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Abstract

Many research questions in sensory neuroscience involve determining whether the neural represen-
tation of a stimulus property is invariant or specific to a particular stimulus context (e.g., Is object
representation invariant to translation? Is the representation of a face feature specific to the context
of other face features?). Between these two extremes, representations may also be context-tolerant or
context-sensitive. Most neuroimaging studies have used operational tests in which a target property is
inferred from a significant test against the null hypothesis of the opposite property. For example, the
popular cross-classification test concludes that representations are invariant or tolerant when the null hy-
pothesis of specificity is rejected. A recently developed neurocomputational theory suggests two insights
regarding such tests. First, tests against the null of context-specificity, and for the alternative of context-
invariance, are prone to false positives due to the way in which the underlying neural representations
are transformed into indirect measurements in neuroimaging studies. Second, jointly performing tests
against the nulls of invariance and specificity allows one to reach more precise and valid conclusions about
the underlying representations, particularly when the null of invariance is tested using the fine-grained
information from classifier decision variables rather than only accuracies (i.e., using the decoding separa-
bility test). Here, we provide empirical and computational evidence supporting both of these theoretical
insights. In our empirical study, we use encoding of orientation and spatial position in primary visual
cortex as a case study, as previous research has established that these properties are encoded in a context-
sensitive way. Using fMRI decoding, we show that the cross-classification test produces false-positive
conclusions of invariance, but that more valid conclusions can be reached by jointly performing tests
against the null of invariance. The results of two simulations further support both of these conclusions.
We conclude that more valid inferences about invariance or specificity of neural representations can be
reached by jointly testing against both hypotheses, and using neurocomputational theory to guide the

interpretation of results.
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Author Summary

Many research questions in sensory neuroscience involve determining whether the representation of a
stimulus property is invariant or specific to a change in stimulus context (e.g., translation-invariant object
representation; configural representation of face features). Between these two extremes, representations
may also be context-tolerant or context-sensitive. Most neuroimaging research has studied invariance using
operational tests, among which the most widely used in recent years is cross-classification. We provide
evidence from a functional MRI study, simulations, and theoretical results supporting two insights regarding
such tests: (1) tests that seek to provide evidence for invariance (like cross-classification) have an inflated
false positive rate, but (2) using complementary tests that seek evidence for context-specificity leads to more

valid conclusions.
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Introduction

A common question in sensory and cognitive neuroscience is to what extent the neural representation
of a stimulus property changes as a function of changes in other aspects of stimulation—that is, the context
in which it is presented. As shown in Figure la, one possibility is that the neural representation of the
target property is invariant to changes in context. In that case, the neural activity representing the target
property does not change at all with changes in context. Another possibility is that the neural representation
of the target property is context-specific. In that case, the neural activity representing the target property
completely changes with a change in context. Another way to describe context-specificity is by saying that
the target property and its context are represented configurally; that is, as a configuration separate from its
components. As shown in Figure la, these two cases of complete invariance and specificity should be seen
as extremes in a continuum. In this continuum, representations that are closer to invariance (left half of
the continuum) could be characterized as “tolerant” to changes in context, whereas representations that are
closer to specificity (right half of the continuum) could be characterized as “sensitive” to changes in context.

Most human neuroimaging research has studied invariance and specificity using operational tests that
provide evidence against the null hypotheses represented by the two extremes in Figure 1la. However, most
neuroscientists are more interested in determining to what extent a representation is closer to one of the
extremes in the continuum, being classified as either context-tolerant or context-sensitive.

For example, probably the most widely used test in this area is cross-classification (or cross-decoding;
1, 2, 3; we have also called this test classification accuracy generalization: [4]), illustrated in Figure 1b. The
first step in cross-classification is to train a classifier to decode a particular stimulus feature, such as whether
a presented face is male or female, from patterns of fMRI activity observed across voxels. The second step is
to test the trained classifier with new patterns of fMRI activity, this time obtained from presentation of the
same stimuli, but changed in an irrelevant property, such as head orientation. Using our nomenclature, in
this example the target stimulus property is face sex, and the context is face orientation. If accuracy with
the test data is higher than chance, then researchers usually conclude that the neural representation of the
target feature has a certain level of tolerance to changes in context (usually described as invariance), within

the area from which the fMRI activity was obtained.
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Figure 1: (a) Varying degrees of change in neural encoding as a function of a change in context. With a change
in context, context-invariant representations do not change at all, whereas context-specific representations
change completely, with a continuum between both extremes. Tests in the literature focus on evidence against
one of the two extremes. (b) Tests of context invariance and specificity. Steps 1 and 2 are common to all tests.
Different tests differ on how invariance/specificity is evaluated in step 3. The figure depicts distributions
of classifier decision variables and the areas of these distributions on which each test focuses (in gray).
(c) Representations are transformed from the space of neural activities to the space of voxel measurements.
Context-invariant representations (top) cannot be transformed to decrease their invariance and increase their
specificity, whereas context-specific representations (bottom) can be transformed to increase their invariance
and decrease their specificity. (d) Example highlighting the differences between spatially smooth versus fine-
grained encoding schemes, and a particular combination of the two schemes that produces false-positives in
a voxelwise analysis. Each column represents a voxel containing neurons (small circles), each with selectivity
for one of two values of the target property (red and yellow). The multivoxel pattern of activity is the same
for both levels of the context dimension (spatially smooth encoding), but completely different populations
of neurons encode each level (fine-grained encoding).
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The cross-classification test has been used to provide evidence for tolerant encoding of face identity across
viewpoint [5], object category and viewpoint across spatial position [6], object category across shape [and
vice-versa; 7|, motor actions across modalities [§], place of speech articulation features across manner of
articulation [9], object category [10] or face identity [11] across stimulus modality, word semantic category
across stimulus modality [12], learned category labels across categorization tasks [13]|, and semantic word
representation across languages [14], among others [for a review, see 3.

Cross classification is a test against the null hypothesis of no generalization of decoding accuracy from
one context to another, a condition that would be met under context-specific encoding of the target property.
As shown in Figure 1, evidence against the extreme of context-specificity means that the representation can
fall anywhere in the continuum except the right extreme. Invariance and tolerance are only some of the
possibilities, as representations may also be context-sensitive.

An example of a test that provides evidence against the null hypothesis of invariance is the classification
accuracy invariance test [4]. As shown in Figure 1b, this test involves the same steps described for cross-
classification, but during the test phase the classifier is presented with data obtained at both the training
and the testing contexts (i.e., context 1 and 2 in Figure 1). The null hypothesis is that decoding accuracy
is equivalent across contexts (see step 3.2 in Figure 1b). When accuracy drops significantly from training to
testing context, one can conclude that the underlying representation of the decoded property is not invariant
to context. We are aware of at least one prior study using a version of this test to study encoding of face
information [6].

Again, evidence against the extreme of context-invariance means that the representation can fall anywhere
else in the continuum shown in Figure 1la. Context specificity is only one of the possibilities, as representations
may also be context-sensitive or context-tolerant.

An important issue in current practice is that researchers seem to believe that invariance and specificity
can be contrasted with each other, ignoring that a continuum exist between those two extremes and most
cases are likely to lie somewhere in that continuum. Thus, a more reasonable approach would be to deter-
mine whether enough evidence exist to reject one extreme and not the other, which provides evidence that
the representation lies either at the left half of the continuum (invariance/tolerance) or at the right half
(specificity /sensitivity)..

In a previous theoretical paper [4], we explored to what extent the context tolerance or specificity of neural
representations could be measured using a variety of neuroimaging analyses, with a focus on decoding tests
like cross-classification and classification accuracy invariance. Because neuroimaging involves only indirect
measures of neural activity, it cannot be used to get precise indicators of where a neural representation

falls within the continuum shown in Figure la. In general, the process by which neural representations
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Test against specificity (e.g., cross-classification)
Not significant ‘ Significant
Test against invariance (e.g., Not significant Inconclusive results Tolerance or invariance likely
decoding separability) Significant Specificity or sensitivity likely Inconclusive results

Table 1: Lookup table summarizing how joint tests against specificity and invariance should be interpreted.
Note that significance of the popular cross-classification test does not guarantee a conclusion for tolerance or
invariance. Only when such a test is accompanied by a nonsignificant test against invariance one can reach
a positive conclusion.

are transformed from the neural space into a space of measurements (e.g., voxel activities) will distort
the representations in such a way that makes such precise indicators impossible. However, the results of
neuroimaging decoding tests like those just described do allow to make some inferences about the underlying
neural representations. Besides clarifying what different tests measure (i.e., cross-classification provides
evidence against context-specificity, rather than evidence for invariance), this theoretical work provides two
important insights that have consequences for neuroimaging research.

The first theoretical insight, which was not explicitly described or supported in our previous work but
is strongly suggested by that work, is that jointly performing tests against the nulls of invariance and
specificity allows one to reach more precise and valid conclusions about the underlying representations.
When both types of tests are carried out, one can use Table 1 to reach valid conclusions about properties of
the underlying neural code. For example, one may use the cross-classification test to obtain evidence against
context-specificity, but usually researchers who use this test are interested in reaching a conclusion favoring
invariance or tolerance [e.g., 5, 3|. For that, information from a test against invariance would be very useful.
If a test against invariance is not significant, one can make a stronger case for tolerant representations.
Because sample size and measurement noise are equivalent in this test and the significant cross-classification
test, the best interpretation is that the underlying representation is likely to be farther away from specificity
than from invariance, being tolerant/invariant rather than sensitive. On the other hand, if the test offers
evidence against invariance, then the underlying representations could be anywhere in the continuum shown
in Figure la, except at the two extremes, and it would be premature to make a conclusion of tolerance in
the underlying representations, as they may also be context-sensitive. Because tests against invariance have
been rarely used in the literature, one goal of the current study is to provide evidence of the validity of such
tests, and for our claim that performing them together with tests against specificity should lead to more
valid conclusions about the underlying representations.

The second theoretical insight is that there is an important asymmetry regarding the validity of tests of
invariance and context-specificity. If the underlying neural representation is truly invariant, then a signal

showing evidence against invariance will never be found from neuroimaging decoding tests. In this case, any
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finding of lack of invariance would result from measurement noise, and the probability of such finding would
be equal to the false positive (type I) error rate of the statistical test, usually o = .05. On the other hand, if
the underlying representation is truly context-specific, it is still possible to find a signal at the level of voxels
showing evidence against context-sensitivity. In this case, such a signal will add to the probability of false
positives, which would be higher than «.

The reason lies in the contribution of the measurement model, which summarizes how representations
are transformed from the space of neural representations into the space of measured variables. Figure 1lc
depicts a schematic example, where representations of the target stimuli in one context (e.g., faces with
front orientation) are shown as red circles, and representations in a second context (e.g., faces with sideways
orientation) are shown as green crosses. In the top example, the original neural representations are fully
context-invariant, meaning that the representation of a stimulus in either context is in the exact same
point in neural space. Regardless of what transformation is induced by the measurement model, such
representations will remain invariant in the measurement space, as the transformation will have the same
effect on two identical representations (i.e., overlapping crosses and circles in Figure 1c¢). In the bottom
example, the original representations are fully context-specific, meaning that the stimulus representations
occupy completely different regions of space depending on context. In this case, there are transformations
that would reduce differences in the representation of stimuli across contexts, making the representations less
context-specific. In sum, the transformation from neural space to measurement space (i.e., the measurement
model) cannot make a completely invariant representation appear as if it was sensitive to context, but it can
make a completely context-specific representation appear as if it was tolerant to changes in context.

In our previous work [4], we showed through mathematical proofs that this asymmetry is inherent to
inferences about invariance and specificity from indirect measures of neural activity. While those results are
general (i.e., they make no assumptions about the specifics of encoding and measurement), they are also
very abstract and do not allow one to precisely characterize the potential pervasiveness of the problem in
neuroimaging studies. For that, one must be more explicit about the specific encoding and measurement
models that are assumed to be at play. Here we take a step in this direction by focusing on encoding
and measurement models widely used in computational cognitive neuroscience and thought to be at play in
neuroimaging studies of encoding in early vision.

