L))

Check for
Updates

2020 35th IEEE/ACM International Conference on Automated Software Engineering (ASE)

TestMC: Testing Model Counters using Differential and
Metamorphic Testing

Muhammad Usman
University of Texas at Austin, USA
muhammadusman@utexas.edu

ABSTRACT

Model counting is the problem for finding the number of solutions
to a formula over a bounded universe. This is a classic problem in
computer science that has seen many recent advances in techniques
and tools that tackle it. These advances have led to applications
of model counting in many domains, e.g., quantitative program
analysis, reliability, and security. Given the sheer complexity of the
underlying problem, today’s model counters employ sophisticated
algorithms and heuristics, which result in complex tools that must
be heavily optimized. Therefore, establishing the correctness of im-
plementations of model counters necessitates rigorous testing. This
experience paper presents an empirical study on testing industrial
strength model counters by applying the principles of differential
and metamorphic testing together with bounded exhaustive input
generation and input minimization. We embody these principles in
the TestMC framework, and apply it to test four model counters,
including three state-of-the-art model counters from three different
classes. Specifically, we test the exact model counters projMC and
dSharp, the probabilistic exact model counter Ganak, and the prob-
abilistic approximate model counter ApproxMC. As subjects, we
use three complementary test suites of input formulas. One suite
consists of larger formulas that are derived from a wide range of
real-world software design problems. The second suite consists of
a bounded exhaustive set of small formulas that TestMC generated.
The third suite consists of formulas generated using an off-the-shelf
CNF fuzzer. TestMC found bugs in three of the four subject model
counters. The bugs led to crashes, segmentation faults, incorrect
model counts, and resource exhaustion by the solvers. Two of the
tools were corrected subsequent to the bug reports we submitted
based on our study, whereas the bugs we reported in the third tool
were deemed by the tool authors to not require a fix.

CCS CONCEPTS

« Software and its engineering — Software testing and de-
bugging; Empirical software validation.

KEYWORDS

Model counting, metamorphic testing, differential testing, delta
debugging

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASE °20, September 21-25, 2020, Virtual Event, Australia

© 2020 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-6768-4/20/09...$15.00
https://doi.org/10.1145/3324884.3416563

Wenxi Wang
University of Texas at Austin, USA
wenxiw@utexas.edu

709

Sarfraz Khurshid
University of Texas at Austin, USA
khurshid@ece.utexas.edu

ACM Reference Format:

Muhammad Usman, Wenxi Wang, and Sarfraz Khurshid. 2020. TestMC:
Testing Model Counters using Differential and Metamorphic Testing. In
35th IEEE/ACM International Conference on Automated Software Engineering
(ASE °20), September 21-25, 2020, Virtual Event, Australia. ACM, New York,
NY, USA, 13 pages. https://doi.org/10.1145/3324884.3416563

1 INTRODUCTION

Model counting is the problem for finding the number of solutions
to a formula over a bounded universe. This is a classic problem in
computer science, which generalizes the satisfiability problem, i.e.,
whether a formula has a solution or not. Recent years have seen
many advances in techniques and tools for model counting [20].
These advances have led to many applications of model counting
in various domains, e.g., quantitative program analysis [44], relia-
bility [26], and security [7]. To handle the huge complexity of the
underlying problem, today’s model counters employ sophisticated
algorithms and heuristics, which result in complex tools that must
be heavily optimized for high efficiency. Therefore, establishing the
correctness of implementations of model counters — even if they
are proven correct on paper — necessitates rigorous testing.

This experience paper presents an empirical study on testing
industrial strength model counters by applying the principles of
four well-studied testing approaches: 1) bounded exhaustive in-
put generation where the system under test is tested against all
non-equivalent inputs within a bound on the input size [50]; 2) dif-
ferential testing where the outputs of multiple systems under test
are compared to detect faulty behaviors when some outputs do not
match [36]; 3) metamorphic testing where metamorphic relations
among results for different inputs are used as surrogate for test or-
acles [47]; and 4) input minimization using delta debugging where
inputs that cause failures are minimized to create smaller fault-
revealing inputs [58]. We embody these principles in the TestMC
framework, and apply it to test a variety of model counters.

Our specific focus is the common class of model counters for
propositional logic. Propositional model counting is a #P-complete
problem, which generalizes the propositional satisfiability (SAT)
problem [12], and hence is both highly useful and extremely expen-
sive to solve in practice. It has many applications such as Bayesian
belief networks, knowledge compilation, planning, and combinato-
rial designs [22, 24, 45]. Propositional model counters take as input
formulas in conjunctive normal form (CNF), just as SAT solvers [23].
A CNF formula is a conjunction (logical and) of clauses, where each
clause is a disjunction (logical or) of literals, where each literal is
a boolean variable or its negation. The standard CNF file format
that commonly used model counters and SAT solvers support is
the DIMACS format [9], which is a text file where each clause is
essentially a list of literals on a new line.

ASE °20, September 21-25, 2020, Virtual Event, Australia

TestMC'’s test generation module implements a dedicated gener-
ator for CNF files in the DIMACS format. Due to the simplicity of
the DIMACS format, generating CNF files is relatively straightfor-
ward, e.g., a non-deterministic generator that chooses the number
of clauses, number of variables, and the literals in each clause suf-
fice. To optimize generation, our generator first creates a set of
unique clauses based on the desired number of variables, then cre-
ates CNF formulas by selecting subsets of the clauses with respect
to the desired maximum number of clauses, and finally writes each
formula to a file. Due to the nature of bounded exhaustive testing,
even for small bounds, there can be a fairly large number of CNF
formulas. For example, for a bound of 4 variables (i.e., 8 literals)
and 4 clauses, there are 6.65 million unique CNF formulas (modulo
re-ordering of clauses within a formula).

We apply TestMC to test four model counters from three general
classes of model counters. The model counters are: projMC [34] and
dSharp [37], which are exact model counters; Ganak [48], which is
a probabilistic exact model counter; and ApproxMC [18], which is a
probabilistic approximate model counter. Three of the select model
counters, namely projMC, Ganak, and ApproxMC, are the current
state-of-the-art in their respective classes.

Each of the four model counters we choose supports projected
model counting, where the solver allows computing the counts with
respect to a given subset of variables, rather than the default of
all variables. Support for projected model counting is particularly
important for computing solutions that are relevant to the problem
domain because the original problem rarely exists in CNF, and
translation to CNF typically introduces auxiliary variables and
results in a formula that is equisatisfiable but not equivalent (and
can have a different number of solutions from the original formula
with the differences being on the values of the auxiliary variables
that exist only in CNF).

Since a model counter’s output is a non-negative integer, dif-
ferential testing mostly requires just a simple integer comparison.
Since our test subjects include a probabilistic exact and a probabilis-
tic approximate counter, the comparator we define allows defining
a tolerance threshold for the equality check. To complement differ-
ential testing, especially in cases when differential testing detects
a discrepancy between the counts of model counters or only one
model counter produces a result and all others timeout, we define
a sanity check and four metamorphic relations that are based on
propositional equivalences, primary variables, and formula simpli-
fication.

As subjects, we use three test suites of input formulas. One suite
consists of significantly larger formulas that are derived from a
wide range of software design problems (SDP) that are part of the
standard distribution of the well-known Alloy tool-set [31]. The sec-
ond suite includes a bounded exhaustive set of small formulas that
TestMC generated. The third suite contains the formulas generated
by an off-the-shelf CNF fuzzer [17].

TestMC found bugs in three model counters — projMC, dSharp,
and Ganak. The bugs caused four different kinds of failures: crashes,
segmentation faults, incorrect results, and resource exhaustion.
The fault revealing input formulas were minimized using delta
debugging, and form a part of the bug reports that were submitted
to the tools’ authors. We submitted bug reports for all the three
tools that TestMC reported as faulty. Two of the tools (projMC

710

Muhammad Usman, Wenxi Wang and Sarfraz Khurshid

and Ganak) were corrected subsequent to our bug reports. The
bugs in the third tool (dSharp) were deemed by the authors to not
necessitate a fix.

This paper makes the following contributions:

e Framework. We introduce TestMC, the first framework for
testing the functional correctness of model counters. Our
framework performs bounded-exhaustive test input genera-
tion using a dedicated CNF formula generator, differential
testing using a special purpose comparator, metamorphic
testing using a family of metamorphic relations for model
counters, and input minimization using delta debugging.
TestMC defines one sanity check and four metamorphic rela-
tions as test oracles. The sanity check and all four metamor-
phic relations utilize domain knowledge, specifically the fact
that we are testing model counters for formulas in propo-
sitional logic. Therefore, these metamorphic relations can
also be utilized for SAT problems. We employ TestMC to
generate a corpus of 6.65 million CNF formulas, which serve
as bounded exhaustive test suites that can be used by other
model counters and SAT solvers.

