L))

Check for
Updates

Enhancing Constraint-based Repair of Data Structure Errors
that Recur using Memoization

Nima Dini Razieh Nokhbeh Zaeem Sarfraz Khurshid
University of Texas at Austin, USA University of Texas at Austin, USA University of Texas at Austin, USA
nima.dini@utexas.edu nokhbeh@utexas.edu khurshid@utexas.edu

ABSTRACT

Data structure repair has been proposed as an error recovery mecha-
nism to increase software resilience when errors happen at runtime
for a deployed system. Although substantial work has been done
on data structure repair, scalability remains a key challenge and
applicability remains rather restricted.

We present two constraint-based data structure repair techniques
that build on the well-known Korat solver, which introduced an
effective backtracking search to find all object graphs that satisfy
user given structural properties within the user given bounds. Our
baseline technique repairs an erroneous data structure by adapting
the Korat search. While this approach is effective for repairing a
data structure, it suffers from re-exploration when applied on data
structures with similar errors that recur due to a fault in software or
hardware that is exercised repeatedly. We introduce memoization
to amortize the cost of a Korat search over repeated repairs that
overlap in search. Our experimental results show that our memoized
technique is effective for repairing data structure errors that recur.

CCS CONCEPTS

« Software and its engineering — Software verification and
validation; Error handling and recovery;

KEYWORDS

Data structure repair, Error recovery, Korat

ACM Reference Format:

Nima Dini, Razieh Nokhbeh Zaeem, and Sarfraz Khurshid. 2021. Enhancing
Constraint-based Repair of Data Structure Errors that Recur using Memo-
ization. In The 36th ACM/SIGAPP Symposium on Applied Computing (SAC
"21), March 22-26, 2021, Virtual Event, Republic of Korea. ACM, New York,
NY, USA, 10 pages. https://doi.org/10.1145/3412841.3442055

1 INTRODUCTION

As software systems become increasingly more complex, reliability
becomes harder to achieve. Software testing is a common approach
to detect faults early on in software development, yet it cannot
eliminate all the bugs. Failures may still occur at runtime, e.g., due
to a corrupt data caused by a transmission error.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SAC °21, March 22-26, 2021, Virtual Event, Republic of Korea

© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8104-8/21/03...$15.00
https://doi.org/10.1145/3412841.3442055

1823

Data structure repair [2, 3, 8, 9] is an approach for error recov-
ery to make software resilient to runtime failures caused by data
corruption. The goal of data structure repair is not to bring an erro-
neous data structure into an ideal state, which a correct execution
would have generated, but to mutate it to a data structure that is
acceptable for continuing the program execution [28].

Admittedly, data structure repair is not for every kind of software
and every type of error. In some instances, a programmer would
rather let the program execution fail. Data structure repair, however,
remains a valuable tool for particular types of software (e.g., mission
critical systems) and errors (e.g., transmission errors).

The focus of this paper is on reducing the cost of constraint-based
data structure repair when similar data corruptions recur at runtime
due to a fault in software or hardware that is exercised repeatedly.
Our repair approach follows the spirit of prior work [2, 14, 17, 29,
33], where erroneous states are transformed into acceptable [28]
states based on user given structural properties, so the program’s
execution continues instead of being terminated with failures.

Our work is based on the Korat solver [1, 23], which takes a
user given Java class with repOK and finitization methods [21].
The repOK is a boolean method that implements the structural
properties. The finitization specifies bounds on the number of
objects for each type, and a field domain (a finite list of values) for
each field of each type.

Korat internally represents each candidate structure as an integer
array, namely a candidate vector. Korat starts the search from an
initial candidate vector, where each element is set to the first value
in its field domain, and exhaustively enumerates all valid structures
s within the user given bounds, such that s. repOK() returns true.

The constraint-based data structure repair problem is defined as
follows [8, 17]: given a repOK method and erroneous data structure
e, such that !e.repOK(), mutate e into valid data structure r such
that r.repOK() and r is similar to e. Similarity is a heuristic notion,
intended to restrict repair, to avoid unnecessary mutations and to
preserve as much of the original data structure as possible.

This paper makes the following contributions:

Data structure repair using Korat. We present our baseline
data structure repair technique, which takes Java class C (with a
user given repOK) and erroneous data structure e (of type C) as
inputs, and adapts the Korat search to efficiently produce valid data
structure r of the same size, which has the same payload (i.e., the
data stored in the data structure and not checked by repOK).

Memoization. Oftentimes, a fault in software or hardware is
exercised repeatedly, causing similar errors to recur. Applying the
baseline repair technique on each data structure suffers from re-
exploration when the underlying Korat search for repeated repairs
overlap. Our key insight is to enhance the performance of data
structure repair for similar recurring errors using memoization.



class List {
Node head; int size;
static class Node {
int value;
Node next, prev;
3
boolean repOK() {
if (head == null) return false;
Set<Node> visited = new HashSet<>();
visited.add(head);
Node current head;
while (true) { // Check circularity
Node next current.next;
if (next == null) return false;
// Check prev is the converse of next
if (next.prev current) return false;
current next;
if (!visited.add(next)) break;

3

return visited.size() == size;
3
static IFinitization finList(int n) {

IFinitization f createFinitization(List.class);

// Check size

I0bjSet nodes = f.createObjSet(Node.class, n);
f.set("head", nodes);
f.set("size", f.createIntSet(n, n));
f.set(Node.class, "value", f.createIntSet(o, 1));
f.set(Node.class, "next", nodes);
f.set(Node.class, "prev", nodes);
return f;

}

Figure 1: The Java class with repOK and finitization meth-
ods modeling doubly linked lists with binary values

We present unsat region, our memoization construct that suc-
cinctly memoizes consecutive invalid candidate vectors enumerated
by a Korat search, as a pair of start and end candidate vectors, to
avoid re-exploring that unsat region when repairing similar data
structure errors in the future.

Data structure repair for recurring errors. We present our
memoized technique for repairing data structure errors that recur,
which maintains a collection of unsat regions in tandem with data
structure repair to amortize the cost of a Korat search over repeated
repairs. Each data structure repair memoizes a new unsat region or
extends an existing unsat region to further benefit future repairs.

Evaluation. We evaluated our techniques on 8 complex data
structure subjects studied by prior work [1, 5, 10, 11, 24]. Experi-
mental results show that our memoized technique is faster than our
baseline technique for repairing data structure errors that recur, and
requires a small amount of storage for maintaining unsat regions.

2 BACKGROUND AND EXAMPLE

We present an overview of Korat [1] and demonstrate how it can
be applied in the context of constraint-based data structure repair.
We further illustrate how memoization can amortize the cost of a
Korat search over repeated repairs by avoiding re-exploration.

