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Abstract18

Many research questions in sensory neuroscience involve determining whether the neural represen-19

tation of a stimulus property is invariant or specific to a particular stimulus context (e.g., Is object20

representation invariant to translation? Is the representation of a face feature specific to the context21

of other face features?). Between these two extremes, representations may also be context-tolerant or22

context-sensitive. Most neuroimaging studies have used operational tests in which a target property is23

inferred from a significant test against the null hypothesis of the opposite property. For example, the24

popular cross-classification test concludes that representations are invariant or tolerant when the null hy-25

pothesis of specificity is rejected. A recently developed neurocomputational theory suggests two insights26

regarding such tests. First, tests against the null of context-specificity, and for the alternative of context-27

invariance, are prone to false positives due to the way in which the underlying neural representations28

are transformed into indirect measurements in neuroimaging studies. Second, jointly performing tests29

against the nulls of invariance and specificity allows one to reach more precise and valid conclusions about30

the underlying representations, particularly when the null of invariance is tested using the fine-grained31

information from classifier decision variables rather than only accuracies (i.e., using the decoding separa-32

bility test). Here, we provide empirical and computational evidence supporting both of these theoretical33

insights. In our empirical study, we use encoding of orientation and spatial position in primary visual34

cortex as a case study, as previous research has established that these properties are encoded in a context-35

sensitive way. Using fMRI decoding, we show that the cross-classification test produces false-positive36

conclusions of invariance, but that more valid conclusions can be reached by jointly performing tests37

against the null of invariance. The results of two simulations further support both of these conclusions.38

We conclude that more valid inferences about invariance or specificity of neural representations can be39

reached by jointly testing against both hypotheses, and using neurocomputational theory to guide the40

interpretation of results.41

42
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Author Summary43

Many research questions in sensory neuroscience involve determining whether the representation of a44

stimulus property is invariant or specific to a change in stimulus context (e.g., translation-invariant object45

representation; configural representation of face features). Between these two extremes, representations46

may also be context-tolerant or context-sensitive. Most neuroimaging research has studied invariance using47

operational tests, among which the most widely used in recent years is cross-classification. We provide48

evidence from a functional MRI study, simulations, and theoretical results supporting two insights regarding49

such tests: (1) tests that seek to provide evidence for invariance (like cross-classification) have an inflated50

false positive rate, but (2) using complementary tests that seek evidence for context-specificity leads to more51

valid conclusions.52

53
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Introduction54

A common question in sensory and cognitive neuroscience is to what extent the neural representation55

of a stimulus property changes as a function of changes in other aspects of stimulation–that is, the context56

in which it is presented. As shown in Figure 1a, one possibility is that the neural representation of the57

target property is invariant to changes in context. In that case, the neural activity representing the target58

property does not change at all with changes in context. Another possibility is that the neural representation59

of the target property is context-specific. In that case, the neural activity representing the target property60

completely changes with a change in context. Another way to describe context-specificity is by saying that61

the target property and its context are represented configurally; that is, as a configuration separate from its62

components. As shown in Figure 1a, these two cases of complete invariance and specificity should be seen63

as extremes in a continuum. In this continuum, representations that are closer to invariance (left half of64

the continuum) could be characterized as “tolerant” to changes in context, whereas representations that are65

closer to specificity (right half of the continuum) could be characterized as “sensitive” to changes in context.66

Most human neuroimaging research has studied invariance and specificity using operational tests that67

provide evidence against the null hypotheses represented by the two extremes in Figure 1a. However, most68

neuroscientists are more interested in determining to what extent a representation is closer to one of the69

extremes in the continuum, being classified as either context-tolerant or context-sensitive.70

For example, probably the most widely used test in this area is cross-classification (or cross-decoding;71

1, 2, 3; we have also called this test classification accuracy generalization: [4]), illustrated in Figure 1b. The72

first step in cross-classification is to train a classifier to decode a particular stimulus feature, such as whether73

a presented face is male or female, from patterns of fMRI activity observed across voxels. The second step is74

to test the trained classifier with new patterns of fMRI activity, this time obtained from presentation of the75

same stimuli, but changed in an irrelevant property, such as head orientation. Using our nomenclature, in76

this example the target stimulus property is face sex, and the context is face orientation. If accuracy with77

the test data is higher than chance, then researchers usually conclude that the neural representation of the78

target feature has a certain level of tolerance to changes in context (usually described as invariance), within79

