify bottlenecks and practical considerations.

The remainder of this paper is organized as follows. Section
II introduces the related work. Sections III defines the system
model and Section IV formulates the problem. Section V
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describes the fundamentals of DRL and presents the proposed
DRL-based trajectory optimization framework. Section VI
provides simulation results and analyses. Section VII discusses
the practical implications of the proposed data driven method
and Section VIII provides the concluding remarks.

II. RELATED WORK
In recent years, multiple comprehensive studies have been

conducted that examine the deployment and trajectory opti-
mization of UAVs [13]. Literature has proposed diverse solu-
tions to achieve different objectives for a variety of scenarios
and constraints. Machine learning (ML) techniques are gaining
traction for the trajectory design and management of UAVs,
among others [14]. In continuation we therefore review the re-
cent studies that are relevant to our research. We describe them
in the following categories: i) UAV deployment and coverage
optimization, ii) security of terrestrial communications enabled
by UAVs, iii) energy-constrained UAV communications, and
iv) DRL-based solutions to UAV trajectory, deployment, se-
curity, and coverage problems. Table I discusses the technical
contributions of the state-of-the-art solutions compared to the
work presented in this paper.

A. UAV-Assisted Cellular Network Deployment and Coverage
Extension

The optimization of UAV deployment for coverage ex-
tension is considered a complex optimization task with the
potential of notably improving the performance of cellular
communication networks. Noh et al. [23] propose an ellipse
clustering algorithm to allow ABSs to improve the likelihood
of covering a large number of ground users while preventing
inter-cell interference. They establish an energy-efficient 3D
deployment technique to minimize the total energy consump-
tion of ABSs while guaranteeing a particular QoS for each
user. Malandrino et al. [24] optimize the UAV path planning
for wireless coverage extension in response to a disaster. An
optimal separation distance between UAVs was proposed by
Khuwaja et al. [15] for avoiding co-channel interference and
increasing the coverage of multiple UAVs in urban areas. Wang
et al. [16] introduce an iterative algorithm to obtain the min-
imal number of UAVs needed to enhance the communication
coverage for UEs. Two fast UAV deployment solutions are
studied by Zhang et al. [17] for maximizing wireless coverage.
The first reduces the total deployment delay for network
efficiency whereas the second minimizes the deployment delay
for user fairness.

B. UAV-Assisted Secure Cellular Communications

A UAV may be deployed to support the terrestrial cellular
network—as an AR or ABS—not only for extending coverage
but also for improving security. Bringing the network access
points closer to the users and employing physical layer se-
curity (PLS) techniques can complement traditional wireless
network security procedures and improve the confidentiality,
availability, and privacy of wireless communications services.

Early research has shown how UAVs can extend cellular
networks and be used to improve the security of terrestrial

networks against eavesdropping. Sun et al. [25] discuss how a
UAV-assisted system can be leveraged for PLS enhancements
applied to advanced cellular networks. Zhuo et al. [18] in-
troduce UAV-carried friendly jammers to enhance the PLS of
terrestrial cellular networks. The authors investigate the ap-
propriate power levels for jamming to disturb eavesdropping.
Wu et al. [26] and Shang et al. [27] also propose using UAVs
as friendly jammers. They investigate the effects of having
a strong line of sight (LoS) jamming link between the UAV
and a single or multiple eavesdroppers. Sun et al. [19] suggest
UAV relaying as a solution against eavesdropping in a cellular
network. The authors address the secrecy rate problem by
optimizing the source and AR power allocation over a finite
time window. Wang et al. [28] discuss the deployment of
UAVs as mobile relays to improve the results of static relays.
They use the difference-of-concave (DC) program to solve
the secrecy rate maximization problem and find that each
DC iteration yields a closed-form solution. Hou et al. [29]
propose a UAV-enabled covert federated learning architecture
to enhance data security and protect against eavesdropping.
A distributed proximal policy optimization-based strategy is
proposed to jointly optimize the trajectory and artificial noise
transmit power of the UAV, as well as the CPU frequency,
transmit power, bandwidth allocation of devices, and the
required local model accuracy. Bai et al. [30] address the
challenge of limited computational capability and the short
battery lifetime of UAVs by employing mobile-edge com-
puting for offloading computational tasks. An energy-efficient
computation task offloading technique is proposed with a focus
on PLS.

C. Energy-constrained UAV communications

There have been various research projects that take into con-
sideration the energy consumption of the UAV that is deployed
for coverage extension. For example, Liu et al. [20] develop a
framework for controlling multiple UAV nodes deployed for
improving coverage and connectivity. They consider the user
fairness while minimizing the UAV movements for energy
conservation based on a DRL solution. Omoniwa et al. [21]
propose a decentralized Q-learning approach that simultane-
ously improves the energy utilization while maximizing the
number of connected ground devices served by multiple ABSs
subject to interference from neighboring cells. Arani et al. [31]
develop a multiarmed bandit learning algorithm for optimizing
the energy and spectral efficiency for a set of rotary-wing
UAVs integrated into terrestrial networks. Their solution ad-
dresses the connectivity outage by jointly optimizing the UAV
trajectories and speeds.

D. DRL-Optimized UAV Deployment and Operation

We are witnessing increasing interest in applying ML
schemes to operate UAV-assisted cellular networks. For exam-
ple, Mozaffari et al. [8] leverage ML to optimize a 3D UAV
cell association approach for a cellular network composed
of UAV users and ABSs. Qi et al. [9] present a 3D UAV
deployment scheme that is founded on the deep deterministic
policy gradient (DDPG) for designing and scheduling the
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TABLE I: Prior art and proposed research.

