AERPAW Vehicles: Hardware and Software Choices
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ABSTRACT

Aerial Experimentation and Research Platform for Advanced
Wireless (AERPAW) is an advanced wireless research plat-
form centered around fully programmable radios and fully
programmable vehicles. In this paper we detail the vehi-
cle aspects of the testbed, including the AERPAW UAVs,
UGVs, as well as the hardware and software choices made
by the team, as well as our experience earned in the past few
years.

1. INTRODUCTION

AERPAW is one of the four PAWR platforms. All
PAWR platforms are advanced wireless research plat-
forms, allowing researchers from academia and indus-
try to setup experiments involving wireless communi-
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cations and gather data that would be otherwise diffi-
cult or expensive to obtain. For AERPAW, one of the
distinguishing features is the availability of fully pro-
grammable unmanned aerial vehicles (UAVs) and un-
manned ground vehicles (UGVs). The AERPAW ve-
hicles allow experimenters to precisely control the po-
sition and orientation of the radio equipment they use
in their experiments, allowing for flexible, controllable,
and reproducible results.

2. PORTABLE NODES

At this time, in AERPAW the computing nodes in
the testbed are segregated into three different types:
Portable Radio Nodes, which are normally carried by
one of the AERPAW vehicles during an experiment (al-
though they can also be placed at a fixed location);
Fixed Radio Nodes, which are installed at radio towers,
light poles, or rooftop locations; Cloud Nodes, which
have no radios, but are available for experimenters’ pro-
cesses.
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Each portable node is
centered around a companion computer, with its asso-
ciated power adapter, and radios it controls. The LPNs
feature SDRs: B205mini, and B210, which are fully ac-
cessible by the experimenters. The SDRs have their as-
sociated front end (1W wide-band power amplifier, low
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noise amplifier, and filters) and wide-band antennas. In
addition to the experimenter accessible SDR, there is a
monitoring SDR that is used for capturing RF transmis-
sions from the experimental radios and verifying com-
pliance with FCC rules. The SPNs have a lighter and
less powerful computer, that is capable of controlling
off-the shelf radios (e.g., cellular modems, LoRa cards,
WiFi cards), but not powerful enough to process data
from an SDR.

The lightest LPN weighs three kilograms, but several
new larger portable nodes are currently being developed
weighing over five kilograms. The lightest SPN weighs
300g, but several versions approaching lkg are being
developed.

Since, for AERPAW, the LPNs and the SPNs are
effectively the UAV and UGV payloads, the UAVs and
UGV have been designed with these weights in minds:
3kg for the Large AERPAW Multicopter (LAMG6) and
500g for the Small AERPAW Multicopter (SAM4).
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Figure 2: Simplified Vehicle System Hardware and
Software Stack.

3. AERPAW VEHICLE HARDWARE

The general stack for the AERPAW vehicles is shown
in Fig. 2: the experimenter’s software running on the
companion computer on the portable node sends com-
mands to the autopilot, which, in turn, controls the
vehicle frame, while sending status information to the
experimenter’s software, thus closing the loop. Status
information typically offers information on the current
speed, position and orientation of the vehicle, battery
information, etc. Typical commands allow an experi-
menter to command a target position and orientation
(either relative or absolute), as well as controlling the
linear and angular velocities of the UAV.

3.1 UAV Options Considered

Many times when talking to our colleagues we are
asked why we chose to build our own UAVs when so
many other commercial solutions exist on the market.
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In what follows, we present the solutions we considered
and how we arrived to our current design.

3.1.1 Commercial UAV Frame and Autopilot

For AERPAW there are several solutions for each of
the elements shown in Fig. 2. One very popular solution
for wireless researchers, is to choose a commercial UAV
(including the autopilot) and put a portable node on
top of this vehicle. For example, the Matrice 600 from
DJI is a very capable, well trusted UAV that can fulfill
a variety of roles, including wireless research [1-3]. In
this case, the commercial UAV fulfills the bottom two
roles on the stack in Fig. 2, and the vehicle control soft-
ware, running on the companion computer will use the
API provide by the commercial manufacturer. Many
manufacturers (including DJI) provide an open APT for
accepting commands for their autopilots and providing
vehicle status information.

