2020 IEEE 31st International Symposium on Software Reliability Engineering (ISSRE)

Designing Neural Networks Using Logical Specs

Shikhar Singh, Marko Vasic, Sarfraz Khurshid
Dept. of Electrical and Computer Engineering
The University of Texas at Austin
Austin, USA
{shikhar_singh,vasic} @utexas.edu, khurshid@ece.utexas.edu

Abstract—As systems that deploy machine learning models
become more and more pervasive, there is an urgent need to
ensure their reliability and safety. While recent years have seen
a lot of progress in techniques for verification and validation
of machine learning models, reasoning about and explaining
their behaviors remains challenging. This paper introduces a new
approach for creating machine learning models where instead of
the traditional supervised learning using data, the models are
directly synthesized from specifications, and thus, are correct by
construction. Our focus is binary classifiers with boolean features.
Specifically, our approach translates relational specifications
written in the well-known modeling language Alloy to neural
networks that run on the widely used Tensorflow backend. Our
key insight is that a slight enhancement of traditional boolean
gates can provide a rich intermediate representation that readily
translates to neural networks. To translate the enhanced gates to
neural networks, we employ a state-of-the-art program synthesis
framework that allows us to find minimal neural networks.
The translation of Alloy specifications then follows the standard
translation to boolean logic with the exception of utilizing the
enhanced boolean gates, followed by a translation to neural
networks. We embody our approach in a prototype tool and use
it for experimental evaluation. The experimental results show
that our approach allows synthesis of neural networks that are
hard to create using traditional training methods.

I. INTRODUCTION

Systems based on machine learning models are rapidly be-
coming ubiquitous and are being deployed in a wide range of
settings, including critical domains such as autonomous vehi-
cles. However, ensuring reliability and safety of these systems
largely remains an open problem. While recent years have
seen a lot of progress in techniques for gaining insights into
machine learning models, development of effective verification
and validation methods pose key technical challenges [1], [2].
Once a machine learning model such as a deep neural network
is trained, it becomes a highly complex structure that is very
hard to reason about.

This paper introduces an approach to create machine learn-
ing models that have the desired properties and are correct by
construction [3]. Instead of the traditional method of training
desired models using datasets until a desired performance
(accuracy, precision etc.) is achieved, our approach directly
synthesizes the models from given specifications. Our focus
is binary classifiers, i.e., models that classify each input into
one of two possible output classes. Specifically, our approach
translates relational specifications written in Alloy [4] to

This work was partially supported by NSF grant no. CCF-1718903.

neural networks that run on the widely used Tensorflow [5]
backend.

Alloy is a first-order relational logic with transitive clo-
sure, which is particularly suitable for writing specifications
of software systems. The Alloy toolset has a state-of-the-
art analysis backend that employs off-the-shelf propositional
satisfiability (SAT) solvers [6], [7]. Alloy performs scope-
bounded analysis and the Alloy analyzer translates Alloy
formulas into propositional logic with respect to a given
bound on the universe of discourse. Alloy’s intuitively familiar
notation and efficient analysis make it a particularly attractive
method to aid the development of complex systems. Alloy has
been applied in many domains, including mobile computing,
security, access control, software checking, and hardware
vulnerability analysis [8]-[15].

This paper introduces the use of Alloy for specifying
desired properties of machine learning models and creating
models that guarantee those properties. Our key insight is
that a slight enhancement of traditional boolean gates, which
introduces gates that directly correspond to Alloy constructs,
can provide an effective intermediate representation that not
only simplifies translation from Alloy to (enhanced) boolean
formulas but also readily translates to neural networks, thereby
enabling a faithful translation from Alloy to neural networks.
To illustrate, consider the Alloy keyword “lone” that applies
to an expression, say e, and creates a formula that is true if
and only if e represents either the empty set or a singleton
set. We introduce a special lone gate that directly encodes this
behavior rather than using a circuit of traditional boolean gates
(and, or, and not).

To translate the enhanced gates to neural networks, we
employ Rosette [16], a state-of-the-art program synthesis
framework, which allows us to find minimal neural networks
that are functionally equivalent to the gates. The translation
of Alloy specifications then follows the standard translation
to boolean logic with the exception of utilizing the enhanced
boolean gates, followed by a translation to neural networks.
In addition to employing Rosette for synthesis, we also utilize
it for validating the implementation of our technique. Specif-
ically, we formulate and check program verification problems
to express the logical equivalence of Alloy formulas (written
using Rosette’s Alloy DSL) and the neural networks translated
by our technique.

We experimentally evaluate our approach using a variety of
relational specifications as subjects. The experimental results

2332-6549/20/$31.00 ©2020 IEEE
DOI 10.1109/ISSRE5003.2020.00024
Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 03,2023 at 01:45:32 UTC from IEEE Xplore. Restrictions apply.

160

show that our approach allows synthesis of neural networks
that are hard to create using traditional training methods.

Why synthesize neural networks? Supervised learning con-
structs models using labeled data. In contrast, we focus on
using specifications to create such models without relying on
datasets. We do not expect synthesis to be a replacement for
training. Instead, we expect synthesis to complement training,
and for the two to apply in synergy. Our overarching goal
is to overcome two key issues with the traditional approach
of training deep learning models: 1) lack of verifiability; and
2) lack of explainability. Addressing these challenges will
enable deployment of machine learning models that can be
trusted and have behaviors that can be explained using human
understandable or machine verifiable logical reasoning. We
believe our work provides a viable direction to achieve this
goal. We envision a number of promising techniques in future
work, including: 1) building composite models that consist
of components that are synthesized from specifications, and
components that are trained using datasets; 2) using models
synthesized from specifications as seeds for training more
sophisticated models that guarantee certain base properties;
and 3) using advances in machine learning, e.g., model com-
pression methods [17], to provide highly efficient execution
of specifications, say for runtime verification of a software
system.

Our work also takes inspiration from a recent study [18]
that shows that relational specifications form a surprisingly
challenging target for training traditional models. The study
showed that off-the-shelf models achieve high performance
(accuracy, precision etc.) in learning relational properties when
evaluated in a traditional way (i.e., on test datasets), but the
true performance of these models when evaluated on the whole
(bounded) input space was much poorer, thereby indicating
the difficulty in learning these properties using the traditional
approach.

This paper makes the following contributions.

o Synthesis of minimal neural networks. We form pro-
gram synthesis problems in Rosette to create minimal
neural networks that are functionally equivalent to the
boolean gates, including enhanced gates that we introduce
to directly support Alloy constructs.

o Translation of Alloy to neural networks. We define an
end-to-end translation that takes as input a specification
written in the Alloy language and creates as output a
neural network that is logically equivalent to the input
specification and executable on modern machine learning
frameworks.

o Verification of neural networks. We form program
verification problems in Rosette that allow checking the
equivalence between Alloy formulas written using the
Alloy embedding in Rosette, and neural networks that are
also encoded in Rosette. Doing so allows validating our
translation. The verification process also allows checking
neural networks that were created in other ways, e.g.,
using the training approach or training based on datasets.

LSRR
"l é'{ X
TR
SO ' LK
A PP,

(a) Without one gate

(b) Using one gate

Fig. 1: Fully connected feed-forward networks with perceptron
activations for the Function predicate.

« Evaluation. We perform an experimental evaluation to
answer key research questions. The experimental results
show that (1) enhanced gates enable a substantial re-
duction in the size of the synthesized neural networks;
(2) Rosette provides an effective framework for synthe-
sis of minimal neural networks that are equivalent to
(enhanced) boolean gates; and (3) Rosette also provides
effective verification of neural networks that represent
complex relational specifications.