Category Ref. Metric Strategy Optimization
UAV-assisted deploy-
ment and coverage

[15] Coverage area
ratio

Deploy multiple UAVs in 2D formations in the presence
of co-channel interference

1D and 2D UAV
placement

[16] Fairness and load
balancing

Minimize the number of deployed UAVs while balancing
the load

2D UAV coordinates

[17] UAV deployment
delay

Establish a fast deployment formation of UAVs in het-
erogeneous networks considering the fairness among
UAVs

1D UAV placement

UAV-assisted secure
communications

[18] Intercept proba-
bility

UAV-based friendly jammer deployment for minimizing
the intercept probability

UAV jamming power
and 3D location

[19] Secrecy rate AR for securing transmission against eavesdropping
with imperfect location information

Transmit and relay
powers

[12] Secrecy rate ABS positioning without eavesdropper’s channel state
information

UAV trajectory and
transmit power

Energy-constrained
UAV communications [20]

Fairness
coverage

Maximize the energy efficiency with joint consideration
for coverage, fairness, energy consumption and connec-
tivity

Flight direction and
distance for each
UAV

[21] Connectivity Maximize the connectivity while improving the UAV’s
energy utilization

3D trajectory of each
UAV

DRL-optimized UAV
deployment

[9] Fairness
coverage

Maximize the sum-rate while minimizing the energy
consumption and guaranteeing user fairness

3D mobility and en-
ergy replenishment

[22] Age of informa-
tion

Navigate an ABS under energy constraints 2D UAV trajectory

This work Secrecy
coverage

Deploy energy-constrained multi-ABSs that satisfies the
users’ secrecy requirements over sparsely connected
areas in the presence of eavesdroppers

UAV flight distance
and direction

mobility of multiple UAVs for energy restoration with the goal
of providing fair coverage to ground users. Challita et al. [32]
propose a DRL scheme relying on an echo state network to
design an interference-aware path planning strategy for UAV-
assisted networks. This strategy enables the UAV to optimize
its flight direction, transmission power, and cell association.
Samir et al. [10] propose a DRL to determine the trajectories
for a minimum number of UAVs to support coverage for
vehicles on a highway. Abedin et al. [22] tackle the problem
of minimizing the energy consumption and the average age
of information by optimizing the trajectory of UAVs. Seid et
al. [33] propose a multi-agent DRL framework for dynamic
computation offloading for IoT devices with energy harvesting
in a multi-UAV-assisted IoT network. Their solution minimizes
computation cost and resource price while deploying a con-
sortium blockchain for securing the transactions among nodes.

Different from the aforementioned solutions, the novelty
of this research is defining and addressing the objective of
facilitating secure coverage extension with UAVs over sparsely
connected areas in the presence of multiple eavesdroppers.

III. SYSTEM MODEL

In this paper, we consider a cooperative multi-UAV frame-
work coordinated via a HAPS for enabling secure wireless
communications. Each UAV carries an ABS that is deployed
for facilitating secure wireless network access to ground users
in the presence of terrestrial eavesdroppers. Fig. 1 illustrates
the scenario which consist of M ground users, E eavesdrop-
pers, K ABSs, and one HAPS.

For the sake of simplicity and without loss of generality,
we do not consider optimizing the ABS height in this paper.
We rather assume that all UAVs are flying/hovering at a

fixed altitude h. The height should be chosen to enable LoS
communication links to ground users [34] while providing the
necessary coverage and enabling low power transmission to
minimize the eavesdropping rate [35], [36]. Each ABS has a
directional antenna that focuses its radiation power to cover
the region directly below it with the aperture angle ϕ. The
ground coverage of each ABS is modeled as a circle region
of radius r = h tan(ϕ2 ). The HAPS-ABS links are assumed
to be less prone to eavesdropping and operate on a different
frequency than the access links. The HAPS-ABS and the
wireless backhaul link establishment and management are out
of the scope of this paper.

Without loss of generality, we model and analyze the
downlink transmission. While some of the insights gained
through examining the downlink may carry over to the uplink
situation, there exist specific aspects that require individual
consideration and will be addressed in future work.
A. Air-to-Ground Channel Model

The air-to-ground (A2G) communication channel between
the ABS and ground nodes features LoS, non-LoS (NLoS),
and multiple reflected components which cause multipath
fading [37]. The path loss of the A2G communication link
between the kth ABS and the ith ground UE can be calculated
as [38]

βt
k,i =

 ηLoS

(
4πfC

c

)α

d−α
k,i LoS condition,

ηNLoS

(
4πfC

c

)α

d−α
k,i NLoS condition,

(1)

where ηLoS and ηNLoS are the excessive path loss coefficients
for the LoS and NLoS components, respectively. The symbol
fc represents the carrier frequency, c is the speed of light,
α ≈ 2 is the pathloss exponent for LoS links, and

dk,i =
√
h2 + (xk − xi)2 + (yk − yi)2 (2)
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is the distance between the kth ABS and the ith UE, where
(xk, yk) and (xi, yi) represent the 2D coordinates of the ABS
and the UE.

According to field measurements [37], the occurrence prob-
ability of an LoS link ρLoS(θ) between a UAV transmitter and
a ground receiver is calculated by (3) and can be modeled as

ρLoS(θ) =
1

1 + C exp [−U (θ − C)]
,

θ =
180

π
arctan

(
h

r

)
,

(3)

where C and U are variables that depend on the environment,
e.g. rural, urban, or dense urban. These variables can be
determined through three empirical parameters in the ITU-
R model [39]: αITU is the ratio between the constructed area
and the total area, βITU is the mean number of buildings per
unit area, and γITU is the building height parameter. Param-
eter r =

√
(xk − xi)2 + (yk − yi)2 the horizontal distance

between the UAV and the ground UE. Note that the LoS and
NLoS probabilities are related as ρNLoS(θ) = 1 − ρLoS(θ).
The average channel power gain between the kth ABS and
the ith UE can then be calculated as

gtk,i =ηLoS ρLoS(θ)
(4πfC

c

)α

d−α
k,i +

ηNLoS ρNLoS(θ)
(4πfC

c

)α

d−α
k,i ,

=ρ̂
(4πfC

c

)α

d−α
k,i ,

(4)

where ρ̂ = ηLoS ρLoS(θ) + ηNLoS ρNLoS(θ) captures the
regularized LoS probability that covers both LoS and NLoS
conditions.

B. Secrecy Capacity

The extent to which the confidentiality of the system is
compromised can be measured through the secrecy capacity,
which is defined as the transmission capacity at which no
information will be decoded by the eavesdropper. The secrecy
capacity can thus be calculated as the difference between the
legitimate and the wiretap channel capacities [40]:

SC = max
(
(CL − CW ), 0

)
. (5)

Parameters CL and CW represent the legitimate channel
capacity between an ABS and a ground user and the wiretap
channel capacity between the ABS and a ground eavesdropper,
respectively.

