


class List {

Node head; int size;

static class Node {

int value;

Node next , prev;

}

boolean repOK () {

if (head == null) return false;

Set <Node > visited = new HashSet <>();

visited.add(head);

Node current = head;

while (true) { // Check circularity

Node next = current.next;

if (next == null) return false;

// Check prev is the converse of next

if (next.prev != current) return false;

current = next;

if (! visited.add(next)) break;

}

return visited.size() == size; // Check size

}

static IFinitization finList(int n) {

IFinitization f = createFinitization(List.class);

IObjSet nodes = f.createObjSet(Node.class , n);

f.set("head", nodes);

f.set("size", f.createIntSet(n, n));

f.set(Node.class , "value", f.createIntSet (0, 1));

f.set(Node.class , "next", nodes);

f.set(Node.class , "prev", nodes);

return f;

}

}

Figure 1: The Java class with repOK and finitization meth-

ods modeling doubly linked lists with binary values

We present unsat region, our memoization construct that suc-

cinctly memoizes consecutive invalid candidate vectors enumerated

by a Korat search, as a pair of start and end candidate vectors, to

avoid re-exploring that unsat region when repairing similar data

structure errors in the future.

Data structure repair for recurring errors. We present our

memoized technique for repairing data structure errors that recur,

which maintains a collection of unsat regions in tandem with data

structure repair to amortize the cost of a Korat search over repeated

repairs. Each data structure repair memoizes a new unsat region or

extends an existing unsat region to further bene�t future repairs.

Evaluation. We evaluated our techniques on 8 complex data

structure subjects studied by prior work [1, 5, 10, 11, 24]. Experi-

mental results show that our memoized technique is faster than our

baseline technique for repairing data structure errors that recur, and

requires a small amount of storage for maintaining unsat regions.

2 BACKGROUND AND EXAMPLE

We present an overview of Korat [1] and demonstrate how it can

be applied in the context of constraint-based data structure repair.

We further illustrate how memoization can amortize the cost of a

Korat search over repeated repairs by avoiding re-exploration.

2.1 Korat basics

Consider using Korat to enumerate a suite of all doubly linked list

structures with binary values. The user input to Korat is a Java class
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Figure 2: A valid doubly linked list structure L1 with 3 nodes

(left) and its candidate vector representation (right)

with repOK and finitization methods, where repOK checks for

desired structural properties and finitization speci�es bounds

on the number of objects for each type, and a �eld domain (a �nite

list of values) for each �eld of each type, to bound the search.

Korat internally represents a candidate structure as an integer

array, namely a candidate vector (cv in short). Each array element

represents a �eld of an object in the candidate structure by storing

the index in the element’s �eld domain that corresponds to the

value of that �eld in the candidate structure.

Korat starts the search by running repOK on an initial structure

that corresponds to a candidate vector with all elements set to zero

(i.e., each �eld is assigned to the �rst value in its �eld domain).

Korat monitors �eld accesses during repOK execution to enumerate

the next structure by incrementing the candidate vector element

for the last accessed �eld to the next index in its �eld domain and

backtracking the search when it exhausts all choices for that �eld.

Korat continues this repOK-driven search to enumerate every

valid structure c within the user given bounds such that c.repOK()

returns true. Korat eliminates isomorphic structures to prune the

search without compromising completeness.

Figure 1 shows the List Java class that models doubly linked

lists with binary values. The List class declares an internal Node

class, which holds an integer value value and two references next

and prev. A list object has a head �eld and stores the number of

nodes reachable from head in the size �eld.

The repOK checks (1) circularity along Node.next, (2) the con-

verse relation between Node.next and Node.prev, and (3) the num-

ber of nodes reachable from List.head matches List.size.

The finitization (1) takes the number of Node objects as input

parameter, namely n, (2) creates a Finitization object, (3) creates

a set s = {null, N1, N2, · · · , Nn} including null and n unique Node

objects, (4) sets the �eld domain for List.head to s, (5) sets the

�eld domain for Node.size to take only 1 value (i.e., n), (6) sets the

�eld domain for Node.value to a set of binary values {0, 1}, and

(7) sets the �eld domain for Node.next and Node.prev to s.

Figure 2 shows a valid doubly linked list with three nodes that

stores binary value 110 with its corresponding candidate vector.