Study. We use TestMC to test four model counters, including
two exact model counters, one probabilistic exact model
counter, and one probabilistic approximate model counter.
We test the model counters against three suites of subjects:
a) 203 significantly larger CNF subjects derived from a wide
class of software models; b) the bounded exhaustive suite of
6.65 million small CNF subjects generated by TestMC; and c)
large number of CNF subjects (10 million) generated using
an off-the-shelf CNF fuzzer.

e Lessons Learned. We present a set of lessons learned during

our experience of testing model counters.

With model counters and other backend constraint solvers be-
coming more and more complex, there is an increasing need for
thoroughly testing their functionality, especially as their use in-
creases in critical domains, such as security. We believe our work
provides a practical framework that is based on well-understood
testing techniques and can handle real-world tools. We hope our
experience with TestMC proves valuable in the development of cor-
rect model counters and solvers, and for more effective deployment
of model counters.

2 EXAMPLES

This section presents small illustrative examples to describe the ba-
sics of CNF formulas, and the model counting and projected model
counting problems. We also present some small CNF formulas as
illustrative examples that were generated by TestMC and uncovered
bugs in some of the model counters we tested.

2.1 CNF and model counting

Consider the boolean formula “f = (a V =b) A (ma V b)”, where a
and b are boolean variables. Since f has 2 variables, there are a total
of 4 possible assignments to a and b: 1) a = false,b = false; 2) a =
false,b = true; 3) a = true,b = false; and 4) a = true, b = true. Of
these, the following 2 assignments are solutions, i.e., assignments
such that f is true: 1) a = true, b = true; and 2) a = false, b = false.

TestMC: Testing Model Counters using Differential and Metamorphic Testing

Since f is a conjunction of 2 clauses, f is already in CNF. The
following file shows an encoding of f in the DIMACS CNF format:
p cnf 2 2
1-20
-120

The first line, which begins with the character “p” defines the
type of formula (i.e., cnf), the number of variables (i.e., 2), and the
number of clauses (i.e., 2) respectively. Each subsequent line of text
shown includes a clause. The variables are identified by positive
integer ids. A positive literal is just a variable, and represented by
the corresponding variable’s id; a negative literal is the negation
of a variable, and represented by the negation of the correspond-
ing integer id. Each clause ends with the number 0. For example,
representing variable “a” as number “1” and “b” as number 2, the
clause “(a vV -b)” is represented in CNF as “1 -2 ¢”. Comments
may be included in a CNF in lines that start with the character “c”.
Given this input CNF file for formula f, all four model counters
that we use as test subjects, namely ApproxMC, dSharp, Ganak,
and projMC report 2 as the model count, which is the correct result.

2.2 Projected model counting

We next illustrate the projected model counting problem [8], where
the model count for the input formula is with respect to a subset,
say W, of the set containing all variables, say V, in the formula, so
only solutions that differ on at least one value of some variable in
W are considered unique. The variables in W are termed as primary
variables.

Consider the formulag = (a A b) V (¢ A d), which is not
in CNF. We can use logical equivalences to translate this formula
into CNF, e.g,as(a V. ¢) A (aVv d) A (b Vec)A(DdVd.
While using logical equivalences suffices to translate any proposi-
tional formula into CNF, such translation can cause an exponen-
tial increase in the formula size; to avoid such increase, practi-
cal tools use alternative translations, which introduce new vari-
ables and preserve the formula’s satisfiability but may not pre-
serve its solution count [8]. To illustrate, g can alternatively be
translated by introducing auxiliary variables u and v as follows:
h=wVvVo)A(uVva)A(EuVvb A(ovVecAI(—oVd.
Any solution to h contains a solution to g, and any solution to g can
be extended to form a solution for h. However, the total number of
solutions for g is 7, and the total number of solutions for h is 9, i.e.,
g and h have different model counts. Indeed, the space of candidate
solutions for g and h have different sizes, which are 2* = 16and
20 = 64 respectively.

The support for projected model counting in modern model
counters makes utilizing them much more feasible since they can be
employed simply by translating to CNF without worrying about the
translation creating an exponentially longer formula, or the model
counter providing an inaccurate count due to auxiliary variables. As
an illustration of projected model counting, consider using projMC
for computing the projected model count for formula h with respect
to the set of variables in g. The following CNF file represents h:

cind12340
p cnf 6 5
560

-510
-520

-6 30

-6 40

711

ASE ’20, September 21-25, 2020, Virtual Event, Australia

where variables a, b, c, d, u, and v are represented using integers
1, 2,3, 4, 5, and 6 respectively. The comment in the first line (that
starts with a “c”) uses the format used by ApproxMC and Ganak to
specify the list of primary variables, which are also termed inde-
pendent variables; this line states that variables with ids 1, 2, 3, and
4 are primary variables; the line terminates with “0”. In contrast
to ApproxMC and Ganak, projMC and dSharp require the list of
primary variables to be input separately from the CNF formula. For
convenience, we show examples where the primary variables are
listed as a comment as required by ApproxMC and Ganak; when
invoking projMC and dSharp, we provide the lists separately as
required by them. projMC reports 7 as the model count, which is
correct and the same as the model count for the formula g.

2.3 Example failures in Ganak, dSharp and
projMC
We next show four CNF formulas that lead to failures in the Ganak,

dSharp and projMC model counters. Specifically, we show the small-
est CNF formulas that exhibit these failures.

Example failure (incorrect count) in Ganak on a formula
generated by the TestMC bounded-exhaustive input gener-
ator

cind 10
pcnf 21
120

This formula is a disjunction of two variables, and there is only
one primary variable (that has id “1”). The formula has three so-
lutions but only two of them are unique with respect to just the
primary variable. For this input formula, Ganak incorrectly reports
the model count as 3. In contrast, the three other model counters
we tested report the correct count of 2.

Example failure (incorrect count) in dSharp on a formula
generated by the TestMC bounded-exhaustive input genera-
tor

cind 10

penf 12

10

-1 0

This formula has one variable and two clauses and represents a con-
tradiction since it is a conjunction of the variable and its negation.
The only variable in the formula is the primary variable. dSharp
outputs a model count of 1, which is wrong since the formula is
unsatisfiable.

Example failure (Assertion Error) in Ganak on a formula
generated by the TestMC bounded-exhaustive input gener-
ator

It turns out that the above formula also reveals another bug in
Ganak. In fact, given this formula, Ganak gives an assertion error.
In contrast, the other two model counters, projMC and ApproxMC,

produce the correct model count of 0 for this formula.

linux:~/Desktop/ganak/build$ python3 ganak.py -p exampleb.cnf
rm: cannot remove 'mis.out': No such file or directory

rm: cannot remove 'mis.timeout': No such file or directory

c Outputting solution to console

c GANAK version 1.0.0

The value of delta is ©.05

The value of hashrange is 64x1

ASE °20, September 21-25, 2020, Virtual Event, Australia

ganak: /.../Desktop/ganak/src/instance.h:215: ClauseIndex
Instance::addClause(std: :vector<LiteralID>&):

Assertion ~!isUnitClause(literals[@].neg())' failed.

The total user time taken by ganak is: 0.0

Example failure (seg fault) in projMC on a formula derived
from a software design problem

linux:~/Desktop/author_projmc$./projMC_linux example.cnf
-fpv=example.var

Benchmark Information

Number of variables: 1794

Number of clauses: 3020

Number of literals: 6630

Integer mode

o

Option list

Caching: 1

Variable heuristic: VSADS

Phase heuristic: TRUE

Partitioning heuristic: YES + graph reduction +
equivalence simplication

c

Segmentation fault (core dumped)

oo o0on0o0oo0o0o0o0o0

projMC gives a segmentation fault on this formula. Due to space
limitations, this formula together with other example formulas that
cause failures are provided at the GitHub repository!.

3 MODEL COUNTERS UNDER TEST

This section discusses the essential background and gives a brief
description of the model counters that form our test subjects. We
also state the specific versions of the tools we evaluated.

The state-of-the-art model counters can be classified into three
categories: (1) exact model counters that output the exact number
of solutions; (2) probabilistic exact model counters that output
the counts within a given confidence level; and (3) approximate
model counters that give counts within a given confidence level
and tolerance score. As test subjects, we choose a state-of-the-
art model counter in each of the three categories, as well as an
earlier model counter that was among the first to support projected
model counting. Specifically, we choose the following four model
counters: probabilistic approximate model counter ApproxMC [18]
(Section 3.1), the probabilistic exact model counter Ganak [48]
(Section 3.2) and the exact model counters dSharp [37] (Section 3.3)
and projMC [34] (Section 3.4). All four of these model counters
support projected model counting.

3.1 ApproxMC

ApproxMC [18] is a state-of-the-art approximate model counter that
is now in its third generation. The key idea behind ApproxMC is to
employ universal hashing to iteratively partition the solution space
into smaller regions that contain approximately the same number of
solutions by adding XOR constraints, and finally count the number
of solutions in one region, and compute the estimate for the full
space. A special SAT solver called CryptoMiniSAT [49], which
supports XOR constraints, is iteratively invoked by ApproxMC. The
use of universal hash functions provides theoretical guarantees for
the counting approximation. Moreover, the number of SAT calls was
reduced from the initial O(n) to O(log(n)) using the dependency
information among different SAT calls. Also, a new architecture for
efficiently solving XOR constraints which are the representation of
the hash function was proposed more recently. Past experiments
showed the model counting by ApproxMC was efficient as well

Uhttps://github.com/muhammadusman93/TestMC- ASE2020

712

Muhammad Usman, Wenxi Wang and Sarfraz Khurshid

as remarkably close to the exact counts. For our experiments, we
use the latest version of ApproxMC? (ApproxMCv3, Git commit ID
23d4439) with the default seed (i.e., 1).