The simplest example, depicted in Figure lc, is one in which changes in the target property produce
smooth changes in the spatial distribution of activity, in a similar scale as voxel size, while changes in
context produce changes in the fine-grained spatial distribution of activity, at the sub-voxel level [15]. Take
the example shown in Figure 1d. Each column represents a different voxel containing a large number of

neurons, represented by small circles, with selectivity for some target stimulus property. In this simplified
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example, the neurons can show preference for one of two values of the target property, represented by the
colors red and yellow. Neurons can be inactive in a particular context, which is represented by the color
gray. Different voxels have different proportions of the two types of neurons, so that despite of the spatial
pooling of activity produced at each voxel, there is a distinctive pattern of activity produced across voxels
by each stimulus property. This is a spatially smooth coding scheme.

On the other hand, note how within a voxel widely different spatial distributions of activity may produce
the same value of global activity at the voxel level. For example, the same aggregate activity is obtained
for voxel 1 in context 1 (top) and context 2 (bottom), despite the fact that the fine-grained distribution of
activities is widely different. The same is true for all other voxels. Thus, within each voxel one can see a
fine-grained coding scheme that distinguishes between contexts.

More importantly, in Figure 1d the neurons encoding the target dimension in the first context (uneven
columns of neurons) are completely different to those encoding the target dimension in the second context
(even columns of neurons). However, the spatial distribution of neurons specific to each value of the context
dimension is spatially homogeneous, with about the same number of neurons of each kind in the voxel
regardless of context.

The result of a spatially smooth encoding of the target dimension across voxels, together with a fine-
grained spatial distribution of neurons specific to each value of the context dimension, produce as a result a
case in which neural encoding of the target dimension is context-specific, but appears as perfectly invariant
at the level of voxel activities.

A good example of this type of encoding in the brain is encoding of spatial position and orientation in
V1. Encoding of spatial position is spatially smooth in V1, with the scale of retinotopic maps being similar
to the voxel sizes typically used in neuroimaging, whereas encoding of orientation is much more spatially
fine-grained [see 16, 17]. This example shows that the kind of encoding scheme exemplified by Figure 1d can
be found in the brain.

Because of the influence of the measurement model depicted in Figure 1c, the need to jointly perform
and interpret tests of invariance and specificity is even greater for researchers who aim to find evidence for
tolerant /invariant representations. If a false positive is found in a test of context-specificity (e.g., cross-
classification) due to issues in the measurement model, it is unlikely that a test of invariance (e.g., classifi-
cation accuracy invariance) will also be significant. The inherent tendency toward false positives (i.e., > «)
of the cross-classification test can be partially controlled by interpreting its results together with results of
tests against the null of invariance.

Here, we show that the two theoretical insights described above have important consequences for neu-

roimaging research, through empirical evidence coming from an fMRI decoding study, and computational
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evidence coming from simulation work. In the empirical study, we perform decoding of orientation and spa-
tial position from fMRI activity patterns recorded in V1, a case in which properties of the underlying neural
code are known. The cross-classification test provides strong evidence for the incorrect conclusion that, in
V1, encoding of spatial position is tolerant/invariant to changes in orientation, as well as some evidence for
the incorrect conclusion that orientation is tolerant /invariant to changes in spatial position. We find that the
use of theoretically-derived tests of invariance can lead to more valid conclusions regarding the underlying
code. The results of two simulations further support all of these conclusions. Our results highlight the valid-
ity and value of using tests of invariance together with tests of context-specificity (e.g., cross-classification)

when attempting to draw inferences about neural representations from neuroimaging decoding studies.

Results

Experimental Results

The goal of our study was to validate the two insights provided by neurocomputational theory [4] described
above. For this, we applied decoding tests of invariance and specificity to the study of orientation and spatial
position in V1. Previous research has established that these properties are not encoded in an invariant way
but, as explained earlier, the spatial scale of orientation and spatial position maps in V1 is likely to lead to
the incorrect conclusion of invariance if tests of specificity, such as cross-classification, are applied on their
own.

Participants were presented with the stimuli in Figure 2 while they performed a task involving a stimulus
presented at the center of the screen. Functional MRI data was acquired at the same time, with separate
runs providing data for training and testing of a support vector machine (SM) classifier. Training runs were
composed of stimuli presented only in spatial positions top-right and bottom-left (highlighted through red
and blue boxes in Figure 2). Testing runs included all sixteen stimulus combinations. We trained a linear
SVM classifier to decode a target dimension (e.g., spatial position) while holding the context dimension (e.g.,
grating orientation) constant. We then tested the classifier with data obtained at the trained value of the
context dimension (e.g., 0° orientation) as well as new values of the context dimension (e.g., 45°, 90°, and
135° orientation). The classifier provided decision variables and accuracy estimates used to perform a test
of specificity (cross-classification) and two tests of invariance (classification accuracy invariance, decoding

separability) presented below (for more details, see Materials and Methods).

10
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Figure 2: Stimuli were composed of oriented gratings (dimension 1) presented in a windowed spatial position
(dimension 2). Each trial consisted of a single combination of orientated gratings and spatial position. Train-
ing runs were composed of stimuli presented only in top-right and bottom-left spatial positions (highlighted
through red and blue boxes). Testing runs included all sixteen stimulus combinations.

The Cross-Classification Test Produces False Positives

We performed a set of analyses using the cross-classification test to validate our theoretical prediction
that this method should produce findings of false-positive invariance. The cross-classification test was con-
ducted by assessing whether a linear decoder trained to classify the target dimension at one level of the
context dimension, could perform the same classification above chance across non-trained levels of the con-
text dimension. A positive result in the cross-classification test is usually taken as evidence for the existence
of invariant representations in the area of interest [2, 3.

We conducted two separate analyses using the cross-classification test in which we switched the identities
of the target and context dimensions. In the first analysis, spatial position was treated as the target dimension
to be decoded, while orientation remained as the context dimension. To obtain decoded stimulus values for
spatial position, we used deconvolved single-trial estimates of activity in V1 voxels as input to the SVM linear
decoder. We trained the decoder to classify trials based on spatial position labels (top-right vs bottom-left,
see boxed stimuli in Figure 2) and holding constant the level of grating orientation (context dimension; for
example, 0°) using leave-one-run-out cross-validation, and tested it with independent data sets across all
levels of grating orientation (0°, 45°, 90°, and 135°). To test for cross-classification invariance, we performed

a binomial test on the accuracy estimates from the testing data set, corrected for multiple comparisons using
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the Holm-Sidak method (for more details, see fMRI Decoding Tests). If the accuracy score was significantly
above chance, then the cross-classification test concludes that spatial position is encoded invariantly from
orientation in V1, a conclusion known to be false.

For each participant, we repeated the analysis four times, once for each level of grating orientation that
was held fixed in the classifier’s training data. We predicted that the cross-classification test would generate
consistent false positives in the case where spatial position was used as the relevant dimension to be decoded.
Since spatial position is encoded in a spatially smooth manner in V1, we expected strong performance of the
classifier across all levels of orientation. In other words, we expected the accuracy scores of the classifier to
remain above chance across different levels of the context dimension.

Figure 3 shows accuracy estimates from such a decoding procedure for all five subjects. The SVM linear
decoder achieves extremely high levels of classification accuracy in test sets across all 5 subjects. As predicted,
the test incorrectly finds evidence for invariance of spatial position from orientation in all participants and
all tests (all p<.001; for details see Table 1 in the Supplementary Material). This result is unsurprising, in
the sense that one would intuitively expect it given the properties of encoding in V1. The important point,
however, is that in most applications of the cross-classification test researchers do not know much about
encoding in the area under study, and they could easily conclude in favor of invariance when the underlying
code does not show such property.

We performed a second analysis in which orientation was the target dimension to be decoded, while spatial
position was the context dimension. We trained the decoder to classify trials based on grating orientation
(0°, 45°, 90°, and 135°, see boxed stimuli in Figure 2) and holding constant the position of the spatial
window (context dimension; for example, top-right in Figure 2) using leave-one-run-out cross-validation, and
tested it with independent data sets across all levels of spatial position (top-right, bottom-right, bottom-left,
and top-left in Figure 2). All other procedures remained the same as in the first analysis. Figure 4 shows
decoding accuracy results for the orientation analysis. The SVM classifier was able to successfully decode
orientation information at the original training position in all subjects, but for subjects 1 and 4 this was
restricted to a single training window (bottom-left), which is at least partially due to individual differences
in the quality of data (note that decoding accuracies are lowest for subject 4 in Figure 3). In contrast to
spatial position classification, the classifier’s accuracy scores drop significantly in untrained testing windows.

The classifier accuracy at the training window provides a ceiling of performance for the cross-classification
accuracy (see 2, 3). That is, we are not interested in the analyses with non-significant accuracies at the
training window (sub#1 and sub#4 at training window 1; see Figure 4), as in those cases we would not
expect a significant cross-classification accuracy. Out of the eight analyses showing significant accuracy at

the training window, two generated significant cross-classification results, which would lead to an invalid
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conclusion of invariance. This number was higher than the 5% expected false positive rate for these tests,
but a binomial test did not reach significance with p =.051, probably due to the low power of a test involving

only eight analyses.

Jointly Testing Against Specificity and Invariance Leads To Valid Conclusions

The results from the previous section showed that the cross-classification test, which tests against the null
hypothesis of context-specificity, can lead to erroneous conclusions about invariance of representations. We
next aimed to show that the addition of tests of invariance [4] could solve such issues and lead to more valid
conclusions about the underlying code. Here, we apply two of these tests on our data set: the classification
accuracy invariance test and the decoding separability test. In contrast to the cross-classification test, both
of these theoretically-driven tests try to detect failures of invariance as opposed to providing evidence for
invariance.

The classification accuracy invariance test defines invariance as the case where the probability of correct
classification is exactly the same across all contexts. With invariance being the null hypothesis, the test
is sensitive to any drop in the classifier’s performance across different levels of the context dimension. We
implemented the classification accuracy invariance test by applying an omnibus Chi-Square test on the
accuracy estimates from the linear decoder (i.e., testing whether all proportions are the same or some of
them are different). Then, we performed pairwise comparisons between accuracy at the training level and
each non-training level of the context dimension.

The decoding separability test, unlike the previous two tests, does not make use of classification accuracy
estimates. Instead, it directly relies on certain properties of the decoding probability distributions for
individual stimuli. That is, linear classifiers like the one used here perform classification of a new data
point by computing a decision variable z, representing the distance of the data point from the classifier’s
hyperplane separating two classes. When the decision variable is larger than some criterion value (usually
zero), the output is one class, whereas when the decision variable is smaller than the criterion the output
is the other class. Instead of comparing simple accuracy estimates, the decoding separability test compares
the full distributions of such decision variables, or decoding distributions.

This test followed the same steps and rationale as the classification accuracy invariance test presented
earlier, but instead of computing accuracies and testing their differences, we obtained decision variables from
the trained classifier, and used those to estimate decoding distributions using kernel density estimation (see
Figure 1b). For each pair of stimuli differing in the context dimension (e.g., 0° and 45° grating orientation,
when the decoded variable was spatial position) we computed the distance between decoding distributions

using a discretized L1 metric, which corresponds to the shadowed area in step 3.3 of Figure 1b. Then,
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context dimension (orientation) held fixed during training and the dotted line represents chance performance.
Group descriptive statistics (mean and standard errors) are presented in the bottom row.
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Figure 4: Classification accuracy results with test data for the decoding of orientation, and results of sig-
nificant cross-classification and classification accuracy invariance (pairwise comparisons) tests. Each row
represents a complete analysis for a single subject. Columns represent different levels of the context dimen-
sion (spatial position) held fixed during training and the dotted line represents chance performance. Group
descriptive statistics (mean and standard errors) are presented in the bottom row.
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we summed a number of such L1 metrics across values of the decoded dimension (e.g., the two spatial
windows, when the decoded variable was spatial position), which produced an Llf statistic (see Equation
3). Simply put, while a single L1 metric is analogous to the accuracy of the classifier for a single decoded
label, the Ll? statistic is analogous to the overall decoding accuracy across all labels. The only difference
is that Lle measures distances between decoding distributions, rather than accuracies. We performed a
permutation test to determine whether the observed Lle statistic was higher than expected by chance
under the null hypothesis of invariance; a positive result on this test gives evidence against neural invariance
for the given comparison. Also, we must note that, in theory, the decoding separability test should provide
more information about (and be more sensitive to) such violations than the decoding accuracy invariance
test (see 4).

