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Abstract—As systems that deploy machine learning models
become more and more pervasive, there is an urgent need to
ensure their reliability and safety. While recent years have seen
a lot of progress in techniques for verification and validation
of machine learning models, reasoning about and explaining
their behaviors remains challenging. This paper introduces a new
approach for creating machine learning models where instead of
the traditional supervised learning using data, the models are
directly synthesized from specifications, and thus, are correct by
construction. Our focus is binary classifiers with boolean features.
Specifically, our approach translates relational specifications
written in the well-known modeling language Alloy to neural
networks that run on the widely used Tensorflow backend. Our
key insight is that a slight enhancement of traditional boolean
gates can provide a rich intermediate representation that readily
translates to neural networks. To translate the enhanced gates to
neural networks, we employ a state-of-the-art program synthesis
framework that allows us to find minimal neural networks.
The translation of Alloy specifications then follows the standard
translation to boolean logic with the exception of utilizing the
enhanced boolean gates, followed by a translation to neural
networks. We embody our approach in a prototype tool and use
it for experimental evaluation. The experimental results show
that our approach allows synthesis of neural networks that are
hard to create using traditional training methods.

I. INTRODUCTION

Systems based on machine learning models are rapidly be-

coming ubiquitous and are being deployed in a wide range of

settings, including critical domains such as autonomous vehi-

cles. However, ensuring reliability and safety of these systems

largely remains an open problem. While recent years have

seen a lot of progress in techniques for gaining insights into

machine learning models, development of effective verification

and validation methods pose key technical challenges [1], [2].

Once a machine learning model such as a deep neural network

is trained, it becomes a highly complex structure that is very

hard to reason about.

This paper introduces an approach to create machine learn-

ing models that have the desired properties and are correct by

construction [3]. Instead of the traditional method of training

desired models using datasets until a desired performance

(accuracy, precision etc.) is achieved, our approach directly

synthesizes the models from given specifications. Our focus

is binary classifiers, i.e., models that classify each input into

one of two possible output classes. Specifically, our approach

translates relational specifications written in Alloy [4] to
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neural networks that run on the widely used Tensorflow [5]

backend.

Alloy is a first-order relational logic with transitive clo-

sure, which is particularly suitable for writing specifications

of software systems. The Alloy toolset has a state-of-the-

art analysis backend that employs off-the-shelf propositional

satisfiability (SAT) solvers [6], [7]. Alloy performs scope-

bounded analysis and the Alloy analyzer translates Alloy

formulas into propositional logic with respect to a given

bound on the universe of discourse. Alloy’s intuitively familiar

notation and efficient analysis make it a particularly attractive

method to aid the development of complex systems. Alloy has

been applied in many domains, including mobile computing,

security, access control, software checking, and hardware

vulnerability analysis [8]–[15].

This paper introduces the use of Alloy for specifying

desired properties of machine learning models and creating

models that guarantee those properties. Our key insight is

that a slight enhancement of traditional boolean gates, which

introduces gates that directly correspond to Alloy constructs,

can provide an effective intermediate representation that not

only simplifies translation from Alloy to (enhanced) boolean

formulas but also readily translates to neural networks, thereby

enabling a faithful translation from Alloy to neural networks.

To illustrate, consider the Alloy keyword “lone” that applies

to an expression, say e, and creates a formula that is true if

and only if e represents either the empty set or a singleton

set. We introduce a special lone gate that directly encodes this

behavior rather than using a circuit of traditional boolean gates

(and, or, and not).

To translate the enhanced gates to neural networks, we

employ Rosette [16], a state-of-the-art program synthesis

framework, which allows us to find minimal neural networks

that are functionally equivalent to the gates. The translation

of Alloy specifications then follows the standard translation

to boolean logic with the exception of utilizing the enhanced

boolean gates, followed by a translation to neural networks.

In addition to employing Rosette for synthesis, we also utilize

it for validating the implementation of our technique. Specif-

ically, we formulate and check program verification problems

to express the logical equivalence of Alloy formulas (written

using Rosette’s Alloy DSL) and the neural networks translated

by our technique.

We experimentally evaluate our approach using a variety of

relational specifications as subjects. The experimental results
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show that our approach allows synthesis of neural networks

that are hard to create using traditional training methods.

Why synthesize neural networks? Supervised learning con-

structs models using labeled data. In contrast, we focus on

using specifications to create such models without relying on

datasets. We do not expect synthesis to be a replacement for

training. Instead, we expect synthesis to complement training,

and for the two to apply in synergy. Our overarching goal

is to overcome two key issues with the traditional approach

of training deep learning models: 1) lack of verifiability; and

2) lack of explainability. Addressing these challenges will

enable deployment of machine learning models that can be

trusted and have behaviors that can be explained using human

understandable or machine verifiable logical reasoning. We

believe our work provides a viable direction to achieve this

goal. We envision a number of promising techniques in future

work, including: 1) building composite models that consist

of components that are synthesized from specifications, and

components that are trained using datasets; 2) using models

synthesized from specifications as seeds for training more

sophisticated models that guarantee certain base properties;

and 3) using advances in machine learning, e.g., model com-

pression methods [17], to provide highly efficient execution

of specifications, say for runtime verification of a software

system.

Our work also takes inspiration from a recent study [18]

that shows that relational specifications form a surprisingly

challenging target for training traditional models. The study

showed that off-the-shelf models achieve high performance

(accuracy, precision etc.) in learning relational properties when

evaluated in a traditional way (i.e., on test datasets), but the

true performance of these models when evaluated on the whole

(bounded) input space was much poorer, thereby indicating

the difficulty in learning these properties using the traditional

approach.

This paper makes the following contributions.

• Synthesis of minimal neural networks. We form pro-

gram synthesis problems in Rosette to create minimal

neural networks that are functionally equivalent to the

boolean gates, including enhanced gates that we introduce

to directly support Alloy constructs.

• Translation of Alloy to neural networks. We define an

end-to-end translation that takes as input a specification

written in the Alloy language and creates as output a

neural network that is logically equivalent to the input

specification and executable on modern machine learning

frameworks.

• Verification of neural networks. We form program

verification problems in Rosette that allow checking the

equivalence between Alloy formulas written using the

Alloy embedding in Rosette, and neural networks that are

also encoded in Rosette. Doing so allows validating our

translation. The verification process also allows checking

neural networks that were created in other ways, e.g.,

using the training approach or training based on datasets.
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Fig. 1: Fully connected feed-forward networks with perceptron

activations for the Function predicate.

• Evaluation. We perform an experimental evaluation to

answer key research questions. The experimental results

show that (1) enhanced gates enable a substantial re-

duction in the size of the synthesized neural networks;

(2) Rosette provides an effective framework for synthe-

sis of minimal neural networks that are equivalent to

(enhanced) boolean gates; and (3) Rosette also provides

effective verification of neural networks that represent

complex relational specifications.