3.2 Ganak

Ganak [48] outputs the projected model counts within the given
confidence level. Ganak is built on top of sharpSAT [52]. Ganak
relies on probabilistic component caching and universal hashing
which significantly improve the counting performance. Moreover,
it employs a number of heuristics on top of sharpSAT including
probabilistic component caching, new variable branching heuris-
tic, new phase selection heuristic, independent support heuristic,
exponentially decaying randomness heuristic, and learn and start-
over heuristic. In our evaluation, we used Ganak> (Git commit ID
3620813).

3.3 dSharp

dSharp [37] is among the first tools for projected model counting.
Similar to Ganak, it builds upon earlier work on sharpSAT [52],
and introduces four more components namely dynamic decom-
position, implicit binary constraint propagation (IBCP), conflict
analysis, and component caching. Dynamic decomposition breaks
down the problem into two components during the search and
then adds each component as a child to an “AND” node. IBCP is
proposed as a look-ahead strategy to select the unassigned variable
and evaluate the impact of the assignment in advance. Conflict
analysis is applied for non-chronological backtracking and learning
mechanism. Finally, dSharp utilizes component caching where the
broken components are stored for fast retrieval. In addition to these
four components, it also added support for solving deterministic
decomposable negation normal form (d-DNNF) formulas which
are translated into directed acyclic graphs. We used dSharp-ASP*
(BitBucket commit ID 791668a) for experiments.

3.4 projMC

projMC [34] is a state-of-the-art exact model counter that uses a
recursive algorithm defined for deterministic disjunctive form. pro-
jMC first creates partitions of the original CNF formula such that
they are pairwise variable independent using disjunctive decompo-
sition. It then calculates the number of partitions and solves each
partition recursively by checking if there is a satisfiable solution. If
so, the counts of each partition are combined as a total model count
of the problem; otherwise, it reports a contradiction. projMC? is
available as an executable file®.

4 TESTMC FRAMEWORK

This section introduces our TestMC framework for testing model
counters and describes its key components.

Zhttps://github.com/meelgroup/ApproxMC
Shttps://github.com/meelgroup/ganak
*https://bitbucket.org/haz/dsharp-asp/src/default/

5projMC is proprietary software. Hence, there is no Git commit ID.
®http://www.cril.univ-artois.fr/kc/projme.html

TestMC: Testing Model Counters using Differential and Metamorphic Testing

Model counters under test e.g.,

|
Differential
Testing

Bounded Exhaustive
Input Generation

i Input
Me'tlfaer:t?r:ghlc Minimization

<pass, fail>
input pairs

fault revealing
inputs

Figure 1: TestMC framework. config is the maximum num-
ber of boolean variables and clauses to define the size bound
for bounded exhaustive input generator.

4.1 Overview

Figure 1 shows an overall architecture of the TestMC framework.
There are four basic components: (1) bounded exhaustive test gen-
eration (Section 4.2); (2) differential testing (Section 4.3); (3) meta-
morphic testing (Section 4.4); and (4) input minimization with delta
debugging (Section 4.5). To test the input model counters, TestMC
uses a pool of CNF formulas that serve as test inputs to the model
counters. TestMC uses differential testing and metamorphic testing
to determine test failures. Specifically, for each CNF input in the
pool, TestMC invokes each model counter under test and compares
their results (with respect to a threshold on the allowed difference).
In cases where differential testing detects a discrepancy between
the counts of model counters or only one counter returns a result
and the others timeout, metamorphic testing helps to validate the
returned count. Once failures are found, TestMC uses input mini-
mization based on delta debugging [57] to reduce the fault-revealing
inputs.

The current pool of CNF input files contains formulas from three
sources. One source is CNF formulas translated from software de-
sign problems (SDP) that are included in the standard distribution
of the well-known Alloy tool-set [1, 32], the second source is our
bounded-exhaustive generator, and the third source is CNF formu-
las generated using an off-the-shelf CNF fuzzer [17]. Alloy allows
building and analyzing designs of software systems, and has been
used in many applications, including analyzing distributed algo-
rithms [56] and finding security bugs [39]. Alloy’s backend analyzer
translates Alloy designs to CNF formulas, and employs off-the-shelf
SAT solvers, which allows Alloy users to check desired properties
of their designs. The Alloy distribution includes a variety of real-
world problems and hence provides a valuable source of CNFs as
test inputs. The CNF fuzzer allows to randomly create a large num-
ber of CNF formulas and TestMC bounded exhaustive generator
creates formulas that are helpful in checking corner cases and giv-
ing developers small fault revealing CNF formulas which makes it
easier for them to debug their tools.

4.2 Bounded Exhaustive Generation

We designed and implemented a dedicated generator for creating
bounded-exhaustive test suites consisting of files in CNF format for
testing model counters that support computing projected model
counts. Figure 2 shows our input generation algorithm in Java-like

713

ASE ’20, September 21-25, 2020, Virtual Event, Australia

CNF generate(int maxVars, int maxClauses) {
Set<Integer> literals = createAllLiterals(maxVars);
Set<Clause> allClauses = createAllClauses(literals);
allClauses = reduce(allClauses);
int numClauses = choose(1, maxClauses);

CNFBody body = chooseSubset(numClauses, allClauses);
int projVars = choose(1, maxVarId(body));

CNF formula = addProjVarInfo(projVars, body);

return formula;

Figure 2: TestMC bounded exhaustive generation algorithm.

pseudo-code. The input maxvars and maxClauses define the maximum
number of boolean variables and the maximum number of clauses
respectively to define the size bound for the inputs generated. The
helper method createAllLiterals returns a set that contains all liter-
als with respect to the input number of variables. In general, for n
variables, there are 2n literals. The helper method createAllclauses
returns a set of all clauses that can be formed using a subset of the
input set of literals where each clause is viewed as set of literals.
For example, the CNF clauses “1 -2 0” and “-2 1 0” are considered
to be the same and only one of them is generated. Breaking such
symmetries is essential for applying bounded-exhaustive testing -
even for small bounds. The helper method reduce allows removing
some clauses from the set, which are considered not interesting; at
present, we remove clauses that contain a tautology, i.e., a variable
and its negation since that clause is always satisfied regardless of
the assignment to that variable.

The helper method choose represents non-deterministic choice
(implemented similar to verify.getInt(,) function of the Java Path
Finder [30]) that selects a number between 1 and maxClauses (inclu-
sive); thus, nunClauses is the number of clauses that the generated
formula will contain. The helper method choosesubset also represents
non-deterministic choice, which chooses a subset of size nunClauses
from the set allclauses. In general, for x literals, there are 2¥ — 1
clauses that contain at least one literal. Selecting a set of clauses
allows the algorithm to break more symmetries as two CNF for-
mulas that differ only by the order in which the clauses appear in
the formula are considered the same and only one of them will
be generated. Next, the algorithm non-deterministically chooses
a number of variables that are primary variables. Finally, the CNF
formula is initialized and returned.

To see an illustration of the test generation algorithm, assume
maxVars = 2 and maxClauses = 3. Then, literals = {1, 2, -1, -2}, and
there are 15 (2* — 1) clauses that can be formed as subsets of these
4 literals:

Clause 1 = {1} Clause 2 = {2}
Clause 3 = {-1} Clause 4 = {-2}
Clause 5 = {1,2} Clause 6 = {1,-1}
Clause 7 = {1,-2} Clause 8 = {2,-1}
Clause 9 = {2,-2} Clause 10 = {-1,-2}
Clause 11 = {1,2,-1} Clause 12 = {1,2,-2}
Clause 13 = {1,-1,-2} Clause 14 = {2,-1,-2}
Clause 15 = {1,2,-1,-2}

ASE °20, September 21-25, 2020, Virtual Event, Australia

The algorithm prunes clause 6, 9, 11, 12, 13, 14 and 15 since they
contain a tautology. This leaves 8 clauses that are used for gen-
erating CNF formulas. The algorithm creates all subsets of up to

3 clauses. There are ({15) = 8 subsets of size 1; (g) = 28 subsets of

size 2; and (g) = 56 subsets of size 3. Thus, there are 92 unique
subsets with 1, 2, or 3 clauses. Since there are 2 variables in total we
can project on one of them or on both of them; if the CNF formula
only has one variable, we only use that as the primary variable. The
total number of CNF formulas for the size bound maxvars = 2 and
maxClauses = 3 is 181. For testing the subject model counters in this
paper, we set the size bound to maxvars = 4 and maxClauses = 4. There
are 255 (28 — 1) clauses that can be formed as subsets of 8 literals.
The algorithm prunes 175 clauses which contain a tautology, which
leaves 80 clauses that are used for generating CNF formulas. The
algorithm creates all subsets of up to 4 clauses. There are (810) =80
subsets of size 1; (820) = 3160 subsets of size 2; (830) = 82160 sub-

sets of size 3; and (io) = 1581580 subsets of size 4. Thus, there are
1,666,980 unique subsets with 1, 2, 3 or 4 clauses. Since there are
4 variables in total, we can have up to 4 projection variables for a
formula. Note that the number of projection variables is always <
the number of variables in the formula. It gives 6.65 million CNF
formulas.