As before, we first applied the invariance tests to decoding results from the spatial position classification.
Results from the classification accuracy invariance are shown in Figure 3, and results from the decoding
separability test are shown in Figure 5. The specific values obtained from the two tests are reported in
Tables 2 and 3 of the Supplementary Material. The classification accuracy invariance test (Figure 3) did
not find evidence against invariance in any of the subjects. However, in line with theoretical predictions,
the decoding separability test (Figure 3) was much more sensitive to evidence against invariance present
in the data. The test found failures of invariance in many cases where accuracy-based tests either found
false positives (i.e., cross-classification) or failed to detect failures of invariance (i.e., classification accuracy
invariance; see Figure 3). Overall, we found that the decoding separability test detected failures of invariance
in the data of all five participants (17 out of 20 analyses).

From these results, it is apparent that the decoding separability test is sensitive to failures of invariance
known to exist in the underlying neural code, even when decoding accuracy seems to suggest perfect invari-
ance (see Figure 3). These results serve as an empirical validation of the decoding separability test, which
was developed directly from theory [4]. In addition, these results show the value of testing against invari-
ance, in addition to testing against specificity, to reach valid conclusions about the invariance or specificity
of underlying neural representations. Performing both tests and following the guidelines in Table 1, results
are inconclusive about whether encoding of spatial position in V1 is invariant or specific to orientation. This
conservative conclusion is far better than the invalid conclusion that one would reach by performing the
cross-classification test by itself; namely, that encoding of spatial position in V1 is invariant to orientation.

Next, we applied the invariance test to decoding results from the orientation classification. Results from
the classification accuracy invariance test are shown in Figure 4, and results from the decoding separability
test are shown in Figure 6. The specific values obtained from the two tests are reported in Tables 2 and

3 of the Supplementary Material. The classification accuracy invariance test (Figure 4) was much more
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sensitive to failures of invariance in this analysis. Failures of invariance were detected in every case where
the classifier successfully decoded orientations above chance levels in the training window. Interestingly,
failures of invariance were also detected in cases where the classifier did not successfully decode orientation
above chance. This is counterintuitive, but expected from a theoretical point of view [see 4], which suggests
that a decoder does not have to perform accurately or be optimal in any way to be able to detect failures
of invariance. Contrary to our expectations, in this analysis the decoding separability test detected failures
of invariance less frequently than the classification accuracy invariance test (see Figure 6). The decoding
separability test detected failures of invariance in the data of four out of five participants (eight out of ten
analyses).

In comparison to the classification accuracy invariance test, the decoding separability test appears to be
more sensitive to detecting failures of invariance in cases where the decoder’s performance reaches ceiling
levels (Figure 5). However, when classification accuracy is well below ceiling levels, as in decoding of orien-
tation, the test seems less sensitive than classification accuracy invariance, perhaps due to a lower statistical
power of the permutation test involved.

As was the case with decoding of spatial position, in this second analysis we also see the value of testing
against invariance. While the results of the cross-classification test suggested invariant representations in
subjects #2 and #3 (see Figure 4), such results are inconclusive when interpreted in the context of tests of

invariance.

Simulation and Theoretical Results

The empirical results described in the preceding section clearly support the hypotheses that tests aimed
at providing evidence for invariance, such as cross-classification, are prone to false positives, and that jointly
performing tests against the nulls of invariance and specificity allows one to reach more precise and valid
conclusions about the underlying representations.

However, there are issues with experimental work that motivated us to further evaluate our hypotheses
through simulation work. In particular, experimental work does not allow full control of the underlying neural
representations. In our study, we assumed that encoding of spatial position was specific to orientation, and
vice-versa, but it is unlikely that the true encoding of these variables in V1 is completely context-specific.
For example, there is evidence that a minority of neurons in V1 are invariant to orientation [18]. This
means that encoding of spatial position is best characterized as context-sensitive, but a critical reader could
interpret this as evidence for tolerance. Simulation work provides complete control over the representations

under study, which can be made to be fully context-specific, without any degree of tolerance to changes in
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Figure 5: Decoding separability test results with spatial position as the target dimension. Each row repre-
sents a complete analysis for a single subject. Columns represent different levels of the context dimension
(orientation) during training. The y-axis shows the Llf statistic and bars represent 90% bootstrap confi-
dence intervals. The dotted line and surrounded gray area represent the expected value and 90% bootstrap
confidence interval for the L1¢ statistic when no differences exist between two distributions. Group descrip-
tive statistics (mean and standard errors) are presented in the bottom row.

18



Training Window 1

Training Window 2

(Top-Right) (Bottom-Left)
* 250 * *
200 *
) 200
3 150
E 2 150
5 8100 100
U~ 50 | 50
0 0
400 * * *
. 600
2300 500 *
# 850 * * 400
a S0 300
3 150 200
0 S 100
50 | | 100
0 0
250 N * *
o 200 200 * *
#* B 150 150
a 2100
5 2 100
wn o 30 50
0 0
200 250
200
fl: £ 150
a = 150
= 100
5@ 100
n - 50 50
0
200 * *
175 200
ﬁ 2 150 150
%125
o 2100
5 2 75 \ 100
3 50
e | 50
0 0
180 180
o 140 140
5 3120 120
O & 100 100
QO 5 80 80
60 t } 60

BR

TL

BL

Test Window (deg. rotation)

TL BR TR
Test Window (deg. rotation)

Figure 6: Decoding separability test results with orientation as the target dimension. Each row represents a
complete analysis for a single subject. Columuns represent different levels of the context dimension (spatial
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represent the expected value and 90% bootstrap confidence interval for the Lle statistic when no differences
exist between two distributions. Group descriptive statistics (mean and standard errors) are presented in

the bottom row.
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context. The relevant question is: Does cross-classification lead to conclusions of false-positive invariance
under such circumstances? If yes: Can tests against invariance lead to more valid conclusions?

Another issue with experimental results is that they can be difficult to generalize. A critical reader could
argue that issues with tests of context-specificity like cross-classification are restricted to special cases, and
not general as suggested by theory. Again, simulation and theoretical work allows one to provide results

that are more general.

Simulation 1: False Positive Invariance Resulting From Features Of The Measurement Model

Some researchers might argue that they use the cross-classification test to detect any level of context-
tolerance or context-sensitivity. Indeed, some researchers conflate the two and classify context-sensitivity as
a form of tolerance, or partial invariance.

In theory, even a completely context-specific code could produce false conclusions of invariance in neu-
roimaging decoding studies, due to the transformation produced by the measurement model (see Figure 1c).
To provide evidence for such a general claim, we turn to simulation and theoretical work (for details on
the models and procedures used in the simulations, see Simulations in the Materials and Methods section).
We study a case of complete context-specificity in which it cannot be claimed that any amount of tolerance
exists in the neural representations.

To create such a model, we started by defining two sets of encoding models, corresponding to two levels
of the context dimension. In context 1, the target dimension was encoded through neural channels with
homogeneous features (i.e., evenly spaced position, same maximum activity, same width), as shown at the
top of Figure 7a. In context 2, the target dimension was encoded through neural channels with completely
randomized features, which is exemplified at the bottom of Figure 7a. Then, we produced false positive
invariance by optimizing the weights of the measurement model such that the voxel-wise activity values were
similar across the two levels of the context dimension (Figure 7a). Finally, we sampled data from both models
and used them as input to a linear SVM classifier. As in the preceding empirical analyses, the decoder was
trained on data from the first level model and tested on independent data from both the first and second
level models (Figure 7b). This entire procedure was repeated 200 times per simulation run, and we present
the average results across simulations. We performed twenty simulation runs, where we gradually increased
the measurement noise in each voxel (standard deviation going from 1 to 20, in steps of 1).

Figure 7c shows the decoding accuracy results from this simulation. The most important values are
represented by the blue curves, which represent performance of the classifier in the non-trained level of
the context dimension. Whenever accuracy is above chance, represented by the dotted line, the cross-

classification test leads to a conclusion of invariance in a situation where no invariance exists (i.e., false
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positive invariance). The cross-classification accuracy score was much higher than chance across all levels
of noise, even as measurement noise was drastically increased. The purple line in Figure 7d shows the
proportion of false positives for the cross-classification test, which consistently remained above the nominal
a = .05, represented by the dotted line, across all levels of noise that produced above-chance decoding. Only
when decoding accuracy drops to chance levels (a case where the test would not be applied in an empirical
setting) the cross-classification test stops producing false positives.

These results suggest that a suitable selection of measurement model is sufficient for inducing false
positives in the cross-classification test, even when the underlying encoding distributions themselves show
absolutely no tolerance. The next question is whether using additional tests against the null of invariance
can lead to more valid conclusions.

The light blue line in 7d shows the proportion of tests correctly rejecting the null of invariance for the
classification accuracy invariance test. The test is very sensitive to measurement noise, having good power
(about 80%) only at the smallest levels of measurement noise. Figure 7d shows the proportion of each type
of conclusion in Table 1 (specificity/sensitivity in teal, invariance/tolerance in red, and no conclusion in
black) reached from jointly testing against specificity and invariance, by using the cross-classification and
classification accuracy invariance tests, respectively. This strategy does lead to more valid conclusions at
either low or high levels of noise, but at intermediate levels the strategy fails and produces a high proportion
of conclusions for tolerance. Note that these intermediate levels of noise produce decoding accuracy around
40%-60%, which are realistic values for a four-alternative classification task. The reason for the increase
in conclusions of tolerance at intermediate levels of noise is related to the differential sensitivity of the
tests to noise. As seen in Figure 7d, the power of the classification accuracy invariance test to correctly
detect evidence against invariance drops rapidly with increments in noise, whereas the power of the cross-
classification test to incorrectly detect evidence against specificity drops more slowly. Thus, at intermediate
levels of noise, the cross-classification test still provides false evidence against sensitivity at a high rate,
whereas the more noise-sensitive classification accuracy invariance test has rapidly dropped in its ability to
provide evidence against invariance. Note, however, that this is likely to be related to the specific setup of
our simulation, in which a measurement model was found that increased the likelihood of false invariance at
the level of measured patterns of activity.

The green line in Figure 7c shows the proportion of tests correctly rejecting the null of invariance for the
decoding separability test. The first notable result is the high sensitivity of the decoding separability test to
violations of invariance. At all levels of noise, the test detected such violations in almost all simulation runs.
Note that the test is sensitive even when decoding accuracy has dropped to chance. All these features of

the test are expected from the theory used to develop it [4]. Higher sensitivity than accuracy-based tests is
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expected because the test uses information from the full distribution of decision variables from the decoder.
Robustness in the face of measurement noise is expected because although noise reduces high-frequency
differences between distributions, it preserves differences at lower frequencies (see [4]). We must note that
this simulation probably over-estimates the test’s sensitivity, as our experimental results showed that the
test often misses significance in real data.

Figure 7f shows the proportion of each type of conclusion in Table 1 (specificity /sensitivity in teal,
invariance/tolerance in red, and no conclusion in black) reached from jointly testing against specificity and
invariance, by using the cross-classification and decoding separability tests, respectively. In this case, invalid
conclusions of tolerance are never reached. Counterintuitively, valid conclusions of sensitivity increase over
inconclusive results as noise increases. The reason is that cross-classification is more sensitive to noise than
decoding separability.

Overall, the results from this simulation provide further evidence favoring our hypotheses, showing that
cross-classification can lead to false positive conclusions of tolerance when absolutely no tolerance exists in
the underlying neural code, and that the addition of tests against invariance leads to more valid conclusions.
The results suggest that decoding separability should be preferred over classification accuracy invariance to

test against invariance, as was expected from theory [4].

Evaluating the Pervasiveness of the False Positive Invariance Problem

A critical reader might argue that the conditions leading to false positive invariance in the first simulation,
namely the explicit selection of the measurement weights that produce similar voxel-wise activity patterns
across levels of the context dimension, are unlikely to occur in real fMRI experiments. The true measurement
process is not trained to make activity values similar across different levels of irrelevant dimensions. How
pervasive is the false positive invariance problem uncovered in the first simulation? Here we show that,
against intuition, the problem is quite pervasive.

