


ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Yang Hu, Wenxi Wang, Casen Hunger, Riley Wood, Sarfraz Khurshid, and Mohit Tiwari

complexity of one root cause, in this paper, we only focus on two
categories, namely KACV-M which is due to missing permission
checks, and KACV-I which is due to misusing permission checks.
According to the Common Vulnerability Scoring System (CVSS),
24.4% of the KACV-M and KACV-I were scored as high or critical
security severity, and 38.8% were scored as the medium severity. In
addition, our study found that KACV-M and KACV-I cause a variety
of security threats, including bypass security checking, privileged
escalation, denial of services, etc.

To the best of our knowledge, existing approaches can only detect
KACV-M, and no work has been proposed to detect KACV-I. Zhang
et al. [62] propose a static analysis tool called PeX, which is the
state-of-the-art KACV-M detector. PeX conducts its static analysis in
three steps including 1) the permission check identi�cation, 2) the
privileged function identi�cation, and 3) the invariant analysis over
the permission checks and privileged functions to uncover KACVs.
To identify permission checks, PeX requires users to provide an
incomplete list of permission checks. It then performs program
slicing [28] to identify the wrappers of the initially provided per-
mission checks as the new permission checks. Next, PeX �nds an
over-approximation of the privileged functions with a control-�ow
analysis to collect the kernel functions which always execute after
permission checks. Last, it performs a control-�ow based invariant
analysis to search for the potentially vulnerable paths where a priv-
ilege function is not preceded by any permission checks. However,
PeX su�ers from signi�cant false-positive rates due to the limitation
in each step. First, the permission check identi�cation is unsound
especially when the user-provided permission checks lack diversity.
Second, the privileged function identi�cation is imprecise due to
the weak over-approximation. Third, the invariant analysis is also
imprecise due to the weak invariant.

To mitigate the limitations of PeX, we present a precise, scalable
KACV detector called ACHyb which is capable of detecting both
KACV-M and KACV-I. ACHyb is a hybrid analysis approach, which
�rst applies static analysis to identify the potentially vulnerable
paths and then applies dynamic analysis to further reduce the false
positives of the paths. For the static analysis, ACHyb follows the
three steps of PeX, but with its own improvements for each step to
enhance both the precision and the soundness. For permission check
identi�cation, ACHyb performs a semi-automated interface analysis

which is a soundy (i.e., mostly sound [32]) approach. For privileged
function identi�cation, instead of using control-�ow analysis as PeX,
ACHyb performs our proposed callsite dependency analysis which is
a data-�ow analysis that could signi�cantly improve the precision.
For invariant analysis, ACHyb proposes a stronger invariant and per-
forms a constraint-based analysis to check the invariant. To improve
the e�ciency, instead of conducting the standard inter-procedural
analysis, ACHyb conducts the lightweight intra-procedural analysis
by exploiting the features of access control .

Moreover, instead of requesting human e�ort to do the manual
inspection as PeX, ACHyb applies dynamic analysis to reduce the
false positives of the potentially vulnerable paths identi�ed. The
idea is to identify the feasible potentially vulnerable paths in which
the access control decisions are either missing (potential KACV-M) or
denied (potential KACV-I). To achieve this, ACHyb injects invariant
checks on the potentially vulnerable paths and conducts greybox
fuzzing to trigger these checks. To improve the fuzzing e�ciency,

ACHyb adopts our novel clustering-based seed distillation approach
to generate high-quality seed programs.

For static analysis, we implement ACHyb on top of the LLVM
pass framework [45]. For dynamic analysis, we build ACHyb based
on the greybox fuzzer called Syzkaller [57]. We perform an em-
pirical evaluation of ACHyb on the Linux kernel v4.18.5. As a result,
ACHyb reports 76 potential KACVs, 22 of which are KACVs includ-
ing 19 KACV-M and 3 KACV-I. In contrast, PeX reports 2,088 potential
KACVs, 14 of which are KACV-M. Besides, the KACVs detected by
ACHyb contain all the KACVs detected by PeX. We report 7 new
KACVs (5 KACV-M and 2 KACV-I) to kernel developers. By the time
of the paper publication, 2 new KACVs (1 KACV-M and 1 KACV-I)
have been con�rmed. The results show that ACHyb is not only more
precise than PeX, but also capable of detecting new KACVs. In addi-
tion, ACHyb takes less than 8 hours to detect the KACVs while PeX
takes more than 11 hours, which shows that ACHyb is more e�cient
than PeX. The source code of ACHyb and the dataset of our study
are publicly available at https://github.com/githubhuyang/achyb.
The contributions of this paper are:

• Study. We did an empirical study on KACVs mainly in two
aspects: the root causes and the security impacts of KACVs.
• Approach. We present ACHyb, which combines static and
dynamic analysis to detect both KACV-M and KACV-I precisely
and e�ciently. To the best of our knowledge, ACHyb is the
�rst tool that is capable of detecting KACV-I.
• Implementation.We implement ACHyb on top of the LLVM
and Syzkaller with about 5,000 lines of code.
• Empirical Evaluation.We did an empirical evaluation of
ACHyb on the Linux kernel v4.18.5 The experimental results
show that ACHyb is more precise and scalable than the state-
of-the-art tool PeX.
• Practical Impacts ACHyb is able to detect 7 new KACVs, 2
of which have been con�rmed by the kernel developers.