4.3 Differential Testing

For differential testing, TestMC checks for differences in the model
counters’ outputs; if they differ, it checks if a majority agrees and
if it does, the minority is considered as likely faulty. Since our test
subjects include a probabilistic exact and a probabilistic approxi-
mate counter, the comparator we define allows the user to define a
tolerance for the equality check (only for ApproxMC and Ganak).
For our experiments, we set the tolerance to 10% (two outputs mis-
match if they are not within 10% of each other) based on a recent
study [55].

4.4 Metamorphic Testing

To complement differential testing, especially in cases when differ-
ential testing detects a discrepancy between the counts of model
counters or only one model counter produces a result and all others
timeout, we define one sanity check and four metamorphic rela-
tions as test oracles. The sanity check and all four relations utilize
domain knowledge, specifically the fact that we are testing model
counters for formulas in propositional logic.

Let f be a formula in propositional logic with n variables, so the
space of all possible boolean assignments to the variables has size
2", Assume there are k primary variables where k < n; assume
(without loss of generality) the primary variable ids are 1,. .., k. Let
mc(f) represent the model count for f. Let pmc(f, k) represent the
projected model count for f with respect to the k primary variables.
Let fx=y be f where the variable x is assigned the boolean value v.

Sanity Check (SC1): pme(f, k) < 2K, ie., the projected model
count over k variables must be no more than 2¥. It is simple to
evaluate this relation: take logy of the tool’s output and compare
it with k; if k is smaller, the tool’s output is faulty. SC1 does not
require any additional invocation of the model counter.

714

Muhammad Usman, Wenxi Wang and Sarfraz Khurshid

Metamorphic relation 1 (MR1): pmc(f,k) = pmc(fo=true k)
where v is a variable in f, i.e., the model count for formula f is
greater or equal to the model count for reduced formula fy=¢rye,
i.e., f where v is set to true. Given variable v, we can create the
CNF formula for fy=¢rye simply by adding the clause “v ¢” to the
original CNF for f. In our experiments we set v to 1. MR1 requires
one additional invocation of the model counter.

Metamorphic relation 2 (MR2): pmc(f, k) = pmc(fo=true, k) +
pme(fo=faises k) where v is a variable in f, ie., the model count
for formula f is the sum of the model counts for reduced formulas
fo=true, 1.e., f where v is set to true, and fv:false» ie., f where v is
set to false. Given variable v, we can create the CNF formulas for
fo=true and fy- raise simply by adding the clauses “v 0” and “-v 0”
respectively to the original CNF for f. In our experiments we set v
to 1. MR2 requires two additional invocations of the model counter.

Metamorphic relation 3 (MR3): Let y be a clause in f and z be a
literal in y. Let y’ be a clause containing all literals originally in y
and literal z added again. Thus, replacing y with y’ should have no
effect on the original formula f (y’ is equivalent to y). In this case,
pme(f,k)=pme(f —y + y’, k), i.e., the count of original formula
should be equal to the count of the original formula with y being
removed and y” added. MR3 requires one additional invocation of
the model counter.

Metamorphic relation 4 (MR4): Let y’ be a clause containing a
tautology. Let f/ be another formula which includes all the clauses
in formula f and one more clause y’ (clause containing tautol-
ogy). Thus, both the original formula f and the new formula f’
should have the same count since adding a tautology to the original
formula should have no effect on the model count. In this case,
pme(f,k)=pme(f + vy, k), i.e.,, the count of the original formula
should be equal to the count of the new formula with y” added.
MR4 requires one additional invocation of the model counter.

4.5 Input Minimization with Delta Debugging

To facilitate debugging, TestMC supports input minimization using
delta debugging for fault-revealing inputs [2]. The simplicity of
the CNF file format helps with effective minimization since any
subset of the CNF clauses is itself a CNF formula; to create a new
CNF file using a subset, we populate the new file with the selected
clauses and update the number of clauses listed in the declaration
line (that starts with “p”). We follow a standard method for input
minimization that uses binary search to find a sequence of clauses
in the original formula such that the failure recurs [59]. In addition,
we create a pair of two CNF files (C, D) where C and D include
subsets of clauses in the original fault revealing input such that C
does not cause a failure, D does cause a failure and D includes all
the clauses in C and one additional clause. We expect the pair (C, D)
to assist in fault localization [43] where the user can compare the
two traces on inputs that are almost identical and differ by only
one clause.

TestMC: Testing Model Counters using Differential and Metamorphic Testing

Table 1: Basic information about the test suite.

SDPGen BEGen | FuzzGen

CNF Formulas | Total 203 | 6,649,854 | 10,000,000
Min 28 1 2

Max 93,764 4 34,755

Total Vars Avg | 476412 3.99 11.39
Std | 9.028.88 0.09 2756

Min 3 1 2

Primary Vars | M2 2,048 4 34,755
Avg 201.72 2.50 11.39

Std 269.52 1.12 2756

Min 31 1 3

Max | 291,349 4| 123891

Total Clauses | 00 | 1106647 3.95 29.40
Std | 25,640.81 0.23 95.61

5 EXPERIMENTAL EVALUATION

This section describes the test suites employed for testing model
counters, evaluates TestMC using three research questions and
presents examples of bugs and fixes of the tested model counters.

5.1 Test Suite

This section describes the CNF formulas used by TestMC for testing
model counters. The test suites are classified into three categories:
a) test suite (denoted as SDPGen) containing 203 large CNF formu-
las derived from a wide class of software design problems; b) test
suite (denoted as BEGen) containing small CNF formulas created
by bounded exhaustive generator; and c) test suite (denoted as Fuz-
zGen) containing a large number of formulas with varied scales
generated by an off-the-shelf CNF fuzzer called FuzzSAT [17]. Ta-
ble 1 summarizes detailed information about each test suite, includ-
ing the total number of test cases, minimum, maximum, average,
and standard deviation of the number of total variables, primary
variables, and total clauses of the input formula, respectively.
Formulas generated using software design problems (SDP-
Gen) Alloy is able to translate modeled real-world problems to
CNF formulas, that are solved by backend SAT solvers for check-
ing desired properties. The Alloy distribution includes a variety
of real-world problems and hence provides a valuable source of
CNF formulas as a potential test suite. There are 203 large CNF
formulas generated from software design problems in Alloy [1, 32].
The number of total variables ranged from a minimum of 28 to a
maximum of 93,764, with an average of 4,764.12. The number of
primary variables ranged from a minimum of 3 to a maximum of
2,048, with an average of 201.72. The number of clauses ranged
from a minimum of 31 to a maximum of 291,349, with an average
of 11,066.47.

Formulas generated using a bounded exhaustive generator
(BEGen) A total of 6,649,854 (6.65 million approximately) CNF
formulas were generated by the bounded-exhaustive generator
using the algorithm described in Section 4.2. These formulas are in
small scale. The number of total variables ranged from a minimum
of 1 to a maximum of 4, with an average of 3.99; the number of
primary variables ranged from a minimum of 1 to a maximum

715

ASE ’20, September 21-25, 2020, Virtual Event, Australia

of the total number of variables in the formula, with an average
of 2.50. The number of clauses ranged from a minimum of 1 to a
maximum of 4, with an average of 3.95. These formulas are helpful
in checking corner cases and more importantly give developers
small fault revealing CNF formulas which makes it easier to debug
the tool.

Formulas generated using off-the-shelf CNF fuzzer (FuzzGen)
A total of 10,000,000 (10 million) formulas were randomly generated
by CNF fuzzer called FuzzSAT [17] for rigorous testing of model
counters. The number of total variables ranged from a minimum of
2 to a maximum of 34,755, with an average of 11.39. The number of
clauses ranged from a minimum of 3 to a maximum of 123,891, with
an average of 29.40. FuzzSAT considers all variables to be primary
variables (number of primary variables is always equal to the num-
ber of total variables) which may cause the testing on projected
model counting ineffective. As part of future work, we plan to add
support to FuzzSAT for generating formulas with different sets of
primary variables, by selecting them randomly.

The Bounded-Exhaustive Generator as well as all 3 test suites
(16.65 million CNF formulas in total) are available at: https://github.
com/muhammadusman93/TestMC-ASE2020. All experiments were
performed on Ubuntu 16.04 with an Intel Core-i7 8750H CPU
(2.20 GHz) and 16GB RAM.

5.2 Research Questions
This section answers following three research questions.

e RQ1: How Effective is TestMC Differential Testing Mod-
ule in Finding and Categorizing Bugs/Failures in Model
Counters?

e RQ2: How Effective are the TestMC Metamorphic Test-
ing Relations in Finding Bugs/Failures in Model Coun-
ters?