For the legitimate transmission capacity CL, we obtain
the channel capacity between the kth ABS (k ∈ K =
[1, .., k, ..,K]) and the ith UE (i ∈M = [1, .., i, ..,M ]) as

Ck,i
L = B log2

(
1 + SINRk,i

)
, (6)

where B is the system bandwidth and

SINRk,i =
P gk,i

σ2 +
kc∑
j ̸=k

P gk,j

, (7)

is the signal-to-interference plus noise ratio (SINR) between
the kth ABS and the ith UE. Parameter P is the transmit power

of the ABS and σ2 = BN0 the noise variance with N0 being
the power spectral density of the additive white Gaussian noise
(AWGN). The sum term in (7) represents the interference at
the ith user cased by other ABSs in the set kc of ABSs that
have the ith user within their coverage areas. The purposes of
this paper is studying resource dependencies including UAV
energy, convergence time, secrecy capacity, and flight speed.
Spectrum availability is another critical resource for real-
world ABS deployments. We will consider spectrum-related
constraints as part of the problem formulation in our future
research.

The capacity between the kth ABS and the eth ground
eavesdropper is

Ck,e
W = B log2

(
1 + SINRk,e

)
, (8)

where
SINRk,e =

P gk,e

σ2 +
ke∑

m̸=k

P gk,j

(9)

is the SINR between these. The set ke contains the ABSs that
currently provide downlink transmissions to ground users with
the eth eavesdropper being within their combined coverage
area. In other words, ke captures the actively transmitting
ABSs that eavesdropper e sees. Parameter gk,e denotes the
A2G channel gain for the wiretap communication channel
between the kth ABS and the eth eavesdropper. It is obtained
after calculating the distance dk,e between them as

dk,e =
√

h2 + (xk − xe)2 + (yk − ye)2, (10)

where (xe, ye) are the 2D coordinates of the eth eavesdropper.
Here we assume that the channel state information of all
eavesdropping channels is available at the HAPS and this
information can be used to localize the eavesdroppers [41]–
[43]. Knowing the CSI and locations of eavesdroppers is the
information theoretic ideal case and allows calculating the
theoretically achievable secrecy capacity. Future work will
extend the models and analyses to account for imperfect CSI
conditions.

C. Energy Consumption Model

The on-board battery on each UAV powers the vehicle and
the ABS with an initial energy level that is known before
the start of the task. The total energy of the ABS’s on-board
battery is consumed by two main parts: the propulsion unit
and the communication unit. The propulsion unit draws power
during the UAV flight for enabling mobility and hovering
of the UAV. The communication unit consumes energy for
signal transmission and acquisition through RF, baseband, and
protocol processing operations. It has been shown that the
communication energy (a few Watts) can be ignored when
compared to the propulsion energy (a few hundred Watts).
We can thus assume that the on-board battery is drained by
the propulsion energy requirement [44].

The propulsion energy has two phases: the mobile phase and
the hovering phase. The mobility phase of the UAV includes
horizontal and vertical movement. In the considered scenario,
the UAVs carrying the ABSs take off from a building or
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tower and fly in the horizontal direction without changing the
altitude. The ABS operation is divided into R time slots with
a maximum time slot duration of T . For each time slot t,
the kth ABS flies in horizontal direction χt

k ∈ [0, 2π] with a
constant speed v for a period of time tM ≤ tmax

M and traverses
a distance of dtk ∈ [0, dmax]. Parameter tmax

M < T is the
maximum allowed time for the mobile phase and dmax is the
maximum traversed distance time slot t. After reaching its
desired position, the ABS hovers at that location until the end
of the time slot period tH ≥ tmin

H while serving a wireless
user. Parameter tmin

H = T − tmax
M is the minimum required

time for providing wireless access to a ground UE.
The total energy consumption of the UAV operation per

time slot has two components, corresponding to the mobility
and hovering phases:

PCt = PCt
M + PCt

H. (11)

The UAV power consumption during the mobility phase for a
given velocity in the horizontal direction χk

t in the tth time
slot is given by

PCt
M = W vi , (12)

where W = mu ga is the weight of the ABS (UAV with
payload) in Newton, mu is the mass of the ABS, ga is
the gravitational acceleration, and vi is the induced velocity
calculated based on (7.10) of [45]. Specifically,

vi =
W√
2 γ a

1√
v2 +

√
v4 + ( W

γ a )
2

, (13)

where γ is the air density a in the total area of the UAV rotor
disks and v the UAV speed.

The horizontal speed of the ABS is zero while hovering
and providing wireless access. The energy consumption for
hovering during time slot t can be simplified from (13) as
follows:

PCt
H = W vh

i ,

vh
i =

W√
2 γ a

1√
W
γ a

,

PCt
H = W

W√
2 γ a

1√
W
γ a

=

√
W 3

2 γ a
.

(14)

Equations (12) to (14) evince that the ABS’s on-board
battery is drained more during hovering than during horizontal
flight movement.

By the end of time slot t, the residual on-board battery
energy of the kth ABS is calculated as

J t
kf

= J t
k0
− PCt, (15)

where J t
k0

is the initial energy level of the kth ABS at the start
of time slot t. The remaining energy at the end of each time
slot is compared against threshold Jth to determine whether
the kth ABS is able to continue providing wireless access to
ground users or if it needs to quit its operation and move
back to the recharging station. The same process applies to all
operating ABSs.

IV. PROBLEM FORMULATION

The objective of this paper is to maximize the accumulative
number of served ground users with the available ABSs with
practical energy constraints while establishing secure commu-
nication links that minimize the effect of eavesdropping. This
requires determining the 3D trajectories for the deployed ABSs
and dynamically adjusting the planned 3D trajectory when any
of the deployed ABS needs to quit its operation for recharging.
Each ABS is constrained by its on-board battery of limited
capacity. Higher-capacity batteries are heavier and require
more propulsion energy [46]. The ABS’s time of operation
is therefore bound and it may quit before completing the task.
One or multiple ABSs in the deployed ABS network may quit
before the overall mission is completed.

The optimization problem for serving users within the
coverage area of K ABSs in R time slots is formulated as

P : max
xt

k,y
t
k

R∑
t=1

ξ =
R∑

t=1

( M∑
i=1

ηti

)
,

where

ηti =

{
1 SCt

i > Scth,

0 SCt
i < Scth,

(16.a)

s.t. 0 ≤ xt
k ≤ L, ∀k = 1, · · · ,K, (16.b)

0 ≤ yt
k ≤ L, ∀k = 1, · · · ,K. (16.c)

The
∑R

t=1 ξ term denotes the accumulative number of served
users that satisfy the QoS requirement over the period of R
time slots. The QoS requirement is defined here as a secrecy
rate threshold. We define ηti ∈ {0, 1} as a binary variable that
indicates whether the ith currently served user in time slot t
has achieved the QoS requirement (ηti = 1) or not (ηti = 0).
The optimization of the trajectory of the kth ABS is bounded
within a 2D plane.