2.1 Korat basics

Consider using Korat to enumerate a suite of all doubly linked list
structures with binary values. The user input to Korat is a Java class

1824

L1.size=3

Lol le a o1 2]

L1.head [

\\9 1 ~ L > ¥ s % s >
sy¥SgeESgeSE¢d
£7f558 285328

- > 53 2 >
| 3=R3Zzz 322z 2z2=

Figure 2: A valid doubly linked list structure L1 with 3 nodes
(left) and its candidate vector representation (right)

with repOK and finitization methods, where repOK checks for
desired structural properties and finitization specifies bounds
on the number of objects for each type, and a field domain (a finite
list of values) for each field of each type, to bound the search.

Korat internally represents a candidate structure as an integer
array, namely a candidate vector (cv in short). Each array element
represents a field of an object in the candidate structure by storing
the index in the element’s field domain that corresponds to the
value of that field in the candidate structure.

Korat starts the search by running repOK on an initial structure
that corresponds to a candidate vector with all elements set to zero
(i-e., each field is assigned to the first value in its field domain).
Korat monitors field accesses during repOK execution to enumerate
the next structure by incrementing the candidate vector element
for the last accessed field to the next index in its field domain and
backtracking the search when it exhausts all choices for that field.

Korat continues this repOK-driven search to enumerate every
valid structure ¢ within the user given bounds such that c. rep0oK()
returns true. Korat eliminates isomorphic structures to prune the
search without compromising completeness.

Figure 1 shows the List Java class that models doubly linked
lists with binary values. The List class declares an internal Node
class, which holds an integer value value and two references next
and prev. A list object has a head field and stores the number of
nodes reachable from head in the size field.

The repOK checks (1) circularity along Node . next, (2) the con-
verse relation between Node . next and Node . prev, and (3) the num-
ber of nodes reachable from List.head matches List.size.

The finitization (1) takes the number of Node objects as input
parameter, namely n, (2) creates a Finitization object, (3) creates
asets = {null,Ny,Ng,---,N,} including null and n unique Node
objects, (4) sets the field domain for List.head to s, (5) sets the
field domain for Node. size to take only 1 value (i.e., n), (6) sets the
field domain for Node. value to a set of binary values {@, 13}, and
(7) sets the field domain for Node.next and Node.prev to s.

Figure 2 shows a valid doubly linked list with three nodes that
stores binary value 110 with its corresponding candidate vector.
For size 3, the search space has 4 - 1- (2 - 4 - 4)3 = 217 candidate
structures. The search space grows exponentially as the size of
structures increases. For instance, for size 20 there are 2192 candidate
structures. Korat prunes the search and finds all 22
by enumerating 1049262 (< 221) structures in 1.4 seconds.

valid structures

2.2 Data structure repair using Korat

2.2.1 Our baseline constraint-based repair technique ( iRepai:lJ ). Fig-
ure 3 illustrates our baseline repair technique for a doubly linked



ad

he
Canonicalize \>
B —
1o | o] o] [o]
|
L]

I s I
L I« 1 [

head
N

(a) Erroneous structure e (b) Canonical structure ¢

Korat search
_—

Copy payload
_
from e

(c) Valid structure v

(d) Repaired structure r

Figure 3: Example data structure repair using our baseline technique (iRepair’) for a doubly linked list with 3 nodes

list with three nodes, using the repOK defined in Figure 1. Figure 3a
shows an erroneous data structure e with three repOK violations:
N3.prev = null,N3.next = N3,and N1.prev = null.

A complete Korat search does not enumerate structure e since
the search backtracks on the first violation repOK execution detects
(i.e.,N3.prev = null). Hence, we first canonicalize structure e to
a structure that is faithful to the Korat search, namely structure
¢ shown in Figure 3b, by setting all fields that were not accessed
by a repOK execution to the first value in their field domains (i.e.,
setting N3.next to null and setting N1.value and N2.value to 0).

Next, we perform a Korat search starting at structure ¢ and stop
the search as soon as Korat enumerates the first valid structure v
shown in Figure 3¢ (where v.repOK() returns true). The repaired
fields, namely N3.prev = N2, N3.next = N1,and N1.prev = N3
are shown with bold arrows.

Finally, we copy the payload (i.e., node values), which were reset
by canonicalization, from structure e into structure v to reach the
repaired structure r shown in Figure 3d. This copy preserves the
payload (i.e., the binary sequence 110).

The user given repOK in this example (Figure 1) does not have
any constraints on Node . value. Hence, this field is excluded from
our repair algorithm. A different repOK that checks node values
(e.g., for sorted lists) would consider repairs on node values as well.

2.2.2  Our memoized constraint-based repair technique (iRepair*).
If an error in a program’s state is due to a fault in software or
hardware, a similar error may occur [34] during the program’s
execution. For instance, consider repairing an erroneous structure
identical to e from Figure 3a but with a different payload (e.g., 101
instead of 110) or an additional field corruption (e.g., a self-loop).

While the underlying Korat search for such repairs would be sim-
ilar (e.g., identical in the different payload scenario), iRepairb would
still run the Korat search and redundantly enumerates previously
explored structures. We illustrate how our memoized technique
(iRepair*) succinctly memoizes a Korat search in tandem with each
repair, to enable faster repair of similar errors in the future.

Figure 4 (the left half) shows the sequence of candidate vectors
enumerated by a complete Korat search to find all doubly linked
lists with three nodes. We use this sequence to illustrate the re-
exploration in the underlying Korat search when repairing similar
errors and how memoization can avoid this re-exploration.

Figure 4 (the right half) shows the canonical forms for three
erroneous doubly linked lists with three nodes, namely c1, c2, c3.
Applying either of our techniques on any of these three similar
structures would find valid structure v but with different number
of enumerations. Specifically, consider the underlying Korat search
performed by iRepair’ and iRepair¥ for three consecutive repairs.

1825

0 |<1||<1]|n||u||«1“n"t)"u“«1“4)"0' (a)01
1 1fofloffofflofofoffoffofjofo head
A|||||||||||||||||||||| v 1
- o] [o] [o
e Einnnaonanoon e
MinonooEooon
@ 1 [LLLERPELEE] ®e
head 1,7
16 [1fofofofofofs i ol ]z] NI
@ v [fofofzf fols s o]+ ] o] [of [o]
I S I S I
00060000000 ———
o » [EOELEEEEEEE » =
20 |1|0|0|z||3|0|3|1|1||1|2|/ (c) c2
o (ELELELLLLELT « feoe
2z (ool s o] ] 0:=] v \
23 (1ol il 23 olsf el 2] ~ ===
a0 (1ol il 23 olsf ] 0:=] v LT
s (o2l ol 2] ~ @ cs
26 [ifolliffalfsfofsfofef:2] v head

S
=

Clololefolof=T ol =]

S
o] [of [0]
i A W
i P e

Figure 4: Candidate vectors enumerated by a complete Ko-
rat search to find valid doubly linked lists with 3 nodes stor-
ing binary values (on the left), illustrating the underlying
Korat search for finding the next valid structure v (#19) for
canonical erroneous structures c; (#15), ¢z (#17), and c3 (#13).
Candidate vectors for valid structures are marked with v/

ClololzfofofofsTo o]

©

Repair scenario 1 (search). Figure 4a shows canonical struc-
ture c1, which corresponds to candidate vector #15 (c1?). Applying
iRepairb performs a Korat search starting at ¢;°? to find the first
valid candidate vector v? (i.e., #19) by enumerating 5 candidate
vectors (#15 to #19), and finds valid data structure v (Figure 4b).