II. ILLUSTRATION

This section presents an example to illustrate our technique
for creating neural networks from relational specifications. We
also provide the necessary background on Alloy and Rosette.
Background. The following Alloy specification defines the
function property, i.e., the binary relation r is a fotal function:

1sig S { r: set S}

2

;pred Function() { all s: S | one s.r }

:run Function for exactly 2 S

The sig S declares a set of atoms, and its field r declares a
binary relation of type S x S. The keyword pred defines a
predicate, which is a parameterized formula that can be in-
voked elsewhere. The keyword all is universal quantification,
and the operator “.” operator is relational composition. The
quantification operator one requires its expression to represent
a singleton set. Thus, the body of the predicate Function
specifies that for each atom s in sig S, the relational image
of s under r has exactly one element. Hence, r is a total
function. The run command represents a typical usage of the
Alloy tool: to solve constraints. Specifically, the run command
instructs the Alloy analyzer to find an instance, i.e., a valuation
of the sets and relations in the model such that the predicate
Function is true. The command specifies a scope that bounds
the universe of discourse. The scope of “exactly 2 S” requires
that each instance must have 2 atoms in sig S, e.g., the

following valuation is an instance for this scope:
S = {S0, s1}
r = {S0->S1, S1->S1}
where S contains the atoms SO and S1, and » maps each of
S0 and S1 to S1.

We next illustrate two frameworks that enable translation

of Alloy formulas to boolean logic and provide key enabling

161

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 03,2023 at 01:45:32 UTC from IEEE Xplore. Restrictions apply.

technologies for our approach: 1) Kodkod [19], which is the
standard tool integrated with the Alloy analyzer for solving
constraints using SAT solvers [6], [7]; and 2) Rosette [16],
which provides the Ocelot [20] library that implements an
embedding of Alloy, and allows solving constraints using
SMT solvers [21]. Kodkod and Rosette create the following
two formulas corresponding to the predicate Function (w.r.t.
scope of “exactly 2 S7):

Kodkod: (((1]2)&(!2]!11))&((314)&('4113)))
Ocelot: (&& (&& (|| (! rs$0) (! rs$l))

(Il r$0 (&& r$1 (! r$0))))

(&& (11 (! r$2) (! r$3))

(Il rs$2 (&& r$3 (! rs$2)))))

Both formulas use 4 boolean variables, which represent the
2 x 2 boolean matrix that encodes the relation r. For example,
the Kodkod variables 1, 2, 3, 4 respectively represent the
entries (0, 0), (0, 1), (1, 0), and (1, 1) of the matrix. While the
two formulas created by Kodkod and Ocelot are semantically
equivalent, they are structurally different (modulo differences
in notation). As Alloy’s specialized backend, Kodkod performs
several optimizations, which have an important impact on the
size of the boolean formulas that it creates (see Appendix A).
Translation to Neural Networks. We next illustrate how our
approach translates Alloy specifications to neural networks that
are correct by construction. Kodkod/Ocelot already provide
vehicles to translate Alloy to boolean logic. We enhance this
translation to introduce special gates that directly correspond
to multiplicity constructs in the Alloy models, such as key-
words lone and one, which can both quantify expressions and
also define quantified formulas. Moreover, we also define a
translation from boolean logic with enhanced gates to neural
networks. Overall, our approach has three primary compo-
nents: 1) synthesis of minimal neural networks that are equiva-
lent to (enhanced) boolean gates (using Rosette); 2) translation
of (enhanced) boolean logic to fully connected, feed-forward
neural networks (using Kodkod); and 3) verification of the
neural networks with respect to relational specifications (using
Rosette).

Figure 1a shows the resulting network generated by trans-
lating the Kodkod formula for the F'unction predicate for the
scope of exactly 2 S. The network comprises of 4 layers in
addition to an input layer. The neurons marked 1 to 4 are
the four inputs to the network. Units assigned letters a to
k represent the various logical operations performed by the
neurons. These letters correspond to superscript letters fol-
lowing the logical symbols in the annotated Kodkod formula:

(((1]%2) &% (172[°171)) & ((3]74) &° (174[°1¥3)))
Since we use the feed-forward architecture, there are no skip
connections between the layers. The buffer neurons (marked
x) are used when output of a neuron needs to be forwarded
to a non-immediate layer. The connection weights and bias
values in the network are configured using the values of
the corresponding logic gates synthesized with Rosette. Any
connections that are not required have the corresponding
weights set to zero.

1) Enhanced Neural Gates: We next illustrate our enhanced
translation that provides a richer set of neural gates, which

162

results in a more compact encoding and leads to the creation
of smaller, more efficient networks. We augment the Kodkod
boolean formula generator to add support for one and lone
gates, which correspond to how the keywords are defined by
Alloy. Observe the function predicate uses the keyword one.
The boolean expression (w.r.t to same scope of 2) built using
the enhanced one gates is “((1@P2) &2 (3@°4))”, where
the one gate is identified using the symbol “@”. Figure 1b
shows the network with one gates. Compared to the original,
this network encodes the same formula with one less layer and
6 fewer neurons. The neurons are labeled by letters depicting
operation they are performing (e.g., a is the and operation
as depicted in the formula). The one gate implementation
requires three neurons. The values of the various network
parameters are derived from the corresponding synthesis prob-
lems solved using Rosette. The advantage of using these
enhanced gates become more substantial for larger scopes.
For a scope of 10, using the one gate for the Function
predicate results in a network that has a third of the number
of layers, 93% fewer connections, and is 20 times faster in
making predictions in comparison with the network that does
not use the enhanced gates.

III. TECHNIQUE

This section presents our technique. First, we explain
how we synthesize neural networks that represent (enhanced)
boolean logic gates using program synthesis methods. Specif-
ically, we synthesize networks that are minimal in terms of
the number of layers and neurons. These neural networks are
used as building blocks in our technique to translate formulas
written in Alloy into equivalent fully connected feed-forward
neural networks.

A. Synthesis of logic gates as neural networks

At an abstract level the synthesis problem has two key
elements: 1) specification that provides reference behavior;
2) skeletal implementation that provides a template that
needs to be completed by the synthesizer. In our case the
specification describes the behavior of the desired boolean
gate (that has 1+ boolean inputs and 1 boolean output), the
skeletal implementation describes the fixed structure of a fully
connected feed-forward neural network, and the synthesizer
outputs weights and biases on the edges and neurons that are
part of the skeleton. We fix the range of values weights can
take to {—1,0, 41}, and the range of values biases can take to
{—-n,—n+1,..,n—1,4n}, n being the number of inputs to
the gate. To find a minimal network, we start with no hidden
layers, and iteratively increase the number of hidden layers and
neurons per layer until the synthesizer solves the problem.

1) Neural network template: Neurons in every layer com-
pute a weighted sum over inputs received from neurons in the
previous layer, with a bias term added to the sum. The resulting
value is then propagated through an activation function to
generate the neuron output. We use the well-known percep-
tron [22] activation for each neuron; the following equation
computes the output of a neuron; w and z are vectors of

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 03,2023 at 01:45:32 UTC from IEEE Xplore. Restrictions apply.

weights and inputs, and b is the bias where the size of the
vectors is equal to the number of inputs to the neuron:

1 wz+b>0
0 otherwise

fx) =

The synthesis problem searches for values of the weights (w)
and bias (b) terms — indeed, these are the learnable parameters
inferred during the training procedure of traditional machine
learning methods for training neural networks.