For size 3, the search space has 4 · 1 · (2 · 4 · 4)3 = 2
17 candidate

structures. The search space grows exponentially as the size of

structures increases. For instance, for size 20 there are 2102 candidate

structures. Korat prunes the search and �nds all 220 valid structures

by enumerating 1049262 (< 2
21) structures in 1.4 seconds.

2.2 Data structure repair using Korat

2.2.1 Our baseline constraint-based repair technique (iRepairb ). Fig-

ure 3 illustrates our baseline repair technique for a doubly linked
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Object iRepairb (Object s, Method repOK , Finitization f) {

// Create an instrumented version of "s" needed by the

// Korat search

Object e = instrument(s, f);

// Canonicalize "e" into a candidate vector

CV canonicalCV = canonicalize(e, repOK , f);

// Perform a Korat search starting at "canonicalCV" to

// find "validCV"

CV validCV = nextValidCandidate(canonicalCV , repOK , f);

// Copy the data payload from "e" into "validCV"

copyDataPayload(e, repOK , f, validCV);

// Construct the repaired structure based on "validCV"

return buildCandidate(validCV);

}

Figure 5: Data structure repair using Korat

Repair scenario 3 (partial search). Now consider repairing

structure c3 (Figure 4d). iRepair
b enumerates 7 candidate vectors

(#13 to #19) to �nd valid structure v . Since c3
cv does not belong to

the memoized unsat region [c1
cv
,v

cv ), iRepairu also runs a Korat

search, but keeps track of when the search reaches the start of a

memoized unsat region.

After 3 steps (#13 to #15), the Korat search indeed reaches c1
cv ,

which is the start of memoized unsat region [c1
cv
,v

cv ). Hence,

iRepairu skips the rest of the search and returns valid structure v

(i.e., 57% fewer enumerations compared to iRepairb ), while extend-

ing [c1
cv
,v

cv ) into [c3
cv
,v

cv ) to further bene�t future repairs.

3 IREPAIR

We �rst present our baseline constraint-based data structure repair

technique that uses Korat. We then introduce our memoization con-

struct, namely unsat region, which memoizes the result of a local

Korat search as a candidate vector pair, to avoid re-exploring the

same region when repairing a similar erroneous data structure in

the future. Finally, we present our memoized technique that main-

tains a collection of unsat regions in tandem with data structure

repair to prune the Korat search.

3.1 Data structure repair using Korat (iRepairb )

Figure 5 shows the pseudocode for our baseline data structure repair

technique, which takes an erroneous data structure s (of type C),

the repOK predicate that implements desired structural properties

(provided by the user in class C), and the Finitization object

that speci�es bounds on the state space (provided by the user or

constructed dynamically by traversing the object graph of s to �nd

the �eld domain for each type). The repair procedure is as follows:

First, we create an instrumented version of class C, namely C’,

by adding a primitive �eld for each non-static user de�ned �eld in

C, which Korat search needs to monitor �eld accesses [1, 22]. We

then use a work-list based algorithm to traverse the object graph of

s using Java re�ection to create a copy of s, namely e (of type C’).

Second, we canonicalize object e into a candidate vector that is

faithful to the Korat search (i.e., a candidate vector that a complete

Korat search would enumerate), by running repOK on e, and en-

coding all �elds that were accessed to their canonical values based

on the linearization algorithm for rooted graphs [31], and encoding

other �elds to the �rst index in their �eld domains (i.e., zero).

Search space
1 N

v1 v2 v3

r1 r2

Scenario 1 (no search)

e

Scenario 2 (search)

e

Scenario 3 (partial search)

e

Figure 6: The memoizedNextValidCandidate visualization for

di�erent repair scenarios

Third, we run a local Korat search, namely nextValidCandidate,

starting at the canonicalized candidate vector canonicalCV until

Korat �nds the next valid candidate vector validCV or terminates

without �nding a solution. We discuss repair completeness and

why this local search is a good repair heuristic later in Section 5.

Next, for �elds of validCV that are not accessed by a repOK

invocation, we copy their canonical values from object e. This step

preserves the data structure payload (i.e., �elds that are unchecked

by the user given repOK) without compromising correctness.