Similarly, iRepair” enumerates the same candidate vectors, but
additionally, memoizes unsat region [c;¢Y,v¢?), as a pair of can-
didate vectors, to avoid re-exploring this region for future repairs
when there is an overlap in the underlying Korat search.

Repair scenario 2 (no search). Now consider repairing struc-
ture ¢, (Figure 4c). Applying iRepair? on ¢, enumerates 3 candidate
vectors (#17 to #19), which overlaps with the candidate vectors
enumerated for repairing c; (i.e., a redundant search). In contrast,
iRepair* finds that ¢°“ belongs to the memoized unsat region
[¢1¢Y,v¢?) and finds v without a Korat search.



Object iRepairb(Object s, Method repOK, Finitization f) {
// Create an instrumented version of "s" needed by the
// Korat search

Object e = instrument(s, f);

// Canonicalize "e" into a candidate vector

CV canonicalCV = canonicalize(e, repOK, f);

// Perform a Korat search starting at "canonicalCV" to
// find "validCVv"

CV validCV = nextValidCandidate(canonicalCV, repOK, f)
// Copy the data payload from "e" into "validCV"
copyDataPayload(e, repOK, f, validCV);

// Construct the repaired structure based on "validCV"

return buildCandidate(validCV);

Figure 5: Data structure repair using Korat

Repair scenario 3 (partial search). Now consider repairing
structure c3 (Figure 4d). iRepair? enumerates 7 candidate vectors
(#13 to #19) to find valid structure v. Since ¢3? does not belong to
the memoized unsat region [c;“Y, v?), iRepair* also runs a Korat
search, but keeps track of when the search reaches the start of a
memoized unsat region.

After 3 steps (#13 to #15), the Korat search indeed reaches c1 €%,
which is the start of memoized unsat region [¢1Y, v¢?). Hence,
iRepair® skips the rest of the search and returns valid structure v
(i.e., 57% fewer enumerations compared to iRepairh ), while extend-
ing [¢1¢Y,v°Y) into [c3°Y, v¢?) to further benefit future repairs.

3 IREPAIR

We first present our baseline constraint-based data structure repair
technique that uses Korat. We then introduce our memoization con-
struct, namely unsat region, which memoizes the result of a local
Korat search as a candidate vector pair, to avoid re-exploring the
same region when repairing a similar erroneous data structure in
the future. Finally, we present our memoized technique that main-
tains a collection of unsat regions in tandem with data structure
repair to prune the Korat search.

3.1 Data structure repair using Korat (iRepair?)

Figure 5 shows the pseudocode for our baseline data structure repair
technique, which takes an erroneous data structure s (of type C),
the repOK predicate that implements desired structural properties
(provided by the user in class C), and the Finitization object
that specifies bounds on the state space (provided by the user or
constructed dynamically by traversing the object graph of s to find
the field domain for each type). The repair procedure is as follows:
First, we create an instrumented version of class C, namely C’,
by adding a primitive field for each non-static user defined field in
C, which Korat search needs to monitor field accesses [1, 22]. We
then use a work-list based algorithm to traverse the object graph of
s using Java reflection to create a copy of s, namely e (of type C”).
Second, we canonicalize object e into a candidate vector that is
faithful to the Korat search (i.e., a candidate vector that a complete
Korat search would enumerate), by running repOK on e, and en-
coding all fields that were accessed to their canonical values based
on the linearization algorithm for rooted graphs [31], and encoding
other fields to the first index in their field domains (i.e., zero).

1826

02 U3

Search space }

r2

Scenario 1 (no search) }

Scenario 2 (search)

[ Rl

Scenario 3 (partial search) —e

Figure 6: The memoizedNextValidCandidate visualization for
different repair scenarios

Third, we run alocal Korat search, namely nextValidCandidate,
starting at the canonicalized candidate vector canonicalCV until
Korat finds the next valid candidate vector validCV or terminates
without finding a solution. We discuss repair completeness and
why this local search is a good repair heuristic later in Section 5.

Next, for fields of validCV that are not accessed by a repOK
invocation, we copy their canonical values from object e. This step
preserves the data structure payload (i.e., fields that are unchecked
by the user given repOK) without compromising correctness.

Finally, we construct the repaired structure based on validCV
using Korat’s CandidateBuilder API and return the result.

3.2 Unsat regions

For a subject with repOK and finitization, we define an unsat
region as a candidate vector pair [e¢?, r¢?), where (1) both candidate
vectors are canonicalized, (2) e““ is enumerated before r¢% by a
Korat search, (3) r¢? is valid (i.e., running repOK on structure r
returns true), and (4) e°“ and all candidate vectors enumerated
between e““ and r¢“ are invalid (with respect to repOK).

We define the following primitive operations for unsat regions:

(1) lessThan(CV ¢, CV v). Candidate vector c is less than
candidate vector v if ¢ is enumerated before v by the Korat
search. This can be determined (without a Korat search) by
lexicographically comparing the candidate vector elements
of the two arrays based on their field access order [1].
equalTo(CV c, CV v). Candidate vector c is equal to can-
didate vector v if both candidate vectors contain the same
number of elements, and all corresponding pairs of elements
in the two candidate vectors match.

inRegion(CV c, R reg). Candidate vector c is in region
reg = [e, r)if equalTo(c, e), or lessThan(e, c) and lessThan(c, r).

—
)
~

(3

=

3.3 Memoized data structure repair (iRepair")

If an error in a program’s state is caused by a fault in software or
hardware, a similar error might occur [34] during the program’s
execution. Our baseline technique applies nextValidCandidate
on each input structure, which suffers from re-exploration when
the underlying Korat search overlaps with a prior search. Our key
insight is to use memoization to amortize the cost of a Korat search
over repeated repairs of similar erroneous data structures.

Figure 6 visualizes a search space of N candidate vectors that
a complete Korat search would enumerate. Consider three valid



// Memoized unsat regions. A "key -> value"
// unsat region [key, value)
TreeMap<CV, CV> regions new TreeMap<CV,

CV>();

CV memoizedNextValidCandidate(CV e,
Finitization fin) {
Map.Entry<Cv,CVv> ri regions.floorEntry(e);
// Scenario 1 (no search)
if (r1 != null && inRegion(e,
return ri1.value;
Map.Entry<CV,CV> r2 = regions.ceilingEntry(e);

Method repOK,

r1))

CV g = (r2 != null) ? r2.key : null;

CV v = nextValidCandidate(e, q, repOK, fin);

if (v != null) { // Scenario 2 (search)
regions.put(e, v);
return v;

}

if (q !'= null) { // Scenario 3 (partial search)

regions.remove(r2.key);
regions.put(e, r2.value);
return r2.value;

}

return null;

Figure 7: The memoizedNextValidCandidate procedure (used
in iRepair")

candidate vectors v1, vg, v3, and two memoized unsat regions rq
and ry on a number line. The different scenarios for the search per-
formed by memoizedNextValidCandidate (our memoized search)
on invalid candidate vector e are discussed below:

e Scenario 1 (no search). Since e belongs to a known unsat
region, namely r;, simply return the end of r; without a
Korat search (i.e., no calls to nextValidCandidate).

e Scenario 2 (search). Run nextValidCandidate and return
the solution (i.e., v2) as the repair, while memoizing [e, v7)
as a new unsat region.

e Scenario 3 (partial search). RunnextValidCandidate un-
til reaching the start of an unsat region (i.e., r2). Return v3
as the repair, while extending r; into a larger unsat region
[e, v3) to further benefit future repairs.

