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TestMC’s test generation module implements a dedicated gener-
ator for CNF �les in the DIMACS format. Due to the simplicity of
the DIMACS format, generating CNF �les is relatively straightfor-
ward, e.g., a non-deterministic generator that chooses the number
of clauses, number of variables, and the literals in each clause suf-
�ce. To optimize generation, our generator �rst creates a set of
unique clauses based on the desired number of variables, then cre-
ates CNF formulas by selecting subsets of the clauses with respect
to the desired maximum number of clauses, and �nally writes each
formula to a �le. Due to the nature of bounded exhaustive testing,
even for small bounds, there can be a fairly large number of CNF
formulas. For example, for a bound of 4 variables (i.e., 8 literals)
and 4 clauses, there are 6.65 million unique CNF formulas (modulo
re-ordering of clauses within a formula).

We apply TestMC to test four model counters from three general
classes of model counters. The model counters are: projMC [34] and
dSharp [37], which are exact model counters; Ganak [48], which is
a probabilistic exact model counter; and ApproxMC [18], which is a
probabilistic approximate model counter. Three of the select model
counters, namely projMC, Ganak, and ApproxMC, are the current
state-of-the-art in their respective classes.

Each of the four model counters we choose supports projected
model counting, where the solver allows computing the counts with
respect to a given subset of variables, rather than the default of
all variables. Support for projected model counting is particularly
important for computing solutions that are relevant to the problem
domain because the original problem rarely exists in CNF, and
translation to CNF typically introduces auxiliary variables and
results in a formula that is equisatis�able but not equivalent (and
can have a di�erent number of solutions from the original formula
with the di�erences being on the values of the auxiliary variables
that exist only in CNF).

Since a model counter’s output is a non-negative integer, dif-
ferential testing mostly requires just a simple integer comparison.
Since our test subjects include a probabilistic exact and a probabilis-
tic approximate counter, the comparator we de�ne allows de�ning
a tolerance threshold for the equality check. To complement di�er-
ential testing, especially in cases when di�erential testing detects
a discrepancy between the counts of model counters or only one
model counter produces a result and all others timeout, we de�ne
a sanity check and four metamorphic relations that are based on
propositional equivalences, primary variables, and formula simpli-
�cation.

As subjects, we use three test suites of input formulas. One suite
consists of signi�cantly larger formulas that are derived from a
wide range of software design problems (SDP) that are part of the
standard distribution of the well-known Alloy tool-set [31]. The sec-
ond suite includes a bounded exhaustive set of small formulas that
TestMC generated. The third suite contains the formulas generated
by an o�-the-shelf CNF fuzzer [17].

TestMC found bugs in three model counters – projMC, dSharp,
and Ganak. The bugs caused four di�erent kinds of failures: crashes,
segmentation faults, incorrect results, and resource exhaustion.
The fault revealing input formulas were minimized using delta
debugging, and form a part of the bug reports that were submitted
to the tools’ authors. We submitted bug reports for all the three
tools that TestMC reported as faulty. Two of the tools (projMC

and Ganak) were corrected subsequent to our bug reports. The
bugs in the third tool (dSharp) were deemed by the authors to not
necessitate a �x.

This paper makes the following contributions:

• Framework. We introduce TestMC, the �rst framework for
testing the functional correctness of model counters. Our
framework performs bounded-exhaustive test input genera-
tion using a dedicated CNF formula generator, di�erential
testing using a special purpose comparator, metamorphic
testing using a family of metamorphic relations for model
counters, and input minimization using delta debugging.
TestMC de�nes one sanity check and four metamorphic rela-
tions as test oracles. The sanity check and all four metamor-
phic relations utilize domain knowledge, speci�cally the fact
that we are testing model counters for formulas in propo-
sitional logic. Therefore, these metamorphic relations can
also be utilized for SAT problems. We employ TestMC to
generate a corpus of 6.65 million CNF formulas, which serve
as bounded exhaustive test suites that can be used by other
model counters and SAT solvers.

• Study. We use TestMC to test four model counters, including
two exact model counters, one probabilistic exact model
counter, and one probabilistic approximate model counter.
We test the model counters against three suites of subjects:
a) 203 signi�cantly larger CNF subjects derived from a wide
class of software models; b) the bounded exhaustive suite of
6.65 million small CNF subjects generated by TestMC; and c)
large number of CNF subjects (10 million) generated using
an o�-the-shelf CNF fuzzer.

• Lessons Learned.We present a set of lessons learned during
our experience of testing model counters.

With model counters and other backend constraint solvers be-
coming more and more complex, there is an increasing need for
thoroughly testing their functionality, especially as their use in-
creases in critical domains, such as security. We believe our work
provides a practical framework that is based on well-understood
testing techniques and can handle real-world tools. We hope our
experience with TestMC proves valuable in the development of cor-
rect model counters and solvers, and for more e�ective deployment
of model counters.

2 EXAMPLES

This section presents small illustrative examples to describe the ba-
sics of CNF formulas, and the model counting and projected model
counting problems. We also present some small CNF formulas as
illustrative examples that were generated by TestMC and uncovered
bugs in some of the model counters we tested.