Finally, we construct the repaired structure based on validCV

using Korat’s CandidateBuilder API and return the result.

3.2 Unsat regions

For a subject with repOK and finitization, we de�ne an unsat

region as a candidate vector pair [ecv , rcv ), where (1) both candidate

vectors are canonicalized, (2) ecv is enumerated before rcv by a

Korat search, (3) rcv is valid (i.e., running repOK on structure r

returns true), and (4) ecv and all candidate vectors enumerated

between e
cv and rcv are invalid (with respect to repOK).

We de�ne the following primitive operations for unsat regions:

(1) lessThan(CV c, CV v). Candidate vector c is less than

candidate vector v if c is enumerated before v by the Korat

search. This can be determined (without a Korat search) by

lexicographically comparing the candidate vector elements

of the two arrays based on their �eld access order [1].

(2) equalTo(CV c, CV v). Candidate vector c is equal to can-

didate vector v if both candidate vectors contain the same

number of elements, and all corresponding pairs of elements

in the two candidate vectors match.

(3) inRegion(CV c, R reg). Candidate vector c is in region

reд = [e, r ) if equalTo(c, e), or less�an(e, c) and less�an(c, r).

3.3 Memoized data structure repair (iRepairu )

If an error in a program’s state is caused by a fault in software or

hardware, a similar error might occur [34] during the program’s

execution. Our baseline technique applies nextValidCandidate

on each input structure, which su�ers from re-exploration when

the underlying Korat search overlaps with a prior search. Our key

insight is to use memoization to amortize the cost of a Korat search

over repeated repairs of similar erroneous data structures.

Figure 6 visualizes a search space of N candidate vectors that

a complete Korat search would enumerate. Consider three valid
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// Memoized unsat regions. A "key -> value" mapping shows

// unsat region [key , value)

TreeMap <CV, CV > regions = new TreeMap <CV, CV >();

CV memoizedNextValidCandidate(CV e, Method repOK ,

Finitization fin) {

Map.Entry <CV,CV > r1 = regions.floorEntry(e);

// Scenario 1 (no search)

if (r1 != null && inRegion(e, r1))

return r1.value;

Map.Entry <CV,CV > r2 = regions.ceilingEntry(e);

CV q = (r2 != null) ? r2.key : null;

CV v = nextValidCandidate(e, q, repOK , fin);

if (v != null) { // Scenario 2 (search)

regions.put(e, v);

return v;

}

if (q != null) { // Scenario 3 (partial search)

regions.remove(r2.key);

regions.put(e, r2.value);

return r2.value;

}

return null;

}

Figure 7: The memoizedNextValidCandidate procedure (used

in iRepairu )

candidate vectors v1, v2, v3, and two memoized unsat regions r1
and r2 on a number line. The di�erent scenarios for the search per-

formed by memoizedNextValidCandidate (our memoized search)

on invalid candidate vector e are discussed below:

• Scenario 1 (no search). Since e belongs to a known unsat

region, namely r1, simply return the end of r1 without a

Korat search (i.e., no calls to nextValidCandidate).

• Scenario 2 (search). Run nextValidCandidate and return

the solution (i.e., v2) as the repair, while memoizing [e,v2)

as a new unsat region.

• Scenario 3 (partial search).Run nextValidCandidate un-

til reaching the start of an unsat region (i.e., r2). Return v3
as the repair, while extending r2 into a larger unsat region

[e,v3) to further bene�t future repairs.

Figure 7 shows the memoizedNextValidCandidate procedure,

which takes a canonicalized candidate vector e, the repOK pred-

icate, and the Finitization object, and returns the next valid

candidate vector. This procedure is functionally identical to next-

ValidCandidate, but additionally maintains a map of known unsat

regions in tandem with each search as discussed below:

(1) If e belongs to a known unsat region, say r1, return the end

of r1 (i.e., r1.value), without calling Korat (Scenario 1).

(2) Find the �rst memoized unsat region r2 in the map that

starts after the invalid candidate vector e (if any).

(3) Perform a local Korat search starting at e until the beginning

of r2 if r2 exists (to avoid re-exploring r2), or else do a Korat

search starting at e until the next valid candidate vector is

found, or the search has completed.

(4) If a valid candidate vector v was found, add a new unsat

region [e, v) to the map of unsat regions (Scenario 2).