In the standard encoding model used in our simulations, the mean response of neural channel ¢ to
stimulus s;, presented in context j, is given by a tuning function fj.(s;) (see subsection in Materials and
Methods). We can collect the mean response of N, channels in a population response vector fj(s;) =
[fi1(si), fi2(si)s .. fin.(si)]. A number of stimulus values for the target dimension are presented in any
experiment, indexed by i = 1,2, ..., N;. Without loss of generality, we can focus on an experiment with two
stimulus contexts indexed by j = 1,2, as in our simulation. The measured activity in voxel k£ to stimulus s; in
the first context is equal to fl(si)kal, and in the second context is equal to f3 (si)kag. The measurement

vectors wiy and wyo produce invariance in voxel £ when they produce the same mean activity value:
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Figure 7: (a) Encoding models used in simulation 1 and (b) steps taken in each repetition of simulation 1.
See main text for details. Panels c-f show decoding results from simulation 1. (c¢) Classifier accuracy scores for
model-generated data from both levels of the context dimension. The y-axis represents accuracy scores, the
x-axis represents level of measurement noise (in units of standard deviation), the dotted line represents chance
performance. (d) Proportion of positive tests of each type. The y-axis represents proportion of positives,
the z-axis represents measurement noise, the dotted line represents the accepted false discovery rate of 5%.
(e-f) Proportion of each type of conclusion in Table 1 (specificity/sensitivity in red, invariance/tolerance in
blue, and no conclusion in green) reached from jointly testing against specificity and invariance. The left
panel (e) shows conclusions reached by using the classification accuracy invariance test against invariance,
and the right panel (f) shows conclusions reached by using the decoding separability test against invariance.
In both cases, the cross-classification test is used against specificity.
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0 = fi(s;) wrr — fals;) "wie

T
0 = f1(s4) Wik1
—f2(si) Wik2
0 = f+(si)wk+7
475 where f (s;) is a row vector of concatenated mean population responses, and w is a column vector of
476 concatenated weights.
477 If we collect the vectors £ (s;) in response to the experimental stimuli in a matrix:
£ (s1)
£ (s2)
F+ - )
L £ (sn) ]
478 we get a set of homogeneous equations that can be solved for wy # O:
0 = Fywpy (1)
470 A measurement model produces false positive invariance when wy # 0 is a solution of this equation for

a0 all voxels k. Another way to see this equation is that w4 corresponds to the nullspace of matrix F,. The
a1 nullity-rank theorem tells us that the dimensionality of this nullspace, or nullity, equals the number of columns
2 in Fy (i.e., the total number of channels in the model) minus its rank. The nullity gives us information
43 about the size of the subspace of measurement models wy that produce false positive invariance. When the
ssa only solution for Equation 1 is the trivial solution wy. = 0, the nullity of F is zero. In this case, constraints
a5 in the encoding model and experimental design, summarized in F, are such that there is no measurement
ass  model that can produce false positive invariance. This is the only case in which we would not have to
457 worry about false positive invariance, but it has been the default assumption of researchers applying the
a8 cross-classification test in the literature. Note also that this analysis is only concerned with strict invariance
aso and not with tolerance; even when false positive invariance cannot be produced by a measurement model,

a0 false positive tolerance may still be possible.
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We are now in a good position to evaluate the pervasiveness of false positive invariance in the encoding
scenario posed by our first simulation. We created encoding models just as indicated for simulation 1 (see
Figure 7a), each time with a different number of stimuli and neural channels. The number of neural channels
was varied from 5 to 30 in steps of 5, and the number of stimuli was varied from 2 to 20 in steps of 2. For
each combination of neural channels and stimuli, we created 200 different encoding models, and computed
the nullity of the mean population response matrix F . As indicated earlier, the nullity represents the
dimensionality of the subspace of measurement models that would produce false positive invariance. To
ease comparison, Figure 8 shows the nullity divided by the dimensionality of the measurement model, or
proportion nullity. This represents the proportion of the measurement space (in terms of dimensionality)
that would produce false positive invariance. We found that there was no variability of results across the
200 sampled models, so Figure 8 shows the unique value of proportion nullity found in each case.

One can easily see from Figure 8 that the scenario posed in our first simulation is far from rare. On the
contrary, with ten channels and four stimuli, as we used in that simulation, the proportion nullity is 0.8,
meaning that the large majority of the possible measurement models will lead to false positive invariance.
This result was not idiosyncratic to the parameters chosen for our simulation, with proportion nullity in
general being quite high. The exception was a combination of a high number of stimuli and low number of
channels, which is rare in experiments reported in the literature. Most neuroimaging studies using cross-
classification to study invariance have presented 2-4 stimuli, a case in which the proportion nullity is at least
0.6, and in most cases above 0.8.

We must remind the reader that we are studying here an extreme case of context-specificity, under the
assumption of no measurement noise, and an extreme case of false positive invariance, rather than tolerance.
For these reasons, we can consider our results a lower bound on the size of the false positive invariance
problem. More realistic scenarios involving context-sensitivity, high measurement noise, or evaluation of
tolerance rather than strict invariance can all be expected to worsen the problem beyond what is shown in
our results.

We see two clear trends in Figure 8. First, proportion nullity —and therefore, the problem of false positive
invariance— drops linearly with number of stimuli included in the study. Experimenters can reduce the risk
of false positive invariance by increasing the number of stimulus levels for the target dimension. Second,
proportion nullity increases in a negatively accelerated fashion with increments in the number of neural
channels. The number of neural channels represents our assumption of how many unique neural tuning
functions underlie the data or, in other words, how well-covered is the stimulus dimension by the encoding
neural population. In realistic scenarios, this value will be much higher than any of those shown in Figure 8.

However, it is common to find applications of the standard encoding model in computational neuroimaging
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Figure 8: Pervasiveness of the problem of false positive invariance for the extreme case of context-specificity
studied in simulation 1. Proportion nullity represents the proportion of all dimensions in the measurement
space that would produce false positive invariance, and therefore the size of the false positive invariance
problem. The values reported were always the same for a given combination of number of neural channels
and number of stimuli, across 200 randomly sampled encoding models.

that assume 6-15 channels [e.g., 19, 20, 21, 22].

Simulation 2: False Positive Invariance Resulting From Similarly Tuned Neural Subpopulations

Across Contexts

A critical reader may again argue against the results just presented, indicating that although the space
of possible measurement models leading to false positive invariance is large in most published studies, most
of those models would never be observed in nature. Only a small proportion of all possible measurement
models might be truly at play in neuroimaging studies, and those could be contained within the space of
models for which false positive invariance is not an issue. Although this is an extremely optimistic position,
and we think that it would be unwise for scientists to take it, we would like to strengthen our conclusions
by studying a realistic encoding scenario, likely to be implemented in the brain.

There are many known cases in which neurons that are sensitive to a particular stimulus feature are
spatially clustered at sub-millimeter scales. In those cases, while there is spatially distributed information
about stimulus features, this information is not immediately visible at the typical resolution of an fMRI
study. For example, V1 neurons that are sensitive to the same spatial frequency, color, ocular dominance,
and orientation all cluster at the sub-millimeter scale [23, 24, 25, 26]. Although advances in high-field fMRI

can in some cases uncover such sub-millimeter organization [e.g., 27|, information can also be spatially
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distributed without any clustering (e.g., “salt-and-pepper” codes; see [28, 29]), at scales that are unlikely to
be reached with fMRI at even higher field strengths than those currently available [30, 31].

In cases such as these, across voxels we would expect to find relatively homogeneous distributions of
selectivities. Our ability to use voxel-level decoding to detect whether and how features are encoded depends
critically on small random variations in mixing; that is, in the proportion of each type of neuron present
within each voxel. Indeed, small differences in mixing across voxels is a mechanism proposed to underlie
decoding of orientation information from V1 [32, 33, 34, 35, 36], like that shown in our experimental study.

This sub-voxel distribution of information, which may underlie the success of many fMRI decoding studies,
can also easily lead to false-positive invariance when the cross-classification test (or other tests of the null
of specificity) is used in isolation. Small differences in mixing might be enough to promote above-chance
decoding of a stimulus feature, because decoding algorithms are specifically trained to detect differences in
the target feature. On the other hand, decoding algorithms are not trained to detect changes in context. Any
small differences in mixing that might provide information about context-specificity would be lost, and the
decoding algorithm would be very likely to generalize performance across changes in stimulus context. We
find an example of this in our own experiment. There, classification of spatial position generalized perfectly
across changes in grating orientation, as shown in Figure 3, despite the fact that the voxels contained
information about differences in orientation, as determined by above-chance decoding of that dimension (see
Figure 4).

In the present simulation, we wanted to study the sensitivity of different fMRI decoding tests to changes
in mixing carrying information about context-sensitivity. With this goal in mind, we created a model in
which a target dimension is encoded in a completely context-specific manner, with one subpopulation of
neurons responding whenever the context dimension is at level 1, and a different subpopulation of neurons
responding whenever the context dimension is at level 2. Both subpopulations were modeled using a standard
homogeneous encoding model (see above), but note that this similarity in tuning functions is not equivalent
to invariance, as each channel responded only at one of the levels of the context dimension. In other words,
our simulation assumes that populations encoding the target dimension are completely separated across levels
of the context dimension, but they encode the target dimension in a similar way (just as neurons in Figure 1d
have two selectivity types across levels of the context dimension). As before, we report the averaged results
from 200 simulations in each run. Measurement noise was set to a fixed level across simulations (s.d.=5,
which in our previous simulation produced accuracies around 40%-50%, see Figure 7¢). In each simulation
run, we increased the difference in the measurement models for the two levels of the context dimension,
by adding random noise to weights of the measurement model as illustrated in Figure 9a. The standard

deviation of the weight noise was gradually increased from 0.05 to 0.5 (i.e., from 0.5 to 5 times the average

27



573

576

579

582

585

588

591

592

594

595

597

598

600

601

603

604

weight value), in steps of 0.05. That is, in the final models the contribution of each neuron type (e.g., neurons
selective to a value of 0 in the target dimension) was widely different across levels of the context dimension.

The results from this simulation are shown in Figure 9b-e. Panel b shows the accuracy of the classi-
fier tested in the original training context (red line) and in the changed context (i.e., cross-classification
performance; blue line). It can be seen that the cross-classification test is sensitive to mixing variations,
as accuracy drops with increments in weight changes with context. However, accuracy remains well above
chance even for the largest weight changes. Figure 9¢ shows the proportion of positive tests as a function of
the magnitude of random weight changes (in standard deviations). The cross-classification test consistently
showed false positives at a rate much higher than the nominal 5%. High levels of false-positive invariance
were present even when the weight noise standard deviation was five times as large as the average weight
values. These results suggest that, when two completely separate neural populations use similar codes to
represent a target dimension across levels of an context dimension, false positive invariance is likely to be
found not only with the small variations in mixing that one would usually expect from fMRI studies, but
from very large variations in mixing.

As before, the question now is whether this issue of false-positive invariance can be ameliorated by
adding tests against the null of invariance. Using classification accuracy invariance, the results are not very
promising. The light blue line in Figure 9c shows the power of this test to reject the null of invariance,
which starts near zero with very small variations in weights (or mixing) and is quite low (T60% power)
even at the largest weight variations. Figure 9d shows the proportion of each type of conclusion in Table 1
(specificity /sensitivity in teal, invariance/tolerance in red, and no conclusion in black) reached from jointly
testing against specificity and invariance, by using the cross-classification and classification accuracy invari-
ance tests, respectively. First, the addition of classification accuracy invariance does improve the validity
of conclusions. Comparing the purple curve in Figure 9c¢ against the red curve in Figure 9d shows that
the latter drops more steeply with size of weight changes. On the other hand, using cross-classification and
classification accuracy invariance together still leads to a false positive rate above 5% across all the values
of weight change simulated.