2.1 CNF and model counting

Consider the boolean formula “5 = (0 ∨ ¬1) ∧ (¬0 ∨ 1)”, where 0
and 1 are boolean variables. Since 5 has 2 variables, there are a total
of 4 possible assignments to 0 and 1: 1) 0 = 5 0;B4, 1 = 5 0;B4 ; 2) 0 =

5 0;B4, 1 = CAD4 ; 3) 0 = CAD4, 1 = 5 0;B4 ; and 4) 0 = CAD4, 1 = CAD4 . Of
these, the following 2 assignments are solutions, i.e., assignments
such that 5 is true: 1) 0 = CAD4, 1 = CAD4 ; and 2) 0 = 5 0;B4, 1 = 5 0;B4 .
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Since 5 is a conjunction of 2 clauses, 5 is already in CNF. The
following �le shows an encoding of 5 in the DIMACS CNF format:
p cnf 2 2

1 -2 0

-1 2 0

The �rst line, which begins with the character “p” de�nes the
type of formula (i.e., cnf), the number of variables (i.e., 2), and the
number of clauses (i.e., 2) respectively. Each subsequent line of text
shown includes a clause. The variables are identi�ed by positive
integer ids. A positive literal is just a variable, and represented by
the corresponding variable’s id; a negative literal is the negation
of a variable, and represented by the negation of the correspond-
ing integer id. Each clause ends with the number 0. For example,
representing variable “0” as number “1” and “1” as number 2, the
clause “(0 ∨ ¬1)” is represented in CNF as “1 -2 0”. Comments
may be included in a CNF in lines that start with the character “c”.
Given this input CNF �le for formula 5 , all four model counters
that we use as test subjects, namely ApproxMC, dSharp, Ganak,
and projMC report 2 as the model count, which is the correct result.

2.2 Projected model counting

We next illustrate the projected model counting problem [8], where
the model count for the input formula is with respect to a subset,
say, , of the set containing all variables, say + , in the formula, so
only solutions that di�er on at least one value of some variable in
, are considered unique. The variables in, are termed as primary

variables.
Consider the formula 6 = (0 ∧ 1) ∨ (2 ∧ 3), which is not

in CNF. We can use logical equivalences to translate this formula
into CNF, e.g., as (0 ∨ 2) ∧ (0 ∨ 3) ∧ (1 ∨ 2) ∧ (1 ∨ 3).
While using logical equivalences su�ces to translate any proposi-
tional formula into CNF, such translation can cause an exponen-
tial increase in the formula size; to avoid such increase, practi-
cal tools use alternative translations, which introduce new vari-
ables and preserve the formula’s satis�ability but may not pre-
serve its solution count [8]. To illustrate, 6 can alternatively be
translated by introducing auxiliary variables D and E as follows:
ℎ = (D ∨ E) ∧ (¬D ∨ 0) ∧ (¬D ∨ 1) ∧ (¬E ∨ 2) ∧ (¬E ∨ 3).
Any solution to ℎ contains a solution to 6, and any solution to 6 can
be extended to form a solution for ℎ. However, the total number of
solutions for 6 is 7, and the total number of solutions for ℎ is 9, i.e.,
6 and ℎ have di�erent model counts. Indeed, the space of candidate
solutions for 6 and ℎ have di�erent sizes, which are 24 = 16 and
2
6
= 64 respectively.
The support for projected model counting in modern model

counters makes utilizing themmuch more feasible since they can be
employed simply by translating to CNF without worrying about the
translation creating an exponentially longer formula, or the model
counter providing an inaccurate count due to auxiliary variables. As
an illustration of projected model counting, consider using projMC
for computing the projected model count for formula ℎ with respect
to the set of variables in 6. The following CNF �le represents ℎ:
c ind 1 2 3 4 0

p cnf 6 5

5 6 0

-5 1 0

-5 2 0

-6 3 0

-6 4 0

where variables 0, 1, 2 , 3 , D, and E are represented using integers
1, 2, 3, 4, 5, and 6 respectively. The comment in the �rst line (that
starts with a “c”) uses the format used by ApproxMC and Ganak to
specify the list of primary variables, which are also termed inde-

pendent variables; this line states that variables with ids 1, 2, 3, and
4 are primary variables; the line terminates with “0”. In contrast
to ApproxMC and Ganak, projMC and dSharp require the list of
primary variables to be input separately from the CNF formula. For
convenience, we show examples where the primary variables are
listed as a comment as required by ApproxMC and Ganak; when
invoking projMC and dSharp, we provide the lists separately as
required by them. projMC reports 7 as the model count, which is
correct and the same as the model count for the formula 6.

2.3 Example failures in Ganak, dSharp and
projMC

We next show four CNF formulas that lead to failures in the Ganak,
dSharp and projMCmodel counters. Speci�cally, we show the small-

est CNF formulas that exhibit these failures.

Example failure (incorrect count) in Ganak on a formula

generated by the TestMC bounded-exhaustive input gener-

ator
c ind 1 0

p cnf 2 1

1 2 0

This formula is a disjunction of two variables, and there is only
one primary variable (that has id “1”). The formula has three so-
lutions but only two of them are unique with respect to just the
primary variable. For this input formula, Ganak incorrectly reports
the model count as 3. In contrast, the three other model counters
we tested report the correct count of 2.

Example failure (incorrect count) in dSharp on a formula

generated by the TestMC bounded-exhaustive input genera-

tor
c ind 1 0

p cnf 1 2

1 0

-1 0

This formula has one variable and two clauses and represents a con-
tradiction since it is a conjunction of the variable and its negation.
The only variable in the formula is the primary variable. dSharp
outputs a model count of 1, which is wrong since the formula is
unsatis�able.

Example failure (Assertion Error) in Ganak on a formula

generated by the TestMC bounded-exhaustive input gener-

ator

It turns out that the above formula also reveals another bug in
Ganak. In fact, given this formula, Ganak gives an assertion error.
In contrast, the other two model counters, projMC and ApproxMC,
produce the correct model count of 0 for this formula.
linux:~/Desktop/ganak/build$ python3 ganak.py -p exampleb.cnf

rm: cannot remove 'mis.out': No such file or directory

rm: cannot remove 'mis.timeout': No such file or directory

c Outputting solution to console

c GANAK version 1.0.0

The value of delta is 0.05

The value of hashrange is 64x1
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ganak: /.../Desktop/ganak/src/instance.h:215: ClauseIndex

Instance::addClause(std::vector<LiteralID>&):

Assertion ❵!isUnitClause(literals[0].neg())' failed.