II. ILLUSTRATION

This section presents an example to illustrate our technique

for creating neural networks from relational specifications. We

also provide the necessary background on Alloy and Rosette.

Background. The following Alloy specification defines the

function property, i.e., the binary relation r is a total function:

1 s i g S { r : s e t S }
2

3 pred F u n c t i o n ( ) { a l l s : S | one s . r }
4

5 run F u n c t i o n f o r e x a c t l y 2 S

The sig S declares a set of atoms, and its field r declares a

binary relation of type S × S. The keyword pred defines a

predicate, which is a parameterized formula that can be in-

voked elsewhere. The keyword all is universal quantification,

and the operator “.” operator is relational composition. The

quantification operator one requires its expression to represent

a singleton set. Thus, the body of the predicate Function

specifies that for each atom s in sig S, the relational image

of s under r has exactly one element. Hence, r is a total

function. The run command represents a typical usage of the

Alloy tool: to solve constraints. Specifically, the run command

instructs the Alloy analyzer to find an instance, i.e., a valuation

of the sets and relations in the model such that the predicate

Function is true. The command specifies a scope that bounds

the universe of discourse. The scope of “exactly 2 S” requires

that each instance must have 2 atoms in sig S, e.g., the

following valuation is an instance for this scope:
S = {S0, S1}

r = {S0->S1, S1->S1}

where S contains the atoms S0 and S1, and r maps each of

S0 and S1 to S1.

We next illustrate two frameworks that enable translation

of Alloy formulas to boolean logic and provide key enabling
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technologies for our approach: 1) Kodkod [19], which is the

standard tool integrated with the Alloy analyzer for solving

constraints using SAT solvers [6], [7]; and 2) Rosette [16],

which provides the Ocelot [20] library that implements an

embedding of Alloy, and allows solving constraints using

SMT solvers [21]. Kodkod and Rosette create the following

two formulas corresponding to the predicate Function (w.r.t.

scope of “exactly 2 S”):
Kodkod: (((1|2)&(!2|!1))&((3|4)&(!4|!3)))

Ocelot: (&& (&& (|| (! r$0) (! r$1))

(|| r$0 (&& r$1 (! r$0))))

(&& (|| (! r$2) (! r$3))

(|| r$2 (&& r$3 (! r$2)))))

Both formulas use 4 boolean variables, which represent the

2×2 boolean matrix that encodes the relation r. For example,

the Kodkod variables 1, 2, 3, 4 respectively represent the

entries (0, 0), (0, 1), (1, 0), and (1, 1) of the matrix. While the

two formulas created by Kodkod and Ocelot are semantically

equivalent, they are structurally different (modulo differences

in notation). As Alloy’s specialized backend, Kodkod performs

several optimizations, which have an important impact on the

size of the boolean formulas that it creates (see Appendix A).

Translation to Neural Networks. We next illustrate how our

approach translates Alloy specifications to neural networks that

are correct by construction. Kodkod/Ocelot already provide

vehicles to translate Alloy to boolean logic. We enhance this

translation to introduce special gates that directly correspond

to multiplicity constructs in the Alloy models, such as key-

words lone and one, which can both quantify expressions and

also define quantified formulas. Moreover, we also define a

translation from boolean logic with enhanced gates to neural

networks. Overall, our approach has three primary compo-

nents: 1) synthesis of minimal neural networks that are equiva-

lent to (enhanced) boolean gates (using Rosette); 2) translation

of (enhanced) boolean logic to fully connected, feed-forward

neural networks (using Kodkod); and 3) verification of the

neural networks with respect to relational specifications (using

Rosette).

Figure 1a shows the resulting network generated by trans-

lating the Kodkod formula for the Function predicate for the

scope of exactly 2 S. The network comprises of 4 layers in

addition to an input layer. The neurons marked 1 to 4 are

the four inputs to the network. Units assigned letters a to

k represent the various logical operations performed by the

neurons. These letters correspond to superscript letters fol-

lowing the logical symbols in the annotated Kodkod formula:

(((1|d2)&b(!h2|e!i1))&a((3|f4)&c(!j4|g!k3)))

Since we use the feed-forward architecture, there are no skip

connections between the layers. The buffer neurons (marked

x) are used when output of a neuron needs to be forwarded

to a non-immediate layer. The connection weights and bias

values in the network are configured using the values of

the corresponding logic gates synthesized with Rosette. Any

connections that are not required have the corresponding

weights set to zero.

1) Enhanced Neural Gates: We next illustrate our enhanced

translation that provides a richer set of neural gates, which

results in a more compact encoding and leads to the creation

of smaller, more efficient networks. We augment the Kodkod

boolean formula generator to add support for one and lone

gates, which correspond to how the keywords are defined by

Alloy. Observe the function predicate uses the keyword one.

The boolean expression (w.r.t to same scope of 2) built using

the enhanced one gates is “((1@b2)&a(3@c4))”, where

the one gate is identified using the symbol “@”. Figure 1b

shows the network with one gates. Compared to the original,

this network encodes the same formula with one less layer and

6 fewer neurons. The neurons are labeled by letters depicting

operation they are performing (e.g., a is the and operation

as depicted in the formula). The one gate implementation

requires three neurons. The values of the various network

parameters are derived from the corresponding synthesis prob-

lems solved using Rosette. The advantage of using these

enhanced gates become more substantial for larger scopes.

For a scope of 10, using the one gate for the Function

predicate results in a network that has a third of the number

of layers, 93% fewer connections, and is 20 times faster in

making predictions in comparison with the network that does

not use the enhanced gates.

III. TECHNIQUE

This section presents our technique. First, we explain

how we synthesize neural networks that represent (enhanced)

boolean logic gates using program synthesis methods. Specif-

ically, we synthesize networks that are minimal in terms of

the number of layers and neurons. These neural networks are

used as building blocks in our technique to translate formulas

written in Alloy into equivalent fully connected feed-forward

neural networks.

A. Synthesis of logic gates as neural networks

At an abstract level the synthesis problem has two key

elements: 1) specification that provides reference behavior;

2) skeletal implementation that provides a template that

needs to be completed by the synthesizer. In our case the

specification describes the behavior of the desired boolean

gate (that has 1+ boolean inputs and 1 boolean output), the

skeletal implementation describes the fixed structure of a fully

connected feed-forward neural network, and the synthesizer

outputs weights and biases on the edges and neurons that are

part of the skeleton. We fix the range of values weights can

take to {−1, 0,+1}, and the range of values biases can take to

{−n,−n+1, ..., n− 1,+n}, n being the number of inputs to

the gate. To find a minimal network, we start with no hidden

layers, and iteratively increase the number of hidden layers and

neurons per layer until the synthesizer solves the problem.