the area from which the fMRI activity was obtained.80
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Figure 1: (a) Varying degrees of change in neural encoding as a function of a change in context. With a change
in context, context-invariant representations do not change at all, whereas context-specific representations
change completely, with a continuum between both extremes. Tests in the literature focus on evidence against
one of the two extremes. (b) Tests of context invariance and specificity. Steps 1 and 2 are common to all tests.
Different tests differ on how invariance/specificity is evaluated in step 3. The figure depicts distributions
of classifier decision variables and the areas of these distributions on which each test focuses (in gray).
(c) Representations are transformed from the space of neural activities to the space of voxel measurements.
Context-invariant representations (top) cannot be transformed to decrease their invariance and increase their
specificity, whereas context-specific representations (bottom) can be transformed to increase their invariance
and decrease their specificity. (d) Example highlighting the differences between spatially smooth versus fine-
grained encoding schemes, and a particular combination of the two schemes that produces false-positives in
a voxelwise analysis. Each column represents a voxel containing neurons (small circles), each with selectivity
for one of two values of the target property (red and yellow). The multivoxel pattern of activity is the same
for both levels of the context dimension (spatially smooth encoding), but completely different populations
of neurons encode each level (fine-grained encoding).
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The cross-classification test has been used to provide evidence for tolerant encoding of face identity across81

viewpoint [5], object category and viewpoint across spatial position [6], object category across shape [and82

vice-versa; 7], motor actions across modalities [8], place of speech articulation features across manner of83

articulation [9], object category [10] or face identity [11] across stimulus modality, word semantic category84

across stimulus modality [12], learned category labels across categorization tasks [13], and semantic word85

representation across languages [14], among others [for a review, see 3].86

Cross classification is a test against the null hypothesis of no generalization of decoding accuracy from87

one context to another, a condition that would be met under context-specific encoding of the target property.88

As shown in Figure 1, evidence against the extreme of context-specificity means that the representation can89

fall anywhere in the continuum except the right extreme. Invariance and tolerance are only some of the90

possibilities, as representations may also be context-sensitive.91

An example of a test that provides evidence against the null hypothesis of invariance is the classification92

accuracy invariance test [4]. As shown in Figure 1b, this test involves the same steps described for cross-93

classification, but during the test phase the classifier is presented with data obtained at both the training94

and the testing contexts (i.e., context 1 and 2 in Figure 1). The null hypothesis is that decoding accuracy95

is equivalent across contexts (see step 3.2 in Figure 1b). When accuracy drops significantly from training to96

testing context, one can conclude that the underlying representation of the decoded property is not invariant97

to context. We are aware of at least one prior study using a version of this test to study encoding of face98

information [6].99

Again, evidence against the extreme of context-invariance means that the representation can fall anywhere100

else in the continuum shown in Figure 1a. Context specificity is only one of the possibilities, as representations101

may also be context-sensitive or context-tolerant.102

An important issue in current practice is that researchers seem to believe that invariance and specificity103

can be contrasted with each other, ignoring that a continuum exist between those two extremes and most104

cases are likely to lie somewhere in that continuum. Thus, a more reasonable approach would be to deter-105

mine whether enough evidence exist to reject one extreme and not the other, which provides evidence that106

the representation lies either at the left half of the continuum (invariance/tolerance) or at the right half107

(specificity/sensitivity)..108

In a previous theoretical paper [4], we explored to what extent the context tolerance or specificity of neural109

representations could be measured using a variety of neuroimaging analyses, with a focus on decoding tests110

like cross-classification and classification accuracy invariance. Because neuroimaging involves only indirect111

measures of neural activity, it cannot be used to get precise indicators of where a neural representation112

falls within the continuum shown in Figure 1a. In general, the process by which neural representations113
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Test against specificity (e.g., cross-classification)

Not significant Significant

Test against invariance (e.g.,

decoding separability)

Not significant Inconclusive results Tolerance or invariance likely

Significant Specificity or sensitivity likely Inconclusive results

Table 1: Lookup table summarizing how joint tests against specificity and invariance should be interpreted.
Note that significance of the popular cross-classification test does not guarantee a conclusion for tolerance or
invariance. Only when such a test is accompanied by a nonsignificant test against invariance one can reach
a positive conclusion.