The total user time taken by ganak is: 0.0

Example failure (seg fault) in projMC on a formula derived

from a software design problem
linux:~/Desktop/author_projmc$ ./projMC_linux example.cnf

-fpv=example.var

c Benchmark Information

c Number of variables: 1794

c Number of clauses: 3020

c Number of literals: 6630

c Integer mode

c

c Option list

c Caching: 1

c Variable heuristic: VSADS

c Phase heuristic: TRUE

c Partitioning heuristic: YES + graph reduction +

equivalence simplication

c

Segmentation fault (core dumped)

projMC gives a segmentation fault on this formula. Due to space
limitations, this formula together with other example formulas that
cause failures are provided at the GitHub repository1.

3 MODEL COUNTERS UNDER TEST

This section discusses the essential background and gives a brief
description of the model counters that form our test subjects. We
also state the speci�c versions of the tools we evaluated.

The state-of-the-art model counters can be classi�ed into three
categories: (1) exact model counters that output the exact number
of solutions; (2) probabilistic exact model counters that output
the counts within a given con�dence level; and (3) approximate
model counters that give counts within a given con�dence level
and tolerance score. As test subjects, we choose a state-of-the-
art model counter in each of the three categories, as well as an
earlier model counter that was among the �rst to support projected
model counting. Speci�cally, we choose the following four model
counters: probabilistic approximate model counter ApproxMC [18]
(Section 3.1), the probabilistic exact model counter Ganak [48]
(Section 3.2) and the exact model counters dSharp [37] (Section 3.3)
and projMC [34] (Section 3.4). All four of these model counters
support projected model counting.

3.1 ApproxMC

ApproxMC [18] is a state-of-the-art approximatemodel counter that
is now in its third generation. The key idea behind ApproxMC is to
employ universal hashing to iteratively partition the solution space
into smaller regions that contain approximately the same number of
solutions by adding XOR constraints, and �nally count the number
of solutions in one region, and compute the estimate for the full
space. A special SAT solver called CryptoMiniSAT [49], which
supports XOR constraints, is iteratively invoked by ApproxMC. The
use of universal hash functions provides theoretical guarantees for
the counting approximation. Moreover, the number of SAT calls was
reduced from the initial $ (=) to $ (;>6(=)) using the dependency
information among di�erent SAT calls. Also, a new architecture for
e�ciently solving XOR constraints which are the representation of
the hash function was proposed more recently. Past experiments
showed the model counting by ApproxMC was e�cient as well

1https://github.com/muhammadusman93/TestMC-ASE2020

as remarkably close to the exact counts. For our experiments, we
use the latest version of ApproxMC2 (ApproxMCv3, Git commit ID
23d4439) with the default seed (i.e., 1).

3.2 Ganak

Ganak [48] outputs the projected model counts within the given
con�dence level. Ganak is built on top of sharpSAT [52]. Ganak
relies on probabilistic component caching and universal hashing
which signi�cantly improve the counting performance. Moreover,
it employs a number of heuristics on top of sharpSAT including
probabilistic component caching, new variable branching heuris-
tic, new phase selection heuristic, independent support heuristic,
exponentially decaying randomness heuristic, and learn and start-
over heuristic. In our evaluation, we used Ganak3 (Git commit ID
3620813).

3.3 dSharp

dSharp [37] is among the �rst tools for projected model counting.
Similar to Ganak, it builds upon earlier work on sharpSAT [52],
and introduces four more components namely dynamic decom-
position, implicit binary constraint propagation (IBCP), con�ict
analysis, and component caching. Dynamic decomposition breaks
down the problem into two components during the search and
then adds each component as a child to an “AND” node. IBCP is
proposed as a look-ahead strategy to select the unassigned variable
and evaluate the impact of the assignment in advance. Con�ict
analysis is applied for non-chronological backtracking and learning
mechanism. Finally, dSharp utilizes component caching where the
broken components are stored for fast retrieval. In addition to these
four components, it also added support for solving deterministic
decomposable negation normal form (d-DNNF) formulas which
are translated into directed acyclic graphs. We used dSharp-ASP4

(BitBucket commit ID 791668a) for experiments.

3.4 projMC

projMC [34] is a state-of-the-art exact model counter that uses a
recursive algorithm de�ned for deterministic disjunctive form. pro-
jMC �rst creates partitions of the original CNF formula such that
they are pairwise variable independent using disjunctive decompo-
sition. It then calculates the number of partitions and solves each
partition recursively by checking if there is a satis�able solution. If
so, the counts of each partition are combined as a total model count
of the problem; otherwise, it reports a contradiction. projMC5 is
available as an executable �le6.

4 TESTMC FRAMEWORK

This section introduces our TestMC framework for testing model
counters and describes its key components.

2https://github.com/meelgroup/ApproxMC
3https://github.com/meelgroup/ganak
4https://bitbucket.org/haz/dsharp-asp/src/default/
5projMC is proprietary software. Hence, there is no Git commit ID.
6http://www.cril.univ-artois.fr/kc/projmc.html
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The algorithm prunes clause 6, 9, 11, 12, 13, 14 and 15 since they
contain a tautology. This leaves 8 clauses that are used for gen-
erating CNF formulas. The algorithm creates all subsets of up to

3 clauses. There are
(

8

1

)

= 8 subsets of size 1;
(

8

2

)

= 28 subsets of

size 2; and
(

8

3

)

= 56 subsets of size 3. Thus, there are 92 unique
subsets with 1, 2, or 3 clauses. Since there are 2 variables in total we
can project on one of them or on both of them; if the CNF formula
only has one variable, we only use that as the primary variable. The
total number of CNF formulas for the size bound maxVars = 2 and
maxClauses = 3 is 181. For testing the subject model counters in this
paper, we set the size bound to maxVars = 4 and maxClauses = 4. There
are 255 (28 − 1) clauses that can be formed as subsets of 8 literals.
The algorithm prunes 175 clauses which contain a tautology, which
leaves 80 clauses that are used for generating CNF formulas. The

algorithm creates all subsets of up to 4 clauses. There are
(

80

1

)

= 80

subsets of size 1;
(

80

2

)

= 3160 subsets of size 2;
(

80

3

)

= 82160 sub-

sets of size 3; and
(

80

4

)

= 1581580 subsets of size 4. Thus, there are
1,666,980 unique subsets with 1, 2, 3 or 4 clauses. Since there are
4 variables in total, we can have up to 4 projection variables for a
formula. Note that the number of projection variables is always ≤
the number of variables in the formula. It gives 6.65 million CNF
formulas.