1) Neural network template: Neurons in every layer com-

pute a weighted sum over inputs received from neurons in the

previous layer, with a bias term added to the sum. The resulting

value is then propagated through an activation function to

generate the neuron output. We use the well-known percep-

tron [22] activation for each neuron; the following equation

computes the output of a neuron; w and x are vectors of
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weights and inputs, and b is the bias where the size of the

vectors is equal to the number of inputs to the neuron:

f(x) =

{

1 w.x+ b > 0

0 otherwise

The synthesis problem searches for values of the weights (w)

and bias (b) terms – indeed, these are the learnable parameters

inferred during the training procedure of traditional machine

learning methods for training neural networks.

2) Problem formulation: In the synthesis-based approach,

these learnable parameters are represented as symbolic values

that are solved for with respect to the given specification

(without using any datasets). For a given network shape,

the forward pass is encoded as a formula which represents

computations performed by the network. Given a formula

that uses the symbolic values, for a given test input, the

task of training gets transformed into the task of searching

for concrete bindings of the symbolic values such that the

network produces the desired output. SMT solvers efficiently

accomplish this search. The expected behavior of the network

is encoded as constraints, which are then provided to the SMT

solver. Let Nn,S,W,B represent a fully-connected feed-forward

network comprised of n layers. The parameter S represents the

shape/topology of the network, a mapping from the layer to the

neurons in that layer. W is the set of all connection weights,

while B is the set of bias values of the neurons in the network.

φspec represents the semantics of the boolean operation, for

which we want to synthesize a network. For a network of fixed

size and shape, the synthesis problem reduces to determining

the values of W and B such that the following equation is

satisfied.

∃W,B.∀i Nn,S,W,B(i) = φspec(i)

In words, the equation asks if there exists a set of weights and

biases, such that the output of the network equals the output

of the specification for the entire input space. We employ

the well-known counter-example guided inductive synthesis

(CEGIS) framework to handle the quantifier alternation in

the equation [23], [24]. A typical CEGIS setup requires two

components - a synthesizer that generates candidate programs

(neural networks in our case) and a verifier that checks the

candidates against a specification. To generate better candi-

dates, the synthesizer utilizes counter-examples provided by

the verifier.

3) Synthesis Loop: Algorithm 1 shows the synthesis loop.

It has the following inputs:

• Number of inputs to the logic gate.

• The specification (spec) is a piece of code that captures

the behavior of the logic gate.

• The shape of the network is represented by the structure

config, which stores and manages information about the

layers, neurons in each layer, and their connections.

The output of the algorithm (parms) is a set of parameters

(weights and biases) for the given neural network configuration

(config). The network with these parameters exhibits behavior

equivalent to the specification (spec).

Algorithm 1 Synthesis loop

Input: num input, config, spec

Output: parms
1: for layer in config do

2: for neuron in layer do

3: for input in neuron.inputs do

4: input.weight ← create symbolic const()
5: addConstraint(input.weight ≤ 1)
6: addConstraint(input.weight ≥ -1)
7: end for

8: neuron.bias ← create symbolic const()
9: addConstraint(neuron.bias ≤ num input)

10: addConstraint(neuron.bias ≥ -num input)
11: end for

12: end for

13: sParms ← config.Symbolics
14: parms ← initialize(config)
15: for i in num input do

16: input[i] ← create symbolic const()
17: addConstraint(input[i]==1 ‖ input[i]==0)
18: end for

19: while true do

⊲ Search for a counter-example
20: model ← verify(spec(input) ⇔ net(config,parms,input))
21: if model is not null then ⊲ counter-example found

⊲ Add a new constraint with the counter-example
22: addConstraint(spec(model)==net(config,sParms,model))
23: m ← solveInc()
24: if m is not null then

25: parms ← m ⊲ m is new solution
26: else

27: problem UNSAT ⊲ no solution exists for the config
28: break
29: end if

30: else ⊲ no counter-example found
31: problem SAT ⊲ parms is the solution
32: break
33: end if

34: end while

The algorithm begins by reading the configuration and

initializing symbolic constants for the network parameters.

The config allows for reading the network layer-by-layer and

iterating over the neurons in each layer (lines 1,2). For every

input feeding to a neuron, we create a symbolic weight value

(create symbolic const) (lines 3,4). In our implementation, the

symbolic weights can only be bound to integer values, which

range from -1 to 1 (lines 4-6). The function add constraint

takes as input an assertion condition and adds it to the

global assertion store. Similar to the input weights, we create

symbolic bias integers whose values are restricted to range

between the number of inputs to the gate and its negation

(lines 8-10). Allowing the symbolic weights and biases to have

integer bindings and restricting their values to a finite range

speeds up the synthesis process and makes it scalable. sParms

is the set of all symbolic parameters created from config

(line 13). Before starting the synthesis loop, we initialize the

first candidate set of concrete parameters that are randomly

generated by initialize (line 14) (parms is the concrete-valued

counterpart of sParms). These values in parms adhere to the

bounds set for their symbolic counterparts. We also define a

symbolic input array(input), which represents the space of all

possible inputs to the neural network. The size of the array is
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Fig. 2: Sample neural networks synthesized for various logical gates

equal to the number of inputs, and each element of the array

is restricted to a value of 0 or 1 (lines 15-18). The synthesis

loop starts with a call to the verify function (line 20). This

function takes as input an assertion condition and searches for

concrete bindings of all the symbolic constants that violate the

input assertion while satisfying the assertions in the assertion

store. In our context, we use verify to determine if there is

an input that results in different outputs for the specification

(spec) and the current network candidate (parms). The function

spec produces the output of the specification for the given

input. The function net creates a formula that represents the

operations performed in a forward pass of a neural network,

whose shape and structure are defined by config, and the values

of the parameters are set to those in parms. It then computes

the output of the network for a given input. Verify fails to

return a model, if no such binding exists, and the current

candidate matches the output of the spec on every possible

binary-valued input. The synthesis loop completes, and parms

contains the desired values for the network parameters (lines

30-32). On the other hand, if such a binding exists, verify

returns a counter-example - a concrete input that produces

different outputs on the spec and the current candidate. Using

the new counter-example, we add a constraint, which ensures

any subsequent candidates agree with the spec on the output

for this input (line 22). The next candidate is generated

by issuing a call to the solveInc function, which invokes

the underlying solver to try and incrementally satisfy all

the assertions in the global assertion store (line 23). If a

model(m) is found, it produces new concrete bindings for

sParm. It becomes the current candidate (line 25) and the

search progresses to look for another counter-example. If the

solver is unable to satisfy the assertions, the current network

configuration, which includes the network shape and bound

on the parameters, is unable to replicate the behavior of the

spec. The synthesis is unsuccessful in this case (lines 26-27).