2) Problem formulation: In the synthesis-based approach,
these learnable parameters are represented as symbolic values
that are solved for with respect to the given specification
(without using any datasets). For a given network shape,
the forward pass is encoded as a formula which represents
computations performed by the network. Given a formula
that uses the symbolic values, for a given test input, the
task of training gets transformed into the task of searching
for concrete bindings of the symbolic values such that the
network produces the desired output. SMT solvers efficiently
accomplish this search. The expected behavior of the network
is encoded as constraints, which are then provided to the SMT
solver. Let N,, s w,p represent a fully-connected feed-forward
network comprised of n layers. The parameter S represents the
shape/topology of the network, a mapping from the layer to the
neurons in that layer. W is the set of all connection weights,
while B is the set of bias values of the neurons in the network.
@spec rEpresents the semantics of the boolean operation, for
which we want to synthesize a network. For a network of fixed
size and shape, the synthesis problem reduces to determining
the values of W and B such that the following equation is
satisfied.

EIW, B.Vi Nn,S‘W,B(i) = ¢spec(i)

In words, the equation asks if there exists a set of weights and
biases, such that the output of the network equals the output
of the specification for the entire input space. We employ
the well-known counter-example guided inductive synthesis
(CEGIS) framework to handle the quantifier alternation in
the equation [23], [24]. A typical CEGIS setup requires two
components - a synthesizer that generates candidate programs
(neural networks in our case) and a verifier that checks the
candidates against a specification. To generate better candi-
dates, the synthesizer utilizes counter-examples provided by
the verifier.

3) Synthesis Loop: Algorithm 1 shows the synthesis loop.

It has the following inputs:

o Number of inputs to the logic gate.

« The specification (spec) is a piece of code that captures
the behavior of the logic gate.

o The shape of the network is represented by the structure
config, which stores and manages information about the
layers, neurons in each layer, and their connections.

The output of the algorithm (parms) is a set of parameters
(weights and biases) for the given neural network configuration
(config). The network with these parameters exhibits behavior
equivalent to the specification (spec).

Algorithm 1 Synthesis loop

Input: num_input, config, spec
Output: parms

1: for layer in config do

2 for neuron in layer do

3 for input in neuron.inputs do

4: input.weight < create_symbolic_const()
5: addConstraint(input.weight < 1)

6 addConstraint(input.weight > -1)

7 end for

8: neuron.bias < create_symbolic_const()
9: addConstraint(neuron.bias < num_input)
10: addConstraint(neuron.bias > -num_input)
11: end for
12: end for

13: sParms < config.Symbolics
14: parms < initialize(con fig)
15: for i in num_input do

16: input[i] < create_symbolic_const()
17: addConstraint(input[i]==1 || input[i]==0)
18: end for

19: while true do
> Search for a counter-example
20: model < verify(spec(input) < net(config,parms,input))

21: if model is not null then > counter-example found
> Add a new constraint with the counter-example

22: addConstraint(spec(model)==net(config,sParms,model))

23: m < solvelInc()

24: if m is not null then

25: parms <—m > m is new solution

26: else

27: problem UNSAT > no solution exists for the config

28: break

29: end if

30: else > no counter-example found

31: problem SAT > parms is the solution

32: break

33: end if

34: end while

The algorithm begins by reading the configuration and
initializing symbolic constants for the network parameters.
The config allows for reading the network layer-by-layer and
iterating over the neurons in each layer (lines 1,2). For every
input feeding to a neuron, we create a symbolic weight value
(create_symbolic_const) (lines 3,4). In our implementation, the
symbolic weights can only be bound to integer values, which
range from -1 to 1 (lines 4-6). The function add_constraint
takes as input an assertion condition and adds it to the
global assertion store. Similar to the input weights, we create
symbolic bias integers whose values are restricted to range
between the number of inputs to the gate and its negation
(lines 8-10). Allowing the symbolic weights and biases to have
integer bindings and restricting their values to a finite range
speeds up the synthesis process and makes it scalable. sParms
is the set of all symbolic parameters created from config
(line 13). Before starting the synthesis loop, we initialize the
first candidate set of concrete parameters that are randomly
generated by initialize (line 14) (parms is the concrete-valued
counterpart of sParms). These values in parms adhere to the
bounds set for their symbolic counterparts. We also define a
symbolic input array(input), which represents the space of all
possible inputs to the neural network. The size of the array is

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 03,2023 at 01:45:32 UTC from IEEE Xplore. Restrictions apply.

iny

(b) 2-input AND gate

im

! 0
iny I Y

in3 1

1
T :
in % g

(c) NOT gate (d) k-input OR/SOME gate

(e) k-input AND gate (f) k-input LONE gate

Fig. 2: Sample neural networks

equal to the number of inputs, and each element of the array
is restricted to a value of 0 or 1 (lines 15-18). The synthesis
loop starts with a call to the verify function (line 20). This
function takes as input an assertion condition and searches for
concrete bindings of all the symbolic constants that violate the
input assertion while satisfying the assertions in the assertion
store. In our context, we use verify to determine if there is
an input that results in different outputs for the specification
(spec) and the current network candidate (parms). The function
spec produces the output of the specification for the given
input. The function net creates a formula that represents the
operations performed in a forward pass of a neural network,
whose shape and structure are defined by config, and the values
of the parameters are set to those in parms. It then computes
the output of the network for a given input. Verify fails to
return a model, if no such binding exists, and the current
candidate matches the output of the spec on every possible
binary-valued input. The synthesis loop completes, and parms
contains the desired values for the network parameters (lines
30-32). On the other hand, if such a binding exists, verify
returns a counter-example - a concrete input that produces
different outputs on the spec and the current candidate. Using
the new counter-example, we add a constraint, which ensures
any subsequent candidates agree with the spec on the output
for this input (line 22). The next candidate is generated
by issuing a call to the solvelnc function, which invokes
the underlying solver to try and incrementally satisfy all
the assertions in the global assertion store (line 23). If a
model(m) is found, it produces new concrete bindings for
sParm. It becomes the current candidate (line 25) and the
search progresses to look for another counter-example. If the
solver is unable to satisfy the assertions, the current network
configuration, which includes the network shape and bound
on the parameters, is unable to replicate the behavior of the
spec. The synthesis is unsuccessful in this case (lines 26-27).
Not shown in the algorithm is an enumerator that uses iterative
deepening to generate network configurations (config) of in-

(g) k-input ONE gate

synthesized for various logical gates

164

creasing size and complexity. The first network the enumerator
generates has no hidden layers (the inputs directly feed into
an output neuron). The next network has a single hidden layer
with one neuron, and then a single layer with two neurons
and so on. Once the number of neurons in the hidden layer
reaches a threshold (currently set to the number of inputs),
another layer is added to the network. The synthesis loop is
called with configurations of increasing size and complexity,
and the process continues until a feasible candidate is found.
This ensures that we synthesize the smallest possible neural
network, given our bounds on the weight and biases. Fig. 3
implements the proposed algorithm to synthesize a three input
lone gate in Rosette.

Verification of networks: We synthesize networks (up to 10
inputs) that are the smallest possible implementing the desired
operation. We observe patterns in the weights and bias values
of the synthesized networks based on which we manually
design larger networks (larger number of inputs). Then, we
use Rosette to verify correctness of these manually constructed
networks. While synthesis of large networks is prohibitive due
to the computational complexity, our extrapolation approach
improves the scalability and allows us to create larger net-
works. Fig. 2 depicts the various neural gates synthesized using
our technique.

B. From Kodkod to neural networks

This section describes the method to translate Alloy formu-
las into equivalent neural networks. Our translation system is
built using Kodkod, a SAT solver based framework written in
Java, for first-order logic relations. Alloy possesses a Kodkod
embedding, which enables the translation of Alloy formulas
into the Kodkod format, making use of its API. We utilize the
Kodkod front-end that coverts the first-order relation into a
boolean formula and constructs an abstract syntax tree (AST).
We use the AST to perform two tasks. First, using the visitor
design pattern, we implement a custom translator which uses
the enhanced boolean gates (one and lone) when generating

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 03,2023 at 01:45:32 UTC from IEEE Xplore. Restrictions apply.