V. PROPOSED SOLUTION

The optimization problem involves the trajectory optimiza-
tion for multiple UAVs with energy constraints. The binary
variable η of the optimization problem (16.a) makes the prob-
lem hard to solve because it involves integer constraints. In
addition, η is a non-convex constraint with respect to the UAV
trajectory. Applying traditional optimization tools to solve
this problem would incur a high computational complexity.
Most of the traditional solutions to equivalent multi-parameter
optimization problems are iterative and alternately optimize
the parameters to reach suboptimal results [47].

It is important that the solution to this problem be of low
complexity and scalable to more UEs, ABSs, and larger areas
for practical reasons. We therefore propose a multi-trajectory
design algorithm by defining a transition process based on
the current state of the system. Since the next system state
is independent of the previous states and actions, the process
can be modeled as a Markov decision process (MDP). This
facilitates applying a reinforcement learning (RL) algorithm
without requiring the knowledge of the system model to find
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the optimal coordinates xt
k and yt

k for each deployed ABS in
the tth time slot.

In what follows we first describe the DRL model and define
the states, the actions, and the reward. Then we introduce the
proposed DDPG algorithm for the DRL model to maximize the
accumulative number of UEs that are served while satisfying
their security-driven QoS requirements. The reason for choos-
ing DDPG is that it employs two DNNs—the actor network
and the critic network—that can efficiently process the highly
dimensional state-action space.

A. Deep Reinforcement Learning Model
The main components of the MDP of any sequential prob-

lem for the RL agent are the state space S , the action space
A, the reward space R, and the transition probability space T ,
i.e., (S,A,R, T ). In each time slot t, the current state st ∈ S
is monitored by the RL agent, which takes a specific action
at ∈ A based on the current policy parameters. After the
action is performed, the agent transitions to the new state st+1

following the transition probability T (st+1|st, at). Because
it is difficult and often impractical to accurately model the
deployment environment, we adopt RL to attain an optimal
action based on the received instantaneous reward and the state
transitions. This allows us to neglect T and focus on carefully
identifying the states, the actions, and the reward as follows.

State: The set of states holds the various observations
characterizing the environment. It can be modeled as S =
{s1, s2, ..., st, .., sT }, where each state st encapsulates two
parts for each ABS: the current location and the residual en-
ergy level of the on-board battery. The instantaneous location
of the ABS is captured by coordinates xt

k and yt
k. These are

used by the learning agent to find the number of ground UEs
that are located within the coverage area of the ABS in time
slot t. The residual energy level J t

kf
in time slot t informs the

agent of the current status of the ABS node lineup to be able
to adjust the tasks for the remaining ABSs. The individual
state observation for the kth ABS in time slot t is thus given
by st = {xt

k,y
t
k, J

t
kf
}. The state space for all ABSs in any

time slot can then be represented as

St = {xt
1,x

t
2, ..,x

t
K ,yt

1,y
t
2, ..,y

t
K , J t

1f
, J t

2f
, .., J t

Kf
}. (17)

Action: The decisions that the DRL agent can take to initiate
the changeover from the current state to the following state are
provided by the action space. We define a set of actions that
the agent takes as A = {a1, a2, ..., at, .., aT }. Any action atk
accommodates two parts: the flight distance of the kth ABS
dt
k and the flight direction χt

k. Therefore, action at for the
kth ABS can be expressed as {dt

k,χ
t
k} and the action space

for all ABSs in any time slot as

At = {dt
1,d

t
2, ..,d

t
K ,χt

1,χ
t
2, ..,χ

t
k}. (18)

Reward: After the agent takes action at in state st at time t,
the agent gets reward rt(s

t, at). For our system, we define the
reward function as the accumulative number of served UEs
whose secrecy capacity goals are met over time period R:

rt(st, at) =
R∑

t=1

ξ. (19)

Environment

Replay Memory

Actor TargetTraining

Critic Training Target

Policy 
Optimization

Action 
Optimization

Mini-batch

Fig. 2: Block diagram of the proposed DDPG architecture.
B. Deep Deterministic Policy Gradient

For more complex dynamic environments with underlying
continuous actions, deep Q-network (DQN) agents may not be
the most suitable approximators for achieving the optimal pol-
icy. Unlike DQN agents, DDPG agents can model continuous
actions with high-dimensional continuous action spaces [48].
The DDPG is based on the deterministic policy gradient (DPG)
algorithm [49], which is capable of handling continuous action
spaces with discrete state spaces. It is designed by coupling
the DPG with neural networks for enabling it to efficiently
handle continuous state and action spaces.

The DDPG algorithm is particularly well suited for prob-
lems with continuous action spaces. It uses a deterministic
policy, which maps states to specific actions rather than
mapping probability distributions to actions. This allows for a
more efficient exploration of the action space, which can be
especially useful for effective learning and decision making in
complex and high-dimensional continuous environments.

The DDPG architecture features two DNNs, the actor and
the critic networks, which jointly estimate a deterministic
policy that maximizes the long-term reward in a DRL setting
where the environment is modeled as a continuous state
space [50]. Fig. 2 illustrates this.

The DDPG uses a method called off-policy learning, which
means it can learn from the past as well as from the present
actions. In other words, it can learn from a set of past experi-
ences as well as from the current state. This can help stabilize
the learning process and improve the overall performance of
the agent. The actor network learns a policy parameterized by
the action value function while the critic network estimates the
state-action value function, which is then used to update the
actor’s policy parameters. The joint estimation of the policy
and action-selection function achieved by the actor and the
critic network is called the actor-critic policy network. This
scheme is different from traditional DQN approaches in which
the policy is learned independently of the action selection
function or actor network.

The advantage that the DDPG has over traditional DQN
methods is that it provides a more principled way of learning
policies that capture the dynamics within a complex system
without requiring explicit knowledge of the system dynamics
while avoiding locally optimal solutions. Similar to a DQN,
both the actor and critic networks encompass two DNNs—the
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training and the target networks—for the purpose of improving
the stability [51]. However, the manner in which the target
networks are updated is slightly different from the DQN
approach. Rather than directly copying the parameters from the
learning network every fixed number of steps, the parameters
of the target network are updated softly by gradually updating
the parameters of the target networks towards the parameters
of the learning networks.