4.3 Di�erential Testing

For di�erential testing, TestMC checks for di�erences in the model
counters’ outputs; if they di�er, it checks if a majority agrees and
if it does, the minority is considered as likely faulty. Since our test
subjects include a probabilistic exact and a probabilistic approxi-
mate counter, the comparator we de�ne allows the user to de�ne a
tolerance for the equality check (only for ApproxMC and Ganak).
For our experiments, we set the tolerance to 10% (two outputs mis-
match if they are not within 10% of each other) based on a recent
study [55].

4.4 Metamorphic Testing

To complement di�erential testing, especially in cases when di�er-
ential testing detects a discrepancy between the counts of model
counters or only one model counter produces a result and all others
timeout, we de�ne one sanity check and four metamorphic rela-
tions as test oracles. The sanity check and all four relations utilize
domain knowledge, speci�cally the fact that we are testing model
counters for formulas in propositional logic.

Let 5 be a formula in propositional logic with = variables, so the
space of all possible boolean assignments to the variables has size
2
= . Assume there are : primary variables where : ≤ =; assume
(without loss of generality) the primary variable ids are 1, . . . , : . Let
<2 (5 ) represent the model count for 5 . Let ?<2 (5 , :) represent the
projected model count for 5 with respect to the : primary variables.
Let 5G=E be 5 where the variable G is assigned the boolean value E .

Sanity Check (SC1): ?<2 (5 , :) ≤ 2
: , i.e., the projected model

count over : variables must be no more than 2
: . It is simple to

evaluate this relation: take ;>62 of the tool’s output and compare
it with : ; if : is smaller, the tool’s output is faulty. SC1 does not
require any additional invocation of the model counter.

Metamorphic relation 1 (MR1): ?<2 (5 , :) ≥ ?<2 (5E=CAD4 , :)

where E is a variable in 5 , i.e., the model count for formula 5 is
greater or equal to the model count for reduced formula 5E=CAD4 ,
i.e., 5 where E is set to true. Given variable E , we can create the
CNF formula for 5E=CAD4 simply by adding the clause “v 0” to the
original CNF for 5 . In our experiments we set E to 1. MR1 requires
one additional invocation of the model counter.

Metamorphic relation 2 (MR2): ?<2 (5 , :) = ?<2 (5E=CAD4 , :) +

?<2 (5E=5 0;B4 , :) where E is a variable in 5 , i.e., the model count
for formula 5 is the sum of the model counts for reduced formulas
5E=CAD4 , i.e., 5 where E is set to true, and 5E=5 0;B4 , i.e., 5 where E is
set to false. Given variable E , we can create the CNF formulas for
5E=CAD4 and 5E=5 0;B4 simply by adding the clauses “v 0” and “-v 0”
respectively to the original CNF for 5 . In our experiments we set E
to 1. MR2 requires two additional invocations of the model counter.

Metamorphic relation 3 (MR3): Let ~ be a clause in 5 and I be a
literal in ~. Let ~′ be a clause containing all literals originally in ~
and literal I added again. Thus, replacing ~ with ~′ should have no
e�ect on the original formula f (~′ is equivalent to ~). In this case,
?<2 (5 , :)=?<2 (5 − ~ + ~′, :), i.e., the count of original formula
should be equal to the count of the original formula with ~ being
removed and ~′ added. MR3 requires one additional invocation of
the model counter.

Metamorphic relation 4 (MR4): Let ~′ be a clause containing a
tautology. Let 5 ′ be another formula which includes all the clauses
in formula 5 and one more clause ~′ (clause containing tautol-
ogy). Thus, both the original formula 5 and the new formula 5 ′

should have the same count since adding a tautology to the original
formula should have no e�ect on the model count. In this case,
?<2 (5 , :)=?<2 (5 + ~′, :), i.e., the count of the original formula
should be equal to the count of the new formula with ~′ added.
MR4 requires one additional invocation of the model counter.

4.5 Input Minimization with Delta Debugging

To facilitate debugging, TestMC supports input minimization using
delta debugging for fault-revealing inputs [2]. The simplicity of
the CNF �le format helps with e�ective minimization since any
subset of the CNF clauses is itself a CNF formula; to create a new
CNF �le using a subset, we populate the new �le with the selected
clauses and update the number of clauses listed in the declaration
line (that starts with “p”). We follow a standard method for input
minimization that uses binary search to �nd a sequence of clauses
in the original formula such that the failure recurs [59]. In addition,
we create a pair of two CNF �les ⟨�, �⟩ where � and � include
subsets of clauses in the original fault revealing input such that �
does not cause a failure, � does cause a failure and � includes all
the clauses in� and one additional clause. We expect the pair ⟨�, �⟩
to assist in fault localization [43] where the user can compare the
two traces on inputs that are almost identical and di�er by only
one clause.
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Table 1: Basic information about the test suite.

SDPGen BEGen FuzzGen

CNF Formulas Total 203 6,649,854 10,000,000

Total Vars

Min 28 1 2
Max 93,764 4 34,755
Avg 4,764.12 3.99 11.39
Std 9,028.88 0.09 27.56

Primary Vars

Min 3 1 2
Max 2,048 4 34,755
Avg 201.72 2.50 11.39
Std 269.52 1.12 27.56

Total Clauses

Min 31 1 3
Max 291,349 4 123,891
Avg 11,066.47 3.95 29.40
Std 25,640.81 0.23 95.61

5 EXPERIMENTAL EVALUATION

This section describes the test suites employed for testing model
counters, evaluates TestMC using three research questions and
presents examples of bugs and �xes of the tested model counters.