(5) If no valid candidate vector was found, while r2 exists, return

r2.value as the next valid candidate vector, while extending

the beginning of r2 to e in the map, i.e., replacing unsat re-

gion r2=[r2.key, r2.value) with the larger unsat region

[e, r2.value), where lessThan(e, r2.key), to further

bene�t future repairs (Scenario 3).

(6) Otherwise, return null, as e cannot be repaired using a Korat

search. (See Section 5 for repair completeness.)

The iRepairu procedure (not displayed) is identical to the iRepairb

procedure shown in Figure 5, except that instead of a call to next-

ValidCandidate, which may su�er from re-exploration, iRepairu

calls memoizedNextValidCandidate, which uses memoization to

prune a search if it overlaps with a prior search.

4 EVALUATION

To evaluate the e�cacy of our repair techniques, we implemented

iRepairb (our baseline technique) and iRepairu (our memoized tech-

nique) by extending Korat [19]. We next discuss our methodology

and studied subjects, and then present our experimental results.

4.1 Methodology

We conduct two repair experiments on 8 complex data structure

subjects studied by prior work in bounded exhaustive testing and

data structure repair [4, 5, 8, 10, 24, 27, 34].

The �rst experiment repairs all non-isomorphic erroneous data

structures for small sizes, ranging from 3 to 19 nodes. This experi-

ment studies the brute-force scenario to evaluate potential gains

from memoization for error recovery of a program that encounters

many di�erent erroneous data structures.

The second experiment generates a few larger valid data struc-

tures ranging from 10 to 1000 nodes. For each valid data structure,

we inject an error by randomly corrupting object �elds and then

repair the erroneous structure. We then repeat the fault injection

and repair steps 20 times on the valid structure to simulate similar

recurring errors encountered by a program execution. We repeat

this procedure for 100 valid data structures (per subject) and report

average numbers (of the 100 runs) after each repair.

We next discuss each experiment procedure in detail and present

our research questions.

4.1.1 Experiment 1. Repairing all small structures. Recall that Ko-

rat, when applied as a test input generation tool [1], enumerates

all non-isomorphic structures up to the given bounds. Hence, for

each studied subject, we use Korat to generate the erroneous test

structures. Our experiment procedure is described below.

(1) Run a complete Korat search on each subject (for each size)

and create a sequence of all erroneous data structure objects

enumerated by Korat.

(2) Shu�e the sequence with a random seed to ensure we do

not repair the structures in the same order as were enumer-

ated by the Korat search, which can unfairly bene�t the

memoization in iRepairu .

(3) Repair each erroneous data structure in the sequence once

using iRepairb and next using iRepairu .

We run this experiment procedure 3 times and report average

numbers. Needless to say, each run starts from a clean state with

an empty cache of unsat regions (for iRepairu ).
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4.1.2 Experiment 2. Repairing a few larger structures. For each stud-

ied subject, we run the fault injection experiment procedure below.

(1) Generate a randomvalid data structure s such that s.repOK().

(2) Corrupt a �eld of s at random to create an erroneous data

structure e such that !e.repOK(). A corruption is a tuple

of three elements ⟨o, f, v⟩, where �eld f of object o is

assigned to value v, which is null or another object of the

same type for reference types, and another primitive value

for primitive types.

(3) Repair the erroneous data structure once using iRepairb and

then using iRepairu .

(4) Repeat steps 2 and 3 twenty times to introduce recurring

errors and report the results after each repair.

We repeat this procedure 100 times and report average numbers.

For instance, for the 5th repair (out of the 20 consecutive repairs),

we report the average numbers of the 100 runs for their 5th repair.

Each run starts from an empty cache of unsat regions (for iRepairu ).

Repair quality. Unlike Experiment 1 that starts the repair pro-

cedure from erroneous structures, this experiment starts from a

valid data structure and injects faults. Hence, we can measure the

repair quality of iRepair by calculating how similar the repaired

structure (say r ) is to the ideal repair, which is the original valid

data structure before the fault injection (say o).

We de�ne similarity between r and o as S = (L−D)/L ·100, where

D is the number of elements that di�er between their candidate

vector representations cvr and cvo , respectively, and L is the length

of the candidate vectors. Note that L is the same for both structures

as our repair experiment preserves the structure size. Evidently,

higher similarity values are better (e.g., 100% for an ideal repair).