Algorithm 1: DDPG-empowered multi-ABS deployment
for providing secure wireless access to terrestrial users.

Input (xi, yi)∀i, J0
k0

∀k, Jth, Scth
Initialize M with capacity ℵ, ζ, ðc, ð†c = ðc, ϱc, ða, ð†a = ða,
ϱa

for episode = 1, 2, ..., N do
Obtain the initial state s0;
for t = 1, 2, ..., R do

From the training actor network, acquire at = {dt
k,χ

t
k};

Observe next state st+1 given at;
for ABSk , k= 1, 2, ..., K do

if Jt
kf

> Jth then
Obtain st+1

k based on the stk and at;
else

Define st+1
k = stk;

Exclude the ABSk at the calculations of the
instant reward rt+1;

end
if (xt+1

i , yt+1
i ) > (L,L) then

Define (xt+1
i , yt+1

i ) = (xt
i, y

t
i);

end
end
Calculate rt+1;
Store experience et = (st, at, rt, st+1) in M
Obtain Q

(
ðc | (st, at)

)
from the training critic network

Calculate ℓ(ðc) via eq. (26)
Calculate ∆ðcℓ(ðc), ∆aQ

(
ð†c | (st, at)

)
,

∆ða℧(ða | st)
Update critic and actor training networks ðc and ða
Update critic and actor target networks ð†c and ð†a after ε

steps
Train the DNN network with st+1 as input

end
end
Result: Optimal dk and χk, ∀k.

The updates of the training critic network are obtained as

ðc = ðc − ϱc ∆ðc
ℓ(ðc), (25)

where ðc captures the weights of the network, ϱc the learning
rate, and ∆ðt

c
the gradient. Parameter ℓ(ðc) is the loss function

of the training critic network. It is calculated as

ℓ(ðc) = E

[([
rt +Π× Q

(
ð†c | (st+1, ã)

)]
−

[
Q
(
ðc | (st, at)

)])2
]
, (26)

where ã is the action of the agent that follows the deterministic
policy drafted by the target actor network and ð†c captures the
network’s weights.

It is important to note that the update of the training network
is more frequent than the update of the target network. The
update of the training actor network is obtained as

ða = ða − ϱa ∆aQ
(
ð†c | (st, at)

)
∆ða

℧(ða | st), (27)

where ða symbolizes the weights of the network ℧(ða | st),
ϱa the learning rate, ∆aQ

(
ð†c | (st, at)

)
the gradient of the

target critic network output with reference to the taken action,
and ∆ða

℧(ða | st) the gradient of the training actor network
with respect to ða.

Following the updates of the training critic and training
actor networks, the target critic and target actor network
updates are obtained as

ð†c ← τc ðc + (1− ηc) ðc, (28)

ð†a ← τa ða + (1− ηa) ða, (29)

where τc and τa are the learning rates for updating the critic
and actor networks, respectively. Algorithm 1 provides the
pseudocode for the proposed DDPG algorithm.

C. Computational Complexity

The main factor that determines the computational com-
plexity per learning episode defined in Line 3 of Algorithm 1
is the composition of the employed DQN architecture and
the retrieval of the corresponding experience (st, at, rt, st+1).
The proposed DDPG is composed of two DQNs for the actor
and critic networks and both of them have almost the same
structure except for the number of states of the input layers.

For any given DQN structure of the actor-critic network, let
us denote the total number of fully connected hidden layers
as ℏf , where the ℓth hidden layer is composed of N ′

ℓ neurons.
Based on (17), the size of the state space is 3 × K, which
corresponds to the input layer neurons. The size of the action
space is 2 × K as defined in (18), and the output layer has
therefore 2×K neurons. Based on the number of neurons of
the input and output layers, we can define the weights of the
first and last hidden layer as (3×K)×N ′

i and (2×K)×N ′
o,

respectively. The number of weights in the hidden layers can

be calculated as
( ℏf∑
ℓ=2

N ′
ℓ−1 × N ′

ℓ

)
. Consequently, the total

number of weights that need to be updated for either the actor
or the critic network can be expressed as

(3×K)×N ′
i + (2×K)×N ′

o +
( ℏf∑
ℓ=2

N ′
ℓ−1 ×N ′

ℓ

)
.

By defining the computational complexity of one training
iteration for a single neuron weight as ℧, a training iteration
for all weights of the actor or critic DQN becomes

℧((3×K)×N ′
i + (2×K)×N ′

o +
( ℏf∑
ℓ=2

N ′
ℓ−1 ×N ′

ℓ

)
).

The other factor that defines the computational complex-
ity of the proposed DDPG algorithm is the acquisition of
(st, at, rt, st+1). The acquisition of states st and st+1, and
actions at, as opposed to the reward rt, can be directly
obtained from the environment and the agents without incur-
ring additional computational complexity. The computational
complexity of acquiring rt based on (16.a) is (RM). The
overall computational complexity of the actor or critic DQN
then becomes

RM+℧((3×K)×N ′
i+(2×K)×N ′

o+
( ℏf∑
ℓ=2

N ′
ℓ−1×N ′

ℓ

)
).

Since the structure of the actor DQN is similar to the critic
DQN, the total computational complexity of the proposed
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TABLE II: Simulation and hyperparameters