are transformed from the neural space into a space of measurements (e.g., voxel activities) will distort114

the representations in such a way that makes such precise indicators impossible. However, the results of115

neuroimaging decoding tests like those just described do allow to make some inferences about the underlying116

neural representations. Besides clarifying what different tests measure (i.e., cross-classification provides117

evidence against context-specificity, rather than evidence for invariance), this theoretical work provides two118

important insights that have consequences for neuroimaging research.119

The first theoretical insight, which was not explicitly described or supported in our previous work but120

is strongly suggested by that work, is that jointly performing tests against the nulls of invariance and121

specificity allows one to reach more precise and valid conclusions about the underlying representations.122

When both types of tests are carried out, one can use Table 1 to reach valid conclusions about properties of123

the underlying neural code. For example, one may use the cross-classification test to obtain evidence against124

context-specificity, but usually researchers who use this test are interested in reaching a conclusion favoring125

invariance or tolerance [e.g., 5, 3]. For that, information from a test against invariance would be very useful.126

If a test against invariance is not significant, one can make a stronger case for tolerant representations.127

Because sample size and measurement noise are equivalent in this test and the significant cross-classification128

test, the best interpretation is that the underlying representation is likely to be farther away from specificity129

than from invariance, being tolerant/invariant rather than sensitive. On the other hand, if the test offers130

evidence against invariance, then the underlying representations could be anywhere in the continuum shown131

in Figure 1a, except at the two extremes, and it would be premature to make a conclusion of tolerance in132

the underlying representations, as they may also be context-sensitive. Because tests against invariance have133

been rarely used in the literature, one goal of the current study is to provide evidence of the validity of such134

tests, and for our claim that performing them together with tests against specificity should lead to more135

valid conclusions about the underlying representations.136

The second theoretical insight is that there is an important asymmetry regarding the validity of tests of137

invariance and context-specificity. If the underlying neural representation is truly invariant, then a signal138

showing evidence against invariance will never be found from neuroimaging decoding tests. In this case, any139
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finding of lack of invariance would result from measurement noise, and the probability of such finding would140

be equal to the false positive (type I) error rate of the statistical test, usually α = .05. On the other hand, if141

the underlying representation is truly context-specific, it is still possible to find a signal at the level of voxels142

showing evidence against context-sensitivity. In this case, such a signal will add to the probability of false143

positives, which would be higher than α.144

The reason lies in the contribution of the measurement model, which summarizes how representations145

are transformed from the space of neural representations into the space of measured variables. Figure 1c146

depicts a schematic example, where representations of the target stimuli in one context (e.g., faces with147

front orientation) are shown as red circles, and representations in a second context (e.g., faces with sideways148

orientation) are shown as green crosses. In the top example, the original neural representations are fully149

context-invariant, meaning that the representation of a stimulus in either context is in the exact same150

point in neural space. Regardless of what transformation is induced by the measurement model, such151

representations will remain invariant in the measurement space, as the transformation will have the same152

effect on two identical representations (i.e., overlapping crosses and circles in Figure 1c). In the bottom153

example, the original representations are fully context-specific, meaning that the stimulus representations154

occupy completely different regions of space depending on context. In this case, there are transformations155

that would reduce differences in the representation of stimuli across contexts, making the representations less156

context-specific. In sum, the transformation from neural space to measurement space (i.e., the measurement157

model) cannot make a completely invariant representation appear as if it was sensitive to context, but it can158

make a completely context-specific representation appear as if it was tolerant to changes in context.159

In our previous work [4], we showed through mathematical proofs that this asymmetry is inherent to160

inferences about invariance and specificity from indirect measures of neural activity. While those results are161

general (i.e., they make no assumptions about the specifics of encoding and measurement), they are also162

very abstract and do not allow one to precisely characterize the potential pervasiveness of the problem in163

neuroimaging studies. For that, one must be more explicit about the specific encoding and measurement164

models that are assumed to be at play. Here we take a step in this direction by focusing on encoding165

and measurement models widely used in computational cognitive neuroscience and thought to be at play in166

neuroimaging studies of encoding in early vision.167

The simplest example, depicted in Figure 1c, is one in which changes in the target property produce168

smooth changes in the spatial distribution of activity, in a similar scale as voxel size, while changes in169

context produce changes in the fine-grained spatial distribution of activity, at the sub-voxel level [15]. Take170

the example shown in Figure 1d. Each column represents a different voxel containing a large number of171