4.1.3 Research questions. Together, these two repair experiments

answer the following research questions:

RQ1: What is the iRepairu speedup (in time) compared to iRepairb?

RQ2: What are the iRepairu savings (in search) compared to

iRepairb?

RQ3: What percent of the erroneous data structures repaired by

iRepairu bene�t from memoization (cache hit)?

RQ4: What is the size of the unsat regions (cache) maintained

by iRepairu?

RQ5: What is the repair quality of iRepair?

4.2 Subjects

We used 8 complex data structure subjects, namely AVL tree (AVL),

binomial heap (BH), binary tree (BT), doubly linked list (DLL), �-

bonacci heap (FH), red-black tree (RBT), sorted list (SL), and search

tree (ST). All subjects except AVL are taken from the publicly avail-

able Korat distribution [19] and model standard data structures

from Java libraries. For example, DLL and RBT implement repOK

for java.util classes LinkedList and TreeMap, respectively.

For AVL, we modeled it after a custom AVL tree class from

HSQLDB [15], a popular open-source relational database applica-

tion for Java. In particular, we implemented the repOK to specify

AVL tree properties for org.hsqldb.index.IndexAVL, which is a

class to store database indexes using balanced binary search trees.

For Experiment 1, Table 1 shows for each studied subject, its

name (and acronym), the structure sizes (in number of nodes), the

Table 1: Subjects of Study

Subject Size Space Candidates [#] Time [ms]

Total Valid

AVL tree 6 2
70 7675 28 116

(AVL) 7 2
87 47762 136 177

8 2
104 199076 288 372

binomial heap 6 2
88 42815 7602 184

(BH) 7 2
109 261788 107416 333

8 2
131 1323194 603744 1028

binary tree 9 2
63 210444 4862 236

(BT) 10 2
72 815100 16796 553

11 2
82 3162018 58786 1807

doubly linked list 10 2
82 1215 1024 90

(DLL) 11 2
93 2275 2048 95

12 2
104 4362 4096 102

�bonacci heap 3 2
39 803 136 127

(FH) 4 2
60 8634 2310 146

5 2
82 164365 52281 296

red-black tree 6 2
76 16487 20 152

(RBT) 7 2
94 71704 35 270

8 2
112 322806 64 649

sorted list 17 2
220 525068 65536 738

(SL) 18 2
237 1114983 131072 1355

19 2
254 2360263 262144 2680

search tree 6 2
52 45233 132 158

(ST) 7 2
64 340990 429 310

8 2
77 2606968 1430 1479

Σ n/a n/a 13656028 1322415 13555

search space size computed by multiplying the number of choices

for each candidate vector element, the number of structures enu-

merated by a complete Korat search, the number of valid structures

found, and the execution time (in milliseconds). The last row (Σ)

shows cumulative numbers for each column.

For Experiment 2, we use the same data structure subjects as

Experiment 1, but with larger structure sizes, which will be shown

later in Figure 9.

4.3 Experimental results

We obtained all data on a machine with 6-core 3.2 GHz Intel Core

i7-8700B Processor and 16 GB of RAM, running macOS 10.15.6 and

Oracle Java 1.8.0_261.

4.3.1 Experiment 1. Repairing all small structures. We report the

results of this experiment in two formats. Table 2 summarizes the

cumulative results at the very end of the procedure, when all erro-

neous structures in the sequence are repaired. Figure 8 plots the

results by connecting the data points after each iteration of the

experiment procedure (i.e., after each repair) to show the trend of

gains (for iRepairu ) as new structures are being repaired.

Table 2 shows for each studied data structure subject, its acronym,

the structure sizes (in number of nodes), the number of erroneous

structures repaired (by each technique), the total iRepairb repair

time (in seconds), the total number of candidate vectors enumer-

ated by iRepairb , the iRepairu speedup in repair time compared

to iRepairb , the iRepairu savings in number of candidate vectors

enumerated compared to iRepairb , the iRepairu cache hit (i.e., the

percent of repairs that bene�ted from a memoized unsat region by
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Figure 8 shows the plots for the largest size of each subject. For

each subject (column), there are 4 plots (rows). Row 1 shows the

cumulative repair time (in seconds). Row 2 shows the cumulative

number of candidate vectors enumerated. Row 3 shows the cumu-

lative cache hit (in percent). Row 4 shows the cumulative cache

size (in number of unsat regions). The x-axis shows the iteration

number in the experiment procedure, which is common for all plots

shown for a given subject. The red and blue curves in the plot corre-

spond to the iRepairb and iRepairu , respectively. For each plot, the

y value at xmax (i.e., the last iteration of the experiment procedure)

corresponds to the numbers shown in Table 2.