Figure 7 shows the memoizedNextValidCandidate procedure,
which takes a canonicalized candidate vector e, the repOK pred-
icate, and the Finitization object, and returns the next valid
candidate vector. This procedure is functionally identical to next-
ValidCandidate, but additionally maintains a map of known unsat
regions in tandem with each search as discussed below:

(1) If e belongs to a known unsat region, say r1, return the end
of r1 (ie., r1.value), without calling Korat (Scenario 1).

(2) Find the first memoized unsat region r2 in the map that
starts after the invalid candidate vector e (if any).

(3) Perform a local Korat search starting at e until the beginning
of r2if r2 exists (to avoid re-exploring r2), or else do a Korat
search starting at e until the next valid candidate vector is
found, or the search has completed.

(4) If a valid candidate vector v was found, add a new unsat
region [e, V) to the map of unsat regions (Scenario 2).

(5) If no valid candidate vector was found, while r2 exists, return
r2.value as the next valid candidate vector, while extending

mapping shows

1827

the beginning of r2 to e in the map, i.e., replacing unsat re-
gion r2=[r2.key, r2.value) with the larger unsat region
[e, r2.value), where lessThan(e, r2.key), to further
benefit future repairs (Scenario 3).

(6) Otherwise, return null, as e cannot be repaired using a Korat
search. (See Section 5 for repair completeness.)

The iRepair procedure (not displayed) is identical to the iRepairb
procedure shown in Figure 5, except that instead of a call to next-
ValidCandidate, which may suffer from re-exploration, iRepair*
calls memoizedNextValidCandidate, which uses memoization to
prune a search if it overlaps with a prior search.

4 EVALUATION

To evaluate the efficacy of our repair techniques, we implemented
iRepair? (our baseline technique) and iRepair* (our memoized tech-
nique) by extending Korat [19]. We next discuss our methodology
and studied subjects, and then present our experimental results.

4.1 Methodology

We conduct two repair experiments on 8 complex data structure
subjects studied by prior work in bounded exhaustive testing and
data structure repair [4, 5, 8, 10, 24, 27, 34].

The first experiment repairs all non-isomorphic erroneous data
structures for small sizes, ranging from 3 to 19 nodes. This experi-
ment studies the brute-force scenario to evaluate potential gains
from memoization for error recovery of a program that encounters
many different erroneous data structures.

The second experiment generates a few larger valid data struc-
tures ranging from 10 to 1000 nodes. For each valid data structure,
we inject an error by randomly corrupting object fields and then
repair the erroneous structure. We then repeat the fault injection
and repair steps 20 times on the valid structure to simulate similar
recurring errors encountered by a program execution. We repeat
this procedure for 100 valid data structures (per subject) and report
average numbers (of the 100 runs) after each repair.

We next discuss each experiment procedure in detail and present
our research questions.

4.1.1 Experiment 1. Repairing all small structures. Recall that Ko-
rat, when applied as a test input generation tool [1], enumerates
all non-isomorphic structures up to the given bounds. Hence, for
each studied subject, we use Korat to generate the erroneous test
structures. Our experiment procedure is described below.

(1) Run a complete Korat search on each subject (for each size)
and create a sequence of all erroneous data structure objects
enumerated by Korat.

Shuffle the sequence with a random seed to ensure we do
not repair the structures in the same order as were enumer-
ated by the Korat search, which can unfairly benefit the
memoization in iRepair¥.

Repair each erroneous data structure in the sequence once
using iRepair? and next using iRepair¥.

©)

We run this experiment procedure 3 times and report average
numbers. Needless to say, each run starts from a clean state with
an empty cache of unsat regions (for iRepair").



4.1.2  Experiment 2. Repairing a few larger structures. For each stud-
ied subject, we run the fault injection experiment procedure below.

(1) Generate arandom valid data structure s such that s. repOK()

(2) Corrupt a field of s at random to create an erroneous data
structure e such that !e.repOK(). A corruption is a tuple
of three elements (o, f, v), where field f of object o is
assigned to value v, which is null or another object of the
same type for reference types, and another primitive value
for primitive types.

(3) Repair the erroneous data structure once using iRepairb and
then using iRepair.

(4) Repeat steps 2 and 3 twenty times to introduce recurring
errors and report the results after each repair.

We repeat this procedure 100 times and report average numbers.
For instance, for the 5th repair (out of the 20 consecutive repairs),
we report the average numbers of the 100 runs for their 5th repair.
Each run starts from an empty cache of unsat regions (for iRepair¥).

Repair quality. Unlike Experiment 1 that starts the repair pro-
cedure from erroneous structures, this experiment starts from a
valid data structure and injects faults. Hence, we can measure the
repair quality of iRepair by calculating how similar the repaired
structure (say r) is to the ideal repair, which is the original valid
data structure before the fault injection (say o).

We define similarity between r and o as S = (L—D)/L-100, where
D is the number of elements that differ between their candidate
vector representations cv” and cv?, respectively, and L is the length
of the candidate vectors. Note that L is the same for both structures
as our repair experiment preserves the structure size. Evidently,
higher similarity values are better (e.g., 100% for an ideal repair).

4.1.3 Research questions. Together, these two repair experiments
answer the following research questions:
RO1:
RQ2: What are the iRepair" savings (in search) compared to
iRepairb?
What percent of the erroneous data structures repaired by
iRepair* benefit from memoization (cache hit)?
What is the size of the unsat regions (cache) maintained
by iRepair?
What is the repair quality of iRepair?

RQ3:
RO4:
RQ5:

4.2 Subjects

We used 8 complex data structure subjects, namely AVL tree (AVL),
binomial heap (BH), binary tree (BT), doubly linked list (DLL), fi-
bonacci heap (FH), red-black tree (RBT), sorted list (SL), and search
tree (ST). All subjects except AVL are taken from the publicly avail-
able Korat distribution [19] and model standard data structures
from Java libraries. For example, DLL and RBT implement repOK
for java.util classes LinkedList and TreeMap, respectively.

For AVL, we modeled it after a custom AVL tree class from
HSQLDB [15], a popular open-source relational database applica-
tion for Java. In particular, we implemented the repOK to specify
AVL tree properties for org.hsqldb.index. IndexAVL, which is a
class to store database indexes using balanced binary search trees.