The main drawback (in our opinion) of this solution
is the lack of open access to the commercial UAV soft-
ware and hardware. While this closeness is understand-
able from a commercial perspective, it limits what a
developer can build on top of such a platform. Further-
more, if the manufacturer stops supporting the system
at any time, we may have to scramble to find an alter-
nate solution. As to underline the possibility of such an
outcome, the Matrice 600 is currently no longer in pro-
duction, being replaced by the Matrice 600 Pro, which
uses a different autopilot. It is impossible to know if the
new autopilot behaves identical to the old one. Further-
more, due to the closeness of the system, it is imprac-
tical to develop a realistic emulator for the commercial
system; AERPAW is heavily relying on a realistic em-
ulation environment for experiment development. Fi-
nally, the flexibility of the system is limited: if we need
a larger battery, we cannot include it in the system; if
we need a more powerful set of motors and propellers,
we cannot include them in the system, etc.

3.1.2 Commercial UAV Frame and Open Autopilot

Another possibility is to completely remove the au-
topilot from a commercial frame and use it with an open
source autopilot. This eliminates the need for build-
ing the vehicle frame, and solves the problems related
to the closed design for the commercial autopilot (i.e.,
has an open APIs and a reliable emulator). However,
this does not solve the problems regarding the long-
term availability of the frame, as well as the flexibility
of the frame (e.g., upgrading motors, batteries, etc.).
Furthermore, the frame itself is typically not optimized
for wireless research, but rather for carrying a camera
and its associated gimbal, so it would require further
modifications. Finally, many of the advantages of the
commercial frame (e.g., the battery management sys-
tem, redundant GPS) would likely be inaccessible to an



alternate autopilot.

3.1.3  Off the Shelf UAV Frame and Open Autopilot

Yet another possibility we considered in AERPAW
is to use an off-the-shelf UAV frame and fit it with
a propulsion system and open source autopilot. This
was, in fact, our first iteration to the AERPAW LAM.
Theoretically, this is a good compromise in flexibility
and effort in developing a frame. The first problem we
encountered when trying to mount the motors to a com-
mercial large octocopter frame was that the motors we
selected did not fit the motor mounts that the frame
came with. So, we designed new motor mounts, and
cut them out of carbon fiber plate, to fit the motors to
the frame. We then realized that the current top plate
of the frame cannot accommodate our large batteries,
so we designed a new top plate. Then the bottom plate
was unfit to take the full size of our large portable nodes,
so we designed and cut a new bottom plate. Then the
legs of the frame gave out, so we designed new legs.
By the time we were done with the frame, only the
arms (which were plain carbon tubes) remained from
the original custom frame. The final nail in the coffin
was the fact that by the time we completed the first
UAV prototype, the frame was no longer in production.

3.2 The AERPAW UAVs

As outlined in Section 3.1, after carefully considering
the hardware and software options, we decided to design
the AERPAW UAVs from scratch, and pair them with
an open source autopilot.

Figure 3: Large AERPAW Multicopter (LAM6) with
Portable Node and CAD model.

3.2.1 The Large AERPAW Multicopter (LAMG6)

The large AERPAW multicopter, shown in Fig. 3, has
been fully modeled in a CAD system (SOLIDWORKS),
and then manufactured from stock components that are
readily available: the arms and legs are carbon fiber
tubes, the top, bottom and the many side plates are cut
from carbon fiber plates on a CNC Router, many of the
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joints are made from 3D printed parts with carbon fiber
reinforcements. For propulsion we use the XRotor Pro
X6 system with integrated electronic speed controllers
(ESCs) and motors, spinning 6 x 23” propellers, each
with a max thrust of 12kg, thus allowing for a safe all
up weight (AUW) of up to 36kg. FAA rules, however,
limit the LAM6 AUW to 25kg (551b). In the standard
configuration, the frame weighs 7kg, the batteries are
5kg (30Ah 12S1P), and the payload (a regular LPN) is
3kg. In this configuration, the current consumption is
about 40A while hovering and the hovering endurance
is over 40 minutes. The maximum speed (electronically
limited) is 30m/s.