Symbol Definition Value

M Number of ground users 100

E Number of ground eavesdroppers 10

K Number of ABS nodes 7

fc Center frequency 2 GHz

β0 Path loss at reference distance 7×10−5 [52]

h Height of the ABS nodes 80 m

ϕ Aperture angel of the ABS nodes 60o

C A2G path loss parameter 12.08

U A2G path loss parameter 0.11

ηLoS Attenuation loss for LoS 1

ηNLoS Attenuation loss for NLoS 20

B System bandwidth 4.5 MHz

P Transmit power 49 dBm

N0 Spectral power density of the noise -174 dBm

mu Mass of ABS node 4 kg

ga Gravitational acceleration 9.8 m/s2

γ Air density 1.225 kg/m3

a Total area of rotor disks 0.18 m2

v ABS’s velocity 40 km/h

T Max. duration per time slot 10 s

tmax
M Max. duration of mobile phase 9 s

tmin
H Min. duration of hovering phase 1 s

dmax Max. distance to fly per time slot 10 m

Scth Secrecy capacity threshold 3.55 Mbits

Jth On-board battery threshold to quit 4500 mAh

ℵ Replay memory capacity 106

ϱc Learning rate of training critic network 10−3

ϱa Learning rate of training actor network 10−3

τc Learning rate of target critic network 10−3

τa Learning rate of target actor network 10−3

δc Decaying rate of critic network 10−3

δa Decaying rate of actor network 10−5

N Number of episodes 1000

R Number of time slots 100

BC Batch size 64

Π Discount factor 0.9

ϵ Number of steps before updating critic
and actor target networks

1

DDPG algorithm for optimizing the trajectory of multiple
ABSs serving a number of ground users and satisfying their
security requirements can be approximated as

2(RM+℧((3×K)×N ′
i+(2×K)×N ′

o+
( ℏf∑
ℓ=2

N ′
ℓ−1×N ′

ℓ

)
)).

VI. SIMULATIONS AND ANALYSES

The performance of Algorithm 1 is numerically evaluated.
The objective of the DDPG scheme is maximizing the accu-
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Fig. 3: The DNN design for the actor and critic networks used
in the proposed DDPG algorithm (BN–batch normalization).

mulative number of ground users that are securely served by
the ABS lineup that dynamically changes based on practical
limitations of the on-board battery capacity. The simulation is
performed in Python with Pytorch 1.3 and a custom-designed
environment using OpenAI Gym.

A. Environment Setting

The simulation environment is characterized by M = 100
ground users that are randomly distributed within a square area
A = 1000× 1000 m2.

Figure 3 illustrates the structure of the critic and actor DNN
designs for the proposed DDPG. The critic and actor DNNs
employ the same structure and consist of four layers: the input
layer with N ′

i neurons, the output layer with N ′
o neurons, and

two fully connected hidden layers with 564 and 432 neurons.
Parameter N ′

i = 3K corresponds to the size of the state space
and N ′

o = 2K corresponds to the size of the action space. All
DNNs employ the ReLU activation function across all layers
and Adam with adaptive learning as the optimizer, where
ϱt+1
c = δcϱ

t
c and ϱt+1

a = δaϱ
t
a with the decaying rates δc an

δa for the critic and actor networks, respectively. Both tanh
and Scaling layers are implemented at the output layer of the
actor network while the L2 regularization is implemented in
both networks for suppressing the overfitting problem. Batch
normalization helps achieve fast convergence. The input states
and produced actions of the actor network are concatenated in
one input stream for the critic network.

The wireless communication and energy parameters follow
the models presented in Section III. The minimum user rate
and secrecy rate requirements—the QoS requirements—are
defined as 3.55 Mbps for each user. The hyperparameters of
the DDPG algorithm are critical to its performance; therefore,
we have handcrafted them to optimize the DDPG performance
with respect to the specific objective. Table II summarizes the
simulation and DDPG parameters.
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(a) Scenario 1: Accumulative reward.
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(b) Scenario 2: Accumulative reward.
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(c) Scenario 3: Accumulative reward.
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(d) Scenario 1: Average secrecy capacity.
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(e) Scenario 2: Average secrecy capacity.
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(f) Scenario 3: Average secrecy capacity.

(g) Scenario 1: Final ABS positions and UE
distributions.

(h) Scenario 2: Final ABS positions and UE
distributions.

(i) Scenario 3: Final ABS positions and UE
distributions.

Fig. 4: The accumulative reward (a)-(c), average secrecy capacity (d)-(f), and node deployments (g)-(i) for three scenarios with
three, five, and seven remaining ABSs. Circles with a plus in (g)-(i) represent users whose QoS requirements are met, filled
circles represent users where the QoS requirement is not met, and crosses represent the eavesdroppers.

B. Overall Performance Evaluation

We evaluate the performance of the proposed solution in
three simulation scenarios to gain insights into the perfor-
mance and capabilities of the proposed multi-ABS commu-
nication framework. We assume that there are seven ABSs
and that the numbers of active ABSs for completing the
task are three, five, and seven, respectively, for the three
scenarios. The initial energy levels control the ABS endurance
and characterize each scenario. The four and two abandoning
ABSs of the first and second scenarios are each initialized
with an energy level of J0 ≤ 1200, which forces these nodes
to stop providing coverage to ground UEs at some point and
have the remaining nodes cover for them. On the other hand,
the remaining active ABSs in all scenarios are each initialized
with an energy level of 30000 ≥ J0 ≤ 34000 to remain active

all the time of the task.
Figure 4 presents the accumulative reward of the system

over the number of episodes, the average secrecy capacity
of the served users by all active ABSs over the number of
episodes, and the final deployment positions of the remaining
ABSs along with their coverage areas and the user distribu-
tions. The accumulative reward functions plotted in Figs. 4 (a),
(b), (c) show that as the number of operational aerial nodes
increases, the coverage improves, which allows serving more
UEs. The accumulated number of served users whose secrecy
requirements are met are approximately 40, 70, and 100 for
the three scenarios. We obverse that the aerial network can
meet the QoS requirements for several UEs for the initial ABS
positions. The ABSs aim to increase this number by adjusting
its position until reaching the optimal location that enables
secure coverage for the highest number of ground users.
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During the training, the number of served users decreases in
the early phase of the learning process and then gradually
increases over time as the agents get more experienced by
interacting with the environment and adapting to the user and
eavesdropper distributions.

As for the security performance of the system, the average
secrecy rates across all served users whose secrecy require-
ments are met by the active ABSs are shown in Fig. 4 (d),
(e), (f) for the three scenarios. We observe that in case of
fewer ABSs, the algorithm forces the ABSs to focus on the
denser groups of ground users that are far from the ground
eavesdroppers (Fig. 4 (g)), increasing the average secrecy rate
(Fig. 4 (d)) at the cost of serving fewer users (Fig. 4 (a)). In
the case where the full ABS lineup is available for supporting
the mission during the entire time, the distribution of the
ABSs becomes denser and the coverage areas partially overlap
(Fig. 4 (i)). The average secrecy rate per served user drops
with respect to the previous two scenarios because several
eavesdroppers fall within the cell coverage areas and the
users also suffer increased inter-cell interference because of
limited spectrum availability in practice. However, all users
can be served and their QoS requirements satisfied, which is
the objective and which shows the value of having all ABSs
available. The approach we presented in this study represents
a balance between realistic deployment conditions and simula-
tion complexity. Our methodology provides a comprehensive
evaluation of both the best-case (with eavesdroppers closer to
the cell edges or nonexistent) and worst-case scenarios (with
eavesdroppers at locations with favorable channel conditions).

