

Societal Factors that Impact Retention and Graduation of Underrepresented Computer Science Undergraduates

Oluwafemi Osho, Bart P. Knijnenburg, Eileen Kraemer Clemson University oosho@clemson.edu bartk@clemson.edu etkraem@clemson.edu

Cazembe Kennedy Vanderbilt University cazembe.kennedy@vanderbilt.edu

Gloria Washington Howard University gloria.washington@howard.edu Stacey Sexton Sagefox Consulting Group ssexton@sagefoxgroup.com

John Porter III, Kinnis Gosha Morehouse College john.porter@morehouse.edu kinnis.gosha@morehouse.edu

ABSTRACT

Lack of diversity and high dropout rates among underrepresented students plague the CS discipline. We developed, administered, and validated survey scales measuring social factors that impact the retention and graduation of underrepresented CS undergrads at two institutions. Results revealed significant differences between students who identify as men vs. women in terms of computing identity and confidence, and between black and non-black students in terms of familiarity with future opportunities.

1 INTRODUCTION

The representation of women and underrepresented minorities (URMs) in the US computing industry is only a fraction of their representation in the national population [1]. The problem is further compounded by high dropout rates from computer science programs [2]. To resolve the underrepresentation issue, it is important to increase participation in CS education for students who have historically been underrepresented in the discipline [3].

While studies have attempted to understand what influences individuals to complete their CS studies, only a few have focused on retention among women and URMs. Those that do (e.g., [4]) often focus on STEM. Research has suggested that social factors, such as community reinforcement, may help retain women in computing [5]. Our study seeks to measure social factors that impact the retention and graduation of women and URMs and identify demographic-related differences in those factors.

2 METHODS

https://doi.org/10.1145/3545947.3576343

We collected data from 184 undergraduate CS students: 162 from an R1 Primarily White Institution (PWI) and 22 from an HBCU that does not have a graduate program. We collected race and gender as self-reported items; 72.28% of participants were men, 27.17% women, and 0.54% non-binary; 19.02% were black. A questionnaire was developed to measure social factors that have been shown to impact retention and graduation based on existing scales in the literature.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses, contact the Owner/Author. SIGCSE 2023, March 15–18, 2023, Toronto, ON, Canada
© 2023 Copyright is held by the owner/author(s).

ACM ISBN 978-1-4503-9433-8/23/03.

3 RESULTS AND IMPLICATIONS

Our exploratory and confirmatory factor analyses produced 9 robust scales measuring students' perceived lack of relevance of CS, attitude towards CS, computing identity, study effort, familiarity with future opportunities, persistence, leadership, confidence, and perceptions of social support. We were unable to create robust factors for 4 scales intending to measure students' beliefs about computer scientists, current experience, prior experience, and intentions to continue their CS trajectory.

In line with [6], we found that women had lower levels of computing identity (9.53 vs. 10.91 of 16), t(76.7) = 2.73, p = .008, d = 0.622) than men. This may explain their lower level of confidence (24.20 vs. 25.92 of 32), t(80.8) = 2.88, p = .005, d = 0.641). We also found that Black students had a higher level of familiarity with future opportunities than non-Black students (3.73 vs. 3.02 of 8), t(42.9) = 2.15, p = .037, d = 0.657. Interestingly, we found that students at the HBCU had a higher level of familiarity with future opportunities than Black students at the PWI (4.00 vs. 3.31, ns).

Improving women's sense of belonging may be vital to improving their confidence—a key factor in undergraduate success. This may involve increasing their exposure to role models, e.g., by organizing alumni events and improving faculty representation. Similar strategies may improve black students' familiarity with future opportunities.

REFERENCES

- [1] LaVar J. Charleston, Phillis L. George, Jerlando F. Jackson, Jonathan Berhanu, and Mauriell H. Amechi. 2014. Navigating underrepresented stem spaces: Experiences of black women in U.S. computing science higher education programs who actualize success. J of Div. in Higher Education 7, 3, 166–176.
- [2] Michail N. Giannakos, Ilias O. Pappas, Letizia Jaccheri, and Demetrios G. Sampson. 2016. Understanding student retention in Computer Science Education: The role of environment, gains, barriers and usefulness. Education and Information Technologies 22, 5, 2365–2382.
- [3] Jonathan Mahadeo, Zahra Hazari, and Geoff Potvin. 2020. Developing a computing identity framework: Understanding Computer Science and Information Technology Career Choice. ACM T. on Computing Education 20, 1, 1–14.
- [4] Mary V. Alfred, Sarah M. Ray, and Michele A. Johnson. 2018. Advancing women of color in STEM: An imperative for U.S. Global Competitiveness. Advances in Developing Human Resources 21, 1, 114–132.
- [5] Wendy DuBow, Joanna Weidler-Lewis, and Alexis Kaminsky. 2016. Multiple factors converge to influence women's persistence in computing: A qualitative analysis of persisters and nonpersisters. In IEEE 2016 RESPECT, 1-7.
- [6] Atalie Garcia, Monique S. Ross, Zahra Hazari, Mark A. Weiss, Tiana Solis, and Mohsen Taheri. 2018. Examining the computing identity of high-achieving underserved computing students on the basis of gender, field, and year in school. CoNECD.