¢ RQ3: How Effective is Test Input Minimization with
Delta Debugging?

RQ1: How Effective is TestMC Differential Testing Module
in Finding and Categorizing Bugs/Failures in Model Coun-
ters?

TestMC was able to find 4 different types of bugs/failures in 3 model
counters. The first bug type called WSat describes that a model
counter returns the wrong satisfiability of the input formula, specif-
ically, returns SAT for UNSAT problem. The second bug type called
WCnt indicates that a model counter gives a wrong count of the
formula. If the model counter crashes due to segmentation fault, it
is classified as SegFault bug. Lastly, if the model counter terminates
unexpectedly, it is classified as Crash bug. Table 2 summarizes the
results of each bug type that happened in each model counter, for
each test suite. Since our test subjects include a probabilistic exact
and a probabilistic approximate counter, the comparator we define
allows the user to define a tolerance for the equality check (only for
ApproxMC and Ganak). For our experiments, we set the tolerance
to 10% (two outputs mismatch if they are not within 10% of each
other) based on a recent study [55].

For Ganak, TestMC found two types of bugs: WCnt in 3,996,331
cases and Crash in 56,617 cases, which strongly indicates the exis-
tence of bugs inside the tool. We found that all of the Crash cases in
Ganak were assertion failures. For dSharp, TestMC found two types

ASE °20, September 21-25, 2020, Virtual Event, Australia

Muhammad Usman, Wenxi Wang and Sarfraz Khurshid

Table 2: Results of applying differential testing on Ganak, dSharp and projMC for each test suite are shown. ApproxMC is not

shown because it did not give faulty results.

Ganak
Input WSat WCnt SegFault Crash Total
SDPGen 0 77 0 4 81
BEGen 0 3996254 0 48344 4044598
FuzzGen 0 0 0 8269 8269
Total 0 3996331 0 56617 4052948
dSharp
Input WSat WCnt SegFault Crash Total
SDPGen 0 0 0 18 18
BEGen 48224 0 0 0 48224
FuzzGen 7490 0 0 0 7490
Total 55714 0 0 18 55732
projMC
Input WSat WCnt SegFault Crash Total
SDPGen 0 0 2 0 2
BEGen 0 0 0 0 0
FuzzGen 0 0 0 0 0
Total 0 0 2 0 2

Table 3: Results of applying Sanity check and Metamorphic relations for formulas on which differential testing detected

discrepancy. Total number of these formulas is given in brackets in Input column of table.

formula on which differential testing detected discrepancy.

"_n

indicates that there was no

Ganak
Input SC1 MR1 MR2 MR3 MR4
SDPGen (77) 48 15 50 0 0
BEGen(3996254) 2902390 16386 1972934 0 0
FuzzGen(0) - - - - -
Total 2902438 16401 1972984 0 0
Percentage 72.63% 0.41% 49.37% 0% 0%

dSharp
Input SC1 MR1 MR2 MR3 MR4
SDPGen(0) - - - - -
BEGen(48224) 0 0 13705 0 0
FuzzGen(7490) 0 0 2 0 0
Total 0 0 13707 0 0
Percentage 0% 0% 24.60% 0% 0%

of bugs: WSat in 55,714 cases, and Crash in 18 cases on which dSharp
even made the operating system crash, unfortunately. We investi-
gated the reasons behind the OS crash and found that dSharp does
not place any limit on the amount of memory it uses. It exhausts all
of the memory resulting in a fatal crash. Lastly, for projMC, TestMC
found SegFault bug in 2 cases.

Specifically, when tested on BEGen, 3,996,254 cases of WCnt bug
and 48,344 cases of Crash bug were found in Ganak; 48,224 cases
of WSat bug were found in dSharp; and no bugs were found for
ApproxMC and projMC. When tested on FuzzGen; 8,269 cases of

716

Crash bug were found in Ganak; 7,490 cases of WSat bug were found
in dSharp; and similar to BEGen no bugs were found in ApproxMC
and projMC. When tested on SDPGen, 77 cases of WCnt bug were
found and 4 cases of Crash bug were found in Ganak; 18 cases of
Crash bug were found in dSharp; and 2 cases of SegFault bug were
found in projMC; and no bugs were found for ApproxMC. Note
that, FuzzGen cannot detect WCnt bugs in Ganak while BEGen
can. This may be due to the fact that random fuzzers generate CNF
formulas by considering all variables as primary variables and hence
may not be effective for testing bugs in projected model counting.

LS O T R,

TestMC: Testing Model Counters using Differential and Metamorphic Testing

if (literals.size() == 1) {
assert(!isUnitClause(literals[@].neg()));
unit_clauses_.push_back(literals[0]);
return 0; }

(a) Location of Crash bug in Ganak

else if(strcmp(argvl[il, "-p")==0)
theSolver.config().perform_projectedmodelcounting
= false;

(c) Location of WCnt bug in Ganak

ASE ’20, September 21-25, 2020, Virtual Event, Australia

if (literals.size() 1 {
addBinaryClause(literals[@], literals[0]);
return 0; }

[SR

(b) Fix for Crash bug for Ganak

2 else if(strcmp(argvli], "-p")==0)

3 theSolver.config().perform_projectedmodelcounting
= true;

(d) Fix for WCnt bug for Ganak

Figure 3: Fault localization and bug fixes for Ganak

Whereas our bounded exhaustive generator is able to generate all
possible combinations of primary variables and thus could be highly
effective in finding bugs in projected model counting, regardless of
the small scales of the generated formulas. To summarize, we can
conclude that TestMC differential testing module is highly effective
in finding and categorizing bugs/failures in model counters.

RQ2: How Effective are the TestMC Metamorphic Testing
Relations in Finding Bugs/Failures in Model Counters?
Unsatisfying metamorphic relations indicate the existence of bugs
whereas satisfying metamorphic relations help to narrow down the
list of potential bugs. Table 3 shows the results of metamorphic
testing on Ganak and dSharp. TestMC only found SegFault bugs in
projMC so metamorphic testing is not applicable for projMC. For
Ganak, SC1 and MR2 proved to be most useful followed by MR1. SC1
was able to find 72.63% of formulas on which TestMC found (during
differential testing) WCnt bug for Ganak. MR1 was able to find 0.41%
and MR2 was able to find 49.37% of such formulas. However, MR3
and MR4 were not able to find any bug. SC1 points out problems
w.r.t projected model counting. We can observe that Ganak violated
SC1 2902438 times. Similarly, MR2 helps to point out that Ganak is
giving larger than expected counts. Code inspection revealed that
Ganak is ignoring the primary variables, thereby increasing the
state space of the solutions. MR3 is helpful in finding bugs related
to repeated literals in a clause and MR4 is good at detecting bugs
related to tautological clauses. The reason why MR3 and MR4 failed
to find any bugs is because the model counters under test do not
have such bug types. However, the usefulness of MR3 and MR4
should not be overlooked.

For dSharp, MR2 proved to be useful since it was able to identify
24.60% of formulas on which TestMC found (during differential
testing) WSat bug for dSharp. Although no other metamorphic
relations were violated by dSharp, these relations were still helpful.
For example, having 0 as a count for SC1 shows that TestMC did not
find any bugs related to projected model counting in dsharp. This
matches our observation in RQ1. There were a total of 15 formulas
on which one or more model counters timed-out and MR relations
were able to confirm faults in 3 (20 %) of these formulas. Note that

717

most metamorphic relations requires 1 additional invocation of the
model counter (for each formula) which is costly. Since our subject
model counters include approximate (ApproxMC) and probabilistic
exact (Ganak) counters, there can be false positives using meta-
morphic and differential testing. Therefore, metamorphic testing
is applied only in cases where a discrepancy is detected using dif-
ferential testing. Overall, the metamorphic relations served useful in
finding bugs in model counters.

RQ3: How Effective is Test Input Minimization with Delta
Debugging?

On average, TestMC was able to remove 30% of the clauses. For
each of the files on which model counter crashes, TestMC gave
a pair of two CNF files (C, D) where C and D include subsets of
clauses in the original file such that C does not cause a failure, D
does cause a failure, and D includes all the clauses in C and one
more clause. We executed Ganak using C and D. We then observed
which lines were executed differently between the two files. This
helped us to pinpoint the exact location of the Crash bug in Ganak.
This shows that test input minimization helps the developers to
localize the bugs in model counters and makes it easy to fix them.
We concluded that input minimization with delta debugging is a very
helpful technique in debugging model counters.