Figures 4 (g), (h), (i) illustrate the final positions of the
ABSs with their corresponding coverage areas. Dots symbolize
users and crosses eavesdroppers. Black dots identify users that
are outside of cellular coverage. The users that are located
within the coverage area of an ABS are of the same color as its
associated ABS. A link that satisfies the security requirement
is identified with a yellow plus sign. Intuitively, an ABS tends
to center its position as close as possible to the largest group of
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Fig. 5: The trajectories of the active multiple ABS dispatched
in scenario 2.

UEs without cellular coverage. This facilitates offering higher
data rates and meeting the secrecy requirement, provided that
the legitimate user channel is better than the wiretap channel
of any eavesdropper that is in the coverage area of the same
cell.

Figure 5 illustrates the trajectories of five active ABSs that
are dispatched in Scenario 2. These trajectories were optimized
employing Algorithm 1 to ensure efficient wireless coverage,
maximizing the number of served users while satisfying their
security-driven QoS requirements in the presence of multiple
eavesdroppers.

C. Learning Performance Evaluation

For the learning performance evaluation, we compare the
resulting reward of the DDPG algorithm for optimizing the
ABS trajectories against a deep DQN-based approach which
uses the same objective and the same reward function. The
DQN-based solution has the same DNN structure as the critic
and the actor networks. We also compare our solution to a
baseline technique that randomly chooses the trajectories of
the ABSs.

Figure 6 illustrates the accumulative reward functions. It
corresponds to the accumulative number of ground users
whose QoS requirements are met. Scenario 2 is considered
here where seven ABSs are initially dispatched but only five
of them are able to complete the mission until the end. Overall
we notice a significant increase in the accumulative number
of UEs when employing the proposed DDPG solution over
the DQN-based algorithm and the baseline. The superiority
of DDPG over DQN for this problem comes from the unique
capabilities of the actor-critic model, as mentioned in Section
V.B, to deal with the continuous state and action spaces that
are employed for optimizing the policies that reflect on the
agents’ chosen actions. On the other hand, the DQN algorithm
partitions the continuous input state space into discrete input
and output state spaces based on the probability of each action.
Thus, for the underlying case with high-dimensional action
and state spaces, the training effect of the DQN algorithm
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Fig. 6: The accumulative reward comparison.
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is less promising than that of the DDPG. Another factor
that is contributing to the superiority of DDPG over DQN
is the absence of the quantization error because operating
over continuous action and state spaces. However, it can be
observed that the DQN is faster than the DDPG because of
the DDPG’s more complex architecture where four DNNs are
employed compared to two DNNs of the DQN and because
of the fewer hyperparameters required for DQN training.

D. Performance Evaluation As a Function of ABS Configura-
tion and Environment Setting

We finally examine the performance of the proposed frame-
work and DDPG algorithm in different environmental settings,
which are characterized by different RF channel conditions and
LoS and NLoS probabilities. We consider two environments,
urban and dense urban, and two ABS aperture angles, ϕ = 30
and 60. The environmental conditions are based on two
densities of buildings and populations. These environmental
conditions affect the A2G communication channel through the
parameters C, U , ηLoS , and ηNLoS . We consider an urban
environment, where C = 9.61, U = 0.16, ηLoS = 1,
and ηNLoS = 20, and a dense urban environment, where
C = 12.08, U = 0.11, ηLoS = 1.6, and ηNLoS = 23.

Figure 7 shows the accumulative reward function corre-
sponding to the total number of users whose QoS requirements
are met over the UAV flight height for different ABS aperture
angles ϕ. The number of securely served users increases
linearly with UAV height. Higher altitudes result in broader
ground coverage and higher LoS probability. This increases
the number of randomly distributed users that fall within the
coverage area of each ABS while maximizing the coverage
quality to satisfy the secrecy capacity requirement. As ex-
pected, better LoS conditions and higher SINR values are
observed for the urban than for the dense urban environment.
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Fig. 7: The achieved accumulative reward for different envi-
ronments and cell coverage areas as a function of ABS height.

E. Mobile Multi-User Secure Coverage Performance Evalua-
tion

Here we evaluate the proposed DDPG algorithm’s perfor-
mance under non-static conditions, simulating an environment
with continuously changing user positions. More precisely, we
simulate the dynamic nature of the environment by updating
the UE positions at regular intervals with an approximate
average UE speed of 0.8 m/s (pedestrian mobility). We assume
the deployment case of five ABSs with the reward function
being defined as the accumulative number of users that have
their security-driven QoS requirements satisfied. Figure 4(b)
shows the result of the equivalent stationary user case. We
consider two UAV speeds: fast and slow. In the first simulation,
we consider the case where the UAV moves at a high speed
of 75 m/time slot toward the location of the UEs. Since we
simulate the ground UEs as pedestrians and their speeds are
very low compared to the speed of the UAVs, the UE locations
do not significantly change while the UAVs are positioning
themselves.

Figure 8 shows the reward and convergence behavior of
the proposed DDPG solution for 5 ABSs with pedestrian
UEs for the fast UAV case. The achieved reward satisfies the
security-driven QoS requirements for approximately 47 users
after convergence at around 350 episodes. The reward of the
proposed DDPG solution for the same deployment case with
stationary UEs satisfies approximately 70 users after only 200
episodes (Fig. 4(b)). This is the result of different location-
reward mappings between mobile and stationary UEs.

In the next simulation, the UAVs carrying the ABSs travel
at a lower speed of 40 m/time slot. The ABSs will thus
take longer to reach their target locations and during that
time the UE locations and channel states will significantly
change. Figure 9 shows the accumulated reward. We notice
that the number of served users is around 30 after more than
500 learning episodes. The proposed DDPG solution struggles
to fully converge in this scenario even with an increased
number of iterations. Its performance is lower with more more
fluctuations than for the fast UAV case.
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Fig. 8: The achieved accumulative reward for mobile UEs
environment for higher ABSs speed.
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Fig. 9: The achieved accumulative reward for mobile UEs
environment for lower ABSs speed.