Not shown in the algorithm is an enumerator that uses iterative

deepening to generate network configurations (config) of in-

creasing size and complexity. The first network the enumerator

generates has no hidden layers (the inputs directly feed into

an output neuron). The next network has a single hidden layer

with one neuron, and then a single layer with two neurons

and so on. Once the number of neurons in the hidden layer

reaches a threshold (currently set to the number of inputs),

another layer is added to the network. The synthesis loop is

called with configurations of increasing size and complexity,

and the process continues until a feasible candidate is found.

This ensures that we synthesize the smallest possible neural

network, given our bounds on the weight and biases. Fig. 3

implements the proposed algorithm to synthesize a three input

lone gate in Rosette.

Verification of networks: We synthesize networks (up to 10

inputs) that are the smallest possible implementing the desired

operation. We observe patterns in the weights and bias values

of the synthesized networks based on which we manually

design larger networks (larger number of inputs). Then, we

use Rosette to verify correctness of these manually constructed

networks. While synthesis of large networks is prohibitive due

to the computational complexity, our extrapolation approach

improves the scalability and allows us to create larger net-

works. Fig. 2 depicts the various neural gates synthesized using

our technique.

B. From Kodkod to neural networks

This section describes the method to translate Alloy formu-

las into equivalent neural networks. Our translation system is

built using Kodkod, a SAT solver based framework written in

Java, for first-order logic relations. Alloy possesses a Kodkod

embedding, which enables the translation of Alloy formulas

into the Kodkod format, making use of its API. We utilize the

Kodkod front-end that coverts the first-order relation into a

boolean formula and constructs an abstract syntax tree (AST).

We use the AST to perform two tasks. First, using the visitor

design pattern, we implement a custom translator which uses

the enhanced boolean gates (one and lone) when generating
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1 #lang rosette

2 (current-bitwidth 10) ;reasoning bit-width

3 (define numInputs 3)

4 (define inc (solve+)) ;incremental solver

5 (define wt_upper_bound 1) (define wt_lower_bound -1)

6 (define bias_upper_bound 3) (define bias_lower_bound -3)

7 (define (spec inputs) ;specification

8 (define cnt 0)

9 (for ([i inputs])

10 (if (equal? i 1) (set! cnt (add1 cnt)) '()))

11 (if (< cnt 2) 1 0))

12 (define (net input wts bias) ;network

13 (define out0 (+ (* (list-ref wts 0) (list-ref input 0))

14 (* (list-ref wts 1) (list-ref input 1))

15 (* (list-ref wts 2) (list-ref input 2))))

16 (if (> (+ out0 bias) 0) 1 0))

17 (define (create_symbolic_wts n)

18 (for/list ([i (in-range n)]) ;Algo1. line 3

19 (define-symbolic* w integer?) ;Algo1. line 4

20 (inc (and (>= w wt_lower_bound) (<= w

wt_upper_bound))) w)) ;Algo1. lines 5,6

21 (define sym_wts (create_symbolic_wts numInputs)) ;Algo1.

line 13

22 (define-symbolic* sym_b integer?) ;Algo1. line 8,13

23 (inc (and (>= sym_b bias_lower_bound) (<= sym_b

bias_upper_bound))) ;Algo1. line 9,10

24 (define wts (list 0 0 0)) (define b (list 0)) ;line 14

25 (define inConstraints #t)

26 (define symIn

27 (for/list ([x (in-range numInputs)]) ;Algo1. line 15

28 (define-symbolic* h integer?) ;Algo1. line 16

29 (set! inConstraints (and (or (= h 1) (= h 0))

inConstraints)) h)) ;Algo1. line 17

30 (for ([cnt (in-naturals)]) ;Algo1. line 19 (infinite

loop)

31 (define model (verify #:assume (assert inConstraints)

32 #:guarantee (assert (= (spec symIn) (net symIn wts

b))))) ;Algo1. line 20

33 (when (unsat? model) (display "Success")) ;Algo1. line

31

34 #:break (unsat? model) ;Algo1. line 32

35 (define newTest (evaluate symIn model)) ;newTest ->

counter-example

36 (define condT (equal? (net newTest sym_wts sym_b)

(spec newTest))) ;Algo1. line 22

37 (define m (inc condT)) ;Algo1. line 23

38 (when (unsat? m) (display "Fail")) ;Algo1. line 27

39 #:break (unsat? m) ;Algo1. line 28

40 (set! wts (evaluate sym_wts m)) ;Algo1. line 25

41 (set! b (evaluate sym_b m))) ;Algo1. line 25

Fig. 3: Synthesizing a 3-input lone gate

a boolean formula. With this new translator, the multiplicity

operators, instead of being interpreted using the fundamental

boolean gates, are now represented with the enhanced custom

gates. Secondly, we use another visitor to traverse the AST and

generate neural network equivalents of the logical operations

being performed at each node. The networks are connected

using the parent-child relations in the AST to output a single

neural network that is equivalent to the boolean formula. The

following paragraphs describe the implementation of the latter.

The first visitor is implemented in a similar fashion.

1) Top-Level Translator: The figure below shows a code

snippet of the primary translator class called NeuralNet-

Translator, which implements the GateVisitor interface. The

interface specifies visit methods for four types of nodes in the

AST. A BooleanVariable represents the primary variables used

as inputs to the formula. NaryGate and BinaryGate classes

represent multi-input and two-input logical gates, respectively,

while NotGate represents a not gate. All the four classes

extend the abstract class BooleanFormula. The neural network

translator is invoked by calling the translate function and

providing it the root node of the AST as an argument. The

visit methods first visits the children (if present) followed by

the addition of the node to the neural network. The translator

object upon instantiation creates a new neural network object

whose details are described next.

1 c l a s s N e u r a l N e t T r a n s l a t o r imp lemen t s G a t e V i s i t o r {
2 Network n e t ;

3

4 vo id t r a n s l a t e ( BooleanFormula o ) {
5 / / c r e a t a new ne twork

6 n e t = new Network ( numInputs ) ;

7 o . a c c e p t ( t h i s ) ; }
8

9 / / v i s i t i n g a b o o l e a n v a r i a b l e

10 vo id v i s i t ( B o o l e a n V a r i a b l e v a r ) {
11 n e t . addToNet ( v a r ) ; } / / add t o t h e ne twork

12

13 / / v i s i t i n g a na ry g a t e

14 vo id v i s i t ( NaryGate g a t e ) {
15 I t e r a t o r <BooleanFormula> i t = g a t e . i t e r a t o r ( ) ;

16 w h i l e ( i t . hasNext ( ) ) {
17 / / v i s i t i n g t h e c h i l d r e n o f t h e n a r y g a t e

18 BooleanFormula b = i t . n e x t ( ) ;

19 b . a c c e p t ( t h i s ) ;

20 }
21 n e t . addToNet ( g a t e ) ; } / / add t o t h e ne twork

22

23 / / . . .