RQ1: Speedup in time. Column 6 in Table 2 shows on average

iRepairu was 47 times faster than iRepairb . In total, iRepairb spent

4.38 hours to repair the sequence of 12333613 erroneous structures

studied, while iRepairu spent 5.48 minutes to repair the same se-

quence. Row 1 in Figure 8 shows for all subjects, iRepairu (the blue

line) outperforms iRepairb (the red line).

RQ2: Savings in search. Column 7 in Table 2 shows on aver-

age iRepairu performed 96.1% fewer enumerations compared to

iRepairb . In total, iRepairb and iRepairu enumerated 44814102976

and 498258122 candidate vectors, respectively, to repair the same

sequence of erroneous data structures. Row 2 in Figure 8 shows for

all subjects, iRepairu enumerates fewer candidate vectors compared

to iRepairb by not re-exploring known unsat regions.

RQ3: Cache hit. Column 8 in Table 2 shows on average 88.1% of

repairs made by iRepairu bene�ted from a memoized unsat region

from an earlier repair (i.e., needed a partial search or no search).

Row 3 in Figure 8 shows the cache hit for AVL, RBT, and ST grows

faster than other subjects, and peaks at 97.60%, 99.20%, and 99.50%,

respectively. We observed from Table 1 that these subjects have

sparse state spaces, where there are few valid candidate vectors

among a large number of enumerations, a case that bene�ts memo-

ization in iRepairu by pruning larger unsat regions.

RQ4: Cache size. Column 9 in Table 2 shows iRepairu mem-

oized 364930 unsat regions (i.e., 729062 candidate vector pairs),

which is 97% smaller than the 12333613 studied erroneous struc-

tures. Column 10 in Table 2 shows iRepairu maintained a cache size

of 254 MB, while we measured the total size of invalid candidate

vectors for the repaired structures was 1.7 GB. We further observed

iRepairu requires minimal storage for subjects that have a sparse

state space like RBT and ST where there are few valid instances

(among all enumerations) and DLL where there are few invalid

instances (as shown in Table 1).

4.3.2 Experiment 2. Repairing a few larger structures. We chose

larger structures ranging from 10 to 1000 nodes. The sizes vary

between subjects based on the complexity of repOK and the size of

the state space. Figure 9 shows the results of repairing 20 similar

erroneous data structures (per subject). For each subject (column),

there are 5 plots (rows), showing the repair time (milliseconds), the

number of candidate vectors enumerated by the underlying Korat

search, the cache hit (in percent), the cache size (in number of unsat

regions), and repair similarity (as de�ned in Section 4.1.2).

For RQ1 and RQ2, we observed smaller gains compared to Ex-

periment 1 (because we do fewer repairs). For instance, on average

(for the 20 repairs of all subjects), iRepairu was 2.4 times faster than

iRepairb and enumerated 52.7% fewer candidate structures.

For the �rst repair of any subject, the underlying search for both

techniques enumerated the same number of candidate structures

in similar execution times. Starting from the second repair, we see

gains from iRepairu when a Korat search overlaps with a previously

memoized unsat region (i.e., a cache hit).

For BT and DLL we see signi�cant gains even after a handful of

repairs (e.g., 12.8 times and 35.7 times faster performance, respec-

tively, for the �fth repair). For BH, FH, and SL, we see smaller gains

in execution time (e.g., 1.6 times for FH), as the unsat regions for

these subjects memoize smaller number of erroneous structures due

to the higher ratio of valid to invalid structures in their enumerated

search space as was shown in Table 1 (for smaller sizes).

For RQ3, we observe an increasing trend in cache hit for all

subjects, where it starts from 0% (for the �rst repair) and increases

for future repairs. Some subjects like BT, DLL, and FH have faster

increases on the �rst few repairs. All subjects, except SL, reached

above 70% cache hit within the 20 consecutive repairs.