5.3 Discussion

Fault localization and bug fixes for model counters. As ex-
plained earlier, the source code of projMC was not available and
developers of dSharp considered bugs as lack of functionality. There-
fore, we could not perform fault localization on these two model
counters. However, we were successfully able to locate and fix bugs
in Ganak. Figure 3a and 3b show location and fix for Crash bug in
Ganak respectively. Ganak checks for UNSAT formulas by assert-
ing that two unit clauses should not contain negation of the same
literal. However, the assertion terminates Ganak before returning
the expected 0 value. Figure 3c and 3d show location and fix for
one of the reasons behind WCnt bug in Ganak. Ganak checks if
a user specified -p in command for projected model counting. It
uses stremp function (returns 0 for matched strings and non-zero

ASE °20, September 21-25, 2020, Virtual Event, Australia

otherwise) to compare the command with a predefined set of op-
tions. Ganak mistakenly turns projected model counting off by
setting it to false instead of true due to which Ganak had problems
in projected model counting.

Number of unique bugs found in model counters. Table 2 and
Table 3 showed the number of formulas for which the model coun-
ters produced incorrect results. It is also important to know the
number of unique bugs found in the model counters. For Ganak,
TestMC found WCnt bug and Crash bug. All instances of Crash bug
in Ganak were assertion errors (at the same location of the code)
and all instances of WCnt bug were related to incorrect parsing
of projected model counting formulas. In sum, we can say that
TestMC found 2 unique bugs in Ganak. For dSharp, TestMC found
two types of bugs i.e., Crash and WSat bug. For all 18 formulas for
which TestMC reported Crash bug in dSharp, we experienced fatal
OS crashes because dSharp consumed too much memory. The devel-
opers of dSharp recommended to use the tool inside containers with
limited maximal memory usage. For the case of WSat bug, the au-
thors confirmed that they expect the model counter to be deployed
for only satisfiable formulas; and a SAT solver is responsible for
checking unsatisfiable formulas. Since, the developers considered
WSat and Crash bugs as lack of functionalities, we count them as
two unique bugs. TestMC reported 2 instances of SegFault bug in
projMC. Unfortunately, we were unable to get the access to source
code which failed us to study the number of unique bugs in projMC.
For ApproxMC, TestMC did not report any types of bugs.

Bug reports. Since Ganak is publicly available at GitHub, we
used GitHub to submit bug report (two types of bugs i.e, Crash
and WCnt) to Ganak developers. The bug report is available at
https://github.com/meelgroup/ganak/issues/1. The developers have
accepted the presence of bugs and made fixes to their tool. The fixed
version of their tool is now available at Ganak’s GitHub repository.
For dSharp, we reported two bugs (WSat and Crash) to the authors
via email. They considered the bugs as lack of functionalities and no
fixes have been made so far. Since there is no public repository of
projMC for us to report bugs (and the source-code is not available),
we emailed the authors of projMC to report SegFault bug. We sub-
mitted the bug report together with two CNF formulas on which
projMC crashed. The authors of projMC accepted the presence of
a bug and promptly provided us with the fixed binary executable
version of their tool.

Threats to Validity. Our focus in this paper was on testing the
model counters in their standard configuration where they are
most commonly deployed. More comprehensive testing can con-
sider adjusting their configurations, e.g., initialization seed and
confidence level, as well as the probabilistic nature of Ganak and
ApproxMC, which may reveal more bugs. Our test generator con-
trolled the number of formulas generated by breaking symmetries,
e.g., by ignoring differences in the order clauses appear in a formula.
While such symmetry breaking is necessary for making bounded
exhaustive testing feasible, they may prevent the generation of an
input formula that would have exposed a bug. We set a timeout of
5000 seconds which is common in the field of model counting. For
the automatically generated small CNF formulas, the timeout did
not matter since those inputs represented problems with low com-
plexity, which were easily solved by all four model counters. For the
larger CNF formulas that were derived from software designs, there

718

Muhammad Usman, Wenxi Wang and Sarfraz Khurshid

were only 15 cases in which one or more model counters timed
out. It is possible that more bugs are found if the model counters
are kept running for a longer time, or if more diverse formulas are
used.

6 LESSONS LEARNED

We learned several valuable lessons including the types of bugs
found in model counters, reasons causing these bugs, what bugs
are considered worth fixing by the tool authors, and factors that
users of model counters may want to consider.

Lesson 1: The definition of a fault can be surprisingly am-
biguous. We learned to our surprise that for some model counters,
such as dSharp, it is acceptable for the tool developers if the tool
incorrectly returns a positive model count, e.g., 1, when the input
formula is unsatisfiable, i.e., has 0 solutions. The reasoning behind
this contradictory situation is that the developers (in this case) ex-
pect the model counter to be deployed for only satisfiable formulas,
and a propositional satisfiability (SAT) solver to be deployed for
unsatisfiable formulas. While this expectation can be upheld in tool
competitions where two different categories of formulas (sat and
unsat) can be defined a prioiri, unfortunately, this expectation can
make the deployment of such model counters costly in software
analysis because to use such a model counter one must also run
a SAT solver to ensure that the model counter’s precondition of
satisfiability of the input formula is met, thereby paying the cost of
SAT solving and model counting.

Lesson 2: Small input formulas are extremely useful in test-
ing and faultlocalization. While the benefits of bounded-exhaustive
testing are well-documented, unfortunately its application remains
quite limited. Our study shows how automatically generated small
inputs are effective at revealing faults in state-of-the-art model
counters. Despite the simplicity of generating such inputs, tool
developers overlook their usefulness. Moreover, small inputs are
extremely valuable in fault localization. For example, we were able
to locate the WCnt bug in Ganak using small formulas generated
using our TestMC bounded exhaustive generator, and we located
the Crash bug in Ganak using test input minimization with delta

debugging.

Lesson 3: Developers can overlook simple bugs in their code.
Even though modern model counters employ sophisticated algo-
rithms that have been rigorously validated on paper, their tool
embodiments can fail for fairly simple reasons. Perhaps it is natural
for developers to focus on the more complex parts of the system
and meticulously engineer those parts while putting less focus on
the other parts, which then become a source of the system failure.
For example, for Ganak, we found that the model counting algo-
rithm was not broken but in fact the code to parse command line
arguments was buggy. Moreover, the tool did not handle assertion
errors properly.

Lesson 4: It is difficult to help debug proprietary (closed -
source) software. While our reported bug reports were promptly
addressed by the authors of projMC, unfortunately we were not

TestMC: Testing Model Counters using Differential and Metamorphic Testing

able to get access to the source code to directly help with debugging
the faults. This also prevented us to study the unique bugs in pro-
[[MT. In such a situation we believdeselapimmits have a particularly
valuable role to play since they exhibit minimal execution paths
that show passing and failing executions.

Lesson 5: Model counters can exhibit silent failures. Like other
systems, there can be multiple types of bugs in model counters, in-
cluding silent failures where the tool reports a result that is invalid.
We found two bug types in Ganak, namely the WCnt bug and the
Crash bug, and two bug types in dSharp, namely the WSat bug and
the Crash bug.

Lesson 6: Some model counters can consume up all system
memory. On some executions of dSharp, we experienced fatal OS
crashes because it consumed all system memory. For users of model
counters, it is best to run them inside containers with limited maxi-
mal memory usage. This is particularly important when the model
counter is one of the backend tools employed in a software analysis.

Lesson 7: Public version of the tool may remain faulty well
after the bugs have been fixed internally. While the authors
of projMC promptly provided us fixed versions of the tool based
on the bug reports we submitted, the public version of projMC
remains faulty (at the time of submission of this paper, which is
over 6 months after we first reported the faults). There can be
various reasons for the delay in pushing the updates to the public
version. It is therefore important for the tool users to explicitly
check with the tool authors if they have an internal version that
has improvements that have not yet been made public.

7 RELATED WORK

This paper reports, to the best of our knowledge, the first work on
applying automated testing techniques to find bugs in propositional
model counters. The related work spawns many software testing
areas, including differential testing, metamorphic testing, and test
input generation for different kinds of systems [25, 28, 29, 33, 35,
46, 53, 60]. This section focuses on the most closely related work
on bug finding for constraint solvers.

In the context of SAT solvers, the most closely related previous
work is by Brummayer et al. [17] who introduced novel fuzzing
techniques for SAT and quantified boolean formula (QBF) solvers.
They implemented three fuzzers namely CNFFuzz for CNF formula
generation, FuzzSAT for 3-SAT formula generation, and QBFuzz for
quantified boolean formula generation, and used delta debugging
for minimizing failure-inducing CNF inputs. The key differences
between their work and this paper are: TestMC automates the
testing of model counters, which are a generalization of SAT solvers,
and require different test oracles, which TestMC’s differential and
metamorphic testing modules introduce; and moreover, TestMC
introduces a bounded-exhaustive generator for CNF formulas with
primary variables, which to our knowledge, is the first such tool.

Several projects have focused on fuzzing and metamorphic test-
ing of SMT solvers [13] and constraint propagation solvers. Brum-
mayer et al. [15] proposed grammar-based black-box fuzz testing
for randomly generating bit-vector SMT formulas, combined with

719

ASE ’20, September 21-25, 2020, Virtual Event, Australia

hierarchical delta-debugging using the knowledge of formula struc-
tures and types. Similar approaches are available for answer set
solver

tool which performs SMT problem instance transformation and
generation for string constraint solvers. Akgun et. al [3] proposed
metamorphic testing for a constraint propagation solver called Min-
ion [27] by checking the correctness and propagation level of a
new propagation algorithm for a constraint by comparing it with
a previously existing algorithm. Testing of the Gecode solver [51]
has evolved similarly to Minion’s. Several other works deal with
the generation of random formulas [21, 38, 42], but focusing on
theoretical properties of formulas and not on their suitability for
supporting the solver debugging or testing.