2 A STUDY ON KACVS

We study the KACVs mainly in two aspects: the root causes and the
security impact of KACVs. In order to get KACVs, we �rst collect all
the CVE reports related to KACVs from the National Vulnerability
Database [40]. We use the cve-search tool [11] to �nd the CVE
reports that contain the keywords related to the access control,
such as “ACL”, “capability”, “permission”, etc. We �ltered out the
old CVE reports on the kernel version lower than v2.6, since we
want to focus on the KACVs in the newer kernel versions. As a
result, 101 CVE reports were collected. Fig. 1a shows the number
of CVE reports related to the KACVs in the recent 10 years. We can
observe that from 4 to 18 KACVs were reported each year since
2010. Next, we extract the key information from the collected CVE
reports including the vulnerability descriptions, the CVSS ratings
(version 3.0), and the patches that �x the KACVs.

We manually inspect the vulnerability descriptions and patches
in our collected CVE reports to identify the root causes of the
KACVs. As a result, we classify the KACVs into three categories
based on the identi�ed root causes, as shown in Fig. 1b. The �rst
category is called KACV-M, which refers to the KACVs due to miss-

ing permission checks. The second category is called KACV-I, which
refers to the KACVs due to misusing permission checks. The third

317









ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Yang Hu, Wenxi Wang, Casen Hunger, Riley Wood, Sarfraz Khurshid, and Mohit Tiwari

when its corresponding access control decision is denied or not gen-

erated at all. One straightforward way to check this invariant is
to apply Symbolic Execution [5] on every path from each entry of
the kernel (i.e., the system calls) to the callsites of the privileged
function, and solve the constraints collected along the paths. How-
ever, this method su�ers from the path explosion and the high
complexity of the path constraints. ACHyb adopts two strategies to
make the constraint-based invariant analysis scalable.

One strategy is to perform an intra-procedural analysis instead of
the inter-procedural analysis, based on the observation mentioned
in Section 3.2.2 that the access control decision is rarely propa-
gated across the kernel functions. For every path which reaches a
privileged function, ACHyb only collects the constraints inside the
caller of the privileged function. By replacing the inter-procedural
analysis with the intra-procedural analysis, both the path space
and the complexity of the constraints can be largely reduced. How-
ever, since only partial path constraints are collected, this analysis
can only �nd potentially vulnerable paths. ACHyb further reduces
false positives among these paths using dynamic analysis which is
introduced in Section 3.3.

The other strategy is to perform the above analysis only on the
non-privileged functionswhich call at least one privileged functions.
This is based on our observation that the non-privileged functions
usually need to request access control decisions before they call the
privileged functions, while the privileged functions rarely request
access control decisions with the assumption that their callers re-
quest and check the access control decisions beforehand. Besides,
there is no need to conduct the analysis on permission checks, as
they never call privileged functions.

Algorithm 2 shows our invariant analysis algorithm. ACHyb �rst
collects all the kernel functions excluding the permission checks
and the privileged functions. Inside each of these functions, ACHyb
collects the callsites of the privileged functions (line 2-5). It then gets
all the intra-procedural paths (with �nite loop unrolling) that reach
these callsites (line 6-7). For each path, ACHyb obtains the callsites
of the permission checks in the path (line 8-9). If no such callsite
is found, the path is taken as a potentially vulnerable path (line
10-11). Otherwise, ACHyb fetches the access control decision and
the path constraints, and checks the satis�ability of the constraint
which is the conjunction of the path constraints and an additional
constraint stating that all the access control decisions are denied
(line 13-15). If the constraint is satis�able, which means that the
path to the privileged function is feasible but the access control
decisions in the path are denied, the path is then identi�ed as a
potentially vulnerable path (line 16-17).

We demonstrate our static invariant analysis using the relevant
path conditions of the KACV-I example shown in Fig. 3. Since there
is a callsite of a privileged function in line 16, ACHyb analyzes the
path to the callsite inside the function vfs_dedupe_file_range.
For simplicity, we consider the loop is unrolled only once. The
path to the callsite of the privileged function includes lines 2-10, 12,
14-16. First, ACHyb collects 3 path constraints inside the function
vfs_dedupe_file_range: �1 ,¬�2, and ¬�3. Next, ACHyb gener-
ates an additional constraint �4 := (8B_03<8= = 5 0;B4), which
indicates that the access control decision of the function capable

is denied (line 4). Then, ACHyb checks if the following constraint

Algorithm 2 Static invariant analysis algorithm.

Input: the kernel intermediate representation '

the set of permission checks �?4A<
the set of privileged functions �?A8E

Output: the set of potentially vulnerable paths %?>C

1: function ()�)��_�#+ _�#�!.(�((', �?4A< , �?A8E )
2: �>Cℎ4A ← '.64C_5 D=2C8>=B () − �?4A< − �?A8E
3: %?>C ← ∅

4: for 5 ∈ �>Cℎ4A do

5: (?A8E ← 5 .64C_?A8E_20;;B8C4B (�?A8E)
6: for B ∈ (?A8E do

7: %;>20; ← 5 .64C_?0CℎB (B) ⊲ get paths inside 5
which reach the callsite B .