For RQ4, we observe the cache size starts from 1 (the �rst unsat

region that is memoized after the �rst repair by iRepairu ) and

increases for all subjects except DLL, due to all valid structures being

consecutive for DLL (as shown in the Example from Section 2.2.2).

Note that the one unsat region gets extended to larger unsat regions

throughout consecutive repairs (i.e., Scenario 3 from Figure 6), but

the cache size remains the same (i.e., 1). SL has the highest number

of unsat regions, which explains why it has the lowest cache hit as

well. This was also expected as this subject had the highest number

of unsat regions in Experiment 1 (Table 2).

RQ5: Repair quality. Recall from Section 4.1.2 that we measure

similarity between a repaired structure and the original valid struc-

ture before fault injection. As shown, both iRepair variants, which

create the same repairs, result in high similarity, with minimum,

average, and maximum (among the 20 repairs of all subjects) being

79.4%, 92.7%, and 100%, respectively. Hence, nextValidCandidate,

which performs a local Korat search, is a good repair heuristic.

5 DISCUSSION

Repair heuristic. The nextValidCandidate, which is the back-

bone of iRepair, is a heuristic that performs a local Korat search

starting at the canonical form of an erroneous structure to �nd

the next valid structure. Hence, this approach limits unnecessary

mutations by nature of the Korat search [1]. Intuitively, this local

search is similar to �nding one solution for a SAT formula, which

makes it computationally more e�cient than enumerating all valid

instances, which is analogous to model counting [11].

Section 4.3.2 showed this heuristic resulted in repairs with high

similarity to the ideal repair (i.e., 92.7% on average). Additionally,

we measured the similarity between erroneous structures and their

corresponding repaired structures was 91.8% on average. We do

not show numbers per subject due to space constraints.

Repair completeness. iRepair uses a backend Korat solver for

data structure repair, which performs a forward search, i.e., starts

the search from an invalid candidate vector until a solution is found.

Hence, it can repair a data structure i� its canonical form appears

before the last valid candidate vector that a complete Korat search

enumerates. We measured for the subjects and sizes studied, iRepair

was able to repair almost all (99.52%) of the studied structures.

1830





actions, i.e., mutations that transform an erroneous state to an

acceptable state, to enhance the performance of future repairs when

a similar erroneous state recurs. Unsat regions in iRepairu are

orthogonal to repair abstractions and can prune the search even

when no repair abstraction is applicable.

Parallel Korat [24] introduced the �rst parallel technique for

test generation and execution using Korat, which �nds equi-distant

candidate vectors during a Korat search, to evenly distribute the

search problem among independent workers when the same search

problem is being solved repeatedly.

MKorat [6] enhanced Parallel Korat by introducing invalid ranges

as memoization primitives to prune the search when the same

problem is being solved repeatedly. MKorat motivated iRepairu .

The di�erence is that iRepairu is an on-the-�y data structure repair

tool that performs a local search to �nd a valid structure in tandem

with memoizing that search, while MKorat is a test generation tool

that performs a complete search �nding all valid structures and

thenmemoizes invalid ranges. Due to its brute-force nature, MKorat

does not scale to structures with hundreds of nodes (Figure 9).

SAT solvers [7, 25] o�er various approaches for e�cient solving

of constraints. Incremental SAT and con�ict-driven clause learn-

ing [20] motivate unsat regions in iRepairu . The di�erence is that

iRepairu utilizes a bounded exhaustive approach that operates on

user-written Java predicates, which are structurally and semanti-

cally di�erent from CNF formulas.

7 CONCLUSION

Data structure repair is a form of error recovery to make software

resilient to runtime failures. We presented two constraint-based

data structure repair techniques based on the Korat solver. Our

baseline technique is e�ective for repairing a data structure, but

su�ers from redundant search when applied on similar erroneous

data structures. Our memoized technique memoizes the search in

tandem with a repair to amortize the cost of a Korat search over

repeated repairs. Experimental results showed that our memoized

technique outperforms our baseline technique with minimal over-

head. This work lays a promising foundation to utilize memoization

for constraint-based repair of data structure errors that recur.
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