neurons, represented by small circles, with selectivity for some target stimulus property. In this simplified172
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example, the neurons can show preference for one of two values of the target property, represented by the173

colors red and yellow. Neurons can be inactive in a particular context, which is represented by the color174

gray. Different voxels have different proportions of the two types of neurons, so that despite of the spatial175

pooling of activity produced at each voxel, there is a distinctive pattern of activity produced across voxels176

by each stimulus property. This is a spatially smooth coding scheme.177

On the other hand, note how within a voxel widely different spatial distributions of activity may produce178

the same value of global activity at the voxel level. For example, the same aggregate activity is obtained179

for voxel 1 in context 1 (top) and context 2 (bottom), despite the fact that the fine-grained distribution of180

activities is widely different. The same is true for all other voxels. Thus, within each voxel one can see a181

fine-grained coding scheme that distinguishes between contexts.182

More importantly, in Figure 1d the neurons encoding the target dimension in the first context (uneven183

columns of neurons) are completely different to those encoding the target dimension in the second context184

(even columns of neurons). However, the spatial distribution of neurons specific to each value of the context185

dimension is spatially homogeneous, with about the same number of neurons of each kind in the voxel186

regardless of context.187

The result of a spatially smooth encoding of the target dimension across voxels, together with a fine-188

grained spatial distribution of neurons specific to each value of the context dimension, produce as a result a189

case in which neural encoding of the target dimension is context-specific, but appears as perfectly invariant190

at the level of voxel activities.191

A good example of this type of encoding in the brain is encoding of spatial position and orientation in192

V1. Encoding of spatial position is spatially smooth in V1, with the scale of retinotopic maps being similar193

to the voxel sizes typically used in neuroimaging, whereas encoding of orientation is much more spatially194

fine-grained [see 16, 17]. This example shows that the kind of encoding scheme exemplified by Figure 1d can195

be found in the brain.196

Because of the influence of the measurement model depicted in Figure 1c, the need to jointly perform197

and interpret tests of invariance and specificity is even greater for researchers who aim to find evidence for198

tolerant/invariant representations. If a false positive is found in a test of context-specificity (e.g., cross-199

classification) due to issues in the measurement model, it is unlikely that a test of invariance (e.g., classifi-200

cation accuracy invariance) will also be significant. The inherent tendency toward false positives (i.e., > α)201

of the cross-classification test can be partially controlled by interpreting its results together with results of202

tests against the null of invariance.203

Here, we show that the two theoretical insights described above have important consequences for neu-204

roimaging research, through empirical evidence coming from an fMRI decoding study, and computational205
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evidence coming from simulation work. In the empirical study, we perform decoding of orientation and spa-206

tial position from fMRI activity patterns recorded in V1, a case in which properties of the underlying neural207

code are known. The cross-classification test provides strong evidence for the incorrect conclusion that, in208

V1, encoding of spatial position is tolerant/invariant to changes in orientation, as well as some evidence for209

the incorrect conclusion that orientation is tolerant/invariant to changes in spatial position. We find that the210

use of theoretically-derived tests of invariance can lead to more valid conclusions regarding the underlying211

code. The results of two simulations further support all of these conclusions. Our results highlight the valid-212

ity and value of using tests of invariance together with tests of context-specificity (e.g., cross-classification)213

when attempting to draw inferences about neural representations from neuroimaging decoding studies.214

Results215

Experimental Results216

The goal of our study was to validate the two insights provided by neurocomputational theory [4] described217

above. For this, we applied decoding tests of invariance and specificity to the study of orientation and spatial218

position in V1. Previous research has established that these properties are not encoded in an invariant way219

but, as explained earlier, the spatial scale of orientation and spatial position maps in V1 is likely to lead to220

the incorrect conclusion of invariance if tests of specificity, such as cross-classification, are applied on their221

own.222

Participants were presented with the stimuli in Figure 2 while they performed a task involving a stimulus223

presented at the center of the screen. Functional MRI data was acquired at the same time, with separate224

runs providing data for training and testing of a support vector machine (SM) classifier. Training runs were225

composed of stimuli presented only in spatial positions top-right and bottom-left (highlighted through red226

and blue boxes in Figure 2). Testing runs included all sixteen stimulus combinations. We trained a linear227

SVM classifier to decode a target dimension (e.g., spatial position) while holding the context dimension (e.g.,228

grating orientation) constant. We then tested the classifier with data obtained at the trained value of the229

context dimension (e.g., 0◦ orientation) as well as new values of the context dimension (e.g., 45◦, 90◦, and230