5.1 Test Suite

This section describes the CNF formulas used by TestMC for testing
model counters. The test suites are classi�ed into three categories:
a) test suite (denoted as SDPGen) containing 203 large CNF formu-
las derived from a wide class of software design problems; b) test
suite (denoted as BEGen) containing small CNF formulas created
by bounded exhaustive generator; and c) test suite (denoted as Fuz-
zGen) containing a large number of formulas with varied scales
generated by an o�-the-shelf CNF fuzzer called FuzzSAT [17]. Ta-
ble 1 summarizes detailed information about each test suite, includ-
ing the total number of test cases, minimum, maximum, average,
and standard deviation of the number of total variables, primary
variables, and total clauses of the input formula, respectively.
Formulas generated using software design problems (SDP-

Gen) Alloy is able to translate modeled real-world problems to
CNF formulas, that are solved by backend SAT solvers for check-
ing desired properties. The Alloy distribution includes a variety
of real-world problems and hence provides a valuable source of
CNF formulas as a potential test suite. There are 203 large CNF
formulas generated from software design problems in Alloy [1, 32].
The number of total variables ranged from a minimum of 28 to a
maximum of 93,764, with an average of 4,764.12. The number of
primary variables ranged from a minimum of 3 to a maximum of
2,048, with an average of 201.72. The number of clauses ranged
from a minimum of 31 to a maximum of 291,349, with an average
of 11,066.47.
Formulas generated using a bounded exhaustive generator

(BEGen) A total of 6,649,854 (6.65 million approximately) CNF
formulas were generated by the bounded-exhaustive generator
using the algorithm described in Section 4.2. These formulas are in
small scale. The number of total variables ranged from a minimum
of 1 to a maximum of 4, with an average of 3.99; the number of
primary variables ranged from a minimum of 1 to a maximum

of the total number of variables in the formula, with an average
of 2.50. The number of clauses ranged from a minimum of 1 to a
maximum of 4, with an average of 3.95. These formulas are helpful
in checking corner cases and more importantly give developers
small fault revealing CNF formulas which makes it easier to debug
the tool.
Formulas generatedusing o�-the-shelf CNF fuzzer (FuzzGen)

A total of 10,000,000 (10 million) formulas were randomly generated
by CNF fuzzer called FuzzSAT [17] for rigorous testing of model
counters. The number of total variables ranged from a minimum of
2 to a maximum of 34,755, with an average of 11.39. The number of
clauses ranged from a minimum of 3 to a maximum of 123,891, with
an average of 29.40. FuzzSAT considers all variables to be primary
variables (number of primary variables is always equal to the num-
ber of total variables) which may cause the testing on projected
model counting ine�ective. As part of future work, we plan to add
support to FuzzSAT for generating formulas with di�erent sets of
primary variables, by selecting them randomly.

The Bounded-Exhaustive Generator as well as all 3 test suites
(16.65 million CNF formulas in total) are available at: https://github.
com/muhammadusman93/TestMC-ASE2020. All experiments were
performed on Ubuntu 16.04 with an Intel Core-i7 8750H CPU
(2.20 GHz) and 16GB RAM.

5.2 Research Questions

This section answers following three research questions.

• RQ1:HowE�ective is TestMCDi�erential TestingMod-

ule in Finding andCategorizingBugs/Failures inModel

Counters?

• RQ2:HowE�ective are the TestMCMetamorphic Test-

ing Relations in Finding Bugs/Failures inModel Coun-

ters?

• RQ3: How E�ective is Test Input Minimization with

Delta Debugging?

RQ1: How E�ective is TestMC Di�erential Testing Module

in Finding and Categorizing Bugs/Failures in Model Coun-

ters?

TestMC was able to �nd 4 di�erent types of bugs/failures in 3 model
counters. The �rst bug type called WSat describes that a model
counter returns the wrong satis�ability of the input formula, specif-
ically, returns SAT for UNSAT problem. The second bug type called
WCnt indicates that a model counter gives a wrong count of the
formula. If the model counter crashes due to segmentation fault, it
is classi�ed as SegFault bug. Lastly, if the model counter terminates
unexpectedly, it is classi�ed as Crash bug. Table 2 summarizes the
results of each bug type that happened in each model counter, for
each test suite. Since our test subjects include a probabilistic exact
and a probabilistic approximate counter, the comparator we de�ne
allows the user to de�ne a tolerance for the equality check (only for
ApproxMC and Ganak). For our experiments, we set the tolerance
to 10% (two outputs mismatch if they are not within 10% of each
other) based on a recent study [55].

For Ganak, TestMC found two types of bugs: WCnt in 3,996,331
cases and Crash in 56,617 cases, which strongly indicates the exis-
tence of bugs inside the tool. We found that all of the Crash cases in
Ganak were assertion failures. For dSharp, TestMC found two types
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Table 2: Results of applying di�erential testing on Ganak, dSharp and projMC for each test suite are shown. ApproxMC is not

shown because it did not give faulty results.

Ganak

Input WSat WCnt SegFault Crash Total

SDPGen 0 77 0 4 81
BEGen 0 3996254 0 48344 4044598
FuzzGen 0 0 0 8269 8269
Total 0 3996331 0 56617 4052948

dSharp

Input WSat WCnt SegFault Crash Total

SDPGen 0 0 0 18 18
BEGen 48224 0 0 0 48224
FuzzGen 7490 0 0 0 7490
Total 55714 0 0 18 55732

projMC

Input WSat WCnt SegFault Crash Total

SDPGen 0 0 2 0 2
BEGen 0 0 0 0 0
FuzzGen 0 0 0 0 0
Total 0 0 2 0 2

Table 3: Results of applying Sanity check and Metamorphic relations for formulas on which di�erential testing detected

discrepancy. Total number of these formulas is given in brackets in Input column of table. "-" indicates that there was no

formula on which di�erential testing detected discrepancy.