1 #lang rosette

2 (current-bitwidth 10) ;reasoning bit-width

3 (define numInputs 3)

4 (define inc (solve+)) ;incremental solver

5 (define wt_upper_bound 1) (define wt_lower_bound -1)

6 (define bias_upper_bound 3) (define bias_lower_bound -3)
7 (define (spec inputs) ;specification

8 (define cnt 0)

9 (for ([i inputs])
10 (if (equal? i 1)
11 (if (< cnt 2) 1 0))
12 (define (net input wts bias) ;network

(set! cnt (addl cnt)) '()))

13 (define outO (+ (x (list-ref wts 0) (list-ref input 0))

14 (x (list-ref wts 1) (list-ref input 1))

15 (x (list-ref wts 2) (list-ref input 2))))

16 (if (> (+ outO bias) 0) 1 0))

17 (define (create_symbolic_wts n)

18 (for/list ([i (in-range n)]) ;Al

19 (define-symbolic* w integer?) 4

20 (inc (and (>= w wt_lower_bound) (<=
wt_upper_bound))) w)) ;Algol. lines 5,6

21 (define sym_wts (create_symbolic_wts numInputs)) ;Algol.

line 13

22 (define-symbolic* sym_ b integer?) ;Algol. line 8,13

23 (inc (and (>= sym_b bias_lower_bound) (<= sym_ Db
bias_upper_bound))) ;Algol. line 9,10

24 (define wts (list 0 0 0)) (define b (list 0)) ;line 14

25 (define inConstraints #t)

26 (define symIn

27 (for/list ([x (in-range numlInputs)]) ;Algol. line 15

28 (define-symbolicx h integer?) ;Algol. line 16

29 (set! inConstraints (and (or (= h 1) (= h 0))

inConstraints)) h)) ;Algol. line 17
30 (for ([cnt (in-naturals)]) ;Algol. line 19 (infinite
loop)
31 (define model (verify #:assume (assert inConstraints)
32 #:guarantee (assert (= (spec symIn) (net symIn wts
b))))) ;Algol. line 20

33 (when (unsat? model) (display "St ;Algol line
31

34 #:break (unsat? model) ;Algol. line 32

35 (define newTest (evaluate symIn model)) ;newTest —>
counter—-example

36 (define condT (equal? (net newTest sym_wts sym_b)
(spec newTest))) ;Algol. line 22

37 (define m (inc condT)) ;Algol. line 23

38 (when (unsat? m) (display "Fail")) ;Algol. line 27

39 #:break (unsat? m) ;Algol. line 28

40 (set! wts (evaluate sym wts m)) ;Algol. line 25

41 (set! b (evaluate sym b m))) ;Algol. line 25

Fig. 3: Synthesizing a 3-input lone gate

a boolean formula. With this new translator, the multiplicity
operators, instead of being interpreted using the fundamental
boolean gates, are now represented with the enhanced custom
gates. Secondly, we use another visitor to traverse the AST and
generate neural network equivalents of the logical operations
being performed at each node. The networks are connected
using the parent-child relations in the AST to output a single
neural network that is equivalent to the boolean formula. The
following paragraphs describe the implementation of the latter.
The first visitor is implemented in a similar fashion.

1) Top-Level Translator: The figure below shows a code
snippet of the primary translator class called NeuralNet-
Translator, which implements the GateVisitor interface. The
interface specifies visit methods for four types of nodes in the
AST. A BooleanVariable represents the primary variables used
as inputs to the formula. NaryGate and BinaryGate classes
represent multi-input and two-input logical gates, respectively,
while NotGate represents a not gate. All the four classes
extend the abstract class BooleanFormula. The neural network
translator is invoked by calling the translate function and

providing it the root node of the AST as an argument. The
visit methods first visits the children (if present) followed by
the addition of the node to the neural network. The translator
object upon instantiation creates a new neural network object
whose details are described next.

tclass NeuralNetTranslator implements GateVisitor {
Network net;

2
3
4 void translate (BooleanFormula o) {
5 // creat a new network

6 net = new Network(numlnputs);

7 o.accept(this); }

8

9

// visiting a boolean variable
10 void visit(BooleanVariable var) {
11 net.addToNet(var); } // add to the network

13 //visiting a nary gate
14 void visit(NaryGate gate) {

15 Iterator <BooleanFormula> it = gate.iterator ();
16 while (it.hasNext()) {

17 // visiting the children of the nary gate

18 BooleanFormula b = it.next();

19 b.accept(this);

20

21 net.addToNet(gate); } // add to the network
2

3 /...

2}

2) Neural network implementation: A neural network is
composed of three different types of objects. The class Neuron
represents a single neuron characterized by its position in a
network layer, a bias value, the depth of the layer where this
neuron is located, and a reference to the node in the AST
of the original formula, which this neuron represents. Layer
represents a layer of neurons in the network. The Connection
class is used to store connections between two neurons in the
network. It holds a reference to the source and destination of
the connection and an integer weight.

tclass Neuron {

2 int id; //position in the layer

3 int bias;

4 int depth; //depth of the layer containing this neuron
5 BooleanFormula orig; //reference to the ast node
6 /...

7}

gspublic class Layer {

9 int numUnits; //number of neurons in the layer
10 ArrayList<Neuron> units;

nwo /.

12}

13class Connection { //represents the connection “from”—>"to”
14 Neuron to;

15 Neuron from;

16 int weight; //connection weight

17/

18}

The Network class shown below represents the entire network.
An object of this class is instantiated by NeuralNetTranslator.
Network maintains a record of every layer in the network,
connections between neurons, and their relationship to the
nodes in the boolean formula AST. It provides the functionality
to add logical gates to the network by using the appropriate
networks synthesized with Rosette (discussed in III-A). Upon
instantiation, the network creates an input layer whose size is
equal to the number of inputs supplied to the network.

1class Network {
2 int numlnputs; //inputs to the network

165

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 03,2023 at 01:45:32 UTC from IEEE Xplore. Restrictions apply.

ArrayList<Layer> net; //layers in the network
ArrayList<Connection> connections;

Map<BooleanFormula, Neuron> nMap;

Network (int numlnputs) {
/1 ...
net.add(new Layer()); //adding the input
for (int x = 0; x < numlInputs; X++) {

11 net.get (0).addToLayer(new Neuron(0, x,

layer

0, null));

void addToNet(BooleanVariable var) {
15 net.get(0).setInput(var);
nMap. put(var, (net.get(0)).getInput(var.label() — 1)); }

void addToNet(NaryGate gate) {

Neuron output = new Neuron(0, 0, —I, gate);
ArrayList<Neuron> inputs = new ArrayList<Neuron >();
Iterator <BooleanFormula> it = gate.iterator ();
while (it.hasNext()) {

BooleanFormula b = it.next();

Neuron in = nMap.get(b);

inputs.add(in);

output.depth = maxDepth+1;
resolveConnections (output ,
addNeuron (output); }

/...