135◦ orientation). The classifier provided decision variables and accuracy estimates used to perform a test231

of specificity (cross-classification) and two tests of invariance (classification accuracy invariance, decoding232

separability) presented below (for more details, see Materials and Methods).233
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Figure 2: Stimuli were composed of oriented gratings (dimension 1) presented in a windowed spatial position
(dimension 2). Each trial consisted of a single combination of orientated gratings and spatial position. Train-
ing runs were composed of stimuli presented only in top-right and bottom-left spatial positions (highlighted
through red and blue boxes). Testing runs included all sixteen stimulus combinations.

The Cross-Classification Test Produces False Positives234

We performed a set of analyses using the cross-classification test to validate our theoretical prediction235

that this method should produce findings of false-positive invariance. The cross-classification test was con-236

ducted by assessing whether a linear decoder trained to classify the target dimension at one level of the237

context dimension, could perform the same classification above chance across non-trained levels of the con-238

text dimension. A positive result in the cross-classification test is usually taken as evidence for the existence239

of invariant representations in the area of interest [2, 3].240

We conducted two separate analyses using the cross-classification test in which we switched the identities241

of the target and context dimensions. In the first analysis, spatial position was treated as the target dimension242

to be decoded, while orientation remained as the context dimension. To obtain decoded stimulus values for243

spatial position, we used deconvolved single-trial estimates of activity in V1 voxels as input to the SVM linear244

decoder. We trained the decoder to classify trials based on spatial position labels (top-right vs bottom-left,245

see boxed stimuli in Figure 2) and holding constant the level of grating orientation (context dimension; for246

example, 0◦) using leave-one-run-out cross-validation, and tested it with independent data sets across all247

levels of grating orientation (0◦, 45◦, 90◦, and 135◦). To test for cross-classification invariance, we performed248

a binomial test on the accuracy estimates from the testing data set, corrected for multiple comparisons using249
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the Holm-Sidak method (for more details, see fMRI Decoding Tests). If the accuracy score was significantly250

above chance, then the cross-classification test concludes that spatial position is encoded invariantly from251

orientation in V1, a conclusion known to be false.252

For each participant, we repeated the analysis four times, once for each level of grating orientation that253

was held fixed in the classifier’s training data. We predicted that the cross-classification test would generate254

consistent false positives in the case where spatial position was used as the relevant dimension to be decoded.255

Since spatial position is encoded in a spatially smooth manner in V1, we expected strong performance of the256

classifier across all levels of orientation. In other words, we expected the accuracy scores of the classifier to257

remain above chance across different levels of the context dimension.258

Figure 3 shows accuracy estimates from such a decoding procedure for all five subjects. The SVM linear259

decoder achieves extremely high levels of classification accuracy in test sets across all 5 subjects. As predicted,260

the test incorrectly finds evidence for invariance of spatial position from orientation in all participants and261

all tests (all p<.001; for details see Table 1 in the Supplementary Material). This result is unsurprising, in262

the sense that one would intuitively expect it given the properties of encoding in V1. The important point,263

however, is that in most applications of the cross-classification test researchers do not know much about264

encoding in the area under study, and they could easily conclude in favor of invariance when the underlying265

code does not show such property.266

We performed a second analysis in which orientation was the target dimension to be decoded, while spatial267

position was the context dimension. We trained the decoder to classify trials based on grating orientation268

(0◦, 45◦, 90◦, and 135◦, see boxed stimuli in Figure 2) and holding constant the position of the spatial269

window (context dimension; for example, top-right in Figure 2) using leave-one-run-out cross-validation, and270

tested it with independent data sets across all levels of spatial position (top-right, bottom-right, bottom-left,271

and top-left in Figure 2). All other procedures remained the same as in the first analysis. Figure 4 shows272

decoding accuracy results for the orientation analysis. The SVM classifier was able to successfully decode273

orientation information at the original training position in all subjects, but for subjects 1 and 4 this was274

restricted to a single training window (bottom-left), which is at least partially due to individual differences275

in the quality of data (note that decoding accuracies are lowest for subject 4 in Figure 3). In contrast to276

spatial position classification, the classifier’s accuracy scores drop significantly in untrained testing windows.277