For Experiment 1, Table 1 shows for each studied subject, its
name (and acronym), the structure sizes (in number of nodes), the

What is the iRepair¥ speedup (in time) compared to iRepairb

?

1828

Table 1: Subjects of Study

Subject Size Space Candidates [#] Time [ms]
Total Valid

AVL tree 6 270 7675 28 116

(AVL) 7 287 47762 136 177

8 2104 199076 288 372

binomial heap 6 288 42815 7602 184

(BH) 7 2109 261788 107416 333

8 2131 1323194 603744 1028

binary tree 9 263 210444 4862 236

(BT) 10 272 815100 16796 553

11 282 3162018 58786 1807

doubly linked list 10 282 1215 1024 90

(DLL) 11 2% 2275 2048 95

12 2104 4362 4096 102

fibonacci heap 3 2% 803 136 127

(FH) 4 260 8634 2310 146

5 282 164365 52281 296

red-black tree 6 276 16487 20 152

(RBT) 7 294 71704 35 270

8 2112 322806 64 649

sorted list 17 2220 525068 65536 738

(SL) 18 2237 1114983 131072 1355

19 2254 2360263 262144 2680

search tree 6 2%2 45233 132 158

(ST) 7 204 340990 429 310

8 277 2606968 1430 1479

) n/a n/a 13656028 1322415 13555

search space size computed by multiplying the number of choices
for each candidate vector element, the number of structures enu-
merated by a complete Korat search, the number of valid structures
found, and the execution time (in milliseconds). The last row (Z)
shows cumulative numbers for each column.

For Experiment 2, we use the same data structure subjects as
Experiment 1, but with larger structure sizes, which will be shown
later in Figure 9.

4.3 Experimental results

We obtained all data on a machine with 6-core 3.2 GHz Intel Core
i7-8700B Processor and 16 GB of RAM, running macOS 10.15.6 and
Oracle Java 1.8.0_261.

4.3.1 Experiment 1. Repairing all small structures. We report the
results of this experiment in two formats. Table 2 summarizes the
cumulative results at the very end of the procedure, when all erro-
neous structures in the sequence are repaired. Figure 8 plots the
results by connecting the data points after each iteration of the
experiment procedure (i.e., after each repair) to show the trend of
gains (for iRepair®) as new structures are being repaired.

Table 2 shows for each studied data structure subject, its acronym,
the structure sizes (in number of nodes), the number of erroneous
structures repaired (by each technique), the total iRepairb repair
time (in seconds), the total number of candidate vectors enumer-
ated by iRepairb , the iRepair” speedup in repair time compared
to iRepairb , the iRepair” savings in number of candidate vectors
enumerated compared to iRepairb, the iRepair¥ cache hit (i.e., the
percent of repairs that benefited from a memoized unsat region by



Table 2: Experiment 1 Results after Repairing all Non-isomorphic Erroneous Data Structures using iRepairb and iRepair"

Subject Size Structures [#] iRepair? iRepair"
Time [sec] Explored [#] Speedup [X] Savings [%] Cache
Hit [%)] Unsat Regions [#] Size [KB/MB]
AVL 6 7647 3.77 9325770 19.84 98.20 91.22 24 10.7 KB
7 47626 42.76 133666109 42.24 99.21 95.84 119 62.1 KB
8 198788 629.76 1804622336 108.79 99.66 97.60 256 151.6 KB
BH 6 35213 24.34 91783499 8.97 89.63 82.66 941 461 KB
7 154372 433.93 1502582258 6.00 83.06 80.97 3627 1.9 MB
8 719450 9209.86 28775831355 124.34 99.27 89.18 33555 21 MB
BT 9 205582 3.03 5276951 2.18 95.94 89.87 4862 1.5 MB
10 798304 13.74 22956277 2.28 96.42 90.77 16796 5.6 MB
11 3103232 62.66 98835513 2.19 96.79 91.50 58786 21.3 MB
DLL 10 191 0.01 14211 5.42 96.36 83.25 1 0.3 KB
11 227 0.01 20334 4.71 96.88 84.73 1 0.4 KB
12 266 0.01 28257 4.03 97.30 86.84 1 0.4 KB
FH 3 667 0.02 25018 1.62 90.48 72.96 61 19.3 KB
4 6324 0.18 422816 2.61 97.03 74.67 765 316.2 KB
5 112084 4.15 9920729 3.01 98.59 75.24 13646 6.8 MB
RBT 6 16467 9.43 24050422 36.64 99.65 96.90 20 10.8 KB
7 71669 179.58 442313839 132.55 99.90 98.40 35 21.9KB
8 322742 4152.15 9323943416 555.99 99.98 99.20 64 45.7 KB
SL 17 459532 14.19 5073102 1.26 90.27 77.82 32769 25.6 MB
18 983911 32.82 11566047 1.27 90.92 78.86 65537 54.3 MB
19 2098119 76.28 26186013 1.25 91.48 79.78 131073 114.5 MB
ST 6 45101 2.51 7831505 8.05 98.86 97.43 132 41.1 KB
7 340561 4439 136207181 17.02 99.55 98.88 429 153.7 KB
8 2605538 832.36 2381620018 33.70 99.83 99.50 1430 579.7 KB
b n/a 12333613 15771.94 44814102976 n/a n/a n/a 364930 254.3 MB
(4.38 hr)
avg n/a 513901 657.16 1867254291 46.9 96.1 88.1 15205 10.6 MB
(10.95 min)

—e— jRepair®  —— iRepair’

AVL 8 BH 8 BT 11 DLL 12 FH 5 RBT 8 SL19 ST8
629.8 9210 62.66 0.012 4.153 4152 76.28 832.4
o)
& 4198 6140 41.77 0.008 2.769 2768 50.86 554.9
GE) 209.9 3070 20.89 0.004 1.384 1384 25.43 277.5
=
0.0 0 0.00 0.000 0.000 0 0.00 0.0
iy 1le9 lelo le7 led le6 1le9 le7 1le9
ﬁ 1.805 2.878 9.884 2.826 9.921 9.324 2,619 2.382
0
a 1.203 1.918 6.589 1.884 6.614 6.216 1.746 1.588
-
g 0.602 0.959 3.295 0.942 3.307 3.108 0.873 0.794
ul)aj' 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
§ 100 100 100 100 100 100 r— 100 100 h
=75 75 75 75 75 75 75 75
:; 50 50 50 50 50 50 50 50
S 25 25 25 25 25 25 25 25
©
O o 0 0 01 0 0 0 0
le2 led le4 led le5 1le3
’; 2.56 3.356 5.879 1 1.365 64 1.311 1.430
g 1.70 2.237 3.919 0.910 42 0.874 0.952
@
2oss 1.119 1.960 0.455 21 0.437 0.476
[
8 0.00 0.000 0.0001% 0 0.000 0 0.000 0.000
0.000 0.994 1.988 0.000 3.597 7.194 0.000 1.552 3.103 0.00 133 265 0.00 0.56 1.12 0.000 1.614 3.227 0.000 1.049 2.098 0.000 1.303 2.606
le5 le5 le6 le2 le5 le5 le6 le6

Iteration [#]

Figure 8: Experiment 1 results for iRepair? (red) and iRepair” (blue) after each repair, showing the cumulative repair time (in
seconds), the total number of candidate vectors enumerated, the cache hit, and the cache size (in number of unsat regions)

performing a partial search or no search, e.g., as shown in Figure 6), last two rows show the sum (2) and average (avg) of each column,
and the cache size (in number of unsat regions and in bytes). The when applicable.