Ganak

Input SC1 MR1 MR2 MR3 MR4

SDPGen (77) 48 15 50 0 0
BEGen(3996254) 2902390 16386 1972934 0 0
FuzzGen(0) - - - - -
Total 2902438 16401 1972984 0 0
Percentage 72.63% 0.41% 49.37% 0% 0%

dSharp

Input SC1 MR1 MR2 MR3 MR4

SDPGen(0) - - - - -
BEGen(48224) 0 0 13705 0 0
FuzzGen(7490) 0 0 2 0 0
Total 0 0 13707 0 0
Percentage 0% 0% 24.60% 0% 0%

of bugs:WSat in 55,714 cases, andCrash in 18 cases onwhich dSharp
even made the operating system crash, unfortunately. We investi-
gated the reasons behind the OS crash and found that dSharp does
not place any limit on the amount of memory it uses. It exhausts all
of the memory resulting in a fatal crash. Lastly, for projMC, TestMC
found SegFault bug in 2 cases.

Speci�cally, when tested on BEGen, 3,996,254 cases ofWCnt bug
and 48,344 cases of Crash bug were found in Ganak; 48,224 cases
of WSat bug were found in dSharp; and no bugs were found for
ApproxMC and projMC. When tested on FuzzGen; 8,269 cases of

Crash bug were found in Ganak; 7,490 cases ofWSat bug were found
in dSharp; and similar to BEGen no bugs were found in ApproxMC
and projMC. When tested on SDPGen, 77 cases of WCnt bug were
found and 4 cases of Crash bug were found in Ganak; 18 cases of
Crash bug were found in dSharp; and 2 cases of SegFault bug were
found in projMC; and no bugs were found for ApproxMC. Note
that, FuzzGen cannot detect WCnt bugs in Ganak while BEGen
can. This may be due to the fact that random fuzzers generate CNF
formulas by considering all variables as primary variables and hence
may not be e�ective for testing bugs in projected model counting.
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1 ...

2 if (literals.size() == 1) {

3 assert(!isUnitClause(literals[0].neg()));

4 unit_clauses_.push_back(literals[0]);

5 return 0; }

6 ...

(a) Location of Crash bug in Ganak

1 ...

2 if (literals.size() == 1) {

3 addBinaryClause(literals[0], literals[0]);

4 return 0; }

5 ...

(b) Fix for Crash bug for Ganak

1 ...

2 else if(strcmp(argv[i], "-p")==0)

3 theSolver.config().perform_projectedmodelcounting

= false;

4 ...

(c) Location of WCnt bug in Ganak

1 ...

2 else if(strcmp(argv[i], "-p")==0)

3 theSolver.config().perform_projectedmodelcounting

= true;

4 ...

(d) Fix for WCnt bug for Ganak

Figure 3: Fault localization and bug �xes for Ganak

Whereas our bounded exhaustive generator is able to generate all
possible combinations of primary variables and thus could be highly
e�ective in �nding bugs in projected model counting, regardless of
the small scales of the generated formulas. To summarize, we can
conclude that TestMC di�erential testing module is highly e�ective

in �nding and categorizing bugs/failures in model counters.
RQ2: How E�ective are the TestMC Metamorphic Testing

Relations in Finding Bugs/Failures in Model Counters?

Unsatisfying metamorphic relations indicate the existence of bugs
whereas satisfying metamorphic relations help to narrow down the
list of potential bugs. Table 3 shows the results of metamorphic
testing on Ganak and dSharp. TestMC only found SegFault bugs in
projMC so metamorphic testing is not applicable for projMC. For
Ganak, SC1 andMR2 proved to bemost useful followed byMR1. SC1
was able to �nd 72.63% of formulas on which TestMC found (during
di�erential testing)WCnt bug for Ganak. MR1was able to �nd 0.41%
and MR2 was able to �nd 49.37% of such formulas. However, MR3
and MR4 were not able to �nd any bug. SC1 points out problems
w.r.t projected model counting. We can observe that Ganak violated
SC1 2902438 times. Similarly, MR2 helps to point out that Ganak is
giving larger than expected counts. Code inspection revealed that
Ganak is ignoring the primary variables, thereby increasing the
state space of the solutions. MR3 is helpful in �nding bugs related
to repeated literals in a clause and MR4 is good at detecting bugs
related to tautological clauses. The reason why MR3 and MR4 failed
to �nd any bugs is because the model counters under test do not
have such bug types. However, the usefulness of MR3 and MR4
should not be overlooked.

For dSharp, MR2 proved to be useful since it was able to identify
24.60% of formulas on which TestMC found (during di�erential
testing) WSat bug for dSharp. Although no other metamorphic
relations were violated by dSharp, these relations were still helpful.
For example, having 0 as a count for SC1 shows that TestMC did not
�nd any bugs related to projected model counting in dsharp. This
matches our observation in RQ1. There were a total of 15 formulas
on which one or more model counters timed-out and MR relations
were able to con�rm faults in 3 (20 %) of these formulas. Note that

most metamorphic relations requires 1 additional invocation of the
model counter (for each formula) which is costly. Since our subject
model counters include approximate (ApproxMC) and probabilistic
exact (Ganak) counters, there can be false positives using meta-
morphic and di�erential testing. Therefore, metamorphic testing
is applied only in cases where a discrepancy is detected using dif-
ferential testing. Overall, the metamorphic relations served useful in

�nding bugs in model counters.

RQ3: How E�ective is Test Input Minimization with Delta

Debugging?

On average, TestMC was able to remove 30% of the clauses. For
each of the �les on which model counter crashes, TestMC gave
a pair of two CNF �les ⟨�, �⟩ where � and � include subsets of
clauses in the original �le such that � does not cause a failure, �
does cause a failure, and � includes all the clauses in � and one
more clause. We executed Ganak using � and � . We then observed
which lines were executed di�erently between the two �les. This
helped us to pinpoint the exact location of the Crash bug in Ganak.
This shows that test input minimization helps the developers to
localize the bugs in model counters and makes it easy to �x them.
We concluded that input minimization with delta debugging is a very

helpful technique in debugging model counters.