24}

2) Neural network implementation: A neural network is

composed of three different types of objects. The class Neuron

represents a single neuron characterized by its position in a

network layer, a bias value, the depth of the layer where this

neuron is located, and a reference to the node in the AST

of the original formula, which this neuron represents. Layer

represents a layer of neurons in the network. The Connection

class is used to store connections between two neurons in the

network. It holds a reference to the source and destination of

the connection and an integer weight.

1 c l a s s Neuron {
2 i n t i d ; / / p o s i t i o n i n t h e l a y e r

3 i n t b i a s ;

4 i n t d e p t h ; / / d e p t h o f t h e l a y e r c o n t a i n i n g t h i s neuron

5 BooleanFormula o r i g ; / / r e f e r e n c e t o t h e a s t node

6 / / . . .

7}
8 p u b l i c c l a s s Layer {
9 i n t numUnits ; / / number o f n e u r o n s i n t h e l a y e r

10 A r r a y L i s t<Neuron> u n i t s ;

11 / / . . .

12}
13 c l a s s C o n n e c t i o n { / / r e p r e s e n t s t h e c o n n e c t i o n ” from”−>”t o ”

14 Neuron t o ;

15 Neuron from ;

16 i n t w e i g h t ; / / c o n n e c t i o n we i gh t

17 / / . . .

18}

The Network class shown below represents the entire network.

An object of this class is instantiated by NeuralNetTranslator.

Network maintains a record of every layer in the network,

connections between neurons, and their relationship to the

nodes in the boolean formula AST. It provides the functionality

to add logical gates to the network by using the appropriate

networks synthesized with Rosette (discussed in III-A). Upon

instantiation, the network creates an input layer whose size is

equal to the number of inputs supplied to the network.

1 c l a s s Network {
2 i n t numInputs ; / / i n p u t s t o t h e ne twork
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3 A r r a y L i s t<Layer> n e t ; / / l a y e r s i n t h e ne twork

4 A r r a y L i s t<Connec t ion> c o n n e c t i o n s ;

5 Map<BooleanFormula , Neuron> nMap ;

6

7 Network ( i n t numInputs ) {
8 / / . . .

9 n e t . add ( new Layer ( ) ) ; / / a d d i n g t h e i n p u t l a y e r

10 f o r ( i n t x = 0 ; x < numInputs ; x ++) {
11 n e t . g e t ( 0 ) . addToLayer ( new Neuron ( 0 , x , 0 , n u l l ) ) ;

12 } }
13

14 vo id addToNet ( B o o l e a n V a r i a b l e v a r ) {
15 n e t . g e t ( 0 ) . s e t I n p u t ( v a r ) ;

16 nMap . p u t ( var , ( n e t . g e t ( 0 ) ) . g e t I n p u t ( v a r . l a b e l ( ) − 1 ) ) ; }
17

18 vo id addToNet ( NaryGate g a t e ) {
19 Neuron o u t p u t = new Neuron ( 0 , 0 , −1, g a t e ) ;

20 A r r a y L i s t<Neuron> i n p u t s = new A r r a y L i s t<Neuron > ( ) ;

21 I t e r a t o r <BooleanFormula> i t = g a t e . i t e r a t o r ( ) ;

22 w h i l e ( i t . hasNext ( ) ) {
23 BooleanFormula b = i t . n e x t ( ) ;

24 Neuron i n = nMap . g e t ( b ) ;

25 i n p u t s . add ( i n ) ;

26 }
27 o u t p u t . d e p t h = maxDepth +1;

28 r e s o l v e C o n n e c t i o n s ( o u t p u t , i n p u t s ) ;

29 addNeuron ( o u t p u t ) ; }
30 / / . . .

31 vo id addNeuron ( Neuron n ) {
32 i f ( n . d e p t h >= n e t . s i z e ( ) ) {
33 n e t . add ( new Layer ( ) ) ;

34 d e p t h ++;

35 }
36 n e t . g e t ( n . d e p t h ) . addToLayer ( n ) ;

37 i f ( n . o r i g != n u l l ) {
38 nMap . p u t ( n . o r i g , n ) ;

39 } }
40 / / . . .

41}

Adding to the network: The addition of AST nodes to

the neural network is performed via a call to the addToNet

function, which is overloaded to handle the four types of

nodes. BooleanVariable represents an input to the network,

and a call to addToNet in this case, simply adds the variable

to the input layer at the appropriate location. Boolean variables

are given unique integer labels ranging from 1 to the number

of inputs. These labels are used to determine the location of the

neuron in the input layer. The addToNet for a NaryGate first

creates a new neuron which represents the output of the gate.

Network maintains a mapping (nMap) of AST nodes and their

corresponding neurons. The neurons representing the inputs to

this gate are collected and passed to the connect function along

with the output neuron. The connections between the input

neurons and output neurons are made within connect. Finally,

the output neuron is added to the network. Binary gates and

Not gates are added using the same procedure as Nary gates.

Making connections: The connect method takes as input the

output neuron and a list of input neurons. It uses the structure

of the neural networks synthesized using Rosette to determine

the values of various network parameters. For example, when

connecting the input and output neurons to construct an and

network, we know that the smallest network will have no

hidden layers. The weights of each connection between an

input neuron and the output neuron should be +1, and the

output neuron will have a bias of -(n-1), where n equals the

number of inputs. The construction of one gate requires one

hidden layer with two neurons. The weights and bias values

shown in the code snippet are derived from the corresponding

Rosette model. The rest of the gates representing various

logical operations and multiplicities are handled similarly.

1 vo id c o n n e c t ( Neuron n , A r r a y L i s t<Neuron> i n p u t s ) {
2 i f ( n . o r i g . op ( ) . o r d i n a l ( ) == 0) { / / AND Gate

3 n . b i a s = −1 * ( i n p u t s . s i z e ( ) − 1 ) ;

4 f o r ( Neuron i n : i n p u t s ) {
5 C o n n e c t i o n c = new C o n n e c t i o n ( n , in , 1 ) ;

6 c o n n e c t i o n s . add ( c ) ;

7 }
8 }
9 e l s e i f ( n . o r i g . op ( ) . o r d i n a l ( ) == 9) { / / ONE Gate

10 / / r e q u i r e s a h i d d e n l a y e r wi th two n e u r o n s

11 i n t d e p t h = i n p u t s . g e t ( 0 ) . d e p t h +1;

12 Neuron h1 = new Neuron (−1 , 0 , depth , n u l l ) ;

13 Neuron h2 = new Neuron ( 1 , 0 , depth , n u l l ) ;

14 n . b i a s = 1 ;

15 n . d e p t h = h1 . d e p t h +1;

16 addNeuron ( h1 ) ;

17 addNeuron ( h2 ) ;

18 c o n n e c t i o n s . add ( new C o n n e c t i o n ( n , h1 , −1));

19 c o n n e c t i o n s . add ( new C o n n e c t i o n ( n , h2 , −1));

20 f o r ( Neuron i n : i n p u t s ) {
21 c o n n e c t i o n s . add ( new C o n n e c t i o n ( h1 , in , 1 ) ) ;

22 c o n n e c t i o n s . add ( new C o n n e c t i o n ( h2 , in , −1));

23 }
24 }
25 / / . . .