31 void addNeuron(Neuron n) {

if (n.depth >= net.size()) {
net.add(new Layer());
depth++;

inputs);

net.get(n.depth).addToLayer(n);
if(n.orig != null) {
nMap. put(n.orig, n);

w0 /...
41}

Adding to the network: The addition of AST nodes to
the neural network is performed via a call to the addToNet
function, which is overloaded to handle the four types of
nodes. BooleanVariable represents an input to the network,
and a call to addToNet in this case, simply adds the variable
to the input layer at the appropriate location. Boolean variables
are given unique integer labels ranging from 1 to the number
of inputs. These labels are used to determine the location of the
neuron in the input layer. The addToNet for a NaryGate first
creates a new neuron which represents the output of the gate.
Network maintains a mapping (nMap) of AST nodes and their
corresponding neurons. The neurons representing the inputs to
this gate are collected and passed to the connect function along
with the output neuron. The connections between the input
neurons and output neurons are made within connect. Finally,
the output neuron is added to the network. Binary gates and
Not gates are added using the same procedure as Nary gates.
Making connections: The connect method takes as input the
output neuron and a list of input neurons. It uses the structure
of the neural networks synthesized using Rosette to determine
the values of various network parameters. For example, when
connecting the input and output neurons to construct an and
network, we know that the smallest network will have no
hidden layers. The weights of each connection between an
input neuron and the output neuron should be +1/, and the
output neuron will have a bias of -(n-1), where n equals the
number of inputs. The construction of one gate requires one
hidden layer with two neurons. The weights and bias values
shown in the code snippet are derived from the corresponding

166

Rosette model. The rest of the gates representing various
logical operations and multiplicities are handled similarly.

1void connect(Neuron n, ArrayList<Neuron> inputs) {

2 if (n.orig.op().ordinal() == 0) { // AND Gate
3 n.bias = —1 * (inputs.size() — 1);

4 for (Neuron in inputs) {

5 Connection ¢ = new Connection(n, in, 1);
6 connections .add(c);

7Y

8

9 else if (n.orig.op().ordinal() == 9) { //ONE Gate
10 // requires a hidden layer with two neurons

11 int depth = inputs.get(0).depth+1;

12 Neuron hl = new Neuron(—1, 0, depth, null);
13 Neuron h2 = new Neuron(l, 0, depth, null);

14 n.bias = 1;

15 n.depth = hl.depth+1;

16 addNeuron (hl);

17 addNeuron(h2);

18 connections .add(new Connection(n, hl, —1));
19 connections .add(new Connection(n, h2, —1));
20 for (Neuron in:inputs) {

21 connections .add(new Connection(hl, in, 1));

connections .add(new Connection(h2, in, —1));

%}
25 /...

25}
C. Validation of networks

1#lang rosette
2 (require ocelot)

3 (define num_inputs 9)

4 (define U (universe '(nl n2 n3)))

5 (define node (declare-relation 1 "node"))

6 (define rel (declare-relation 2 "reflexive™))

7 (define bound_node (make-exact-bound node ' ((nl) (n2)
(n3))))

8 (define bound_rel (make-product-bound rel '(nl n2 n3) '(nl
n2 n3)))

9 (define all_bounds (bounds U (list bound_rel bound_node)))

10 (define iB (instantiate-bounds all_bounds))

11 (define reflexive_rel (all ([n node]) (in (-> n n) rel)))

12 (define reflexive (interpret* reflexive_rel iB))

13 (define (bool2int inputs)

14 (for/list ([i (in-range num_inputs)])

15 (if (equal? (list-ref inputs i) #t) 1 0)))

16 (define (int2bool in)

17 (if (= in 0) #f #t))

18 (define (network in)

19 (define weights (list 1 0 0 0 1 0 0 0 1))

20 (define bias (list -2))

21 (define parms (list weights bias))

22 (define out0 (+

23 (* (list-ref (list-ref parms 0) 0) (list-ref in 0))

24 (» (list-ref (list-ref parms 0) 1) (list-ref in 1))

25 (* (list-ref (list-ref parms 0) 2) (list-ref in 2))

26 (» (list-ref (list-ref parms 0) 3) (list-ref in 3))

27 (* (list-ref (list-ref parms 0) 4) (list-ref in 4))

28 (» (list-ref (list-ref parms 0) 5) (list-ref in 5))

29 (* (list-ref (list-ref parms 0) 6) (list-ref in 6))

30 (» (list-ref (list-ref parms 0) 7) (list-ref in 7))

31 (* (list-ref (list-ref parms 0) 8) (list-ref in 8))))

32 (if (> (+ outO (list-ref (list-ref parms 1) 0)) 0) 1 0))

33 (define allS (symbolics iB))

34 (define model (verify #:guarantee (assert (equal?

reflexive

Fig. 4: Verifying a scope-3 reflexive network

(int2bool (network (bool2int allS)))))))

The final step in the process is to validate the generated
networks. While the networks are correct by construction,
formally verifying them assists in revealing any potential
issues in the translation framework. The validation approach
can also be used for verifying networks created by traditional
training techniques. We use Rosette’s verify functionality to
establish the equivalence of a neural network with the rela-
tional property it is supposed to represent. Using Ocelot, we

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 03,2023 at 01:45:32 UTC from IEEE Xplore. Restrictions apply.

create a specification of the relational property against which
the network needs to be checked. Also, we create a network
function that carries out the neural network computation on
a given input using the provided set of weight and bias
parameters. The size and shape of the network, and the
parameter values are determined by the Kodkod translation
we carried out in the previous step. With a model of the
specification and the network, we invoke the verify feature to
try to discover a counter-example. The absence of a counter-
example proves the equivalence. Using this methodology, we
verify neural networks for all the properties studied in this
paper for a scope bound of 10, except for the 4 linked list
properties, which are validated for a scope bound of 5. Fig.
4 shows the sample code for verifying the reflexive property.
A reflexive relation over some set is one that relates every
element in the set to itself. In the code, we verify reflexivity
for a scope bound of 3. A binary relation with a scope bound
of 3 has 9 inputs, one for each ordered pair. We define the
universe of discourse (line 4), declare the relations (line 5,6),
and define their bounds (lines 7-10). We specify the reflexive
property (reflexive_rel) and interpret it to generate the
boolean formula (reflexive), which encodes the property for
the given scope (line 11, 12). The function network represents
a neural network with 9 inputs, no hidden layers, and 1 output
neuron. It has 9 weights (one for each input) and a bias
term, whose values are determined by the translator (lines 18,
21). The output of the function indicates whether the reflexive
property holds for the given input. The variable alls is the
list of boolean inputs used in the formula and provided to the
network (bool2int and int2bool are utilities to convert
boolean values into integers and vice-versa). We use verify
to check the equivalence of reflexive and network.

IV. EVALUATION
A. Subjects

1) Relational properties: We apply our technique to 17
relational properties expressed in Alloy and adapted into
the input format of Kodkod and Rosette. Out of the 17, 8
are base properties — reflexive, irreflexive, symmetric, anti-
symmetric, transitive, connex, functional, function. The re-
maining properties are compositional, described using two
or more base properties. They include equivalence, bijective,
injective, surjective, strict order, non-strict order, partial order,
pre-order and total order relationships. For example, a total
order relationship is one that is tranmsitive, anti-symmetric
and connex. These properties were used in a recent study on
learnability of relational specifications [18].

2) Linked List: We also model in Alloy two properties
of linked lists — cyclicity and acyclicity. These subjects are
more complex than the relational properties and use transitive
closures and multiplicities as quantifiers. This allows us to
evaluate our technique in a more complex context.

B. Methodology

Our experimental methodology aims to evaluate our trans-
lation scheme and the efficiency of the synthesized neural

167

networks. We import the relational properties written in Alloy
into the Kodkod environment to generate the boolean formulas.
We use two scope bounds, 5 and 10, which represent a state-
space of 22° and 2'%°, respectively. We translate each formula
to a neural network. The networks are then exported into
Keras [25], a machine learning library that runs of top of the
Tensorflow framework. We study the inference times of these
networks in both online and batch inference settings using
10000 test inputs. Batch or offline inference is used when the
application does not have stringent latency requirements. The
system waits for a certain number of prediction requests to
accrue and then performs the inference on the entire batch as
one unit of data. This amortizes the overhead of moving data
to and from memory, resulting in high throughput. We use a
batch-size of 1000. For applications that demand fast response
times, online inference is more suited. In this situation, a
prediction is generated for a request as soon as the request
is made (batch-size is 1). All the experiments were carried
out on a 4 core Intel(R) Core(TM) i5-6200U CPU with 4GB
of memory, running Ubuntu 16.04.