1829



Figure 8 shows the plots for the largest size of each subject. For
each subject (column), there are 4 plots (rows). Row 1 shows the
cumulative repair time (in seconds). Row 2 shows the cumulative
number of candidate vectors enumerated. Row 3 shows the cumu-
lative cache hit (in percent). Row 4 shows the cumulative cache
size (in number of unsat regions). The x-axis shows the iteration
number in the experiment procedure, which is common for all plots
shown for a given subject. The red and blue curves in the plot corre-
spond to the iRepair? and iRepair¥, respectively. For each plot, the
y value at x4 (i.e., the last iteration of the experiment procedure)
corresponds to the numbers shown in Table 2.

RQ1: Speedup in time. Column 6 in Table 2 shows on average
iRepair® was 47 times faster than iRepairb. In total, iRepairb spent
4.38 hours to repair the sequence of 12333613 erroneous structures
studied, while iRepair¥ spent 5.48 minutes to repair the same se-
quence. Row 1 in Figure 8 shows for all subjects, iRepair (the blue
line) outperforms iRepairb (the red line).

RQ2: Savings in search. Column 7 in Table 2 shows on aver-
age iRepair performed 96.1% fewer enumerations compared to
iRepair?. In total, iRepair? and iRepair" enumerated 44814102976
and 498258122 candidate vectors, respectively, to repair the same
sequence of erroneous data structures. Row 2 in Figure 8 shows for
all subjects, iRepair” enumerates fewer candidate vectors compared
to iRepairb by not re-exploring known unsat regions.

RQ3: Cache hit. Column 8 in Table 2 shows on average 88.1% of
repairs made by iRepair" benefited from a memoized unsat region
from an earlier repair (i.e., needed a partial search or no search).
Row 3 in Figure 8 shows the cache hit for AVL, RBT, and ST grows
faster than other subjects, and peaks at 97.60%, 99.20%, and 99.50%,
respectively. We observed from Table 1 that these subjects have
sparse state spaces, where there are few valid candidate vectors
among a large number of enumerations, a case that benefits memo-
ization in iRepair¥ by pruning larger unsat regions.

RQ4: Cache size. Column 9 in Table 2 shows iRepair* mem-
oized 364930 unsat regions (i.e., 729062 candidate vector pairs),
which is 97% smaller than the 12333613 studied erroneous struc-
tures. Column 10 in Table 2 shows iRepair maintained a cache size
of 254 MB, while we measured the total size of invalid candidate
vectors for the repaired structures was 1.7 GB. We further observed
iRepair” requires minimal storage for subjects that have a sparse
state space like RBT and ST where there are few valid instances
(among all enumerations) and DLL where there are few invalid
instances (as shown in Table 1).

4.3.2  Experiment 2. Repairing a few larger structures. We chose
larger structures ranging from 10 to 1000 nodes. The sizes vary
between subjects based on the complexity of repOK and the size of
the state space. Figure 9 shows the results of repairing 20 similar
erroneous data structures (per subject). For each subject (column),
there are 5 plots (rows), showing the repair time (milliseconds), the
number of candidate vectors enumerated by the underlying Korat
search, the cache hit (in percent), the cache size (in number of unsat
regions), and repair similarity (as defined in Section 4.1.2).

For RQ1 and RQ2, we observed smaller gains compared to Ex-
periment 1 (because we do fewer repairs). For instance, on average
(for the 20 repairs of all subjects), iRepair¥ was 2.4 times faster than
iRepairb and enumerated 52.7% fewer candidate structures.

1830

For the first repair of any subject, the underlying search for both
techniques enumerated the same number of candidate structures
in similar execution times. Starting from the second repair, we see
gains from iRepair* when a Korat search overlaps with a previously
memoized unsat region (i.e., a cache hit).

For BT and DLL we see significant gains even after a handful of
repairs (e.g., 12.8 times and 35.7 times faster performance, respec-
tively, for the fifth repair). For BH, FH, and SL, we see smaller gains
in execution time (e.g., 1.6 times for FH), as the unsat regions for
these subjects memoize smaller number of erroneous structures due
to the higher ratio of valid to invalid structures in their enumerated
search space as was shown in Table 1 (for smaller sizes).

For RQ3, we observe an increasing trend in cache hit for all
subjects, where it starts from 0% (for the first repair) and increases
for future repairs. Some subjects like BT, DLL, and FH have faster
increases on the first few repairs. All subjects, except SL, reached
above 70% cache hit within the 20 consecutive repairs.

For RQ4, we observe the cache size starts from 1 (the first unsat
region that is memoized after the first repair by iRepair*) and
increases for all subjects except DLL, due to all valid structures being
consecutive for DLL (as shown in the Example from Section 2.2.2).
Note that the one unsat region gets extended to larger unsat regions
throughout consecutive repairs (i.e., Scenario 3 from Figure 6), but
the cache size remains the same (i.e., 1). SL has the highest number
of unsat regions, which explains why it has the lowest cache hit as
well. This was also expected as this subject had the highest number
of unsat regions in Experiment 1 (Table 2).

RQ5: Repair quality. Recall from Section 4.1.2 that we measure
similarity between a repaired structure and the original valid struc-
ture before fault injection. As shown, both iRepair variants, which
create the same repairs, result in high similarity, with minimum,
average, and maximum (among the 20 repairs of all subjects) being
79.4%, 92.7%, and 100%, respectively. Hence, nextValidCandidate,
which performs a local Korat search, is a good repair heuristic.

5 DISCUSSION

Repair heuristic. The nextValidCandidate, which is the back-
bone of iRepair, is a heuristic that performs a local Korat search
starting at the canonical form of an erroneous structure to find
the next valid structure. Hence, this approach limits unnecessary
mutations by nature of the Korat search [1]. Intuitively, this local
search is similar to finding one solution for a SAT formula, which
makes it computationally more efficient than enumerating all valid
instances, which is analogous to model counting [11].

Section 4.3.2 showed this heuristic resulted in repairs with high
similarity to the ideal repair (i.e., 92.7% on average). Additionally,
we measured the similarity between erroneous structures and their
corresponding repaired structures was 91.8% on average. We do
not show numbers per subject due to space constraints.