The LAMG6 can lift up to (and over) the FAA small
UAV weight limit in its current configuration. However,
one of the big advantages of building our own UAVs
is that, if, and when needed, we can very easily swap
the arms of the LAMG6 for longer ones, and the motors
to larger motors, thus being able to lift much larger
payloads (up to 50kg), assuming we can obtain an FAA
exemption from the Part 107 rules. The frame features
a simple, but effective and secure clamping system that
allows for a fast swap (10-20 seconds) of the batteries
and of the portable node.

Figure 4: Two LAMG6 PCBs: control on top and power
distribution on the bottom.

The second significant effort in the development of
the LAMG6 vehicle has been the design and implemen-
tation of two custom PCBs (shown in Fig. 4). The first
PCB aggregates all the control parts required by the
UAV: the autopilot itself (the Cube Orange), connec-
tors for all external components to the autopilot (2 x
GPS + compass, six ESCs, USB control from the com-
panion computer), voltage regulators for the companion
computer (19V 10A), telemetry, RC receiver, extension
headers for a future expansion, as well as independent
status and control of power distribution at various sub-
systems (autopilot, motors, payload). The second PCB
has the far easier (but equally critical) function of con-
trolling (on/off) and distributing power to the six mo-
tors of the LAM6. The task is not trivial, since each



motor consumes almost 60A at maximum throttle.

The LAMG6 are the workhorses of the AERPAW ex-
periments, and most of our users at this time are inter-
ested in experiments involving SDRs, and correspond-
ingly the heavy front end, as well as the large (and
heavy) companion computer required by these SDRs,
requiring the large multicopter to be able to efficiently
(and safely) lift them. The LAMG is a wonderful flying
machine, but it is heavy and expensive to build (a bit
over $5,000 without counting labor) and maintain. Go-
ing forward we saw the need for a smaller, lighter mul-
ticopter, with a lower cost (well under $2,000), which
led to the SAM4 (see Fig. 5).

Figure 5: The Small AERPAW Multicopter (SAM4)
and its CAD model.

3.2.2 The Small AERPAW Multicopter (SAM4)

SAMA4 is a significantly smaller multicopter, with four
18” propellers, powered by a 6S2P battery pack (14Ah)
in the standard configuration. For the standard small
portable node (built around a LattePanda computer),
under 500g, the flight time of SM A4 is similar to that of
the LAMG6 (a bit over 40 minutes). However, if a longer
flight time is required, SAM4 can hover for 82 min-
utes with a 30Ah 6S battery with a 300g small portable
node. We foresee that we will employ the SAM4 for all
experiments not requiring SDRs. If needed, SAM4 can
safely lift up to 3kg of payload, albeit at a significantly
reduced endurance.

Similar to the design philosophy employed for the
LAMBS6, the SAM4 has been designed in CAD and con-
structed from standard components (carbon fiber tubes
and plates, cut on the CNC routers and 3D printed
parts as needed). A single custom PCB fulfills a simi-
lar role as the two PCBs of the LAMG6 (i.e, integrated
control and power distribution).

3.2.3 The AERPAW Test Stand

Particularly useful for the LAMG6, we designed and de-
veloped a test stand that allows a UAV to exercise four
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Figure 6: LAMG6 on test stand.

of the total six degrees of freedom experienced in flight,
while staying firmly on the ground (horizontal trans-
lation is restricted). The test stand allows for safely
testing motors, calibration of the stability of the air-
craft, as well as testing the components at maximum
power. The test stand is securely held in place by eight
concrete blocks (138 kg total).

Figure 7: AERPAW Rover with a large portable node.