Model-based testing [54], a common method in many domains [19]
was also used for testing solvers by Artho et. al [4]. They used it to
test sequences of application programming interface (API) calls and
different system configurations for the SAT solver Lingeling [10].
Subsequently, a model-based API testing framework for the SMT
solver Boolector [40] was proposed [41]. Furthermore, Modbat [5, 6],
a model-based API testing tool that provides an embedded domain-
specific language (DSL) for specifying the model, was used for
testing the SAT solver PicoSAT[11].

We believe our bounded-exhaustive CNF generator and the cor-
pus of CNF test inputs provide a useful resource for testing SAT
solvers and other model counters. Moreover, our metamorphic re-
lations admit a straightforward specialization for SAT solvers. We
plan to leverage TestMC to test a broader class of CNF-based solvers
and analysis tools.

8 CONCLUSION

This experience paper presented an empirical study on testing
industrial strength model counters by applying the principles of
differential and metamorphic testing together with bounded ex-
haustive input generation and input minimization. These principles
were embodied in the TestMC framework, and applied to test four
model counters, including three state-of-the-art model counters
from three different categories: exact model counting, probabilistic
exact model counting, and probabilistic approximate model count-
ing. As test inputs, three complementary suites of CNF formulas
were used. One suite consisted of significantly larger formulas that
are derived from a wide range of real-world software design prob-
lems. The second suite consisted of a bounded exhaustive set of
small formulas that TestMC generated. The third suite consisted of
CNF formulas generated using an off-the-shelf CNF fuzzer. TestMC
found bugs in three of the four subject model counters. The bugs
led to crashes, segmentation faults, incorrect model counts, and
resource exhaustion by the solvers. Faults in two of the three model
counters were fixed by their authors based on the bugs found by
TestMC.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for very helpful comments
and feedback. This work was partially supported by the National
Science Foundation grant CCF-1718903.

ASE

’20, September 21-25, 2020, Virtual Event, Australia

REFERENCES

(1]
(2]

(3]

= 9
-

(9]
[10]

(11

[12]

=
&

[14

[15

[16

[17]

(18

[19

[20]

[21]

[22]

[23

[24]

[25

[26

2019. Alloy 4 Download Webpage. http://alloy.lcs.mit.edu/alloy/download.html.
Bestoun Ahmed. 2016. Test Case Minimization Approach Using Fault Detection
and Combinatorial Optimization Techniques for Configuration-Aware Structural
Testing. Journal of Engineering Science and Technology 12 (05 2016), 737-753.
Ozgiir Akgiin, Ian P. Gent, Christopher Jefferson, Ian Miguel, and Peter Nightin-
gale. 2018. Metamorphic Testing of Constraint Solvers. In Principles and Practice
of Constraint Programming. 727-736.

Cyrille Artho, Armin Biere, and Martina Seidl. 2013. Model-Based Testing for
Verification Back-Ends. In Tests and Proofs. 39-55.

Cyrille Artho, Martina Seidl, Quentin Gros, Eun-Hye Choi, Takashi Kitamura,
Akira Mori, Rudolf Ramler, and Yoriyuki Yamagata. 2015. Model-Based Testing of
Stateful APIs with Modbat. 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE) (2015), 858—-863.

Cyrille Valentin Artho, Armin Biere, Masami Hagiya, Eric Platon, Martina Seidl,
Yoshinori Tanabe, and Mitsuharu Yamamoto. 2013. ModBat: A Model-Based
API Tester for Event-Driven Systems. In Hardware and Software: Verification and
Testing, Valeria Bertacco and Axel Legay (Eds.). 112-128.

Abdulbaki Aydin, Lucas Bang, and Tevfik Bultan. 2015. Automata-Based Model
Counting for String Constraints. In Computer Aided Verification. 255-272.
Rehan Abdul Aziz, Geoffrey Chu, Christian J. Muise, and Peter J. Stuckey. 2015.
#3SAT: Projected Model Counting. In SAT.

Fahiem Bacchus and Toby Walsh. 2005. A non-CNF DIMACS style.

Armin Biere. [n.d.]. Lingeling and Friends at the SAT Competition 2011. Technical
Report.

Armin Biere. [n.d.]. Picosat essentials. Journal on Satisfiability, Boolean Modeling
and Computation (JSAT ([n. d.]), 2008.

A. Biere, A. Biere, M. Heule, H. van Maaren, and T. Walsh. 2009. Handbook of
Satisfiability: Volume 185 Frontiers in Artificial Intelligence and Applications.
Nikolaj Bjerner. 2016. SMT Solvers: Foundations and Applications. Dependable
Software Systems Engineering 45 (2016), 24.

Dmitry Blotsky, Federico Mora, Murphy Berzish, Yunhui Zheng, Ifaz Kabir, and
Vijay Ganesh. 2018. StringFuzz: A Fuzzer for String Solvers. In Computer Aided
Verification, Hana Chockler and Georg Weissenbacher (Eds.). Springer Interna-
tional Publishing, Cham, 45-51.

Robert Brummayer and Armin Biere. 2009. Fuzzing and Delta-debugging SMT
Solvers. In Proceedings of the 7th International Workshop on Satisfiability Modulo
Theories (Montreal, Canada) (SMT ’09). ACM, New York, NY, USA, 1-5. https:
//doi.org/10.1145/1670412.1670413

Robert Brummayer and Matti Jarvisalo. 2010. Testing and Debugging Techniques
for Answer Set Solver Development. CoRR abs/1007.3223 (2010). arXiv:1007.3223
http://arxiv.org/abs/1007.3223

Robert Brummayer, Florian Lonsing, and Armin Biere. 2010. Automated Testing
and Debugging of SAT and QBF Solvers. In Theory and Applications of Satisfiability
Testing — SAT 2010, Ofer Strichman and Stefan Szeider (Eds.). Springer Berlin
Heidelberg, Berlin, Heidelberg, 44-57.

Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. 2016. Algorithmic
Improvements in Approximate Counting for Probabilistic Inference: From Linear
to Logarithmic SAT Calls. In Proceedings of International Joint Conference on
Artificial Intelligence (IJCAI).

Harald Cichos, Sebastian Oster, Malte Lochau, and Andy Schiirr. 2011. Model-
Based Coverage-Driven Test Suite Generation for Software Product Lines. In
Model Driven Engineering Languages and Systems, Jon Whittle, Tony Clark, and
Thomas Kithne (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 425-439.
Edmund M. Clarke, Jr., Orna Grumberg, and Doron A. Peled. 1999. Model Checking.
MIT Press.

Nadia Creignou, Uwe Egly, and Martina Seidl. 2012. A Framework for the Specifi-
cation of Random SAT and QSAT Formulas. In Tests and Proofs, Achim D. Brucker
and Jacques Julliand (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 163—
168.

Adnan Darwiche. 2000. On the tractable counting of theory models and its
application to belief revision and truth maintenance. CoRR ¢s.Al/0003044 (2000).
http://arxiv.org/abs/cs.AT/0003044

Martin Davis, George Logemann, and Donald Loveland. 1962. A Machine Program
for Theorem-proving. Commun. ACM 5, 7 (July 1962), 394-397. https://doi.org/
10.1145/368273.368557

Carmel Domshlak and Jérg Hoffmann. 2011. Probabilistic Planning via Heuristic
Forward Search and Weighted Model Counting. CoRR abs/1111.0044 (2011).
arXiv:1111.0044 http://arxiv.org/abs/1111.0044

Saikat Dutta, Owolabi Legunsen, Zixin Huang, and Sasa Misailovic. 2018. Testing
Probabilistic Programming Systems. In Proceedings of the 2018 26th ACM Joint
Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering (Lake Buena Vista, FL, USA) (ESEC/FSE 2018).
ACM, New York, NY, USA, 574-586. https://doi.org/10.1145/3236024.3236057
Antonio Filieri, Corina S. Pasareanu, and Willem Visser. 2013. Reliability Analysis
in Symbolic Pathfinder. In ICSE. 622-631.