On the other hand, using decoding separability the results are much better. The green line in Figure 9¢
shows that the power of this test to reject the null of invariance is near 100% across all levels of weight change.
That is, the test is sensitive to even small changes in mixing resulting from changes in context. As explained
before, this high power is a consequence of the test using the whole distribution of decision variables from
the decoder, rather than only binary classification decisions. Figure 9e shows the proportion of each type of
conclusion in Table 1 (specificity /sensitivity in teal, invariance/tolerance in red, and no conclusion in black)

reached from jointly testing against specificity and invariance, by using the cross-classification and decoding
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separability tests, respectively. First, the test has a higher power than classification accuracy invariance to
reach the correct conclusion of context-sensitivity. More importantly, at low values of mixing, the test leads
to inconclusive results rather than to the incorrect conclusion of invariance.

Overall, this simulation confirms our previous conclusion and theoretical expectation that supplementing
the cross-classification test with a test against the null of invariance increases the validity of conclusions about
the underlying codes, and that decoding separability is superior to classification accuracy invariance for that
goal. We have shown that this is the case in the realistic scenario in which two different populations encode
the target dimension in a similar manner, and the fact that both populations are separated can be inferred
only from small differences in their relative contribution to voxel activities. With such small differences in
mixing (i.e., the smallest values of weight change in Figure 9a), using cross-classification alone leads to a
conclusion of false positive invariance almost 100% of the time, the addition of the classification accuracy
invariance test slightly reduces the issue, and the addition of the decoding separability test eliminates it, at
least in our simulation. The results were similar at very large differences in mixing (i.e., the largest values
of weight change in Figure 9a), where using cross-classification alone leads to a conclusion of false positive
invariance about 30% of the time, the addition of the classification accuracy invariance test slightly reduces
the issue, and the addition of the decoding separability test eliminates it, with the most likely conclusion
being the ground truth of context-sensitive encoding. We must warn again, however, that the sensitivity of
the decoding separability test is expected to be lower with experimental data, as it was in our own study.
The main reason why decoding separability is so extremely powerful in our simulations is that they assumed

the extreme case of completely context-specific codes.

Simulation 3: On The Difficulty To Obtain A Valid Continuous Measure Of Invariance/Specificity

As mentioned in the introduction and illustrated in Figure la, neural representations are likely to vary
along a continuum between complete context invariance and specificity. Given this, it might be surprising
to the reader that we advocate using inferential tests against the extremes of this continuum rather than
proposing a single continuous measure of invariance/specificity. We believe that the influence of the mea-
surement model makes it difficult to obtain a measure that is valid and precise, in the sense of providing
information of exactly where in the continuum the underlying neural representations lie.

To illustrate this point, here we propose a new measure of invariance/specificity—the invariance coefficient
or t—, show that this measure can provide information about continuous changes in invariance/specificity
when computed directly on representations at the neural encoding level but it does a relatively poor job
retaining that information when computed using decoding distributions obtained from indirect measures

of neural activity. The measure, and ways to estimate it from multivariate activity patterns, is described
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Figure 9: (a) Encoding model for simulation 2. See main text for details. Panels b-e show the decoding
results from simulation 2. (b) Classifier accuracy scores for model-generated data from both levels of the
context dimension. The y-axis represents accuracy scores, the z-axis represents magnitude of noise added
to measurement weights for the second level model, the dotted line is chance performance. Proportion of
positive tests of each type. The y-axis represents proportion of positives, the z-axis represents measurement
noise, the dotted line represents the accepted false discovery rate of 5%. (c-d) Proportion of each type of
conclusion in Table 1 (specificity /sensitivity in red, invariance/tolerance in blue, and no conclusion in green)
reached from jointly testing against specificity and invariance. The left panel (d) shows conclusions reached by
using the classification accuracy invariance test against invariance, and the right panel (e) shows conclusions
reached by using the decoding separability test against invariance. In both cases, the cross-classification test
is used against specificity.
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in detail in the Materials and Methods section (subsection Simulation 3: On The Difficulty To Obtain A
Valid Continuous Measure Of Invariance/Specificity). It takes two probabilistic representations of the same
stimulus in different contexts, and computes their proportion of overlap. Another interpretation of the
measure is the ratio of how confusable over how discriminable the two representations are. To understand
why, note that the optimal strategy to classify a random sample X as belonging to one distribution or the
other is to choose the distribution for which X has highest likelihood. An example of an optimal classification
bound is given by the teal dotted line in Figure 10 (in a multidimensional space this bound is not required to
be a line). With this in mind, and assuming that the distributions are approximately symmetric, note that ¢
corresponds to the ratio of the sum (across the two distributions) of the probabilities of incorrect classification
(red area in Figure 10) over the sum of probabilities of correct classification (blue plus red areas in Figure
10). Note that here we are referring to classification of a random vector or variable as presented in context 1
or 2, or context decoding rather than stimulus decoding, which is the focus in the rest of our manuscript and
in the literature at large. When ¢ = 0, the two distributions are perfectly discriminable, a case of extreme
context-specificity. When ¢ = 1, the two distributions are perfectly confusable, a case of context-invariance.
Values between these extremes provide a continuous and interpretable measure of context-tolerance (or its
inverse, context-sensitivity).

We can estimate this measure for representations at the level of neural encoding, represented by i,
and also for decision variables at the level of decoding from indirect measures of activity, represented by zg4.
Importantly, ¢y can be computed from values obtained from a number of decoders. In line with the rest of this
work and the literature at large, we computed a first version of ¢4y using a support vector classifier trained
to decode the stimulus value in the target dimension. More in line with our theoretical interpretation
of the index, we computed a second version of {4 using a support vector classifier trained to decode the
context in which the stimulus was presented. We reasoned that focusing on discrimination of contexts rather
than stimuli would produce a more valid measure, in the sense of reflecting the true underlying level of
invariance/specificity as measured at the level of encoding.

We performed a simulation in which the encoding model properties were continuously modified from com-
plete invariance to complete specificity (for a description of methods; see subsection Simulation 3: On The
Difficulty To Obtain A Valid Continuous Measure Of Invariance/Specificity in the Materials and Methods sec-
tion). The simulation was repeated 200 times, each time randomly choosing the level of invariance/specificity
of the encoding model. Our goal was to answer the following questions: How well does i, capture continuous
variation in invariance/specificity built into the encoding model? How well do the two versions of i, capture
the true variability in invariance as measured from neural representations at the level of encoding (i.e., what

is their construct validity)?
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The results of this simulation are presented in Figure 10. Figure 10b shows the correlation between the
continuous level of change implemented in the encoding model and the invariance coefficient computed at the
level of encoding. The correlation was quite high at -0.767, p<.001, and the relation between the variables
seems linear. Thus, when computed at the level of neural encoding, the invariance coefficient can capture
continuous changes in invariance implemented in the encoding model.

Figures 10c-d show the correlation between the two versions of the decoding invariance coefficient 74 and
the encoding invariance coefficient Z.. In line with our interpretation, the measure based on stimulus decoding
has no construct validity with a correlation with the true measure of -0.036, p>.1, whereas the measure based
on context decoding has a moderate construct validity with a correlation with the true measure of 0.376,
p<.001. We conclude that the best way to compute this specific measure is by focusing on decoding of the
context in which a stimulus is presented, which should be done after it has been determined that information
about the target dimension is available in a brain region via a traditional stimulus decoding analysis.

With that being said, even the better version of 7y clearly has validity issues, as it can capture only
14.17% of the variability in invariance measured in the underlying neural representations. Figure 10b shows
that a major issue with 74 is that it overestimates invariance, having a range between 0.4 and 1.0, whereas
the true values range from 0.0 to 1.0. In addition, high values of invariance (>0.8) are estimated across
the whole range of values of 7.. This is of course a consequence of the loss of information imposed by the
measurement model, and particularly the ability of the model to induce false invariance already discussed.
Specific features of the measurement model are likely to influence the measure’s construct validity. Our
goal here was not to explore all these possibilities, but rather to present the measure and illustrate how the
measurement model limits our ability to precisely measure invariance. We believe that issues with validity

are likely to arise from any other index computed from indirect measurements of neural activity.

Discussion

Here, we have provided empirical and computational evidence supporting two insights about decoding
tests of invariance reached with the help of neurocomputational theory [4]. First, that tests aimed at
evaluating evidence against the null of context-specificity, and for the alternative of context-invariance, may
be prone to false positives due to the way in which the underlying neural representations are transformed
into measurements. Second, that jointly performing tests against the nulls of invariance and specificity allows
one to reach more precise and valid conclusions about the underlying representations.

In the empirical study, we performed decoding of orientation and spatial position from fMRI activity

patterns recorded in V1, a case in which properties of the underlying neural code are known. The cross-
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Figure 10: (a) Illustration of the L1 (blue) and 7% (red) distances between two distributions. The green
dotted line represents the optimal classification bound (i.e., the value with equal likelihood to belong to
either distribution). The proposed invariance coefficient represents the proportion of overlap between the
two distributions (red area over the sum of red and blue areas). (b) Correlation between the continuous level
of change implemented in the encoding model and i, . Panels (c) and (d) show the construct validity of the
two versions of ¢4 (i.e., their correlation with the true value i.): one version computed by decoding stimulus
values (panel ¢) and another by decoding level of context (panel d).

classification test gave strong evidence for the incorrect conclusion that, in V1, encoding of spatial position
is tolerant/invariant to changes in orientation, as well as some evidence for the incorrect conclusion that
orientation is tolerant/invariant to changes in spatial position. We found that the addition of theoretically-
derived tests of invariance leads to more valid conclusions regarding the underlying code.

The results of two simulations strengthened the conclusions from the empirical study, by showing that they
hold even in the extreme case of completely context-specific encoding. In the first simulation, we showed that
cross-classification can lead to false positive conclusions of tolerance when absolutely no tolerance exists in the
underlying neural code, and that the addition of tests against invariance leads to more valid conclusions. We
also showed, through theoretical analysis and further simulations, that this problem is likely to be pervasive,
rather than resulting from a hand-picked proof of concept. In our second simulation, we showed that the
same results are found in simulations of realistic encoding scenarios.

Based on our empirical and computational results, we conclude that the cross-classification test can lead
to invalid conclusions about the invariance of neural representations. Applying the test by itself should be
avoided, and previous research using the test should be re-evaluated in light of our results. Instead, we
propose to routinely test against the null of invariance whenever the cross-classification test is applied. Even
if a researcher is unconvinced by the pervasiveness of the problem highlighted in our study and simulations,
the cost of running these additional tests is extremely low.

Note that we have purposefully relied on our own data and simulations to make the point that using the
cross-classification test alone can lead to invalid conclusions about invariance. This is because our intention

is not to single-out specific studies that have used cross-classification in the past, but rather to alert users
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of this test, and the neuroscientific community at large, that its results should be taken with caution until
further tests against context-invariance or evidence from direct measurements of neural activity are also
available. We believe that the problems with cross-classification highlighted here are serious enough that
researchers should re-evaluate all published claims of invariance stemming from this test in light of new
analyses and/or data.

As expected from theory, we found that the decoding separability test is sensitive to violations of invari-
ance that cannot be captured by the classification accuracy invariance test. In particular, when decoding
accuracy is near ceiling or floor values, only the decoding separability test can detect violations of invariance
by relying on the more fine-grained information available in the full decoding probability distributions, rather
than on the coarse information available in accuracy estimates. The reason behind this superiority is simple:
the decoding separability test uses information from the full distribution of decoder decision variables, and
much of this information is lost once that distribution is binarized for classification. A similar conclusion
was reached by Walther et al. [37], who found that the reliability of continuous neural dissimilarity measures
was higher than that of classification accuracies, and concluded that this was due to the loss of information
inherent to the latter. We believe that focusing on full decoding distributions can help us to move from using
decoding to test whether information is encoded in a particular area, to using decoding to test how infor-
mation is encoded. Additional examples of this approach have linked uncertainty in decoding distributions
to behavior [38], and have correlated the variability in decoding distributions to behavioral responses [39].

We also showed through simulation that the measurement transformation limits our ability to obtain a
valid continuous index of invariance/specificity when computed from indirect measures of neural activity.
Even when computed under ideal circumstances (small changes imposed by the measurement model and
200 presentations of each stimulus), the decoding invariance coefficient could capture only 14.17% of the
variability in invariance measured in the underlying neural representations. While we did not explore all
possibilities, our simulation results help us make the point that precise measurement of invariance/specificity

from neuroimaging data is a difficult task.