3.3 The AERPAW UGV

In addition to the two UAVs, AERPAW provides a
simple unmanned ground vehicle (UGV) that is capable
of carrying the LPNs, while also being fully controllable
by the experimenter (albeit with additional restrictions
on where it can travel, as our field has a few creeks
crisscrossing it). Unlike for the UAVs, for the rover we
chose an off-the-shelf vehicle frame (IG52-DB4 from Su-
perDroidRobots) and populated it with our open source
autopilot (see Section 3.4) and adapters for our battery
and portable nodes mounting systems.

The resulting system works very well on relatively
smooth surfaces (dirt roads, mowed grass, etc.); how-
ever, on rough terrain (e.g., a plowed field), the lack of
suspension on the rover results in a very rough ride.

3.4 AERPAW Autopilot



Our UAVs (LAM6 and SAM4), as well as the rover
use the same off-the-shelf autopilot, the Cube Orange [4],
featuring an open architecture and good support from
the ArduPilot community. The autopilot is an evolu-
tion of the Pixhawk open source autopilot built around
a 32bit ARM STM32H753 Cortex-M7 (with DP-FPU),
and features three redundant IMUs on temperature con-
trolled boards, two barometers, redundant power sup-
plies with automatic fail-over, connectors for two GPS
receivers, three magnetometers, and plenty of spare buses
for additional sensors and auxiliary systems. The Cube
Orange is well documented and there are a variety of
carrier boards that can be made to work with it. In
our case, the autopilot connects directly to the custom
PCBs for both LAM6 and SAM4, and uses a standard
carrier board for the rover.

For autopilot firmware, the two most popular autopi-
lot options are ArduPilot [5] and PX4 [6]. We chose
ArduPilot, due to its stability and due to our good ex-
periences with the emulation environment of ArduPi-
lot. Both ArduPilot and PX4 support MAVLink [7],
an open communication protocol developed for small
UAVs. The advantage of using MAVLink is that there is
a large software base allowing us and the experimenters
to easily develop portable vehicle control software as
detailed in the next section.

Vehicle Control
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Figure 8: AERPAW Vehicle Software.

4. AERPAW VEHICLE SOFTWARE

Figure 8 shows the AERPAW vehicle control stack
with the recommended vehicle control application frame-
work. At the top of the stack the experimenters can ei-
ther modify examples provided by the AERPAW team,
or write their own vehicle control applications. The
common requirement to any of the vehicle control appli-
cations is that they generate (and consume) MAVLink [7]
messages.

4.1 MAVLink Filter

Through the AERPAW vehicle application, the ex-
perimenters can generate dangerous, or even disastrous

MAVLink commands (for example, there are MAVLink

commands that can stop all the drone motors mid-air,
and/or override the safety pilot’s commands). For this
reason we developed a MAVLink filter that lets a very
small subset of commands pass to the vehicle autopilot.
Furthermore, even for the allowed commands, only a
subset of parameters are accepted.

For UAVs, only takeoff, land, simple goto, and yaw
commands are accepted at this time. For takeoff, the
minimum and maximum altitudes are 20m and 100m,
respectively. Landing is only permitted within 5m of
the take-off location. Each goto command is checked for
altitude, and for not exiting the geofenced area of our
flying field. In addition, for the UGVs, we have defined
no-go zones where there are creaks and other obstacles
on our airfield, and each goto command is checked to
not cross any of the no-go zones.

In contrast to the draconian command filtering, the
MAVLink filter allows all the status MAVLink messages
to flow from the autopilot toward the vehicle control ap-
plication. This provides the vehicle control application
regular updates on the position and attitude of the vehi-
cle, as well as other information (e.g, air speed, ground
speed, battery level, vehicle mode, etc.).

4.2 Vehicle Application Frameworks

The first thing that we need to emphasize is that
AERPAW experimenters can use any software to pro-
vide vehicle control. Even the choice of programming
language is open, and an experimenter familiar with a
different vehicle programming framework than the ones
we provide can use it to control the AERPAW vehi-
cles. The only requirements we have on the vehicle
control application is that it needs to produce MAV Link
(version 2) messages that comply with the rules of the
MAVLink filter detailed in Section 4.1.