C. Research Questions

We answer the following research questions:

RQI. What impact does introducing enhanced one and lone
gates have on the size of the efficiency of the networks?
RQ2. How do the neural network sizes scale when increasing
the scope from 5 to 10?

RQ3. What is the impact of using multiplicity operators as
quantifiers?

Table I shows the topology and performance of neural
networks for the 17 properties generated using Kodkod. As
mentioned previously, we generate networks for two scope
bounds of 5 and 10. Table II presents the results of networks
generated from cyclic and acyclic linked list properties. In this
case, we only use scope 5 to construct the networks. The shape
of the network is quantified using two parameters - the number
of layers in the network and the number of connections. We
present the latter as a ratio of the number of connections
having non-zero weights to the total number of connections in
a fully-connected setting. The performance of the networks is
quantified by the batch (batch-size 1000) and online (batch-
size 1) inference times using a corpus of 10000 tests that are
generated at random. By measuring the total inference time of
all the tests, we determine the average time taken to generate a
prediction on a single input for both scenarios; note, under the
batch mode, to process 1 input we must process 1000 inputs,
so we report the time for the entire batch (average over 10
batches); under the online mode, we report the time per input
(average over 10,000 inputs). We use Table I to study RQI
and RQ2, and Table II for RQ3.

1) RQI. Impact of enhanced gates: Our translation uses
neural networks that directly compute multiplicity operations
(lone and one). 5 out of the 17 properties make use of
these multiplicity operators. To measure the impact of adding
the lone and one gates, we generate networks with and
without these gates for the relevant subjects. In the table,

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 03,2023 at 01:45:32 UTC from IEEE Xplore. Restrictions apply.

Scope 5 Scope 10
Neural net config. Inference times(ms) Neural net config. Inference times(ms)
Property Layers NZW/TC Batch Online Layers NZW/TC Batch Online
Antisymmetric 3 40/360 34 4 3 180/5670 29 5
Bijective 9 566/23894 50 6 14 5726/2155974 1284 18
Bijective* 4 126/590 21 4 4 446/4170 26 4
Connexivity 2 40/390 19 4 2 155/5555 26 4
Equivalence 5 752/56497 61 6 5 6947/4653382 2714 22
Function 7 295/7705 34 5 12 3300/807210 507 10
Function* 3 65/305 20 5 3 230/2210 25 5
Functional 7 245/6130 32 6 12 2740/554110 362 8
Functional * 2 30/130 19 4 2 110/1010 21 4
Injective 8 282/6723 34 6 13 2863/562493 368 8
Injective* 3 62/272 20 4 3 222/2042 24 5
Irreflexive 2 10/130 18 4 2 20/1010 20 4
Non-Strict Order 5 692/47787 56 6 5 6677/4297387 2503 21
Partial Order 5 683/47084 56 5 5 6663/4290664 2514 18
Pre Order 5 650/43151 54 4 5 6495/4105996 2395 19
Reflexive 1 5125 17 4 1 10/100 19 4
Strict Order 5 654/43895 55 5 5 6504/4121485 2403 21
Surjective 8 282/6723 34 5 13 2862/562493 366 8
Surjective* 3 62/272 20 4 3 222/2042 25 5
Symmetric 3 100/1820 21 4 3 450/34290 45 4
Total Order 6 728/50536 59 6 6 6823/4392756 2560 21
Transitive 4 640/42480 50 4 4 6480/4099410 2379 20

TABLE I: Size and performance of neural networks created using Kodkod
(NZW - Non-zero weights, TC - Total connections)

the name of the property followed by an asterisk(*) indicates
that the network is generated using these enhanced gates.
For properties that use the lone gates (functional, injective,
bijective, surjective), the size of their network decreases by 5
layers for scope-5 and 10 layers for scope-10. The resulting
networks are significantly smaller, with far fewer connections.
For example, the injective relation for a scope of 10 requires
only 222 connections using the lone gate as opposed to
almost 3000 required without it. Smaller networks also result
in reduced inference latencies. The scope 10 bijective relation,
utilizing lone gates, witnesses a 50z and 4x speed-up for
batch and online inferences, respectively. These speed-ups are
more pronounced for the larger scope 10 networks than scope
5 networks. Using one gates reduces the network size of the
function network by 4 layers for scope 5 and 9 layers for scope
10. The resulting network is 20z and 2.3z faster in batch and
online inference settings (for a scope of 10). Another benefit
of using these gates is that the number of layers in the network
does not increase with the scope bounds. For example, going
from a scope of 5 to a scope of 10 requires the same number
of layers. However, the shape of the network does change with
more neurons and connections in each layer for scope 10.

2) RQ?2. Network sizes for different scopes: The subjects we
study can be divided into two groups: properties that do not
use multiplicity operators, and properties that use operators
like lone and one. For the first group, the network layers
remain the same when increasing the scope. For the latter,
increasing the scope bounds increases the number of layers.
For the five properties which use either 1one or one operator,
going from a scope of 5 to 10 adds 5 layers to the network.

168

Neural net config. Inference times(ms)
Property Layers | NZW/TC Batch Online
Acyclicityl 12 19520/12540365 | 7437 47
Acyclicityl* | 12 19330/12131670 | 7156 45
Acyclicity? 17 43162/60222914 | 35937 178
Acyclicity2* | 13 19080/11785352 | 6884 42
Cyclicityl 12 21143/14694170 | 8858 54
Cyclicityl* 12 20953/14251475 | 8295 50
Cyclicity2 17 43307/60937359 | 35767 179
Cyclicity2* 13 19135/11861212 | 6928 44

TABLE II: Size and performance of neural networks for
Linked List properties
(NZW - Non-zero weights, TC - Total connections)

However, this can be solved by the use of enhanced gates.
Increasing the scope changes the network shape, irrespective
of whether layers are added or not, as there are more neurons
and connections in the network.

3) RQ3. Multiplicity operators as quantifiers: The rela-
tional properties we have studied so far only used univer-
sal(all) quantification in their formulas, and the multiplicity
operators were only used with expressions. However, operators
like 1one and one can also be used as quantifiers. The code
below shows two ways of specifying the acyclic property of
a linked list. The predicate AcyclicSinglyLinkedl uses
the universal quantification, while AcyclicSinglyLinked2
uses both all and one; both the predicates are equivalent.
The formulas also make use of transitive(") and reflexive-
transitive(*) closures. In this section, we study the impact of
having multiplicity operators as quantifiers and also present
the translation of formulas that involve closures of relations.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 03,2023 at 01:45:32 UTC from IEEE Xplore. Restrictions apply.

tone sig Header extends Node {}

2sig Node {
3 link: set Node
4}

spred AcyclicSinglyLinkedl () {

6 all n: Header.xlink {

7 n !in n." link

8 lone n.link

o}

10}

tipred AcyclicSinglyLinked2 () {

all n: Header.xlink | lone n.link
one n: Header.slink | no n.link

12
13

14}

We model two types of linked lists - acyclic and cyclic, for
our analysis. Like the acyclic property, we specify the cyclic
property in two ways - with and without the use of multiplicity
operators as quantifiers. Table II provides the details of net-
works generated for the two types of list and their variations.
All the networks correspond to a formula of scope 5. A suffix
of 1 to the property name implies the absence of multiplicity
operators as quantifiers, while a suffix of 2 implies the use of
the one operator as a quantifier. An asterisk(*) indicates the
use of enhanced multiplicity gates to generate the network.
For formulas that do not contain multiplicities as quantifiers,
the use of enhanced gates has minimal impact. We observe
only a marginal decrease in the number of connections, while
the number of layers remains the same. The inference times
remain similar as well. These results show that the for such
formulas reflexive-transitive closure is the primary determinant
of the length and complexity of the formula. However, for
predicates like AcyclicSinglyLinked2, which use a mul-
tiplicity quantifier over reflexive-transitive closure, we see a
significant reduction in the size of the network. This is because
now the translation of quantifier one can be optimized using
the enhanced one gates. Cyclicity uses identical quantifiers,
and we see a similar trend for this property.