26}

C. Validation of networks
1#lang rosette

2(require ocelot)

3(define num_inputs 9)

4(define U (universe '(n1 n2 n3)))

5(define node (declare-relation 1 "node"))

6(define rel (declare-relation 2 "reflexive"))

7(define bound_node (make-exact-bound node '((n1) (n2)

(n3))))

8(define bound_rel (make-product-bound rel '(n1 n2 n3) '(n1

n2 n3)))

9(define all_bounds (bounds U (list bound_rel bound_node)))

10(define iB (instantiate-bounds all_bounds))

11(define reflexive_rel (all ([n node]) (in (-> n n) rel)))

12(define reflexive (interpret* reflexive_rel iB))

13(define (bool2int inputs)

14 (for/list ([i (in-range num_inputs)])

15 (if (equal? (list-ref inputs i) #t) 1 0)))

16(define (int2bool in)

17 (if (= in 0) #f #t))

18(define (network in)

19 (define weights (list 1 0 0 0 1 0 0 0 1))

20 (define bias (list -2))

21 (define parms (list weights bias))

22 (define out0 (+

23 (* (list-ref (list-ref parms 0) 0) (list-ref in 0))

24 (* (list-ref (list-ref parms 0) 1) (list-ref in 1))

25 (* (list-ref (list-ref parms 0) 2) (list-ref in 2))

26 (* (list-ref (list-ref parms 0) 3) (list-ref in 3))

27 (* (list-ref (list-ref parms 0) 4) (list-ref in 4))

28 (* (list-ref (list-ref parms 0) 5) (list-ref in 5))

29 (* (list-ref (list-ref parms 0) 6) (list-ref in 6))

30 (* (list-ref (list-ref parms 0) 7) (list-ref in 7))

31 (* (list-ref (list-ref parms 0) 8) (list-ref in 8))))

32 (if (> (+ out0 (list-ref (list-ref parms 1) 0)) 0) 1 0))

33(define allS (symbolics iB))

34(define model (verify #:guarantee (assert (equal?

reflexive (int2bool (network (bool2int allS)))))))

Fig. 4: Verifying a scope-3 reflexive network

The final step in the process is to validate the generated

networks. While the networks are correct by construction,

formally verifying them assists in revealing any potential

issues in the translation framework. The validation approach

can also be used for verifying networks created by traditional

training techniques. We use Rosette’s verify functionality to

establish the equivalence of a neural network with the rela-

tional property it is supposed to represent. Using Ocelot, we
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create a specification of the relational property against which

the network needs to be checked. Also, we create a network

function that carries out the neural network computation on

a given input using the provided set of weight and bias

parameters. The size and shape of the network, and the

parameter values are determined by the Kodkod translation

we carried out in the previous step. With a model of the

specification and the network, we invoke the verify feature to

try to discover a counter-example. The absence of a counter-

example proves the equivalence. Using this methodology, we

verify neural networks for all the properties studied in this

paper for a scope bound of 10, except for the 4 linked list

properties, which are validated for a scope bound of 5. Fig.

4 shows the sample code for verifying the reflexive property.

A reflexive relation over some set is one that relates every

element in the set to itself. In the code, we verify reflexivity

for a scope bound of 3. A binary relation with a scope bound

of 3 has 9 inputs, one for each ordered pair. We define the

universe of discourse (line 4), declare the relations (line 5,6),

and define their bounds (lines 7-10). We specify the reflexive

property (reflexive_rel) and interpret it to generate the

boolean formula (reflexive), which encodes the property for

the given scope (line 11, 12). The function network represents

a neural network with 9 inputs, no hidden layers, and 1 output

neuron. It has 9 weights (one for each input) and a bias

term, whose values are determined by the translator (lines 18,

21). The output of the function indicates whether the reflexive

property holds for the given input. The variable allS is the

list of boolean inputs used in the formula and provided to the

network (bool2int and int2bool are utilities to convert

boolean values into integers and vice-versa). We use verify

to check the equivalence of reflexive and network.

IV. EVALUATION

A. Subjects

1) Relational properties: We apply our technique to 17

relational properties expressed in Alloy and adapted into

the input format of Kodkod and Rosette. Out of the 17, 8

are base properties – reflexive, irreflexive, symmetric, anti-

symmetric, transitive, connex, functional, function. The re-

maining properties are compositional, described using two

or more base properties. They include equivalence, bijective,

injective, surjective, strict order, non-strict order, partial order,

pre-order and total order relationships. For example, a total

order relationship is one that is transitive, anti-symmetric

and connex. These properties were used in a recent study on

learnability of relational specifications [18].

2) Linked List: We also model in Alloy two properties

of linked lists – cyclicity and acyclicity. These subjects are

more complex than the relational properties and use transitive

closures and multiplicities as quantifiers. This allows us to

evaluate our technique in a more complex context.

B. Methodology

Our experimental methodology aims to evaluate our trans-

lation scheme and the efficiency of the synthesized neural

networks. We import the relational properties written in Alloy

into the Kodkod environment to generate the boolean formulas.

We use two scope bounds, 5 and 10, which represent a state-

space of 225 and 2100, respectively. We translate each formula

to a neural network. The networks are then exported into

Keras [25], a machine learning library that runs of top of the

Tensorflow framework. We study the inference times of these

networks in both online and batch inference settings using

10000 test inputs. Batch or offline inference is used when the

application does not have stringent latency requirements. The

system waits for a certain number of prediction requests to

accrue and then performs the inference on the entire batch as

one unit of data. This amortizes the overhead of moving data

to and from memory, resulting in high throughput. We use a

batch-size of 1000. For applications that demand fast response

times, online inference is more suited. In this situation, a

prediction is generated for a request as soon as the request

is made (batch-size is 1). All the experiments were carried

out on a 4 core Intel(R) Core(TM) i5-6200U CPU with 4GB

of memory, running Ubuntu 16.04.

C. Research Questions

We answer the following research questions:

RQ1. What impact does introducing enhanced one and lone

gates have on the size of the efficiency of the networks?

RQ2. How do the neural network sizes scale when increasing

the scope from 5 to 10?

RQ3. What is the impact of using multiplicity operators as

quantifiers?