8: for ? ∈ %;>20; do

9: (?4A< ← ?.64C_?4A<_20;;B8C4B (�?4A<)
10: if (?4A< = ∅ then

11: %?>C ← %?>C ∪ {?}

12: else

13: � ← ?.64C_342_E0A ((?4A<)
14: � ← ?.64C_?0Cℎ_2>=BCA08=CB ()
15: � ← � ∪ {3 = denied|3 ∈ �}

16: if 8B_B0C8B 5 801;4 (
∧

2∈�
2) then

17: %?>C ← %?>C ∪ {?}

18: return %?>C

is satis�able:
�1 ∧ ¬�2 ∧ ¬�3 ∧�4 .

Since the constraint is satis�able, the path is identi�ed as a poten-
tially vulnerable path.

3.3 Dynamic Analysis

The dynamic analysis focuses on reducing false positives among the
potentially vulnerable paths detected by the static analysis. ACHyb
achieves this in two steps. First, ACHyb injects the run-time invariant
checks to the kernel image, as introduced in Section 3.3.1. Then,
ACHyb conducts greybox fuzzing to cover the potentially vulnerable
paths so that the invariant checks can be triggered and the KACVs
can be revealed, as presented in Section 3.3.2.

3.3.1 Invariant Check Injection. As mentioned in Section 3.2.3, the
intra-procedural invariant analysis would cause false positives. To
remedy this problem, ACHyb rigorously checks the access control in-
variant in the run time. For each potentially vulnerable path, ACHyb
instruments the kernel with a run-time invariant check which is
added exactly before the callsite of each privileged function. As
introduced in Section 3.2.3, the static invariant analysis can detect
two kinds of potentially vulnerable paths reachable to the priv-
ileged functions: the paths with missing permission checks and
the paths with denied access control decisions. If a test execution
triggers the run-time checks and covers the potentially vulnerable
path with missing permission checks, the potentially vulnerable
path is feasible and thus it is taken as the path that could reveal
KACV-M. Similarly, if the potentially vulnerable path with denied ac-
cess control decision is feasible, the path is considered to reveal the
KACV-I. For the KACV-I example in Fig. 3, ACHyb injects a run-time

321





ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Yang Hu, Wenxi Wang, Casen Hunger, Riley Wood, Sarfraz Khurshid, and Mohit Tiwari

Table 1: The KACV detection precision of ACHyb and Pex. # perm refers to the number of detected permission checks. # priv

refers to the number of detected privileged functions. # pvp refers to the number of detected potentially vulnerable paths. #

wrn refers to the number of warnings. # kcav refers to the number of detected KACVs.

AC ACHyb PeX

Module # perm # priv # pvp # wrn # kacv precision # perm # priv # pvp # wrn # kacv precision

CAP 28 560 108 38 9 23.7% 19 3,245 850 850 4 0.5%
LSM 243 2,254 90 31 9 29.0% 243 10,260 1,017 1,017 7 0.7%
DAC 27 609 29 7 4 57.1% 22 537 221 221 3 1.4%

Total 298 3,423 227 76 22 28.9% 284 14,042 2,088 2,088 14 0.7%

converted to seed programs. Suppose that the trace slice C2 in Fig.
8 has been sampled from a selected cluster. The seed program
converted from C2 consists of two system calls from C2, which is
=1 (01);=2 (02).

3.4 Implementation

We implement the static analysis of ACHyb based on the LLVM pass
framework [45] with about 3,200 lines of C++ code. For the dynamic
analysis, we build the greybox fuzzing and the seed distillation on
top of the kernel greybox fuzzer called Syzkaller [56] with about
1,100 lines of GO code and 600 lines of Python code.

4 EVALUATION

4.1 Experimental Setup

Baseline. To evaluate the KACV detection performance of ACHyb,
we choose PeX [62], the state-of-the-art tool for KACV detection
which has its publicly available implementation1, as our baseline.
Besides, to evaluate our seed distillation approach, we choose
Moonshine [42] which is the state-of-the-art seed distillation tool,
as our baseline.
Kernel Version and Compilation. We evaluate ACHyb on the
Linux kernel v4.18.5, the version PeX uses in its evaluation. We
compile the kernel source with the allyesconfig con�guration
using the clang-9 toolchain [55] and the wllvm tool [46].
Subjects. We take all the three subject modules in the PeX evalua-
tion as our subjects. They are commonly used kernel access control
modules, including Linux Capabilities (CAP), Linux Security Mod-
ules (LSM) and Discretionary Access Control (DAC).

Environment. All the experiments are conducted on a machine
with two Intel(R) Xeon(R) E5-2620 v4 processors (32 logical cores
in total) and 256-GB RAM. The operating system is Ubuntu 20.10.

4.2 Research Questions

We try to answer the three following research questions in our
experiments:
Question 1. How precisely can ACHyb detect KACVs?
Question 2. How e�ciently can ACHyb detect KACVs?
Question 3. Can ACHyb detect new KACVs?