V. LIMITATIONS

The properties of the networks we generated using our
translation technique depend on how the specifications are
written. As seen in our experiments with the linked list
subjects, the same specification can be written in multiple
ways leading to the generation of distinct networks that exhibit
significant variation in performance. One way of addressing
this issue is to determine the combinations of Alloy constructs
that require complex boolean interpretations and try to avoid
them as much as possible when creating the networks. Another
approach to mitigate this issue is to create a richer and
more sophisticated database of enhanced gates which learn
to represent these complex constructs that bloat the boolean
formulas. For example, like the one and lone gates, we are
working to synthesize networks that preserve and represent
expressions with transitive closures. This would allow us to
compactly represent such expressions with such closure gates
instead of interpreting them using standard logical operators.

VI. RELATED WORK

Verification of ML models. LIME [26] is a technique that
given a neural network and an input example, produces an

169

explanation about the parts of the input which contributed
mostly to the model’s decision. While explanations of LIME
can be useful, there’s no guarantee that such explanations are
correct. Viper [27] and MoET [28] are previous techniques
used in deep reinforcement learning (RL), where an agent in
a form of a neural network is mimicked to produce a tree-like
model. Viper’s decision tree model is then translated to an
SMT formula to provide rich verification in RL setting. Our
work is different in spirit in that it produces provably correct
neural networks from the very beginning.

Program Synthesis of Neural Networks. Previous works
have framed neural network training as a program synthesis
task. In [29], the authors represented a neural network as a
sketch where weights are symbolic values to be synthesized.
While this work relies on a search procedure and SAT solving
to find a solution, our technique is different in that it directly
translates an Alloy formula to a neural network without any
search or solving involved, except for the predefined gates.

Propositional Logic in Neural Networks. Minsky and
Papert, in 1969, proved that the XOR function cannot be
implemented via perceptron (single layer neural network) [30].
However, later work showed that the XOR function can be
realized by the addition of hidden layers to the network. Im-
plementing boolean functions in neural networks was studied
before [31]. However, this work focuses directly on boolean
logic, not Alloy, and it does not propose techniques to optimize
the translation and reduce the number of gates. In another
line of work that focused on training, Evans and Grefen-
stette introduced a differentiable inductive logic programming
framework allowing one to to train a network with symbolic
representation [32], while Payani and Fekri introduced a
technique to train a network consisting of boolean logic nodes
by defining a set of differentiable Boolean operators [33].

VII. CONCLUSION

This paper presented a new technique for creating desired
machine learning models where instead of the traditional ap-
proach of training them using datasets, the models are directly
synthesized from logical specifications, and thus, are correct
by construction. Specifically, the technique translates relational
specifications written in the well-known logic Alloy to neural
networks that run on the widely used Tensorflow backend.
The key insight is that a slight enhancement of traditional
boolean gates can provide a rich intermediate representation
that readily translates to neural networks. Enhanced gates
are translated to minimal neural networks by employing the
state-of-the-art program synthesis framework Rosette. The
translation of Alloy specifications then follows the standard
translation to boolean logic with the exception of utilizing the
enhanced boolean gates, followed by a translation to neural
networks. The technique is embodied in a prototype tool and
used for experimental evaluation. The experimental results
show that the technique allows synthesis of neural networks
that are hard to create using traditional training methods.

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 03,2023 at 01:45:32 UTC from IEEE Xplore. Restrictions apply.

(1]

(6]

(8]

[9

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

REFERENCES

F. Leofante, N. Narodytska, L. Pulina, and A. Tacchella, “Automated
verification of neural networks: Advances, challenges and perspectives,”
2018.

K. Pei, Y. Cao, J. Yang, and S. Jana, “Towards practical verification of
machine learning: The case of computer vision systems,” 2017.

D. Kourie and B. Watson, The Correctness-By-Construction Approach
to Programming. Springer, 2012.

D. Jackson, “Alloy: A lightweight object modelling notation,” ACM
Trans. Softw. Eng. Methodol., vol. 11, no. 2, p. 256290, Apr. 2002.
[Online]. Available: https://doi.org/10.1145/505145.505149

M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean,
M. Devin, S. Ghemawat, G. Irving, M. Isard, M. Kudlur,
J. Levenberg, R. Monga, S. Moore, D. G. Murray, B. Steiner,
P. Tucker, V. Vasudevan, P. Warden, M. Wicke, Y. Yu, and
X. Zheng, “Tensorflow: A system for large-scale machine learning,”
in 12th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 16), 2016, pp. 265-283. [Online]. Available:
https://www.usenix.org/system/files/conference/osdi16/o0sdil6-abadi.pdf
M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and S. Malik,
“Chaft: engineering an efficient sat solver,” in Proceedings of the 38th
Design Automation Conference (IEEE Cat. No.01CH37232), 2001, pp.
530-535.

N. Eén and N. Sorensson, “An extensible SAT-solver,” in Theory and
Applications of Satisfiability Testing, E. Giunchiglia and A. Tacchella,
Eds. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004, pp. 502—
518.

N. Chong, T. Sorensen, and J. Wickerson, “The semantics of
transactions and weak memory in x86, power, arm, and c++,” in
Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation, ser. PLDI 2018. New York,
NY, USA: Association for Computing Machinery, 2018, p. 211225.
[Online]. Available: https://doi.org/10.1145/3192366.3192373

D. Jackson and K. Sullivan, “Com revisited: Tool-assisted modelling of
an architectural framework,” in Proceedings of the 8th ACM SIGSOFT
International Symposium on Foundations of Software Engineering:
Twenty-First Century Applications, ser. SIGSOFT O00/FSE-8. New
York, NY, USA: Association for Computing Machinery, 2000, p.
149158. [Online]. Available: https://doi.org/10.1145/355045.355065

S. Khurshid and D. Jackson, “Exploring the design of an intentional
naming scheme with an automatic constraint analyzer,” in ASE, 2000,
pp. 13-22.

J. Wickerson, M. Batty, T. Sorensen, and G. A. Constantinides,
“Automatically comparing memory consistency models,” in Proceedings
of the 44th ACM SIGPLAN Symposium on Principles of Programming
Languages, ser. POPL 2017. New York, NY, USA: Association
for Computing Machinery, 2017, p. 190204. [Online]. Available:
https://doi.org/10.1145/3009837.3009838

P. Zave, “Reasoning about identifier spaces: How to make chord correct,”
IEEE Transactions on Software Engineering, vol. 43, no. 12, pp. 1144—
1156, 2017.

D. Jackson and M. Vaziri, “Finding bugs with a constraint solver,”
in Proceedings of the 2000 ACM SIGSOFT International Symposium
on Software Testing and Analysis, ser. ISSTA 00. New York, NY,
USA: Association for Computing Machinery, 2000, p. 1425. [Online].
Available: https://doi.org/10.1145/347324.383378

D. Marinov and S. Khurshid, “TestEra: A novel framework for auto-
mated testing of Java programs,” in ASE, 2001, pp. 22-31.