Repair completeness. iRepair uses a backend Korat solver for
data structure repair, which performs a forward search, i.e., starts
the search from an invalid candidate vector until a solution is found.
Hence, it can repair a data structure iff its canonical form appears
before the last valid candidate vector that a complete Korat search
enumerates. We measured for the subjects and sizes studied, iRepair
was able to repair almost all (99.52%) of the studied structures.



—e— Repair? —e— iRepair¥ —e— Either technique

AVL11 BH 10 BT 100 DLL 150 FH 600 RBT 10 SL 1000 ST 20
154.95 .61 66 160.99 1.39 13
o
£ 103.30 38.54 6.41 46.87 17.77 107.33 0.93 0.75
fU
é 51.65 19.27 3.20 23.43 8.89 53.66 0.46 0.38
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
— 1e5 1e5 1le3 led 1e3 1e5 lel 1le2
#* 3.502 1.556 3.769 2.396 6.100 2.875 4.116 8.483
0
3 2335 1.037 2,512 1597 4.066 1.916 2.600 YQ/I:JA\/:( 5.640
-l
g 1.167 0.519 1.256 0.799 2.033 0.958 1.300 2.820
o
X 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
100 100 100 100 100 100 100 100
2 8o 80 80 80 80 80 80 80
£ 60 60 60 60 60 60 60 60
@ 40 40 40 40 40 40 40 40
S 20 20 20 20 20 20 20 ﬂr./\/\/\ 20
O o 0 0 0 0 0 0 0
— 5.0 3.0 4 14.0 4
% 3.0 7
@37 23 23 3 5 9.7 3
a 1
223 1.7 17 2 3 5.3 2
%
©
O 10 1.0 1.0 1 1 1.0 1
~ 100 100 100 100 100 100 100 100
& go | Tt 80 80 80 80 801 e AAS 80 80
2 60 60 60 60 60 60 60 60
=
S 40 40 40 40 40 40 40 40
€ 20 20 20 20 20 20 20 20
Voo 0 0 0 0 0 0 0

1 5 10 15 20 1 5 10 15 20 15 10 15 20

1 5 10 15 20

15 10 15 20 15 10 15 20 15 10 15 20 15 10 15 20

Erroneous structure [#]

Figure 9: Experiment 2 results for iRepair’ (red) and iRepair” (blue) showing repair time, number of candidate vectors enumer-
ated, cache hit, cache size (in number of unsat regions), and repair similarity (black), which is the same for either technique

Role of repOK in repair. Based on the constraints implemented
by the user given repOK, iRepair can eliminate violations in both
structural properties and the payload stored in the data structure.
If repOK only checks structural properties (e.g., Figure 1), iRepair
preserves the payload. If repOK additionally checks constraints on
the payload itself (e.g., the sorted property for values stored in SL),
iRepair can update the payload as well to eliminate data violations.

The repairs made by iRepair depend on how repOK is formulated
due to the nature of the Korat search that monitors field access
order [1]. Hence, two implementations of repOK that check con-
straints in a different order result in different repaired structures.
While this might seem as a limitation, it gives users control to define
a precedence on what properties the algorithm must repair first. For
instance, the repOK for SL checks the sorted property after other
constraints to mutate the payload only when necessary.

Our memoized technique offers performance gain by not re-
exploring known unsat regions. Hence, the larger the unsat regions
are, the higher the performance gain would be. Consequently, data
structures that have more sophisticated repOK methods (i.e., repOK
returns true less often) receive a higher performance gain when
there is a cache hit (i.e., Scenarios 1 and 3 from Figure 6). For
instance, in both sets of experiments, RBT gets a higher performance
boost from iRepair over iRepair’, when compared with SL.

The canonicalization and unsat regions in iRepair rely on the
repOK implementation to access fields in a deterministic order and
deterministically return true or false when run repeatedly on a
given structure. The subjects studied in our evaluation and prior
work [1, 5, 11, 24] all use deterministic repOKs.

1831

Caching repair memoization: Since repair is a last resort tech-
nique and happens infrequently, a part of the memoization cache
may be computed offline in order to speed up the initial repairs.

6 RELATED WORK

Data structure repair is an error recovery approach to make a
program resilient to runtime data corruptions. While traditional
systems like Lucent 5ESS telephone switch [13] and IBM MVS
operating system [26] used dedicated repair routines, they lacked
generality and extensibility. Demsky et al. [2, 3] introduced the idea
of using data structure integrity constraints as a basis for repair.

Juzi [17] introduced the use of imperative predicates as con-
straints for data structure repair using generalized symbolic execu-
tion [18]. Our technique follows the spirit of Juzi. The difference is
that iRepair does not require building or solving path conditions
that are required in symbolic execution.

DSDSR [14] used dynamic symbolic (or concolic) execution [12,
30] for data structure repair. Tarmeem [33] and PBnJ [29] leveraged
the SAT-based Alloy tool-set [16] to enable repair with respect to
richer specifications. While rich post conditions allow more accu-
rate repairs (than just repOK methods), they require check-pointing
pre-states and generally admit less scalable solutions due to the
higher complexity of the underlying constraint solving problem.

A number of techniques optimized data structure repair using
static analysis [9], abstract undo operations [10], and read/write-
barriers [32], which can be applied in tandem with iRepair.

DREAM [34] introduced memoization for data structure repair
and defined repair abstractions, which memoize concrete repair



actions, i.e., mutations that transform an erroneous state to an
acceptable state, to enhance the performance of future repairs when
a similar erroneous state recurs. Unsat regions in iRepair* are
orthogonal to repair abstractions and can prune the search even
when no repair abstraction is applicable.

Parallel Korat [24] introduced the first parallel technique for
test generation and execution using Korat, which finds equi-distant
candidate vectors during a Korat search, to evenly distribute the
search problem among independent workers when the same search
problem is being solved repeatedly.

MKorat [6] enhanced Parallel Korat by introducing invalid ranges
as memoization primitives to prune the search when the same
problem is being solved repeatedly. MKorat motivated iRepair®.
The difference is that iRepair” is an on-the-fly data structure repair
tool that performs a local search to find a valid structure in tandem
with memoizing that search, while MKorat is a test generation tool
that performs a complete search finding all valid structures and
then memoizes invalid ranges. Due to its brute-force nature, MKorat
does not scale to structures with hundreds of nodes (Figure 9).

SAT solvers [7, 25] offer various approaches for efficient solving
of constraints. Incremental SAT and conflict-driven clause learn-
ing [20] motivate unsat regions in iRepair”. The difference is that
iRepair" utilizes a bounded exhaustive approach that operates on
user-written Java predicates, which are structurally and semanti-
cally different from CNF formulas.

7 CONCLUSION

Data structure repair is a form of error recovery to make software
resilient to runtime failures. We presented two constraint-based
data structure repair techniques based on the Korat solver. Our
baseline technique is effective for repairing a data structure, but
suffers from redundant search when applied on similar erroneous
data structures. Our memoized technique memoizes the search in
tandem with a repair to amortize the cost of a Korat search over
repeated repairs. Experimental results showed that our memoized
technique outperforms our baseline technique with minimal over-
head. This work lays a promising foundation to utilize memoization
for constraint-based repair of data structure errors that recur.