5.3 Discussion

Fault localization and bug �xes for model counters. As ex-
plained earlier, the source code of projMC was not available and
developers of dSharp considered bugs as lack of functionality. There-
fore, we could not perform fault localization on these two model
counters. However, we were successfully able to locate and �x bugs
in Ganak. Figure 3a and 3b show location and �x for Crash bug in
Ganak respectively. Ganak checks for UNSAT formulas by assert-
ing that two unit clauses should not contain negation of the same
literal. However, the assertion terminates Ganak before returning
the expected 0 value. Figure 3c and 3d show location and �x for
one of the reasons behind WCnt bug in Ganak. Ganak checks if
a user speci�ed -p in command for projected model counting. It
uses strcmp function (returns 0 for matched strings and non-zero
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otherwise) to compare the command with a prede�ned set of op-
tions. Ganak mistakenly turns projected model counting o� by
setting it to false instead of true due to which Ganak had problems
in projected model counting.
Number of unique bugs found inmodel counters. Table 2 and
Table 3 showed the number of formulas for which the model coun-
ters produced incorrect results. It is also important to know the
number of unique bugs found in the model counters. For Ganak,
TestMC foundWCnt bug and Crash bug. All instances of Crash bug
in Ganak were assertion errors (at the same location of the code)
and all instances of WCnt bug were related to incorrect parsing
of projected model counting formulas. In sum, we can say that
TestMC found 2 unique bugs in Ganak. For dSharp, TestMC found
two types of bugs i.e., Crash and WSat bug. For all 18 formulas for
which TestMC reported Crash bug in dSharp, we experienced fatal
OS crashes because dSharp consumed too much memory. The devel-
opers of dSharp recommended to use the tool inside containers with
limited maximal memory usage. For the case of WSat bug, the au-
thors con�rmed that they expect the model counter to be deployed
for only satis�able formulas; and a SAT solver is responsible for
checking unsatis�able formulas. Since, the developers considered
WSat and Crash bugs as lack of functionalities, we count them as
two unique bugs. TestMC reported 2 instances of SegFault bug in
projMC. Unfortunately, we were unable to get the access to source
code which failed us to study the number of unique bugs in projMC.
For ApproxMC, TestMC did not report any types of bugs.
Bug reports. Since Ganak is publicly available at GitHub, we
used GitHub to submit bug report (two types of bugs i.e, Crash
and WCnt) to Ganak developers. The bug report is available at
https://github.com/meelgroup/ganak/issues/1. The developers have
accepted the presence of bugs and made �xes to their tool. The �xed
version of their tool is now available at Ganak’s GitHub repository.
For dSharp, we reported two bugs (WSat and Crash) to the authors
via email. They considered the bugs as lack of functionalities and no
�xes have been made so far. Since there is no public repository of
projMC for us to report bugs (and the source-code is not available),
we emailed the authors of projMC to report SegFault bug. We sub-
mitted the bug report together with two CNF formulas on which
projMC crashed. The authors of projMC accepted the presence of
a bug and promptly provided us with the �xed binary executable
version of their tool.
Threats to Validity. Our focus in this paper was on testing the
model counters in their standard con�guration where they are
most commonly deployed. More comprehensive testing can con-
sider adjusting their con�gurations, e.g., initialization seed and
con�dence level, as well as the probabilistic nature of Ganak and
ApproxMC, which may reveal more bugs. Our test generator con-
trolled the number of formulas generated by breaking symmetries,
e.g., by ignoring di�erences in the order clauses appear in a formula.
While such symmetry breaking is necessary for making bounded
exhaustive testing feasible, they may prevent the generation of an
input formula that would have exposed a bug. We set a timeout of
5000 seconds which is common in the �eld of model counting. For
the automatically generated small CNF formulas, the timeout did
not matter since those inputs represented problems with low com-
plexity, which were easily solved by all four model counters. For the
larger CNF formulas that were derived from software designs, there

were only 15 cases in which one or more model counters timed
out. It is possible that more bugs are found if the model counters
are kept running for a longer time, or if more diverse formulas are
used.

6 LESSONS LEARNED

We learned several valuable lessons including the types of bugs
found in model counters, reasons causing these bugs, what bugs
are considered worth �xing by the tool authors, and factors that
users of model counters may want to consider.

Lesson 1: The de�nition of a fault can be surprisingly am-

biguous. We learned to our surprise that for some model counters,
such as dSharp, it is acceptable for the tool developers if the tool
incorrectly returns a positive model count, e.g., 1, when the input
formula is unsatis�able, i.e., has 0 solutions. The reasoning behind
this contradictory situation is that the developers (in this case) ex-
pect the model counter to be deployed for only satis�able formulas,
and a propositional satis�ability (SAT) solver to be deployed for
unsatis�able formulas. While this expectation can be upheld in tool
competitions where two di�erent categories of formulas (sat and
unsat) can be de�ned a prioiri, unfortunately, this expectation can
make the deployment of such model counters costly in software
analysis because to use such a model counter one must also run
a SAT solver to ensure that the model counter’s precondition of
satis�ability of the input formula is met, thereby paying the cost of
SAT solving and model counting.

Lesson 2: Small input formulas are extremely useful in test-

ing and fault localization.While the bene�ts of bounded-exhaustive
testing are well-documented, unfortunately its application remains
quite limited. Our study shows how automatically generated small
inputs are e�ective at revealing faults in state-of-the-art model
counters. Despite the simplicity of generating such inputs, tool
developers overlook their usefulness. Moreover, small inputs are
extremely valuable in fault localization. For example, we were able
to locate theWCnt bug in Ganak using small formulas generated
using our TestMC bounded exhaustive generator, and we located
the Crash bug in Ganak using test input minimization with delta
debugging.