C. Trippel, D. Lustig, and M. Martonosi, “Checkmate: Automated
synthesis of hardware exploits and security litmus tests,” in
Proceedings of the 51st Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO-51. IEEE Press, 2018, p. 947960.
[Online]. Available: https://doi.org/10.1109/MICRO.2018.00081

E. Torlak and R. Bodik, “Growing solver-aided languages with
rosette,” in Proceedings of the 2013 ACM International Symposium
on New Ideas, New Paradigms, and Reflections on Programming &
Software, ser. Onward! 2013. New York, NY, USA: Association
for Computing Machinery, 2013, p. 135152. [Online]. Available:
https://doi.org/10.1145/2509578.2509586

Y. Cheng, D. Wang, P. Zhou, and T. Zhang, “A survey of model
compression and acceleration for deep neural networks,” 2017.

170

[18]

[20

[21]

~
B

[23]

[24]

[25]
[26]

[27]

[29

[30]

M. Usman, W. Wang, K. Wang, M. Vasic, H. Vikalo, and S. Khurshid,
“A study of the learnability of relational properties (model counting
meets machine learning),” arXiv preprint arXiv:1912.11580, 2019.

E. Torlak and D. Jackson, “Kodkod: A relational model finder,” in
Tools and Algorithms for the Construction and Analysis of Systems,
O. Grumberg and M. Huth, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2007, pp. 632-647.

J. Bornholt and E. Torlak, “Synthesizing memory models from
framework sketches and litmus tests,” in Proceedings of the 38th
ACM SIGPLAN Conference on Programming Language Design and
Implementation, ser. PLDI 2017. New York, NY, USA: Association
for Computing Machinery, 2017, p. 467481. [Online]. Available:
https://doi.org/10.1145/3062341.3062353

L. de Moura and N. Bjgrner, “Z3: An efficient SMT solver,” in Tools
and Algorithms for the Construction and Analysis of Systems, C. R.
Ramakrishnan and J. Rehof, Eds. Berlin, Heidelberg: Springer Berlin
Heidelberg, 2008, pp. 337-340.

F. Rosenblatt, “The perceptron: A probabilistic model for information
storage and organization in the brain,” Psychological Review, vol. 65,
no. 6, pp. 386-408, 1958.

A. Solar-Lezama, L. Tancau, R. Bodik, S. Seshia, and V. Saraswat,
“Combinatorial sketching for finite programs,” in Proceedings of
the 12th International Conference on Architectural Support for
Programming Languages and Operating Systems, ser. ASPLOS XII.
New York, NY, USA: Association for Computing Machinery, 2006, p.
404415. [Online]. Available: https://doi.org/10.1145/1168857.1168907
A. Solar-Lezama, C. G. Jones, and R. Bodik, “Sketching concurrent
data structures,” in Proceedings of the 29th ACM SIGPLAN Conference
on Programming Language Design and Implementation, ser. PLDI 08.
New York, NY, USA: Association for Computing Machinery, 2008, p.
136148. [Online]. Available: https://doi.org/10.1145/1375581.1375599
F. Chollet et al., “Keras,” https://keras.io, 2015.

M. T. Ribeiro, S. Singh, and C. Guestrin, “”Why Should I Trust You?”:
Explaining the Predictions of Any Classifier,” in KDD, 2016.

O. Bastani, Y. Pu, and A. Solar-Lezama, ‘“Verifiable reinforcement
learning via policy extraction,” in Advances in Neural Information
Processing Systems, 2018, pp. 2499-2509.

M. Vasic, A. Petrovic, K. Wang, M. Nikolic, R. Singh, and S. Khurshid,
“Moét: Interpretable and verifiable reinforcement learning via mixture
of expert trees,” CoRR, 2019.

J. Bornholt, E. Torlak, D. Grossman, and L. Ceze, “Optimizing synthesis
with metasketches,” in Proceedings of the 43rd Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, 2016,
pp. 775-788.

M. Minsky and S. A. Papert, Perceptrons: An introduction to computa-
tional geometry. MIT press, 2017.

B. Steinbach and R. Kohut, “Neural networks—a model of boolean
functions,” in Boolean Problems, Proceedings of the 5th International
Workshop on Boolean Problems, 2002, pp. 223-240.

R. Evans and E. Grefenstette, “Learning explanatory rules from noisy
data,” Journal of Artificial Intelligence Research, vol. 61, pp. 1-64, 2018.
A. Payani and F. Fekri, “Inductive logic programming via differentiable
deep neural logic networks,” 2019.

APPENDIX A
COMPARISON OF KODKOD WITH OCELOT

Ocelot is a Rosette library that provides tools to construct
relational specifications. Ocelot provides an embedding of
Alloy in Rosette, which makes it simple to convert properties
written in Alloy into Rosette. To translate Ocelot formulas, we
developed a Java-based framework that has a front-end parser
which treats the formula generated by Ocelot as a string input
and constructs an AST. The back-end of the framework, using
a methodology similar to the one used with Kodkod, generates
a neural network from the AST. Currently, the Ocelot/Rosette
translator does not support the enhanced one and lone gates.
Table III shows the details of the networks created using the
boolean formulas generated from Ocelot. Kodkod produces a
more concise encoding of boolean formulas than Ocelot. For

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 03,2023 at 01:45:32 UTC from IEEE Xplore. Restrictions apply.

Scope 5 Scope 10
Neural net config. Inference times(ms) Neural net config. Inference times(ms)
Property Layers NZW/TC Batch Online Layers NZW/TC Batch Online
Antisymmetric 4 85/1005 12 4 4 370/18010 28 5
Bijective 18 1418/90901 109 7 33 64753/153415076 90750 428
Connexivity 3 751755 12 4 3 300/11010 22 4
Equivalence 7 988/64160 58 5 7 8868/4924010 2901 21
Function 14 1130/69105 73 5 29 63680/151516310 87782 421
Functional 16 1325/85955 82 7 31 64470/153152710 88727 422
Injective 17 1371/88407 113 7 32 64611/153283852 90444 433
Irreflexive 2 10/130 11 4 2 20/1010 13 43.33
Non-Strict Order 8 952/60077 55 6 8 8692/4761132 2768 20
Partial Order 7 939759250 54 6 7 8674/4753945 2759 22
Pre Order 7 862/49478 50 4 7 8317/4351298 2511 21
Reflexive 1 5/25 9 4 1 10/100 11 4
Strict Order 7 866/50222 50 6 7 8326/4366787 2543 21
Surjective 17 1371/88407 105 7 32 64611/153283852 90552 428
Symmetric 4 125/1905 12 4 4 550/35110 37 5.04
Total Order 8 1015/65235 58 6 8 8970/4946800 2850 23
Transitive 6 850/48730 46 5 6 8300/4344410 2505 21

TABLE III: Size and performance of neural networks created using Ocelot/Rosette
(NZW - Non-zero weights, TC - Total connections)

simpler properties like reflexivity and irreflexivity, the formulas
are identical, and so are their networks. For properties like
transitivity, Ocelot’s interpretation requires two additional
layers and around 30% more connections for both scopes of 5
and 10. Despite the difference in the number of connections,
the inference times remain mostly comparable. In this case,
while the scope 5 networks show similar performance, the
scope 10 Kodkod network is about 120ms faster in batch
inference setting. The differences become more pronounced
for relations that use multiplicities. In the case of the function
property, Ocelot requires 2z more layers compared to Kodkod
for scope 5 and 2.4x more layers for scope 10. This has a
significant impact on the efficiency of the networks. The scope
10 function network from Kodkod is 172z and 40x faster than
Ocelot’s network for batch and online inference, respectively.

171

Authorized licensed use limited to: University of Texas at Austin. Downloaded on September 03,2023 at 01:45:32 UTC from IEEE Xplore. Restrictions apply.