4.3 RQ1: Detection Precision

To evaluate the detection precision, we need to identify the KACVs
from the warnings (i.e., potential KACVs) reported by ACHyb and

1https://github.com/lzto/pex

PeX. To do so, we conduct a three-step manual inspection. First, we
manually inspect all the warnings reported by both tools, among
which we obtain 15 KACVs that have been con�rmed by the kernel
developers or reported by the authors of PeX. Then, we manually
inspect the rest warnings reported by ACHyb and identify 7 warn-
ings as new KACVs. Next, we report these 7 new KACVs to the
kernel developers. By the time of the paper publication, they have
con�rmed 2 new KACVs.

4.3.1 The Overall Detection Precision. Table 1 shows the detection
precision of ACHyb and PeX. For CAP module, the detection pre-
cision of ACHyb is 23.7%, while the precision of PeX is only 0.5%.
For LSM module, the detection precision of ACHyb is 29.0%, while
the precision of PeX is only 0.7%. For DAC module, the detection
precision of ACHyb is 57.1%, while the precision of PeX is only 1.4%.
We can also observe that, among the three modules, both tools
perform with the highest precision on module DAC; perform with
the second highest precision on module LSM; perform with the
lowest precision on module CAP. In total, for all the three modules,
28.9% of the warnings reported by ACHyb are KACVs, while only
0.7% of the warnings reported by PeX are KACVs. Furthermore,
the KACVs detected by ACHyb contain all the ones detected by PeX.
Overall, we can say that ACHyb is much more precise than PeX in

KACV detection.

4.3.2 Static and Dynamic Analysis. Table 1 also shows the inter-
mediate analysis results, which can help us understand how each
analysis in ACHyb contributes to its precise detection.
Permission Check Identi�cation. As for the permission check
identi�cation, ACHyb reports 14 more permission checks than PeX.
We manually inspect these permission checks and con�rm that all
of them are the real permission checks. The results show that the

soundy interface analysis of ACHyb can help identify more permission

checks than PeX.
Privileged Function Identi�cation. From Table 1, we can ob-
serve that ACHyb reports much less privileged functions than PeX.
To study the quality of the reported privileged functions, we ran-
domly sample 400 functions reported by ACHyb and PeX, respec-
tively. After manually inspecting the sampled privileged functions,
we found that 83% of the sampled privileged functions identi�ed
by ACHyb are the real privileged functions, while only 8% of the
sampled privileged functions identi�ed by PeX are the real privi-
leged functions. In addition, the real privileged functions detected
by ACHyb contain all the real ones detected by PeX. In general, we

can conclude that our proposed callsite dependency analysis improves

the precision of the privileged function identi�cation.

323





ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Yang Hu, Wenxi Wang, Casen Hunger, Riley Wood, Sarfraz Khurshid, and Mohit Tiwari

Table 3: New KACVs Detected by ACHyb.

ID File Path Function Type Description Status

CAP-1 net/core/rtnetlink.c do_setlink KACV-I Misusing the CAP_NET_ADMIN check. Con�rmed
CAP-2 drivers/char/random.c _extract_crng KACV-M Missing the CAP_SYS_ADMIN check. Con�rmed
CAP-3 net/ipv6/addrconf.c addrconf_join_anycast KACV-M Missing the CAP_NET_ADMIN check. Ignored
CAP-4 drivers/tty/sysrq.c sysrq_do_reset KACV-M Missing the CAP_SYS_BOOT check. Ignored
LSM-1 kernel/signal.c send_sig_info,force_sigsegv KACV-M Missing the security_task_kill check. Ignored
LSM-2 ipc/sem.c newary KACV-I Misusing the security_sem_alloc check. Ignored
DAC-1 fs/coredump.c cn_print_exe_file KACV-M Missing the inode_permission check. Ignored

only 15% of the invariant checks can be triggered. Furthermore,
there is less than 5% improvement when using the seed programs
distilled by Moonshine, compared to using the seed programs with-
out any distillation. When using the seed programs distilled by
ACHyb, more than 30% of the invariant checks can be triggered.
Furthermore, the results of the Mann-Whitney U test indicate that
the triggered checks using ACHyb seed distillation approach are
signi�cantly more than the triggered checks using the other three
approaches (all three p-values of Mann-Whitney U test are smaller
than 0.001). Based on the above results, we can conclude that ACHyb

seed distillation approach can signi�cantly improve the e�ciency of

triggering the invariant checks.

4.4.3 The Overall Detection E�iciency. As introduced, PeX requires
human e�ort to remove the false positives of the results produced
by its static analysis, while ACHyb applies dynamic analysis to re-
move the false positives. After manually inspecting the potentially
vulnerable paths, we �nd that ACHyb has successfully triggered all
the invariant checks associated with 22 KACVs in the �rst 6 hours.
In addition to the 112.5 minute time cost in the static analysis (106.5
minutes for automatic analysis and 6 minutes for manual inspec-
tion of permission check candidates), ACHyb successfully detects all
22 KACVs in less than 8 hours. On the contrary, PeX spends more
than 11 hours on only the static analysis phase without taking into
account the time taken by the manual false positive removal. The
results show that ACHyb is more e�cient than PeX.