However, to facilitate the introduction of a new ex-
perimenter to our testbed (especially if they have not
previously used MAVLink) the AERPAW team is pro-
viding several application frameworks that can be used
to develop vehicle control applications.

As shown in Fig. 8, at the bottom of the AERPAW
recommended software stack is pymavlink [8]. Pymavlink
is an open source python library that is primarily con-
cerned with packing and unpacking MAVLink messages,
and transmitting and receiving them through various
connection types (primarily serial, TCP, and UDP).
The library offers several examples and utilities demon-
strating how to listen for a particular MAVLink type
of message, and when received, how to process it. Our
MAVLink filter is built on top of pymavlink.

Building on pymavlink, DroneKit [9] is offering an
object oriented framework for interacting with the ve-
hicle. In this framework, there is a background process
that listens to an incoming stream of MAVLink sta-
tus messages and populates the properties of an avatar



of the vehicle, its properties being accessible through
this avatar (e.g., vehicle.attitude returns the attitude of
the vehicle). Similarly, method functions of the avatar
can be used to send commands to the vehicle (e.g., ve-
hicle.simple_takeoff(aTargetAltitude) will command the
drone to takeoff at the specified altitude).

4.3 AERPAW Vehicle Library

The final framework that we support in AERPAW is
aerpawlib [10], a custom Python 3 library that has been
developed specifically for AERPAW experiments, al-
lowing an experimenter to capture radio measurements
while issuing vehicle commands. The framework is built
on top of the Python asyncio framework, which allows
different concurrent processes to run simultaneously ei-
ther synchronously, or asynchronously.

As far as the experimenter is concerned, using the
aerpawlib APT involves writing a “Runner”, which is a
collection of hooks stored within a Python class. Each
hook is implemented as an experimenter-provided func-
tion wrapped in a decorator that registers relevant in-
formation about how to call the function and any extra
high level information about how the function should
be run. The Runner class then uses reflection to exam-
ine, extract, and then bind any registered hooks within
it. Because of this, when a Runner script is executed, it
must use the aerpawlib package’s provided tooling. The
tooling is able to examine a Python source file, find and
extract any Runners present, and then parse them to
determine how to control the flow of an experiment.

The primary Runner of aerpawlib provides a way for
experiments to be expressed as state machines. Most
experiments on the AERPAW platform can be broken
down into a basic state machine. As an example, an
experimenter who wants to have a drone go between
several locations while taking measurements can express
their experiment as a collection of states with each state
corresponding to a different location.

Many experiments need to run multiple pieces of logic
at the same time (e.g., moving a drone while actively
taking radio measurements); aerpawlib makes heavy use
of Python’s asyncio library and re-expresses some of its
constructs in a simple way to encourage experimenters
not familiar with Python to use them. In addition to
managing asynchronous tasks, aerpawlib provides cus-
tom logic and oversight that runs at the same level as
the experimenter’s code (e.g., automatic management
of autopilot state and landing of vehicles at the end of
the experiment).

Finally, aerpawlib has native support for constructs
used by most experiments, such as GPS coordinate pro-
cessing and processing of waypoint files that can be gen-

erated by most ground control software such as QGround-

Control.

5.  CONCLUSIONS AND FUTURE WORK

In this paper we presented a broad introduction to
the hardware and software choices for AERPAW vehi-
cles and portable nodes. Our vehicles are fully pro-
grammable, allowing experimenters to precisely control
the trajectories of the portable nodes, thus leading to
reproducible experiments. In the near future, on the
hardware front, we plan to support parachutes for our
UAVs, develop a battery management system, as well
as a thrust stand, and a battery testing stand. We also
plan to develop a new rover capable of handling rough
terrain. Next version of AERPAW’s vehicle control soft-
ware will support multi-vehicle scripts that safely allow
for coordination between multiple vehicles.
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