The outcomes of these additional simulations in terms of
convergence speed, solution optimality, and training time show
that the proposed centralized DDPG is capable of achieving
acceptable performance with slow UE mobility and fast UAV
speeds. We plan to further analyze the learning efficiency
versus UAV update speed bottleneck in future research to
address the practical implications of implementing the pro-
posed system in a variety of communication contexts. We
therefore suggest researching a task-driven ABS network that
is self-organized and relies on distributed decision-making.
Moreover, we will study a distributed and local information
based decision-making DDPG solution to solve the problem
of providing secure wireless coverage with relatively short
channel coherence times in mobile scenarios.

VII. PRACTICAL CONSIDERATIONS

In the context of this paper, the training of an agent is
based on the data obtained through radio signaling. Modern
wireless protocols operate on millisecond subframes, but sub-
millisecond levels are envisaged for next generation networks.
The inference phase of a trained ML model has a low com-
plexity because it batches a much smaller number of inputs
than the training phase [53]; it operates in real time.

Effective model training is essential for the proposed aerial
communication network. In continuation we discuss the prac-
tical considerations, challenges, and opportunities for realizing
it.

A. Training Time

The training time of the DDPG model proposed in this
paper depends on a number of factors, including the input
data size, complexity and features of the model itself, and
the available computational hardware resources. For practical
applications, it is necessary to ensure that timely results are
produced. At the same time, the accuracy of the proposed
model also needs to be guaranteed. It is common to apply data
preprocessing techniques to reduce the dimension of the input
data and reduce the training time. There are various methods

for reducing the dimension of the input data, but among all the
techniques that have been proposed, the auto-encoder model
is the most widely used [54].

We have implemented the DDPG algorithm in a host client
with multiple parallel workers. The parallel workers obtain
the same set of policy parameters from the host client and
independently update the global model at the host client
according to their own experiences by exploring different
versions of the environment. The host client then immediately
updates the policy parameters for each parallel worker. It takes
approximately 4 GB of memory and 633 s to train the model
on a standard eight-core Intel i9 general-purpose processor.
This time can be considerably reduced by optimizing the
implementation for multiple processors or by applying data
preprocessing techniques.

We conclude that while the DDPG has a higher training
complexity than other ML solutions, it provides better perfor-
mance for the given problem. Meeting the timing requirements
is a matter of implementation. Practical systems will de-
ploy a highly-optimized software implementation and leverage
the latest processing technology. A HAPS can carry heavy
payloads and offer high computational power. The Stratobus
airship, for instance, can accommodate a payload of 450 kg
with a power rating of 8 kW [55].

B. Training Convergence

DDPG is an off-policy RL algorithm that uses a critic
network to learn an approximate value function and a deter-
ministic policy to select the actions. Ensuring that the critic and
actor networks converge to good solutions can be a challenge,
particularly if the environment or task is complex or has high-
dimensional state and action spaces. If the critic network fails
to converge to a good solution, the actor network will become
increasingly irrelevant and unstable, and the behavior of the
trained agent will be erratic. For this reason, it is important to
perform hyperparameter optimization to ensure that the critic
and actor networks converge quickly.

A good method for hyperparameter optimization is choosing
an initial set of parameters by performing a grid search over
a large parameter space and then using the empirical mean
of the best-performing models as the initial values for subse-
quent training iterations. Performing regular hyperparameter
optimization during the training process will ensure that the
critic and actor networks converge to the global maximum.

Another way to facilitate convergence is to incorporate
regularization terms into the loss function of the critic or the
actor network. Doing so will ensure that the learned value of
the critic network converges to a desirable value and that the
actor network learns a policy that is sufficiently generalizable.
Regularization terms can also be used to prevent model
overfitting and to improve the stability of the learned policies
during training. An overfitted DDPG algorithm may rely on
the same experiences in each iteration rather than exploring
new parts of the state space. We must therefore incorporate
a method to reduce the correlations between the sampled
experiences within one mini-batch. The asynchronous parallel
computing method that is adopted from the asynchronous
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advantage actor-critic technique can be employed to stabilize
the state exploration of the DDPG.

C. Centralized versus Decentralized Learning

In this paper, multiple agents are trained centrally at the
HAPS which delivers the optimized control policy to each
ABS. This centralized approach is computational resource in-
tensive, has a high signaling overhead, and is of low resiliency
since relying on a single node that may fail or become compro-
mised. Identifying malicious agents from gaining access to the
training data will be critical and mechanisms for authentication
of nodes and data are need to be in place. A decentralized
DDPG architecture leveraging the ABSs would remove the
single node of failure and facilitate scalability. An intermediate
approach that is worthwhile exploring is leveraging federated
learning where different parts of the model training happen at
the distributed agents and only the parameters, as opposed to
the entire model and data sets, are exchanged with the HAPS.

Decentralized learning can also employ parallel computing
at each agent, where a set of workers explore different versions
of the environment, inform the host client, which then updates
the policy parameters for each parallel worker. The process or
merging distributed and parallel learning can be accomplished
by dividing the training across a number of ABSs, or agents,
then further splitting the data into smaller chunks, and pro-
cessing each chunk in parallel on multiple processors that are
available to each agent.

VIII. CONCLUSIONS

The ABS can be employed to provide network coverage
on demand, such as in emergency situations and during
temporary events. We formulate and optimize the deployment
of multiple ABSs that are intelligently dispatched to provide
wireless service to as many ground UEs as possible while
maximizing the secrecy rate of each link. We employ multiple
agents, the ABSs, and introduce a centralized DDPG algorithm
on a HAPS for solving the trajectory optimization problem
with limited UAV on-board energy resources. We analyze the
convergence, complexity, and performance compared to an
alternative ML approach and a baseline and show the supe-
riority of the proposed optimization framework. The results
show that the available UAV energy has a significant impact
on providing broad coverage and meeting the security-based
QoS demands. Future work will study the further scalability
and decentralized management of ABSs and the coordination
of ABSs and ground base stations. One can prototype and
validate the here presented techniques on the Aerial Ex-
perimentation and Research Platform for Advanced Wireless
(AERPAW) [56], which facilitates implementing ABSs with
software radios and conducting static and mobile multi-user
experiments with unmanned ground vehicles in AERPAW’s
development environment and outdoor testbed.
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