4.5 RQ3: New KACVs

Table 3 shows the 7 new KACVs (5 KACV-M and 2 KACV-I) that we
report to the kernel developers. As a result, 2 new KACVs (1 KACV-M
and 1 KACV-I) are con�rmed by the kernel developers. We are still
waiting for the feedback for the rest of 5 new KACVs. In detail,
4 KACVs (CAP-1, CAP-2, CAP-3, and CAP-4) are due to missing or
misusing CAP checks in drivers or the net subsystem; 2 KACVs
(LSM-1 and LSM-2) are due to missing or misusing LSM checks
in the signal mechanism or the semaphore mechanism; 1 KACV
(DAC-1) is due to missing a DAC check in the �le system. Overall,
we can say that ACHyb is able to detect new KACVs.

5 DISCUSSION

In this section, we want to discuss the limitations of ACHyb and
our future work. We recognized four limitations of ACHyb. First,
ACHyb cannot detect non-function permission checks. Second, ACHyb
cannot detect privileged functions which are never protected by
any identi�ed permission checks. However, this is a rare case, as it

is quite unlikely that kernel developers failed to add any permis-
sion checks to protect a privileged function especially in recent
kernel versions. Third, ACHyb may get false positives in terms of
privileged function detection, as there may exist non-privileged
functions which are also protected by permission checks. Fourth,
ACHyb cannot guarantee that all potentially vulnerable paths can
be covered in a given time budget, which may cause false negatives.
Nevertheless, the coverage can be improved by adding more diverse
seed programs. In future work, we will try to enhance ACHyb to
overcome the above limitations. We also plan to upgrade ACHyb

to support more access control modules in the Linux kernel. In
addition, we plan to propose e�ective approaches to detect KACV-S.
One possible direction would be to specify the correctness of the
internal access control states and validate these states using the
speci�cations dynamically.

6 RELATED WORK

Missing Check Detection.Detecting missing checks is pioneered
by Engler’s work [12], which attempts to automatically extract
the programmers’ beliefs from the source code to detect missing
checks. Following this direction, several static analysis tools have
been proposed to detect missing checks. AutoISES [54] automati-
cally infers the security speci�cation given a set of user-provided
security checks and detects the security violations in the Linux
kernel. ROLECAST [52] leverages the standard software engineering
patterns/conventions to detect the missing security checks in the
Web applications. CRIX [31] proposes a novel peer slicing approach
to detect missing checks for the critical variables in the Linux ker-
nel. LRSan [60] proposes its specialized data-�ow and control-�ow
analysis to detect missing rechecks for critical variables. PeX [62]
is the state-of-the-art tool to detect the missing access control per-
mission checks (KACV-M), which is the most related work to ACHyb.
ACHyb di�ers from PeX in two main aspects. First, ACHyb focuses
on detecting both KACV-M and KACV-I. Second, ACHyb performs a
novel hybrid analysis to make the KACV detection both scalable
and precise, while PeX is a purely static analysis tool su�ering from
high false-positive rates.
Greybox Fuzzing of OS Kernel. Greybox fuzzing achieves big
success in revealing real-world vulnerabilities in recent decades
[33, 59]. Several greybox fuzzers for OS kernel including Syzkaller
[57], TriforceAFL [19] and Trinity [22] have been released. Besides
the tool developments, researchers make great e�ort in enhanc-
ing both the e�ectiveness and the e�ciency of the kernel fuzzing.
Breakthroughs have been made in the complex path condition
solving [4, 24, 26], seed generation [17], seed distillation [42], �le
system testing [25, 61], driver/�rmware testing [10, 36, 44, 53, 63],

325



ACHyb: A Hybrid Analysis Approach to Detect Kernel Access Control Vulnerabilities ESEC/FSE ’21, August 23–28, 2021, Athens, Greece

error handling testing [43], etc. Di�erent from the existing greybox
fuzzers, ACHyb proposes a novel clustering-based seed distillation
approach to facilitate the greybox fuzzing in KACV detection.
Kernel Veri�cation and Validation. Several approaches [3, 13,
16, 38, 39, 50] have been proposed to verify or validate the cor-
rectness of the kernel source code. For example, Serval [38] is
a framework for verifying system software. Given an interpreter
provided by users, it performs symbolic execution on the system
code to do the veri�cation. Besides, TESLA [3] provides users a
language to specify the dynamic safety properties of the Linux
kernel. The speci�ed properties are then converted into run-time
checks to validate the kernel. Di�erent from the above approaches
which require the users to provide the speci�cation of the Linux
kernel, ACHyb is able to detect KACVs based on the invariants of
the access control.

7 CONCLUSION

In this paper, we �rst conduct an empirical study on KACVs using
National Vulnerability Database. Motivated by our study, we focus
on detecting two kinds of KACVs: KACV-M and KACV-I. We present
a precise and scalable hybrid analysis approach called ACHyb to de-
tect both KACV-M and KACV-I. ACHyb �rst performs a more precise
and more sound static analysis to identify the potentially vulnera-
ble paths, and then applies an e�cient dynamic analysis to reduce
the false positives of these paths. Our experimental results show
that ACHyb outperforms PeX, the state-of-the-art KACV detector, in
terms of both the detection precision and the e�ciency. Further-
more, ACHyb detects 7 new KACVs, 2 of which have been con�rmed
by the kernel developers.