ACKNOWLEDGMENTS

We are grateful to Milos Gligoric for in-depth discussions and very
valuable feedback on this work. We thank the anonymous reviewers
for their useful comments. This work was partially supported by
the US National Science Foundation under Grant No. CCF-1718903.

REFERENCES

[1] Chandrasekhar Boyapati, Sarfraz Khurshid, and Darko Marinov. 2002. Korat:
Automated testing based on Java predicates. In International Symposium on
Software Testing and Analysis. 123-133.

Brian Demsky and Martin C. Rinard. 2003. Automatic detection and repair of
errors in data structures. In Conference on Object-oriented Programing, Systems,
Languages, and Applications. 78-95.

Brian Demsky and Martin C. Rinard. 2005. Data structure repair using goal-
directed reasoning. In International Conference on Software Engineering. 176-185.
Nima Dini, Cagdas Yelen, Zakaria Alrmaih, Amresh Kulkarni, and Sarfraz Khur-
shid. 2018. Korat-API: a framework to enhance korat to better support testing
and reliability techniques. In Symposium on Applied Computing. 1934-1943.
Nima Dini, Cagdas Yelen, Milos Gligoric, and Sarfraz Khurshid. 2019. Extension-
Aware Automated Testing Based on Imperative Predicates. In International Con-
ference on Software Testing, Validation and Verification. 25-36.

1832

[10

[11

[12

=
&

=
&

I
&

™~
2

[26

[27

[28

[29]

@
=

[31

(32]

[33

&
=

Nima Dini, Cagdas Yelen, and Sarfraz Khurshid. 2017. Optimizing Parallel Korat
Using Invalid Ranges. In International Symposium on Model Checking Software.
182-191.

Niklas Een and Niklas Sorensson. 2003. An Extensible SAT-solver. In International
conference on theory and applications of satisfiability testing. 502-518.

Bassem Elkarablieh, Ivan Garcia, Yuk Lai Suen, and Sarfraz Khurshid. 2007.
Assertion-based repair of complex data structures. In International Conference on
Automated Software Engineering. 64-73.

Bassem Elkarablieh, Sarfraz Khurshid, Duy Vu, and Kathryn S. McKinley. 2007.
Starc: static analysis for efficient repair of complex data. In Conference on Object-
Oriented Programming, Systems, Languages, and Applications. 387-404.

Bassem Elkarablieh, Darko Marinov, and Sarfraz Khurshid. 2008. Efficient Solving
of Structural Constraints. In International Symposium on Software Testing and
Analysis. 39-50.

Antonio Filieri, Marcelo F. Frias, Corina S. Pasareanu, and Willem Visser. 2015.
Model Counting for Complex Data Structures. In International Symposium on
Model Checking Software. 222-241.

Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: directed au-
tomated random testing. In Conference on Programming Language Design and
Implementation. 213-223.

George Haugk, Frederick M. Lax, Robert D. Royer, and John R. Williams. 1985.
The 5ESS(TM) switching system: Maintenance capabilities. AT&T Technical
Journal 64, 6 (1985), 1385-1416.

Ishtiaque Hussain and Christoph Csallner. 2010. Dynamic Symbolic Data Struc-
ture Repair. In International Conference on Software Engineering. 215-218.
HyperSQL. 2020. HyperSQL Java database. http://hsgldb.org/.

6] Daniel Jackson. 2006. Software Abstractions - Logic, Language, and Analysis.

Sarfraz Khurshid, Ivan Garcia, and Yuk Lai Suen. 2005. Repairing Structurally
Complex Data. In SPIN Workshop on Model Checking Software. 123-138.

Sarfraz Khurshid, Corina S. Pasareanu, and Willem Visser. 2003. Generalized
Symbolic Execution for Model Checking and Testing. In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems. 553-568.
Korat. 2020. Korat Webpage. http://korat.sourceforge.net.

Shuvendu K. Lahiri, Robert Nieuwenhuis, and Albert Oliveras. 2006. SMT Tech-
niques for Fast Predicate Abstraction. In International Conference on Computer
Aided Verification. 424-437.

Barbara Liskov and John Guttag. 2001. Program Development in Java: Abstraction,
Specification, and Object-Oriented Design. Addison-Wesley.

Darko Marinov. 2005. Automatic testing of software with structurally complex
inputs. Ph.D. Dissertation. Massachusetts Institute of Technology, Cambridge,
MA, USA. http://hdLhandle.net/1721.1/30161

Aleksandar Milicevic, Sasa Misailovic, Darko Marinov, and Sarfraz Khurshid. 2007.
Korat: A Tool for Generating Structurally Complex Test Inputs. In International
Conference on Software Engineering. 771-774.

Sasa Misailovic, Aleksandar Milicevic, Nemanja Petrovic, Sarfraz Khurshid, and
Darko Marinov. 2007. Parallel test generation and execution with Korat. In
International Symposium on Foundations of Software Engineering. 135-144.
Matthew W. Moskewicz, Conor F. Madigan, Ying Zhao, Lintao Zhang, and Sharad
Malik. 2001. Chaff: Engineering an Efficient SAT Solver. In Design Automation
Conference. 530-535.

Samiha Mourad and Dorothy Andrews. 1987. On the Reliability of the IBM
MVS/XA Operating System. IEEE Transactions on Software Engineering (1987),
1135-1139.

Pengyu Nie, Marinela Parovic, Zhiqiang Zang, Sarfraz Khurshid, Aleksandar
Milicevic, and Milos Gligoric. 2020. Unifying execution of imperative generators
and declarative specifications. Proc. ACM Program. Lang. 4, OOPSLA (2020),
217:1-217:26.

Martin Rinard. 2003. Resilient computing. Technical Report. MIT Computer
Science and Artificial Intelligence Laboratory.

Hesam Samimi, Ei Darli Aung, and Todd Millstein. 2010. Falling Back on Exe-
cutable Specifications. In European Conference on Object-Oriented Programming.
552-576.

Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: a concolic unit testing
engine for C. In International Symposium on Foundations of Software Engineering.
263-272.

Tao Xie, Darko Marinov, and David Notkin. 2004. Rostra: A Framework for
Detecting Redundant Object-Oriented Unit Tests. In International Conference on
Automated Software Engineering. 196—205.

Razieh Nokhbeh Zaeem, Divya Gopinath, Sarfraz Khurshid, and Kathryn S.
McKinley. 2012. History-Aware Data Structure Repair Using SAT. In International
Conference on Tools and Algorithms for the Construction and Analysis of Systems.
2-17.

Razieh Nokhbeh Zaeem and Sarfraz Khurshid. 2010. Contract-Based Data Struc-
ture Repair Using Alloy. In European Conference on Object-Oriented Programming.
577-598.

Razieh Nokhbeh Zaeem, Muhammad Zubair Malik, and Sarfraz Khurshid. 2013.
Repair Abstractions for More Efficient Data Structure Repair. In International
Conference on Runtime Verification. 235-250.