720

[27

(28]

[30

[31

[32

[33

[36

[37

(38]

[40]
[41]

[42

[43

[44

[45

[46

[47

[50

Muhammad Usman, Wenxi Wang and Sarfraz Khurshid

Ian P. Gent, Chris Jefferson, and Ian Miguel. 2006. MINION: A Fast, Scalable,
Constraint Solver. In Proceedings of the 2006 Conference on ECAI 2006: 17th Euro-
pean Conference on Artificial Intelligence August 29 — September 1, 2006, Riva Del
Garda, Italy. I0S Press, Amsterdam, The Netherlands, The Netherlands, 98-102.
http://dl.acm.org/citation.cfm?id=1567016.1567043

Muhammad Ali Gulzar, Yongkang Zhu, and Xiaofeng Han. 2019. Perception
and Practices of Differential Testing. In Proceedings of the 41st International
Conference on Software Engineering: Software Engineering in Practice (Montreal,
Quebec, Canada) (ICSE-SEIP ’19). IEEE Press, Piscataway, NJ, USA, 71-80. https:
//doi.org/10.1109/ICSE-SEIP.2019.00016

Jianmin Guo, Yu Jiang, Yue Zhao, Quan Chen, and Jiaguang Sun. 2018. DLFuzz:
Differential Fuzzing Testing of Deep Learning Systems. CoRR abs/1808.09413
(2018). arXiv:1808.09413 http://arxiv.org/abs/1808.09413

Klaus Havelund and Thomas Pressburger. 2000. Model checking java programs
using java pathfinder. International Journal on Software Tools for Technology
Transfer 2, 4 (2000), 366—381.

Daniel Jackson. 2002. Alloy: A Lightweight Object Modeling Notation. ACM
Transactions on Software Engineering and Methodology (TOSEM) 11, 2 (April 2002).
Daniel Jackson. 2012. Software Abstractions: Logic, Language, and Analysis. The
MIT Press.

Tomasz Kuchta, Thibaud Lutellier, Edmund Wong, Lin Tan, and Cristian Cadar.
2018. On the correctness of electronic documents: studying, finding, and localiz-
ing inconsistency bugs in PDF readers and files. Empirical Software Engineering
23, 6 (01 Dec 2018), 3187-3220. https://doi.org/10.1007/s10664-018-9600-2
Jean-Marie Lagniez and Pierre Marquis. 2019. A Recursive Algorithm for Pro-
jected Model Counting. Proceedings of the AAAI Conference on Artificial Intelli-
gence 33 (07 2019), 1536-1543. https://doi.org/10.1609/aaai.v33i01.33011536
Daniel Lehmann and Michael Pradel. 2018. Feedback-directed Differential Testing
of Interactive Debuggers. In Proceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Symposium on the Foundations of
Software Engineering (Lake Buena Vista, FL, USA) (ESEC/FSE 2018). ACM, New
York, NY, USA, 610-620. https://doi.org/10.1145/3236024.3236037

William M. McKeeman. 1998. Differential Testing for Software. DIGITAL TECH-
NICAL JOURNAL 10, 1 (1998), 100-107.

Christian Muise, Sheila Mcilraith, J. Beck, and Eric Hsu. 2012. Dsharp: Fast
d-DNNF Compilation with sharpSAT. https://doi.org/10.1007/978-3-642-30353-
1.36

Juan Antonio Navarro Pérez and Andrei Voronkov. 2005. Generation of Hard Non-
Clausal Random Satisfiability Problems. Proceedings of the National Conference
on Artificial Intelligence 1, 436-442.

Joseph P. Near and Daniel Jackson. 2016. Finding Security Bugs in Web Appli-
cations Using a Catalog of Access Control Patterns. In Proceedings of the 38th
International Conference on Software Engineering (Austin, Texas) (ICSE ’16). ACM,
New York, NY, USA, 947-958. https://doi.org/10.1145/2884781.2884836

Aina Niemetz, Mathias Preiner, and Armin Biere. 2014. Boolector 2.0. JSAT 9
(2014), 53-58

Aina Niemetz, Mathias Preiner, and Armin Biere. 2017. MODEL-BASED API
TESTING FOR SMT SOLVERS.

Eugene Nudelman, Kevin Leyton-Brown, Holger H. Hoos, Alex Devkar, and Yoav
Shoham. 2004. Understanding Random SAT: Beyond the Clauses-to-Variables
Ratio. In Principles and Practice of Constraint Programming — CP 2004, Mark
Wallace (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 438-452.

Spencer Pearson, José Campos, René Just, Gordon Fraser, Rui Abreu, Michael D.
Ernst, Deric Pang, and Benjamin Keller. 2017. Evaluating and Improving Fault
Localization. In Proceedings of the 39th International Conference on Software Engi-
neering (Buenos Aires, Argentina) (ICSE ’17). IEEE Press, Piscataway, NJ, USA,
609-620. https://doi.org/10.1109/ICSE.2017.62

Quoc-Sang Phan and Pasquale Malacaria. 2014. Abstract Model Counting: A
Novel Approach for Quantification of Information Leaks. In Proceedings of the
9th ACM Symposium on Information, Computer and Communications Security
(Kyoto, Japan) (ASIA CCS ’14). ACM, New York, NY, USA, 283-292. https:
//doi.org/10.1145/2590296.2590328

Dan Roth. 1996. On the Hardness of Approximate Reasoning. Artif. Intell. 82, 1-2
(April 1996), 273-302. https://doi.org/10.1016/0004-3702(94)00092- 1

Sergio Segura, Amador Duran, Ana B. Sanchez, Daniel Le Berre, Emmanuel
Lonca, and Antonio Ruiz-Cortés. 2015. Automated Metamorphic Testing of
Variability Analysis Tools. Softw. Test. Verif. Reliab. 25, 2 (March 2015), 138-163.
https://doi.org/10.1002/stvr.1566

Sergio Segura, Gordon Fraser, Ana B. Sanchez, and Antonio Ruiz Cortés. 2016. A
Survey on Metamorphic Testing. IEEE Trans. Software Eng. 42, 9 (2016), 805-824.
Shubham Sharma, Subhajit Roy, Mate Soos, and Kuldeep S. Meel. 2019. GANAK:
A Scalable Probabilistic Exact Model Counter. In Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence, IJCAI-19. International
Joint Conferences on Artificial Intelligence Organization, 1169-1176. https:
//doi.org/10.24963/ijcai.2019/163

Mate Soos. 2014. CryptoMiniSat v4. SAT Competition (2014), 23.

Kevin Sullivan, Jinlin Yang, David Coppit, Sarfraz Khurshid, and Daniel Jackson.
2004. Software Assurance by Bounded Exhaustive Testing. SIGSOFT Softw. Eng.

TestMC: Testing Model Counters using Differential and Metamorphic Testing

[51]

[52

[53]

[54

[55]

Notes 29, 4 (July 2004), 133-142. https://doi.org/10.1145/1013886.1007531
Gecode Team. 2006. Gecode: Generic constraint development environment. http:
/[www.gecode.org

Marc Thurley. 2006. sharpSAT - Counting Models with Advanced Component
Caching and Implicit BCP. In Theory and Applications of Satisfiability Testing -
SAT 2006, Armin Biere and Carla P. Gomes (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 424-429.

Muhammad Usman, Wenxi Wang, Marko Vasic, Kaiyuan Wang, Haris Vikalo,
and Sarfraz Khurshid. 2020. A Study of the Learnability of Relational Properties:
Model Counting Meets Machine Learning (MCML). In Proceedings of the 41st
ACM SIGPLAN Conference on Programming Language Design and Implementation
(London, UK) (PLDI 2020). Association for Computing Machinery, New York, NY,
USA, 1098-1111. https://doi.org/10.1145/3385412.3386015

Mark Utting, Alexander Pretschner, and Bruno Legeard. 2012. A Taxonomy of
Model-based Testing Approaches. Softw. Test. Verif. Reliab. 22, 5 (Aug. 2012),
297-312. https://doi.org/10.1002/stvr.456

Wenxi Wang, Muhammad Usman, Alyas Almaawi, Kaiyuan Wang, Kuldeep S.
Meel, and Sarfraz Khurshid. 2020. A Study of Symmetry Breaking Predicates and
Model Counting. In TACAS.

721

(56

[60

ASE ’20, September 21-25, 2020, Virtual Event, Australia

Pamela Zave. 2017. Reasoning About Identifier Spaces: How to Make Chord
Correct. IEEE Transactions on Software Engineering 43, 12 (2017), 1144-1156.
Andreas Zeller. 1999. Yesterday, My Program Worked. Today, It Does Not. Why?.
In Proceedings of the 7th European Software Engineering Conference Held Jointly
with the 7th ACM SIGSOFT International Symposium on Foundations of Software
Engineering (Toulouse, France) (ESEC/FSE-7). Springer-Verlag, Berlin, Heidelberg,
253-267. http://dl.acm.org/citation.cfm?id=318773.318946

Andreas Zeller and Ralf Hildebrandt. 2002. Simplifying and Isolating Failure-
Inducing Input. IEEE Trans. Softw. Eng. 28, 2 (Feb. 2002), 183-200. https://doi.
0rg/10.1109/32.988498

A. Zeller and R. Hildebrandt. 2002. Simplifying and isolating failure-inducing
input. IEEE Transactions on Software Engineering 28, 2 (Feb 2002), 183-200.
https://doi.org/10.1109/32.988498

Chengyu Zhang, Ting Su, Yichen Yan, Fuyuan Zhang, Geguang Pu, and Zhendong
Su. 2019. Finding and Understanding Bugs in Software Model Checkers. In
Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering (Tallinn,
Estonia) (ESEC/FSE 2019). ACM, New York, NY, USA, 763-773. https://doi.org/
10.1145/3338906.3338932