ACKNOWLEDGMENTS

We would like to thank the anonymous FSE’21 reviewers, S&P’21
reviewers and kernel developers for their valuable feedback. This
work was supported by Intel Strategic Research Alliance (ISRA)
grant, SRC grant TS-2965, NSF grants 26101114, 26101313, and CCF-
1718903, and a grant from the Army Research O�ce accomplished
under Cooperative Agreement Number W911NF-19-2-0333. The
views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the o�cial
policies, either expressed or implied, of the Army Research O�ce
or the U.S. Government. The U.S. Government is authorized to re-
produce and distribute reprints for Government purposes notwith-
standing any copyright notation herein.

REFERENCES
[1] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2018. A general path-

based representation for predicting program properties. ACM SIGPLAN Notices
53, 4 (2018), 404–419.

[2] Uri Alon, Meital Zilberstein, Omer Levy, and Eran Yahav. 2019. code2vec: Learn-
ing distributed representations of code. Proceedings of the ACM on Programming
Languages 3, POPL (2019), 1–29.

[3] Jonathan Anderson, Robert NM Watson, David Chisnall, Khilan Gudka, Ilias
Marinos, and Brooks Davis. 2014. TESLA: temporally enhanced system logic
assertions. In Proceedings of the Ninth European Conference on Computer Systems.
1–14.

[4] Cornelius Aschermann, Sergej Schumilo, Tim Blazytko, Robert Gawlik, and
Thorsten Holz. 2019. REDQUEEN: Fuzzing with Input-to-State Correspondence..
In The Network and Distributed System Security Symposium (NDSS), Vol. 19. 1–15.

[5] Roberto Baldoni, Emilio Coppa, Daniele Cono D’elia, Camil Demetrescu, and
Irene Finocchi. 2018. A survey of symbolic execution techniques. ACMComputing
Surveys (CSUR) 51, 3 (2018), 1–39.

[6] Pavol Bielik, Veselin Raychev, and Martin Vechev. 2016. PHOG: probabilistic
model for code. In International Conference on Machine Learning. 2933–2942.

[7] Marcel Böhme, Van-Thuan Pham,Manh-DungNguyen, andAbhik Roychoudhury.
2017. Directed greybox fuzzing. In Proceedings of the 2017 ACM SIGSACConference
on Computer and Communications Security. 2329–2344.

[8] Matthieu Brucher. 2020. scikit-learn: Machine Learning in Python. https://scikit-
learn.org/stable/.

[9] Peng Chen and Hao Chen. 2018. Angora: E�cient fuzzing by principled search.
In 2018 IEEE Symposium on Security and Privacy (SP). IEEE, 711–725.

[10] Jake Corina, Aravind Machiry, Christopher Salls, Yan Shoshitaishvili, Shuang
Hao, Christopher Kruegel, and Giovanni Vigna. 2017. Difuze: Interface aware
fuzzing for kernel drivers. In Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security. 2123–2138.

[11] Dulaunoy,Moreels Alexandre, Vinot Pieter-Jan, and Raphael. 2020. CVE-SEARCH
PROJECT. https://www.cve-search.org/.

[12] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf.
2001. Bugs as deviant behavior: A general approach to inferring errors in systems
code. ACM SIGOPS Operating Systems Review 35, 5 (2001), 57–72.

[13] Andrew Ferraiuolo, Andrew Baumann, Chris Hawblitzel, and Bryan Parno. 2017.
Komodo: Using veri�cation to disentangle secure-enclave hardware from soft-
ware. In Proceedings of the 26th Symposium on Operating Systems Principles.
287–305.

[14] Google. 2020. System and kernel security. https://source.android.com/security/
overview/kernel-security.

[15] Andreas Grünbacher. 2003. POSIX Access Control Lists on Linux.. In USENIX
Annual Technical Conference, FREENIX Track, Vol. 259272.

[16] Xiaojie Guo, Maxime Lesourd, Mengqi Liu, Lionel Rieg, and Zhong Shao. 2019.
Integrating Formal Schedulability Analysis into a Veri�ed OS Kernel. In Interna-
tional Conference on Computer Aided Veri�cation. Springer, 496–514.

[17] HyungSeok Han and Sang Kil Cha. 2017. Imf: Inferred model-based fuzzer. In
Proceedings of the 2017 ACM SIGSAC Conference on Computer and Communications
Security. 2345–2358.

[18] Ahmad Hazimeh, Adrian Herrera, and Mathias Payer. 2020. Magma: A Ground-
Truth Fuzzing Benchmark. Proceedings of the ACM on Measurement and Analysis
of Computing Systems 4, 3 (2020), 1–29.

[19] Jesse Hertz. 2016. A linux system call fuzzer using TriforceAFL. https://github.
com/nccgroup/TriforceLinuxSyscallFuzzer.

[20] Susan Horwitz, Phil Pfei�er, and Thomas Reps. 1989. Dependence analysis
for pointer variables. In Proceedings of the ACM SIGPLAN 1989 Conference on
Programming language design and implementation. 28–40.

[21] Joxan Ja�ar, Vijayaraghavan Murali, Jorge A Navas, and Andrew E Santosa.
2012. Path-sensitive backward slicing. In International Static Analysis Symposium.
Springer, 231–247.