The classifier accuracy at the training window provides a ceiling of performance for the cross-classification278

accuracy (see 2, 3). That is, we are not interested in the analyses with non-significant accuracies at the279

training window (sub#1 and sub#4 at training window 1; see Figure 4), as in those cases we would not280

expect a significant cross-classification accuracy. Out of the eight analyses showing significant accuracy at281

the training window, two generated significant cross-classification results, which would lead to an invalid282
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conclusion of invariance. This number was higher than the 5% expected false positive rate for these tests,283

but a binomial test did not reach significance with p =.051, probably due to the low power of a test involving284

only eight analyses.285

Jointly Testing Against Specificity and Invariance Leads To Valid Conclusions286

The results from the previous section showed that the cross-classification test, which tests against the null287

hypothesis of context-specificity, can lead to erroneous conclusions about invariance of representations. We288

next aimed to show that the addition of tests of invariance [4] could solve such issues and lead to more valid289

conclusions about the underlying code. Here, we apply two of these tests on our data set: the classification290

accuracy invariance test and the decoding separability test. In contrast to the cross-classification test, both291

of these theoretically-driven tests try to detect failures of invariance as opposed to providing evidence for292

invariance.293

The classification accuracy invariance test defines invariance as the case where the probability of correct294

classification is exactly the same across all contexts. With invariance being the null hypothesis, the test295

is sensitive to any drop in the classifier’s performance across different levels of the context dimension. We296

implemented the classification accuracy invariance test by applying an omnibus Chi-Square test on the297

accuracy estimates from the linear decoder (i.e., testing whether all proportions are the same or some of298

them are different). Then, we performed pairwise comparisons between accuracy at the training level and299

each non-training level of the context dimension.300

The decoding separability test, unlike the previous two tests, does not make use of classification accuracy301

estimates. Instead, it directly relies on certain properties of the decoding probability distributions for302

individual stimuli. That is, linear classifiers like the one used here perform classification of a new data303

point by computing a decision variable z, representing the distance of the data point from the classifier’s304

hyperplane separating two classes. When the decision variable is larger than some criterion value (usually305

zero), the output is one class, whereas when the decision variable is smaller than the criterion the output306

is the other class. Instead of comparing simple accuracy estimates, the decoding separability test compares307

the full distributions of such decision variables, or decoding distributions.308

This test followed the same steps and rationale as the classification accuracy invariance test presented309

earlier, but instead of computing accuracies and testing their differences, we obtained decision variables from310

the trained classifier, and used those to estimate decoding distributions using kernel density estimation (see311

Figure 1b). For each pair of stimuli differing in the context dimension (e.g., 0◦ and 45◦ grating orientation,312

when the decoded variable was spatial position) we computed the distance between decoding distributions313

using a discretized L1 metric, which corresponds to the shadowed area in step 3.3 of Figure 1b. Then,314
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we summed a number of such L1 metrics across values of the decoded dimension (e.g., the two spatial315

windows, when the decoded variable was spatial position), which produced an L1Gj statistic (see Equation316

3). Simply put, while a single L1 metric is analogous to the accuracy of the classifier for a single decoded317

label, the L1Gj statistic is analogous to the overall decoding accuracy across all labels. The only difference318

is that L1Gj measures distances between decoding distributions, rather than accuracies. We performed a319

permutation test to determine whether the observed L1Gj statistic was higher than expected by chance320

under the null hypothesis of invariance; a positive result on this test gives evidence against neural invariance321

for the given comparison. Also, we must note that, in theory, the decoding separability test should provide322

more information about (and be more sensitive to) such violations than the decoding accuracy invariance323

test (see 4).324

As before, we first applied the invariance tests to decoding results from the spatial position classification.325

Results from the classification accuracy invariance are shown in Figure 3, and results from the decoding326

separability test are shown in Figure 5. The specific values obtained from the two tests are reported in327