Table I shows the topology and performance of neural

networks for the 17 properties generated using Kodkod. As

mentioned previously, we generate networks for two scope

bounds of 5 and 10. Table II presents the results of networks

generated from cyclic and acyclic linked list properties. In this

case, we only use scope 5 to construct the networks. The shape

of the network is quantified using two parameters - the number

of layers in the network and the number of connections. We

present the latter as a ratio of the number of connections

having non-zero weights to the total number of connections in

a fully-connected setting. The performance of the networks is

quantified by the batch (batch-size 1000) and online (batch-

size 1) inference times using a corpus of 10000 tests that are

generated at random. By measuring the total inference time of

all the tests, we determine the average time taken to generate a

prediction on a single input for both scenarios; note, under the

batch mode, to process 1 input we must process 1000 inputs,

so we report the time for the entire batch (average over 10

batches); under the online mode, we report the time per input

(average over 10,000 inputs). We use Table I to study RQ1

and RQ2, and Table II for RQ3.

1) RQ1. Impact of enhanced gates: Our translation uses

neural networks that directly compute multiplicity operations

(lone and one). 5 out of the 17 properties make use of

these multiplicity operators. To measure the impact of adding

the lone and one gates, we generate networks with and

without these gates for the relevant subjects. In the table,

167

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 03,2023 at 01:45:32 UTC from IEEE Xplore.  Restrictions apply. 



Scope 5 Scope 10

Neural net config. Inference times(ms) Neural net config. Inference times(ms)

Property Layers NZW/TC Batch Online Layers NZW/TC Batch Online

Antisymmetric 3 40/360 34 4 3 180/5670 29 5

Bijective 9 566/23894 50 6 14 5726/2155974 1284 18

Bijective* 4 126/590 21 4 4 446/4170 26 4

Connexivity 2 40/390 19 4 2 155/5555 26 4

Equivalence 5 752/56497 61 6 5 6947/4653382 2714 22

Function 7 295/7705 34 5 12 3300/807210 507 10

Function* 3 65/305 20 5 3 230/2210 25 5

Functional 7 245/6130 32 6 12 2740/554110 362 8

Functional* 2 30/130 19 4 2 110/1010 21 4

Injective 8 282/6723 34 6 13 2863/562493 368 8

Injective* 3 62/272 20 4 3 222/2042 24 5

Irreflexive 2 10/130 18 4 2 20/1010 20 4

Non-Strict Order 5 692/47787 56 6 5 6677/4297387 2503 21

Partial Order 5 683/47084 56 5 5 6663/4290664 2514 18

Pre Order 5 650/43151 54 4 5 6495/4105996 2395 19

Reflexive 1 5/25 17 4 1 10/100 19 4

Strict Order 5 654/43895 55 5 5 6504/4121485 2403 21

Surjective 8 282/6723 34 5 13 2862/562493 366 8

Surjective* 3 62/272 20 4 3 222/2042 25 5

Symmetric 3 100/1820 21 4 3 450/34290 45 4

Total Order 6 728/50536 59 6 6 6823/4392756 2560 21

Transitive 4 640/42480 50 4 4 6480/4099410 2379 20

TABLE I: Size and performance of neural networks created using Kodkod

(NZW - Non-zero weights, TC - Total connections)

the name of the property followed by an asterisk(*) indicates

that the network is generated using these enhanced gates.

For properties that use the lone gates (functional, injective,

bijective, surjective), the size of their network decreases by 5
layers for scope-5 and 10 layers for scope-10. The resulting

networks are significantly smaller, with far fewer connections.

For example, the injective relation for a scope of 10 requires

only 222 connections using the lone gate as opposed to

almost 3000 required without it. Smaller networks also result

in reduced inference latencies. The scope 10 bijective relation,

utilizing lone gates, witnesses a 50x and 4x speed-up for

batch and online inferences, respectively. These speed-ups are

more pronounced for the larger scope 10 networks than scope

5 networks. Using one gates reduces the network size of the

function network by 4 layers for scope 5 and 9 layers for scope

10. The resulting network is 20x and 2.3x faster in batch and

online inference settings (for a scope of 10). Another benefit

of using these gates is that the number of layers in the network

does not increase with the scope bounds. For example, going

from a scope of 5 to a scope of 10 requires the same number

of layers. However, the shape of the network does change with

more neurons and connections in each layer for scope 10.

2) RQ2. Network sizes for different scopes: The subjects we

study can be divided into two groups: properties that do not

use multiplicity operators, and properties that use operators

like lone and one. For the first group, the network layers

remain the same when increasing the scope. For the latter,

increasing the scope bounds increases the number of layers.

For the five properties which use either lone or one operator,

going from a scope of 5 to 10 adds 5 layers to the network.

Neural net config. Inference times(ms)

Property Layers NZW/TC Batch Online

Acyclicity1 12 19520/12540365 7437 47

Acyclicity1* 12 19330/12131670 7156 45

Acyclicity2 17 43162/60222914 35937 178

Acyclicity2* 13 19080/11785352 6884 42

Cyclicity1 12 21143/14694170 8858 54

Cyclicity1* 12 20953/14251475 8295 50

Cyclicity2 17 43307/60937359 35767 179

Cyclicity2* 13 19135/11861212 6928 44

TABLE II: Size and performance of neural networks for

Linked List properties

(NZW - Non-zero weights, TC - Total connections)

However, this can be solved by the use of enhanced gates.

Increasing the scope changes the network shape, irrespective

of whether layers are added or not, as there are more neurons

and connections in the network.

3) RQ3. Multiplicity operators as quantifiers: The rela-

tional properties we have studied so far only used univer-

sal(all) quantification in their formulas, and the multiplicity

operators were only used with expressions. However, operators

like lone and one can also be used as quantifiers. The code

below shows two ways of specifying the acyclic property of

a linked list. The predicate AcyclicSinglyLinked1 uses

the universal quantification, while AcyclicSinglyLinked2

uses both all and one; both the predicates are equivalent.

The formulas also make use of transitive(ˆ) and reflexive-

transitive(*) closures. In this section, we study the impact of

having multiplicity operators as quantifiers and also present

the translation of formulas that involve closures of relations.
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1 one s i g Header e x t e n d s Node {}
2 s i g Node {
3 l i n k : s e t Node

4}
5 pred A c y c l i c S i n g l y L i n k e d 1 ( ) {
6 a l l n : Header . * l i n k {
7 n ! i n n . ˆ l i n k

8 l o n e n . l i n k

9 }
10}
11 pred A c y c l i c S i n g l y L i n k e d 2 ( ) {
12 a l l n : Header . * l i n k | l o n e n . l i n k

13 one n : Header . * l i n k | no n . l i n k

14}

We model two types of linked lists - acyclic and cyclic, for

our analysis. Like the acyclic property, we specify the cyclic

property in two ways - with and without the use of multiplicity

operators as quantifiers. Table II provides the details of net-

works generated for the two types of list and their variations.

All the networks correspond to a formula of scope 5. A suffix

of 1 to the property name implies the absence of multiplicity

operators as quantifiers, while a suffix of 2 implies the use of

the one operator as a quantifier. An asterisk(*) indicates the

use of enhanced multiplicity gates to generate the network.