[22] Dave Jones. 2011. Trinity: Linux system call fuzze. https://github.com/
kernelslacker/trinity.

[23] Michael Kerrisk. 2019. overview of linux capabilities. http://man7.org/linux/man-
pages/man7/capabilities.7.html.

[24] Kyungtae Kim, Dae R Jeong, Chung Hwan Kim, Yeongjin Jang, Insik Shin, and
Byoungyoung Lee. 2020. HFL: Hybrid Fuzzing on the Linux Kernel. In The
Network and Distributed System Security Symposium (NDSS).

[25] Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon, Wen Xu, and Taesoo
Kim. 2019. Finding semantic bugs in �le systems with an extensible fuzzing
framework. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles. 147–161.

[26] Su Yong Kim, Sangho Lee, Insu Yun, Wen Xu, Byoungyoung Lee, Youngtae
Yun, and Taesoo Kim. 2017. Cab-fuzz: Practical concolic testing techniques
for {COTS} operating systems. In 2017 {USENIX} Annual Technical Conference
({USENIX}{ATC} 17). 689–701.

[27] George Klees, Andrew Ruef, Benji Cooper, Shiyi Wei, and Michael Hicks. 2018.
Evaluating fuzz testing. In Proceedings of the 2018 ACM SIGSAC Conference on
Computer and Communications Security. 2123–2138.

[28] Bogdan Korel and Juergen Rilling. 1998. Program slicing in understanding of large
programs. In Proceedings. 6th International Workshop on Program Comprehension.
IWPC’98 (Cat. No. 98TB100242). IEEE, 145–152.

[29] Adam Lerer, Ledell Wu, Jiajun Shen, Timothee Lacroix, Luca Wehrstedt, Abhijit
Bose, and Alex Peysakhovich. 2019. Pytorch-biggraph: A large-scale graph
embedding system. arXiv preprint arXiv:1903.12287 (2019).

[30] Aristidis Likas, Nikos Vlassis, and Jakob J Verbeek. 2003. The global k-means
clustering algorithm. Pattern recognition 36, 2 (2003), 451–461.

[31] Kangjie Lu, Aditya Pakki, and Qiushi Wu. 2019. Detecting missing-check bugs
via semantic-and context-aware criticalness and constraints inferences. In 28th
{USENIX} Security Symposium ({USENIX} Security 19). 1769–1786.

[32] Aravind Machiry, Chad Spensky, Jake Corina, Nick Stephens, Christopher
Kruegel, and Giovanni Vigna. 2017. {DR}.{CHECKER}: A soundy analysis
for linux kernel drivers. In 26th {USENIX} Security Symposium ({USENIX} Secu-
rity 17). 1007–1024.

[33] Valentin Jean Marie Manès, HyungSeok Han, Choongwoo Han, Sang Kil Cha,
Manuel Egele, Edward J Schwartz, and Maverick Woo. 2019. The art, science,

326



ESEC/FSE ’21, August 23–28, 2021, Athens, Greece Yang Hu, Wenxi Wang, Casen Hunger, Riley Wood, Sarfraz Khurshid, and Mohit Tiwari

and engineering of fuzzing: A survey. IEEE Transactions on Software Engineering
(2019).

[34] Dror E Maydan, John L Hennessy, and Monica S Lam. 1991. E�cient and exact
data dependence analysis. In Proceedings of the ACM SIGPLAN 1991 conference on
Programming language design and implementation. 1–14.

[35] Patrick E McKnight and Julius Najab. 2010. Mann-Whitney U Test. The Corsini
encyclopedia of psychology (2010), 1–1.

[36] Alejandro Mera, Bo Feng, Long Lu, Engin Kirda, and William Robertson. 2021.
DICE: Automatic Emulation of DMA Input Channels for Dynamic Firmware
Analysis. In 2021 IEEE Symposium on Security and Privacy (SP). IEEE.

[37] Steven Muchnick et al. 1997. Advanced compiler design implementation. Morgan
kaufmann.

[38] Luke Nelson, James Bornholt, Ronghui Gu, Andrew Baumann, Emina Torlak, and
Xi Wang. 2019. Scaling symbolic evaluation for automated veri�cation of systems
code with Serval. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles. 225–242.

[39] Luke Nelson, Helgi Sigurbjarnarson, Kaiyuan Zhang, Dylan Johnson, James Born-
holt, Emina Torlak, and Xi Wang. 2017. Hyperkernel: Push-button veri�cation
of an OS kernel. In Proceedings of the 26th Symposium on Operating Systems
Principles. 252–269.

[40] NIST. 2020. National Vulnerability Database. https://nvd.nist.gov/.
[41] Sebastian Österlund, Kaveh Razavi, Herbert Bos, and Cristiano Giu�rida. 2020.

Parmesan: Sanitizer-guided greybox fuzzing. In 29th {USENIX} Security Sympo-
sium ({USENIX} Security 20). 2289–2306.

[42] Shankara Pailoor, Andrew Aday, and Suman Jana. 2018. MoonShine: Optimizing
{OS} Fuzzer Seed Selection with Trace Distillation. In 27th {USENIX} Security
Symposium ({USENIX} Security 18). 729–743.