Alternative measures of neural activity and data analysis techniques

Because our empirical study involved fMRI, we have framed the discussion here mostly in terms of that
neuroimaging technique. Note, however, that our theoretical and simulation results hold for studies using any
indirect or aggregate measure of neural activity, which includes M/EEG, ECoG, and LFPs, among others.
Indeed, the linearized measurement model common in the fMRI literature and used in our simulations is also

commonly used in those other techniques [e.g., 40, 41, 42]. Of course, the level of aggregation and spatial
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specificity of a technique will modify the gravity of the problem for any specific technique. However, as
noted earlier, information can be spatially distributed in the brain without any clustering [28, 29] and thus
the issue of false positive invariance may be present to a certain degree with any aggregate indirect measure
of neural activity.

Similarly, our conclusions are unlikely to be limited only to decoding data analyses. Other approaches,
such as forward and inverted encoding modeling (for reviews, see [43, 44]) and representational similarity
analysis [45] are likely to suffer from similar issues. The reason is that the possibility of artificially increasing
the appearance of invariant representations is inherent to the transformation from the neural space to the
measurement space (see Figure 1b). That is, the problem lies within the measured patterns of activity
themselves, rather than with the analyses performed over those activity patterns. Any analysis aimed to
obtain evidence of invariance is likely to be based on the observation of high similarity of activity patterns
across changes in context, and that similarity can be artificially increased by the measurement model.

That being said, analysis methods such as inverted encoding modeling have been developed to provide
evidence of changes in neural representation that result from changes in some experimental factor, naturally
lending themselves to the detection of evidence for context specificity (i.e., against invariance). Inverted
encoding modeling has indeed been applied in such a way [e.g., 46], and this application can be considered
analogous to the decoding tests against invariance studied here, rather than to the more problematic cross-
classification test. However, inverted encoding modeling is a parametric approach and as such it can fail
to yield valid conclusions when the assumptions of the model are incorrect (e.g., wrong selection of tuning
functions; see [47]). On the other hand, tests based on decoding are nonparametric, yielding valid conclusions
without making any assumptions about encoding or measurement (see [4]).

The decoding separability test advocated here is based on the calculation of a distance measure. Specif-
ically, the absolute distance (i.e., the L1 distance) between distributions of decision variables obtained from
a linear classifier. A large number of other distance measures have been used and evaluated in representa-
tional similarity analysis [48, 37], and it is not clear to what extent such measures might provide evidence
against invariance that is as good or better than the L1 distance. Preliminary results of simulation studies
suggest that distance measures vary widely in their construct validity; that is, their ability to reflect the
true underlying distances between neural representations at the level of encoding [49]. The L1 measure is
among those with highest construct validity, but other good measures according to this criterion are the
inner product, Mahalanobis, and euclidean distances. We prefer the L1 distance in the decoding separability
test mainly because we have previously shown that the use of this distance allows the test to provide valid
inferences about underlying deviations from invariance at the level of neural encoding [4]. Similar proofs

have not been provided for other measures, which is not to say that they are not possible. The Mahalanobis
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distance is of particular interest, as it has been shown to provide superior reliability in previous studies [37].
A disadvantage of this measure is that it computes a distance between distributions based solely on their
mean and variance, implicitly assuming that those distributions are multivariate normal. On the other hand,
the L1-based decoding separability test does not need to make any assumptions about the distribution of
the data, besides assuming that measurement error is additive, and it can detect differences between dis-
tributions in higher-order moments that are impossible to detect using Mahalanobis (see discussion on the

multivariate general linear model in [4]).

Recommendations For Researchers

Our results have consistently shown that there is an inherent disadvantage with tests aimed at providing
evidence for invariance (or rather, against context-specificity), which tend to yield false positives. However,
findings of invariant representation are interesting to many neuroscientists and they could inform theories
of neural processing. We recommend those researchers both to use the double-test strategy developed here
and to be extremely cautious regarding conclusions of invariance obtained from any indirect or aggregated
measures of neural activity (fMRI, EEG, ECoG, LFPs, etc.), which should be held as tentative until evidence
from direct measurements of neural activity are available.

The same is not true about tests aimed at providing evidence for context specificity (or rather, against
context-invariance): in this case, the tests are much more likely to yield valid conclusions, and no protection
is needed against false positives. But note that a positive test against context invariance only provides
evidence for the valid inference that the underlying representations are not invariant. The representation
can still be anywhere else in the continuum depicted in Figure la. Therefore, the two-test strategy would
still provide additional evidence regarding the underlying representations, at the quite low cost of running
one additional test on the same data.

In sum, we recommend all researchers to use a two-test strategy when attempting to make inferences
about invariance/specificity from indirect measures of neural activity, and to interpret the results of the
tests using Table 1. We also recommend to use the decoding separability test to test against the null
of invariance. In theory, this test can capture evidence against invariance that is not available from the
classification accuracy invariance test, and here we found that this is indeed the case in some real-world
examples (e.g., decoding of spatial position across changes in orientation from V1).

That being said, researchers should understand that application of the decoding separability test is most
useful with large datasets that ensure accurate estimation of full decoding distributions. Our empirical

results were obtained using a design in which a large dataset was obtained from each participant. We
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recommend that researchers use the same kind of design. Most datasets used in the past to study invariance
do not fit that description, instead having a small number of stimulus presentations and/or not having
explicitly separate datasets for training and testing. We expect that researchers will be faced with such
non-ideal datasets, either because they want to reanalyze data obtained in the past or because budgetary
considerations limit the number of stimulus presentations that can be included in a study. To deal with
such suboptimal datasets, researchers can use the classification accuracy invariance test against the null of
invariance, which requires a smaller number of stimulus presentations than the decoding separability test,
because it calls for the estimation of single values (accuracies) rather than the estimation of whole densities.
In addition, the dataset can be used more efficiently by estimating accuracies through leave-one-out cross-
validation.

Our results regarding the pervasiveness of the false positive invariance problem (Figure 8) show that this
problem can be greatly reduced by including a large number of stimuli spanning the stimulus dimension under
study. This is an important theoretical insight, as number of unique stimulus values is a design factor under
the researcher’s control. We recommend that researchers use as many unique stimulus values as possible in

their designs.

Limitations And Future Work

During a study with a large number of trials the neural representations under study might themselves
change. Factors such as fatigue, adaptation, and familiarization could all produce changes in brain repre-
sentation. Because our interest is not on all aspects of neural representation, but only on context speci-
ficity /invariance, the key question here is whether a long experiment would produce changes in the neural
representation of a stimulus that are specific to one context and not others. We believe that this is unlikely
to be the case in any study with two features. First, a balanced design, in which each stimulus is presented
equally often in different contexts across the whole experiment. With a balanced design, factors such as
fatigue, adaptation, and familiarization should influence the stimulus representation equally across contexts.
The influence of some of those factors may also be reduced by dividing the study into multiple short sessions
separated by long intervals (e.g., one day or more). Second, when a behavioral task is used to keep partici-
pants’ attention on the stimuli, the task should be unrelated to the stimulus features under study, to avoid
potential adaptive changes in representation due to learning, selective attention, etc. The study presented
here satisfies both of these criteria and therefore we believe that its length was unlikely to bias the results.

Another potential limitation of our empirical study has to do with segmentation of V1, which in our

study was carried out using an algorithm [50] that focuses on the analysis of cortical folds, rather than on
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the results of a functional localizer. The evidence shows that this algorithm has a precision that is equivalent
to up to 25 minutes of functional mapping. Thus, we could have performed a functional localizer longer than
25 minutes in order to increase the precision of V1 segmentation. We did not see value in that approach, as
the neighboring area V2 is also retinotopic (spatial position and size of receptive fields is similar for V1 and
V2 near their border) and encodes orientation similarly to V1, meaning that our predictions for V2 would
be similar to those for V1.

The study of invariance could benefit from the development of a test against context-specificity to replace
the cross-classification test, which is relatively insensitive due to its reliance on decoding accuracy. This new
test should aim to evaluate the null hypothesis that the neural representation of a target stimulus property is
completely different in two different contexts, showing non-overlapping distributions of neural activity. The
development and validation of such a measure is not trivial, and we must leave it to future research. We at
least know that a sensitive measure would rely on something different from the decoding distribution of the
target variable, and therefore it would follow a different logic than the decoding separability test developed
in previous work [4]. Figure 11 shows why this is the case. The two main axes represent measurements in two
different voxels, and each ellipse represents the distribution of voxel activity patterns for a target stimulus
property presented in two different contexts. It can be seen that the two distributions are completely non-
overlapping in the multivariate space of voxel patterns. However, when the two distributions are projected
onto the decoded variable they show a non-zero overlap, represented by the yellow rectangular area. Note
how changing the direction of the decoded variable does not necessarily result in no overlap. Also, simply
measuring the overlap at the voxel level ameliorates but does not solve the issue, because the measurement
model may also artificially introduce overlap in the distributions (Figure 1c).

An important question left open is whether tests against the null of invariance might be prone to false
positives, as is the case for tests against the null of specificity. Within the theoretical framework adopted
here, the answer is “no”, as in theory it is impossible for any measurement model to transform invariant
representations into non-invariant activity patterns (see Figure lc, top panel). However, in fMRI studies,
activity patterns must be estimated from the BOLD response through deconvolution or other means (see
Materials and Methods). If changing context influences the hemodynamic response function (HRF), then
this would in turn influence activity estimates, producing apparent context-sensitivity even if the underlying
neural representation is fully invariant. Factors known to influence the HRF include stimulus duration [51],
separate scans [52], inter-trial interval [53], stress level [54], and levels of some neurotransmitters [55, 56, 57|.
Exploring which changes in the HRF could influence the results of tests against invariance is beyond the
scope of this work, but researchers should design their studies so that factors known to influence the HRF

do not co-vary with changes in context.
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Figure 11: The decoding distributions along the decoded variable cannot be used to obtain a valid test of
no overlap between neural representations across two contexts. The main axes represent measurements at
the voxel level, and each ellipse represents the distribution of neural activity (after transformation by the
measurement model) for a target stimulus property presented in two different contexts. The two distributions
are completely non-overlapping at the level of the multivariate voxel patterns. However, when the two
distributions are projected onto the decoded variable, they show a non-zero overlap represented by the
yellow area.

Beyond the specific case of decoding tests of invariance, the present study shows the dangers of over-
reliance on operational tests that have only face validity, particularly in the study of neural representation
through indirect measures obtained through neuroimaging. Our study joins other recent reports in the
literature [22, 47] in showing that the application of sophisticated data analysis tools can lead to the wrong
conclusions when problems of identifiability (e.g., between neural and measurement factors) inherent to
neuroimaging are not taken into account. We believe that theoretical and simulation work will play an
important part in the future of neuroimaging, both to point out areas in which our methods might run into

issues, as well as showing us potential solutions.

Materials and Methods

Participants

Five healthy volunteers (ages 19-27, three female) from Florida International University participated in
the experiment; all had normal or corrected-to-normal vision. The study protocol was approved by Florida
International University’s Institutional Review Board and by the Center for Imaging Science Steering Com-

mittee. All subjects gave written consent to experimental procedures before participating in the experiment.
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Stimuli

All stimuli were generated using Psychopy v.1.85.0 [58]. Images were displayed on a 40" Nordic Neurolab
LCD InroomViewing Device, placed at the rear entrance of the scanner bore. Subjects viewed the screen
via an angled mirror attached to the head coil. Visual stimuli were full-contrast square-wave gratings with
a spatial frequency of 1.5 cycles per degree of visual angle [similar to 59, 60, 61], a frequency known to drive
V1 responses strongly [62], shown through a wedge-shaped aperture window that spanned from 1.5° to 10° of
eccentricity and 100° of polar angle (Figure 2). The aperture window had four possible locations: top-right,
bottom-right, top-left, and bottom-left. The square-wave gratings were oriented in one of four angles for
each trial: 0°, 45°, 90°, 135°. The phase of the gratings was randomly changed every 250ms, to reduce retinal

adaptation and afterimages.