For formulas that do not contain multiplicities as quantifiers,

the use of enhanced gates has minimal impact. We observe

only a marginal decrease in the number of connections, while

the number of layers remains the same. The inference times

remain similar as well. These results show that the for such

formulas reflexive-transitive closure is the primary determinant

of the length and complexity of the formula. However, for

predicates like AcyclicSinglyLinked2, which use a mul-

tiplicity quantifier over reflexive-transitive closure, we see a

significant reduction in the size of the network. This is because

now the translation of quantifier one can be optimized using

the enhanced one gates. Cyclicity uses identical quantifiers,

and we see a similar trend for this property.

V. LIMITATIONS

The properties of the networks we generated using our

translation technique depend on how the specifications are

written. As seen in our experiments with the linked list

subjects, the same specification can be written in multiple

ways leading to the generation of distinct networks that exhibit

significant variation in performance. One way of addressing

this issue is to determine the combinations of Alloy constructs

that require complex boolean interpretations and try to avoid

them as much as possible when creating the networks. Another

approach to mitigate this issue is to create a richer and

more sophisticated database of enhanced gates which learn

to represent these complex constructs that bloat the boolean

formulas. For example, like the one and lone gates, we are

working to synthesize networks that preserve and represent

expressions with transitive closures. This would allow us to

compactly represent such expressions with such closure gates

instead of interpreting them using standard logical operators.

VI. RELATED WORK

Verification of ML models. LIME [26] is a technique that

given a neural network and an input example, produces an

explanation about the parts of the input which contributed

mostly to the model’s decision. While explanations of LIME

can be useful, there’s no guarantee that such explanations are

correct. Viper [27] and MoET [28] are previous techniques

used in deep reinforcement learning (RL), where an agent in

a form of a neural network is mimicked to produce a tree-like

model. Viper’s decision tree model is then translated to an

SMT formula to provide rich verification in RL setting. Our

work is different in spirit in that it produces provably correct

neural networks from the very beginning.

Program Synthesis of Neural Networks. Previous works

have framed neural network training as a program synthesis

task. In [29], the authors represented a neural network as a

sketch where weights are symbolic values to be synthesized.

While this work relies on a search procedure and SAT solving

to find a solution, our technique is different in that it directly

translates an Alloy formula to a neural network without any

search or solving involved, except for the predefined gates.

Propositional Logic in Neural Networks. Minsky and

Papert, in 1969, proved that the XOR function cannot be

implemented via perceptron (single layer neural network) [30].

However, later work showed that the XOR function can be

realized by the addition of hidden layers to the network. Im-

plementing boolean functions in neural networks was studied

before [31]. However, this work focuses directly on boolean

logic, not Alloy, and it does not propose techniques to optimize

the translation and reduce the number of gates. In another

line of work that focused on training, Evans and Grefen-

stette introduced a differentiable inductive logic programming

framework allowing one to to train a network with symbolic

representation [32], while Payani and Fekri introduced a

technique to train a network consisting of boolean logic nodes

by defining a set of differentiable Boolean operators [33].

VII. CONCLUSION

This paper presented a new technique for creating desired

machine learning models where instead of the traditional ap-

proach of training them using datasets, the models are directly

synthesized from logical specifications, and thus, are correct

by construction. Specifically, the technique translates relational

specifications written in the well-known logic Alloy to neural

networks that run on the widely used Tensorflow backend.

The key insight is that a slight enhancement of traditional

boolean gates can provide a rich intermediate representation

that readily translates to neural networks. Enhanced gates

are translated to minimal neural networks by employing the

state-of-the-art program synthesis framework Rosette. The

translation of Alloy specifications then follows the standard

translation to boolean logic with the exception of utilizing the

enhanced boolean gates, followed by a translation to neural

networks. The technique is embodied in a prototype tool and

used for experimental evaluation. The experimental results

show that the technique allows synthesis of neural networks

that are hard to create using traditional training methods.
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APPENDIX A

COMPARISON OF KODKOD WITH OCELOT

Ocelot is a Rosette library that provides tools to construct

relational specifications. Ocelot provides an embedding of

Alloy in Rosette, which makes it simple to convert properties

written in Alloy into Rosette. To translate Ocelot formulas, we

developed a Java-based framework that has a front-end parser

which treats the formula generated by Ocelot as a string input

and constructs an AST. The back-end of the framework, using

a methodology similar to the one used with Kodkod, generates

a neural network from the AST. Currently, the Ocelot/Rosette

translator does not support the enhanced one and lone gates.

Table III shows the details of the networks created using the

boolean formulas generated from Ocelot. Kodkod produces a

more concise encoding of boolean formulas than Ocelot. For
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Scope 5 Scope 10

Neural net config. Inference times(ms) Neural net config. Inference times(ms)

Property Layers NZW/TC Batch Online Layers NZW/TC Batch Online

Antisymmetric 4 85/1005 12 4 4 370/18010 28 5

Bijective 18 1418/90901 109 7 33 64753/153415076 90750 428

Connexivity 3 75/755 12 4 3 300/11010 22 4

Equivalence 7 988/64160 58 5 7 8868/4924010 2901 21

Function 14 1130/69105 73 5 29 63680/151516310 87782 421

Functional 16 1325/85955 82 7 31 64470/153152710 88727 422

Injective 17 1371/88407 113 7 32 64611/153283852 90444 433

Irreflexive 2 10/130 11 4 2 20/1010 13 43.33

Non-Strict Order 8 952/60077 55 6 8 8692/4761132 2768 20

Partial Order 7 939/59250 54 6 7 8674/4753945 2759 22

Pre Order 7 862/49478 50 4 7 8317/4351298 2511 21

Reflexive 1 5/25 9 4 1 10/100 11 4

Strict Order 7 866/50222 50 6 7 8326/4366787 2543 21

Surjective 17 1371/88407 105 7 32 64611/153283852 90552 428

Symmetric 4 125/1905 12 4 4 550/35110 37 5.04

Total Order 8 1015/65235 58 6 8 8970/4946800 2850 23

Transitive 6 850/48730 46 5 6 8300/4344410 2505 21

TABLE III: Size and performance of neural networks created using Ocelot/Rosette

(NZW - Non-zero weights, TC - Total connections)

simpler properties like reflexivity and irreflexivity, the formulas

are identical, and so are their networks. For properties like

transitivity, Ocelot’s interpretation requires two additional

layers and around 30% more connections for both scopes of 5
and 10. Despite the difference in the number of connections,

the inference times remain mostly comparable. In this case,

while the scope 5 networks show similar performance, the

scope 10 Kodkod network is about 120ms faster in batch

inference setting. The differences become more pronounced

for relations that use multiplicities. In the case of the function

property, Ocelot requires 2x more layers compared to Kodkod

for scope 5 and 2.4x more layers for scope 10. This has a

significant impact on the efficiency of the networks. The scope

10 function network from Kodkod is 172x and 40x faster than

Ocelot’s network for batch and online inference, respectively.
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