Lesson 3: Developers can overlook simple bugs in their code.
Even though modern model counters employ sophisticated algo-
rithms that have been rigorously validated on paper, their tool
embodiments can fail for fairly simple reasons. Perhaps it is natural
for developers to focus on the more complex parts of the system
and meticulously engineer those parts while putting less focus on
the other parts, which then become a source of the system failure.
For example, for Ganak, we found that the model counting algo-
rithm was not broken but in fact the code to parse command line
arguments was buggy. Moreover, the tool did not handle assertion
errors properly.

Lesson 4: It is di�cult to help debug proprietary (closed -

source) software. While our reported bug reports were promptly
addressed by the authors of projMC, unfortunately we were not
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able to get access to the source code to directly help with debugging
the faults. This also prevented us to study the unique bugs in pro-
jMC. In such a situation we believe small inputs have a particularly
valuable role to play since they exhibit minimal execution paths
that show passing and failing executions.

Lesson 5:Model counters can exhibit silent failures. Like other
systems, there can be multiple types of bugs in model counters, in-
cluding silent failures where the tool reports a result that is invalid.
We found two bug types in Ganak, namely the WCnt bug and the
Crash bug, and two bug types in dSharp, namely the WSat bug and
the Crash bug.

Lesson 6: Some model counters can consume up all system

memory. On some executions of dSharp, we experienced fatal OS
crashes because it consumed all system memory. For users of model
counters, it is best to run them inside containers with limited maxi-
mal memory usage. This is particularly important when the model
counter is one of the backend tools employed in a software analysis.

Lesson 7: Public version of the tool may remain faulty well

after the bugs have been �xed internally. While the authors
of projMC promptly provided us �xed versions of the tool based
on the bug reports we submitted, the public version of projMC
remains faulty (at the time of submission of this paper, which is
over 6 months after we �rst reported the faults). There can be
various reasons for the delay in pushing the updates to the public
version. It is therefore important for the tool users to explicitly
check with the tool authors if they have an internal version that
has improvements that have not yet been made public.

7 RELATEDWORK

This paper reports, to the best of our knowledge, the �rst work on
applying automated testing techniques to �nd bugs in propositional
model counters. The related work spawns many software testing
areas, including di�erential testing, metamorphic testing, and test
input generation for di�erent kinds of systems [25, 28, 29, 33, 35,
46, 53, 60]. This section focuses on the most closely related work
on bug �nding for constraint solvers.

In the context of SAT solvers, the most closely related previous
work is by Brummayer et al. [17] who introduced novel fuzzing
techniques for SAT and quanti�ed boolean formula (QBF) solvers.
They implemented three fuzzers namely CNFFuzz for CNF formula
generation, FuzzSAT for 3-SAT formula generation, and QBFuzz for
quanti�ed boolean formula generation, and used delta debugging
for minimizing failure-inducing CNF inputs. The key di�erences
between their work and this paper are: TestMC automates the
testing of model counters, which are a generalization of SAT solvers,
and require di�erent test oracles, which TestMC’s di�erential and
metamorphic testing modules introduce; and moreover, TestMC
introduces a bounded-exhaustive generator for CNF formulas with
primary variables, which to our knowledge, is the �rst such tool.

Several projects have focused on fuzzing and metamorphic test-
ing of SMT solvers [13] and constraint propagation solvers. Brum-
mayer et al. [15] proposed grammar-based black-box fuzz testing
for randomly generating bit-vector SMT formulas, combined with

hierarchical delta-debugging using the knowledge of formula struc-
tures and types. Similar approaches are available for answer set
solverdevelopment[16].
tool which performs SMT problem instance transformation and
generation for string constraint solvers. Akgun et. al [3] proposed
metamorphic testing for a constraint propagation solver called Min-
ion [27] by checking the correctness and propagation level of a
new propagation algorithm for a constraint by comparing it with
a previously existing algorithm. Testing of the Gecode solver [51]
has evolved similarly to Minion’s. Several other works deal with
the generation of random formulas [21, 38, 42], but focusing on
theoretical properties of formulas and not on their suitability for
supporting the solver debugging or testing.

Model-based testing [54], a commonmethod inmany domains [19]
was also used for testing solvers by Artho et. al [4]. They used it to
test sequences of application programming interface (API) calls and
di�erent system con�gurations for the SAT solver Lingeling [10].
Subsequently, a model-based API testing framework for the SMT
solver Boolector [40]was proposed [41]. Furthermore,Modbat [5, 6],
a model-based API testing tool that provides an embedded domain-
speci�c language (DSL) for specifying the model, was used for
testing the SAT solver PicoSAT[11].

We believe our bounded-exhaustive CNF generator and the cor-
pus of CNF test inputs provide a useful resource for testing SAT
solvers and other model counters. Moreover, our metamorphic re-
lations admit a straightforward specialization for SAT solvers. We
plan to leverage TestMC to test a broader class of CNF-based solvers
and analysis tools.

8 CONCLUSION

This experience paper presented an empirical study on testing
industrial strength model counters by applying the principles of
di�erential and metamorphic testing together with bounded ex-
haustive input generation and input minimization. These principles
were embodied in the TestMC framework, and applied to test four
model counters, including three state-of-the-art model counters
from three di�erent categories: exact model counting, probabilistic
exact model counting, and probabilistic approximate model count-
ing. As test inputs, three complementary suites of CNF formulas
were used. One suite consisted of signi�cantly larger formulas that
are derived from a wide range of real-world software design prob-
lems. The second suite consisted of a bounded exhaustive set of
small formulas that TestMC generated. The third suite consisted of
CNF formulas generated using an o�-the-shelf CNF fuzzer. TestMC
found bugs in three of the four subject model counters. The bugs
led to crashes, segmentation faults, incorrect model counts, and
resource exhaustion by the solvers. Faults in two of the three model
counters were �xed by their authors based on the bugs found by
TestMC.
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