Task and Procedures

To ensure that the data used to train a classifier in decoding analyses (see below) was independent from
the data used to test the classifier and compute measures of performance, training trials and testing trials
were presented on separate acquisition runs. Training and testing runs were identical in all aspects except
one: the positions of the aperture window were restricted to top-right and bottom-left for the training runs,
while testing runs included all four positions (Figure 2). During stimulus presentation, the phase of the
grating was randomly shifted every 250 ms. The orientation of each grating was randomly chosen on each
trial, while the spatial position of the window changed sequentially in a pre-determined manner. In training
runs, the aperture window switched between 20° and 200° on every trial. In testing runs, the aperture window
cycled through top-right, bottom-left, bottom-right, and top-left, in that order. For both training and testing
runs, each combination of spatial position (two or four levels) and orientation (four levels) was presented 35
times in a single acquisition session. Each subject went through 4 identical acquisition sessions to yield a
total of 135 presentations of a given combination of orientation and spatial position (see all combinations in
Figure 2) for both training and testing trials types. This large longitudinal sample size (3,240 trials total per
participant) was chosen to focus our analyses on data at the level of individual participants (see Statistical
Analyses below).

On each trial, a single grating was presented for 3s, followed by a 3s inter-trial interval. All runs began
with a 10s fixation period and ended with a 1 min rest period. The training runs lasted for 5 mins and
43 secs, and the test runs lasted for 10 mins and 13s. Due to experimenter error during data acquisition,
a portion of training trials were lost for participants 1 and 2. To compensate for the reduced number of

training trials, we collected an additional session of data from subject 2, resulting in about 123 training
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trials and 112 testing trials per stimulus. For subject 1, we simply set aside half of the testing trials for
training purposes and used the other half for testing; the number of testing trials for non-trained values of
the context dimension remained the same as for all other participants.

The participants’ task was to look at a small black ring presented in the center of the screen [similar to
59]. The black ring had a small gap that randomly switched position throughout the trial. Participants were
asked to continuously report the side of the gap (left or right) by pressing the corresponding button. The
task had the purpose of forcing participants to fixate at the center of the screen, and to draw attention away

from the stimuli.

Functional Imaging

Imaging was performed with a Siemens Magnetom Prisma 3T whole-body MRI system located at the
Center for Imaging Science, Florida International University. A volume RF coil (transmit) and a 32-channel
receive array were used to acquire both functional and anatomical images. Each subject participated in
four identical MRI sessions. During each session, a high-resolution 3D anatomical T1-weighted volume
(MPRAGE; TR 2.4s; TI 1.1s; TE 2.9 ms; flip angle 7°; voxel size 1x1x1 mm; FOV 256 mm; 176 sagittal
slices) was obtained, which served as the reference volume to align all functional images. During the main
experiment, functional images were collected using a T2*-weighted EPI sequence (TR 1.5 s; TE 30 ms;
flip angle 52°; sensitivity encoding with acceleration factor of 4). We collected 60 transversal slices, with
resolution of 2.4x2.4x2.4 mm, and FOV of 219mm. The first six volumes in each run were discarded to

allow T1 magnetization to reach steady state.

Statistical Analyses

All data analyses, including multi-voxel decoding and tests of invariance, were performed on the individual
data of each participant. In designing our experiment, we favored collection of a large amount of data per
participant (3,240 trials, about 8 hours of scanning) rather than a large number of participants. Each separate
analysis can be considered a replication of a single-subject experiment. With our sample sizes (n=135 per
stimulus), our tests can detect a 6% difference from chance in classifier performance with 85% power, an 8%
drop in classifier performance with >80% power, and kernel density estimate error is maximally reduced,

according to simulation studies [63].
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Region of Interest

The boundaries of V1 are commonly found using a functional localizer procedure. However, previous work
has shown such boundaries can be accurately estimated from cortical folds, without the need for a functional
localizer [50]. Additionally, evidence shows that the definition of V1 boundaries using the algorithm proposed
by Hinds et al. [50] has a precision that is equivalent to 10-25 minutes of functional mapping [64]. Therefore,
we applied the Hinds et al. [50] algorithm, implemented in Freesurfer 6.0 [65], to the anatomical T1-weighted
images, to define the boundaries of V1 in each participant and obtain an ROI mask. The obtained V1 mask
was then converted into a binary mask, and transformed to the individual’s functional scan space (the

averaged volume of the first functional run was used as a target) using linear registration with FLIRT.

BOLD Data Preprocessing

Data were processed and analyzed using nipype Python wrappers for FSL [66, 67]. Basic preprocessing of
functional data included skull stripping, slice time correction, and head motion correction using MCFLIRT.
All functional runs for a given subject were then aligned to an averaged volume of the first functional run for
the same subject. This step ensured that the entire time-series for each subject lay in the same co-ordinate
space. The aligned time-series was then concatenated into a single time-series file for further processing. The
concatenated series for each subject was de-trended using a Savitzky-Golay filter with a polynomial order of

3 and a window length of 81 secs [68].

Deconvolution

Using the obtained V1 mask, time-series from V1 voxels were extracted for further analysis. Single-trial
activity estimates were obtained via a data-driven deconvolution technique in which deconvolved neural
activation values and a model of the hemodynamic response function (HRF) are estimated together [68].
Unlike other methods that hold the shape of the HRF constant across voxels, this technique allows the shape
of the HRF to be different in each voxel, resulting in more accurate activity estimates. The model is im-
plemented via the hrf estimation Python package v. 1.1 (https://pypi.org/project/hrf_estimation/).
The hrf_estimation package presents 10 different options for HRF modeling, with varying options for the
HRF basis function and for the General Linear Model estimation technique. To select the optimal combina-
tion of HRF and estimation method, we performed a cross-validated decoding analysis using data from the
training runs of a single participant (data from the testing runs was not used in this pre-analysis). First, we
generated activity estimates from all possible model combinations (estimation method and HRF). Then, for

each model, we trained and tested an SVM classifier to decode orientations from a portion of the training
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set, and tested the classifier with the remaining data. We chose the Rank-1 General Linear Model with a

3-basis-functions HRF model, based on the fact that it yielded the highest testing accuracy score.

Decoding Analysis

To decode stimulus types based on voxel-wise activity patterns, we used a Nu-support vector machine
(NuSVC) classifier with a linear basis function implemented via the Python package scikit-learn v. 0.19.1
[69]. We used the de-convolved activity patterns from V1 voxels as inputs to the classifier, while trial-specific
stimulus values (either orientation or spatial position) were provided as labels.

To decode orientation, we employed two separate classifiers, corresponding to the two different spatial
positions (context dimension) at which the oriented gratings were presented during the training runs of the
experiment (see Figure 2). Each classifier was trained to decode grating orientation (0°, 45°, 90°, and 135°)
using only trials in which a specific spatial position was presented. However, the classifier was then tested
with data collected from independent test runs at all four spatial positions. This resulted in an accuracy
estimate at the training position, as well as at the other three spatial positions. For example, to train the
first classifier, we gathered all trials that were presented at the top-right spatial position. After normalizing
the data, the classifier was trained using leave-one-run-out cross-validation with data from the training runs.
Cross-validation was used to optimized the Nu parameter of the classifier, to obtain the highest accuracies
within the training set. A new classifier was then trained on all the training data using the chosen Nu
parameter. This classifier was then tested with data from testing runs.

To decode spatial position, we employed four separate classifiers corresponding to the four levels of
grating orientation (context dimension) that were presented during the training runs of the experiment.
Each classifier was trained to decode spatial position (top-right vs bottom-left, see boxed stimuli in Figure
2) using only trials in which a specific grating orientation was presented. However, the classifier was then
tested with data collected from independent test runs across all levels of grating orientation. This resulted
in an accuracy estimate for the training grating orientation, as well as the other three levels of grating
orientation. As in the orientation decoding procedure, we divided the data into independent training and
test sets, performed normalization, and optimized the classifier’s Nu parameter via leave-one-run-out cross-
validation. Omne important difference is that spatial position decoding involved a two-class classification
problem, where the classifiers had to discriminate between the top-right and bottom-left spatial position of
the stimulus window (the only two positions presented during training trials, see boxed stimuli in Figure 2).
As the classifier was not trained to classify the bottom-right or top-left spatial positions, we dropped those
trials from the testing data set in this analysis. This ensured that the model fitting and testing procedures

remained consistent across both decoding analyses.
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fMRI Decoding Tests

We applied three decoding tests to our data: the cross-classification test, the classification accuracy
invariance test, and the decoding separability test. All tests where applied to the results of the two decoding
analyses above: decoding of orientation and spatial position. In the descriptions below, the target dimension
refers to the decoded stimulus values, and the context dimension refers to the stimulus values irrelevant for
decoding that only changed from training to testing.

All the tests described below were implemented in Python expanded with SciPy v. 1.1.0 (https://wuw.
scipy.org/) and Statsmodels v. 0.9.0 (https://www.statsmodels.org/). Plots were created using the

Matplotlib library v. 2.2.2 (https://matplotlib.org/)

Cross-classification Test. We implemented the cross-classification invariance test [e.g., 1, 2, 3] by train-
ing a linear SVM, as described above, to classify levels of the target dimension (grating orientation or spatial
position) while holding the level of the context dimension constant. For example, to decode orientation we
start by training the SVM classifier to predict orientation in a given spatial position. Then, we test the
accuracy of the classifier with data from independent test sets at the training position, as well as three other
spatial positions (i.e., different levels of the context dimension). We tested whether each of these accuracies
was above the chance level of 25% correct using a binomial test, and corrected the resulting p-values for

multiple comparisons using the Holm-Sidak method.

Classification Accuracy Invariance Test. This test used the same estimates of classification accuracy
described for the cross-classification test, but uses them to check whether there was a significant drop in
performance from the training to the testing context values. We first performed an omnibus Chi-Square test
of the null hypothesis that accuracy does not depend on level of the context dimension. In addition, we
tested accuracy at each testing context value against the training context value using a pairwise z test for

proportions, and corrected the resulting p-values for multiple comparisons using the Holm-Sidak method.

Decoding Separability Test. Decoding separability is defined as the case where the decoding distribution
of a stimulus does not change across different levels of the context dimension. The distance between the two

distributions was measured through the L1 norm:

1= / P () — p2 (2)] =, (2)

where p; and ps represent the distributions of decoded values at levels 1 and 2 of the context dimension,

respectively.
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For each combination of values of the relevant and context dimensions, we obtained decision variables from
the trained SVM linear classifier. These decision variables were used to estimate the decoding distribution
using kernel density estimates (KDEs). A gaussian kernel and automatic bandwidth determination were
used as implemented in the SciPy function gaussian_kde. Let p;; (z) represent the KDE for a stimulus
with value ¢ on the target dimension and value j on the context dimension, evaluated at point z. Each
Dij (2) was evaluated at values of z going from -3 to 6, in 0.01 steps, indexed by k, which were confirmed to
cover the range of observed decision variable values. Then an estimate of the summed L1 distances indicating
deviations from decoding separability was computed from all four KDEs obtained, according to the following

equation:

L1§ =" " |pa (2x) — i (21)] - (3)
k

i

, where j = 1 is the training level of the context dimension. The LIJG (with G standing for global) simply
takes an estimate of the L1 distance (obtained by discretizing the continuous decision variable z) defined
in Equation 2 for each value of the relevant dimension, and then sums them together. We computed Lle
separately for each value of the context dimension, or j # 1.

We used a permutation test to test whether each Lle statistic was significantly larger than expected
by chance. In this test, the level of the context dimension j was randomly re-assigned to all data points,
KDEs were estimated, and the Lle was computed according to Equation 3. This process was repeated 5,000
times, to obtain an empirical distribution for the statistic, from which accurate p-values were computed
using the procedure proposed by [70]. The resulting p-values were corrected for multiple comparisons using

the Holm-Sidak method.

Simulations

The simulations described below were implemented in Python 2.6 extended with Numpy v. 1.16.2 (https:
//numpy .org/). The decoding analysis of simulated data was performed exactly as described for fMRI data
in the sections Decoding Analysis and fMRI Decoding Tests above, with the exception that the Nu parameter

of the SVM was set to the default value of 0.5 rather than optimized based on cross-validation.

Model

In our simulations, we used a standard population encoding model and a linear measurement model.
Both are common choices in the computational neuroimaging literature (for a review, see [43]), both in

recent simulation work [e.g., 71, 47, 22|, as well as in model-based data analysis [e.g., 19, 72, 21, 38]. We
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assumed a circular dimension with values ranging from -90 to 90, as is the case of grating orientation, but

our conclusions apply to non-circular dimensions as well.