[43] Aditya Pakki and Kangjie Lu. 2020. Exaggerated Error Handling Hurts! An
In-Depth Study and Context-Aware Detection. In Proceedings of the 2020 ACM
SIGSAC Conference on Computer and Communications Security.

[44] Hui Peng and Mathias Payer. 2020. USBFuzz: A Framework for Fuzzing USB
Drivers by Device Emulation. (2020).

[45] LLVM Project. 2020. Writing an LLVM Pass. https://llvm.org/docs/
WritingAnLLVMPass.html.

[46] Tristan Ravitch. 2020. Whole Program LLVM. https://github.com/travitch/whole-
program-llvm.

[47] Veselin Raychev, Pavol Bielik, Martin Vechev, and Andreas Krause. 2016. Learning
programs from noisy data. ACM SIGPLAN Notices 51, 1 (2016), 761–774.

[48] Ravi S Sandhu and Pierangela Samarati. 1994. Access control: principle and
practice. IEEE communications magazine 32, 9 (1994), 40–48.

[49] SGI, OSDL, and Bull. 2012. Linux Test Project. https://linux-test-project.github.io.

[50] Helgi Sigurbjarnarson, Luke Nelson, Bruno Castro-Karney, James Bornholt, Em-
ina Torlak, and Xi Wang. 2018. Nickel: A framework for design and veri�cation
of information �ow control systems. In 13th {USENIX} Symposium on Operating
Systems Design and Implementation ({OSDI} 18). 287–305.

[51] Stephen Smalley, Timothy Fraser, and Chris Vance. 2020. Linux Security Modules:
General Security Hooks for Linux. https://www.kernel.org/doc/html/latest/
security/lsm.html.

[52] Sooel Son, Kathryn S McKinley, and Vitaly Shmatikov. 2011. Rolecast: �nding
missing security checks when you do not know what checks are. In Proceedings
of the 2011 ACM international conference on Object oriented programming systems
languages and applications. 1069–1084.

[53] Dokyung Song, Felicitas Hetzelt, Dipanjan Das, Chad Spensky, Yeoul Na, Stijn
Volckaert, Giovanni Vigna, Christopher Kruegel, Jean-Pierre Seifert, and Michael
Franz. 2019. PeriScope: An E�ective Probing and Fuzzing Framework for the
Hardware-OS Boundary.. In The Network and Distributed System Security Sympo-
sium (NDSS).

[54] Lin Tan, Xiaolan Zhang, Xiao Ma, Weiwei Xiong, and Yuanyuan Zhou. 2008. Au-
toISES: Automatically Inferring Security Speci�cation and Detecting Violations..
In USENIX Security Symposium. 379–394.

[55] The Clang Team. 2019. Clang 9 documentation. https://releases.llvm.org/9.0.0/
tools/clang/docs/ReleaseNotes.html.

[56] Dmitry Vyukov. 2015. syzbot. https://syzkaller.appspot.com/upstream.
[57] Dmitry Vyukov. 2015. Syzkaller. https://github.com/google/syzkaller.
[58] Ke Wang, Rishabh Singh, and Zhendong Su. 2018. Search, align, and repair:

data-driven feedback generation for introductory programming exercises. In
Proceedings of the 39th ACM SIGPLAN Conference on Programming Language
Design and Implementation. 481–495.

[59] Pengfei Wang and Xu Zhou. 2020. SoK: The Progress, Challenges, and Perspec-
tives of Directed Greybox Fuzzing. arXiv preprint arXiv:2005.11907 (2020).

[60] Wenwen Wang, Kangjie Lu, and Pen-Chung Yew. 2018. Check it again: Detecting
lacking-recheck bugs in os kernels. In Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. 1899–1913.

[61] Wen Xu, Hyungon Moon, Sanidhya Kashyap, Po-Ning Tseng, and Taesoo Kim.
2019. Fuzzing �le systems via two-dimensional input space exploration. In 2019
IEEE Symposium on Security and Privacy (SP). IEEE, 818–834.

[62] Tong Zhang, Wenbo Shen, Dongyoon Lee, Changhee Jung, Ahmed M Azab, and
Ruowen Wang. 2019. Pex: A permission check analysis framework for linux
kernel. In 28th {USENIX} Security Symposium ({USENIX} Security 19). 1205–
1220.

[63] Yaowen Zheng, Ali Davanian, Heng Yin, Chengyu Song, Hongsong Zhu, and
Limin Sun. 2019. FIRM-AFL: high-throughput greybox fuzzing of iot �rmware via
augmented process emulation. In 28th {USENIX} Security Symposium ({USENIX}
Security 19). 1099–1114.

327


	Abstract
	1 Introduction
	2 A Study on KACVs
	3 Methodology
	3.1 Overview of ACHyb
	3.2 Static Analysis
	3.3 Dynamic Analysis
	3.4 Implementation

	4 Evaluation
	4.1 Experimental Setup
	4.2 Research Questions
	4.3 RQ1: Detection Precision
	4.4 RQ2: Detection Efficiency
	4.5 RQ3: New KACVs

	5 Discussion
	6 Related Work
	7 Conclusion
	Acknowledgments
	References