Encoding Model We used standard encoding models to represent the activity patterns of populations
of neurons within a given voxel. Our encoding model was composed of several independent channels, rep-
resenting any number of neurons that have similar stimulus preferences. Each channel is highly tuned to a
specific value along the target stimulus dimension, such that the channel’s response becomes attenuated as

we move away from the preferred value. The tuning function of a single channel is represented by a Gaussian

function:
max 1 s—sc 2
Je(s) = e eap(—5 (=), (4)
We
, where r*** represents the maximum neural activity for channel ¢, the mean s. represents the channel’s

preferred stimulus, and the standard deviation w, represents the width of the tuning function. The height of
the tuning functions at any value along the stimulus dimension (i.e., f.(s)) represents the average response
of the channels to that particular stimuli.

We assume that the response of each channel r. is a random variable with Poisson distribution:

fols)'" e

re!

P(rels) = ()

The full encoding model was composed of ten channels with activity described by Equations 4 and 5.
Unless indicated otherwise below, we used a homogeneous population model, in which the parameters s,
were evenly distributed across all possible values of the dimension (i.e., from -90 to 90 degrees), and other
parameters were fixed to the same values for all channels: 77*** = 10, w, = 15.

Figure 12a shows an example of the encoding process. When a face with a value of 75% maleness is
presented to the model, the channel encoding distribution produces a vector of responses. Each element in
this vector corresponds to the response of a particular channel. The channels with the strongest preference
for the value 75% show the highest response in this vector. Since the response of neural populations are
known to be noisy, channel noise is added to each element of the response vector. The final output is a noisy

vector of channel responses that change slightly for repeated presentations of the same stimulus.

Measurement Model Because neuroimaging studies produce only indirect measures of neural activity, a
measurement model is required to link the neural responses of the encoding model with voxel-wise activity

values. The measurement model is described by the following equation:
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Figure 12: (a) Population encoding model, consisting of a set of channels that are tuned to specific stimulus
values along a given dimension (e.g., maleness). When a stimulus with a particular value on the maleness
dimension is presented, the channels respond according to their stimulus preferences. The channel responses
are then perturbed by random channel noise. The final output represents a vector of noisy firing rates in
response to a particular stimulus. (b) Linear measurement model. The measurement model provides a link
between neural encoding channels and voxel-wise activity measures. Activity in each voxel (represented by
cubes) is a linear combination of neural channel responses (r = [ry, 72,73, ...rk]), plus independent random
measurement noise (represented by the dice next to each cube).
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a=rW +e¢ (6)

where a is a row vector of voxel activity values, r is a row vector of neural responses sampled from the
encoding model (i.e., from Equation 5), W is a weight matrix were each column w, represents the linear
measurement model for a different voxel a,,, and € is a random normal row vector with mean 0 and covariance
matrix with ¢ in the diagonal and zeros elsewhere. The value of o was varied in Simulation 1 and was fixed
to 5 in Simulation 2 (see below).

Equation 6 indicates that the activity in each voxel is a linear combination of neural channel responses,
plus some random measurement noise. As shown in Figure 12b, the model for each voxel was composed of
a finite number of encoding channels that independently contributed to the aggregate signal of the voxel
according to a set of weights. The values of the weights were randomly and uniformly sampled from 0 to 1,
and then normalized by column, so that weights in w, would add up to one. This way, the weights can be
interpreted as the relative contribution of each channel to a voxel’s activity.

We simulated a total of 100 voxels. In each simulated trial, the encoding model was presented with a
given stimulus and produced a random vector of neural responses r as explained in the previous section,

which were then used as input to the measurement model to obtain a random vector of voxel activities a.

Simulation 1: False Positive Invariance Resulting From Features Of The Measurement Model

The model underlying this simulation was created so that the encoding of the target dimension (e.g.,
orientation) was completely different across two levels of the context dimension (e.g., spatial position). That
is, two separate encoding models were created for the two levels of the context dimension. The first context
model consisted of a homogeneous population code. The second context model was composed of channels

whose tuning parameters were completely randomized. For each channel, the position parameter s. was

max

randomly sampled from a uniform distribution covering all values in the dimension, 77

was similarly
sampled from values between 5 and 20, and w. from values between 5 and 25. The randomized second
context model was extremely unlikely to share any properties with the first context model (compare the top
and bottom encoding models in Figure 7b).

The measurement weights of the first context model, W1, were randomly sampled. On the other hand,
the measurement weights for the second context model, W5, were chosen so that the activity patterns
generated by any stimulus presented to this second level model would be as similar as possible as those

presented to the first level model. To do this, we presented the context 1 model with the preferred stimulus

of each channel s. 20 times, and each time sampled data from 100 voxels. We then presented the context
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2 model with the same stimuli a single time, and recorded a vector of average responses from the encoding
model using Equation 4 (i.e., neural channel responses without any noise). Finally, for each voxel, the vectors
of weights in Wy were obtained via Lasso regression, where voxel-wise activity patterns produced by the
first context model were used as outputs to be predicted from the average neural activities obtained from
the second context model. Using Lasso regression, as implemented in sklearn, allowed us to constrain the
weights to be positive. The regularization parameter of the regression model was not optimized, but fixed
to a value of 0.01.

As shown in Figure 7b, each simulation started by creating such a model (step 1), and continued by
sampling data from it (step 2). To get that data, we presented the model with four stimuli, with values of
-45°, 0°, 45°, and 90°, and sampled voxel activity patterns from it. Each stimulus presentation was repeated
20 times. We sampled data this way both from the first and second level models constructed as indicated
above. Data was sampled twice from the first level model, to obtain training and testing data sets, and only
once from the second level model, to obtain a testing data set only. We then performed a cross-classification
test on the resulting data (steps 3 and 4 in Figure 7b), following the same procedures as with the experimental
data explained above, with the exception that the Nu parameter of the SVM was fixed to the default value
of 0.5. Each simulation was repeated 200 times. The results presented represent average statistics across all
simulations, obtained from the testing data sets.

Finally, we repeated the group of simulations a total of 20 times, each time with a different value for the

level of voxel measurement noise o, going from 1 to 20.

Simulation 2: False Positive Invariance Resulting From Similarly Tuned Neural Subpopulations

Across Contexts

We created a model in which a target dimension is encoded in a completely context-specific manner, with
one subpopulation of neurons responding in context 1, and a different subpopulation of neurons responding
in context 2. The weights w, for context 1 were randomly generated, as explained above. To create the
measurement model for context 2, we first obtained a vector e of random values sampled from a normal
distribution with mean zero and standard deviation equal to oe. This random vector was added to w, (step
2), and then the values were made positive through rectification and normalized to add up to one (step 3).

Once the model was generated, the simulation was carried out following the same additional steps as in
Simulation 1, numbered 2 to 4 in Figure 7b. The only difference was that ¢ = 5 in the measurement model,
whereas the value of oe was varied from 0 to 0.5. At the highest values of o, the standard deviation of the

changes in weights in the measurement model was 500% the average value of those weights (0.1).
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us7 - Simulation 3: On The Difficulty To Obtain A Valid Continuous Measure Of Invariance/Specificity

1158 In Equation 2, we have used the L1 distance as a measure of context-sensitivity and as the basis for the

use  decoding separability test:

1= / Ip1 (2) — po ()] d, (7)

1160 where p; and ps represent the probabilistic representation of a stimulus at levels 1 and 2 of the context
161 dimension, respectively. In the current context, the random variable = represents a variable or vector encoding
162 the presented stimulus, which can be a vector of firing rates at the level of the encoding model, a vector of
116s  measurements at the level of indirect activity values (e.g., a voxel activity pattern), and a decision variable
ues  at the level of decoding.

1165 The L1 distance can be interpreted as the area in blue in Figure 10. Martinez-Camblor et al. [73]

16 proposed the complementary distance 7€ between two distributions:

A = / min (py (), ps(2)) da, (8)
1167 which is the area in red in Figure 10. One can think of these two indexes as complementary.
1168 We use both &% and L1 to define an invariance coefficient v:
AdC
| = — (9)
L1+ A€
1160 We can compute ¢ for the encoding distributions, t., for the distributions at the level of measurement

1170 channels, ¢,,,, and for the decoding distributions, t4. An issue in the computation of these indexes is that some
172 of them require integration over high-dimensional joint densities. We can estimate such integrals through

172 MonteCarlo methods, in which an estimate of the following definite integral:

/a b p(z)dz

1173 is obtained by drawing N random samples uniformly within the {a,b} segment and calculating:
N
(b—a) > p(X)
i=0
1174 For an appropriate choice of a and b (i.e., such that values of p; (z) and ps (z) outside the interval are

urs  close to zero), the invariance coefficient ¢ is approximately:
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we can get an estimate ¢ by using the MonteCarlo estimates of &/% and L1:

(b—a) & SN g min (p1(X;), p2(X,))
(b—a) & SN p1(Xe) — p2(X)| + (b— a) & Siv g min (p1(X;), p2(X3))
Sy min (py(Xi), pa(Xa))
S0 [p1(Xa) — pa(X3)| + min (p1(X5), p2(X5))
S o min (p1(X;), p2(Xi))
S o maz (p1(X:), pa(X5))

o>
|

>
Il

>

(10)

In the multidimensional case, the samples become vectors x;, and p; (x;) and ps (x;) are joint probability
distributions, but Equation 10 still applies.

Because we can compute an invariance index for both encoding distributions Z. and decoding distributions
Lq, it is possible to evaluate the validity of iy as a measure of invariance in the underlying representation
L., defined as the correlation between both indexes across a number of different encoding and measurement
models.

We performed a simulation with that goal in mind. The encoding model consisted of only 5 channels
evenly spaced along the target encoded dimension. This reduced the dimensionality of the underlying neural
representation, which allowed us to precisely estimate 7. using the MonteCarlo procedure described above
without a prohibitive sample size. The homogeneous standard encoding model was used in context 1, just
as described for the previous simulation. To continuously vary the level of invariance in the encoding model,
the model in context 2 was the same as the model in context 1, but each channel’s preferred stimulus and
width were randomly shifted up or down by a value of n and /3, respectively, were n represents the level of
change in the encoding model with a change in context. The measurement model for both levels of context
was built using the same procedure described for simulation 2, with o fixed to 0.1 corresponding to the
average weight value.

In each iteration of our simulation, we created the encoding and measurement models as just described,
with a value of n randomly chosen between 0 and 6, a range of values that produced values of i, between zero
and one according to preliminary simulations. To estimate ., we used the previously described MonteCarlo
procedure with a sample size N = 200,000. Each sample consisted of a random vector of neural activity

values r, which was used to evaluate p; (r) and p (r) using Equation 5 and assuming independent channels
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(i.e., p1(rl]s =0) = [[.p1 (r|]s = 0)). According to preliminary simulations, the chosen sample size ensured
convergence of the MonteCarlo estimate . to a stable value across many values of 7. We also sampled 200
activity patterns from the measurement model at four values of the encoding dimension, including 0, and
at each of the two contexts. We used these samples to estimate two versions of 74. For the first version, we
focused on stimulus decoding. We used half of the sampled patterns to train a support vector classifier to
decode the stimulus presented in context 1 (using the same procedures described for previous simulations),
and presented the trained classifier with 100 test patterns obtained for a stimulus value of 0, presented both
in context 1 and 2. The classifier decision variables obtained from those two test sets were used to estimate
two decoding distributions, using kernel density estimation as described in section Decoding Separability
Test.. The two decoding distributions were then used to compute ¢4, using discretization of the density as
described for Lle (see Equation Decoding Separability Test. and surrounding text). The second version of
tq was obtained by focusing on context decoding; that is, training a support vector classifier to decode the
context in which stimulus 0 was presented. As before, the classifier was trained with half of the sampled
patterns and then presented with 100 test patterns obtained for a stimulus value of 0, presented both in
context 1 and 2. Finally, iy was computed from decoding distributions obtained through kernel density
estimation.

We repeated the previously-described procedure for 200 iterations, each time recording the values of 7,
Ze, and the two versions of 3. We used the resulting values to compute Pearson correlations between 7, Z.,

and iq.
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