Tables 2 and 3 of the Supplementary Material. The classification accuracy invariance test (Figure 3) did328

not find evidence against invariance in any of the subjects. However, in line with theoretical predictions,329

the decoding separability test (Figure 3) was much more sensitive to evidence against invariance present330

in the data. The test found failures of invariance in many cases where accuracy-based tests either found331

false positives (i.e., cross-classification) or failed to detect failures of invariance (i.e., classification accuracy332

invariance; see Figure 3). Overall, we found that the decoding separability test detected failures of invariance333

in the data of all five participants (17 out of 20 analyses).334

From these results, it is apparent that the decoding separability test is sensitive to failures of invariance335

known to exist in the underlying neural code, even when decoding accuracy seems to suggest perfect invari-336

ance (see Figure 3). These results serve as an empirical validation of the decoding separability test, which337

was developed directly from theory [4]. In addition, these results show the value of testing against invari-338

ance, in addition to testing against specificity, to reach valid conclusions about the invariance or specificity339

of underlying neural representations. Performing both tests and following the guidelines in Table 1, results340

are inconclusive about whether encoding of spatial position in V1 is invariant or specific to orientation. This341

conservative conclusion is far better than the invalid conclusion that one would reach by performing the342

cross-classification test by itself; namely, that encoding of spatial position in V1 is invariant to orientation.343

Next, we applied the invariance test to decoding results from the orientation classification. Results from344

the classification accuracy invariance test are shown in Figure 4, and results from the decoding separability345

test are shown in Figure 6. The specific values obtained from the two tests are reported in Tables 2 and346

3 of the Supplementary Material. The classification accuracy invariance test (Figure 4) was much more347
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sensitive to failures of invariance in this analysis. Failures of invariance were detected in every case where348

the classifier successfully decoded orientations above chance levels in the training window. Interestingly,349

failures of invariance were also detected in cases where the classifier did not successfully decode orientation350

above chance. This is counterintuitive, but expected from a theoretical point of view [see 4], which suggests351

that a decoder does not have to perform accurately or be optimal in any way to be able to detect failures352

of invariance. Contrary to our expectations, in this analysis the decoding separability test detected failures353

of invariance less frequently than the classification accuracy invariance test (see Figure 6). The decoding354

separability test detected failures of invariance in the data of four out of five participants (eight out of ten355

analyses).356

In comparison to the classification accuracy invariance test, the decoding separability test appears to be357

more sensitive to detecting failures of invariance in cases where the decoder’s performance reaches ceiling358

levels (Figure 5). However, when classification accuracy is well below ceiling levels, as in decoding of orien-359

tation, the test seems less sensitive than classification accuracy invariance, perhaps due to a lower statistical360

power of the permutation test involved.361

As was the case with decoding of spatial position, in this second analysis we also see the value of testing362

against invariance. While the results of the cross-classification test suggested invariant representations in363

subjects #2 and #3 (see Figure 4), such results are inconclusive when interpreted in the context of tests of364

invariance.365

Simulation and Theoretical Results366

The empirical results described in the preceding section clearly support the hypotheses that tests aimed367

at providing evidence for invariance, such as cross-classification, are prone to false positives, and that jointly368

performing tests against the nulls of invariance and specificity allows one to reach more precise and valid369

conclusions about the underlying representations.370

However, there are issues with experimental work that motivated us to further evaluate our hypotheses371

through simulation work. In particular, experimental work does not allow full control of the underlying neural372

representations. In our study, we assumed that encoding of spatial position was specific to orientation, and373

vice-versa, but it is unlikely that the true encoding of these variables in V1 is completely context-specific.374

For example, there is evidence that a minority of neurons in V1 are invariant to orientation [18]. This375

means that encoding of spatial position is best characterized as context-sensitive, but a critical reader could376

interpret this as evidence for tolerance. Simulation work provides complete control over the representations377

under study, which can be made to be fully context-specific, without any degree of tolerance to changes in378
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context. The relevant question is: Does cross-classification lead to conclusions of false-positive invariance379

under such circumstances? If yes: Can tests against invariance lead to more valid conclusions?380

Another issue with experimental results is that they can be difficult to generalize. A critical reader could381

argue that issues with tests of context-specificity like cross-classification are restricted to special cases, and382

not general as suggested by theory. Again, simulation and theoretical work allows one to provide results383

that are more general.384

Simulation 1: False Positive Invariance Resulting From Features Of The Measurement Model385

Some researchers might argue that they use the cross-classification test to detect any level of context-386

tolerance or context-sensitivity. Indeed, some researchers conflate the two and classify context-sensitivity as387

a form of tolerance, or partial invariance.388

In theory, even a completely context-specific code could produce false conclusions of invariance in neu-389

roimaging decoding studies, due to the transformation produced by the measurement model (see Figure 1c).390

To provide evidence for such a general claim, we turn to simulation and theoretical work (for details on391

the models and procedures used in the simulations, see Simulations in the Materials and Methods section).392

We study a case of complete context-specificity in which it cannot be claimed that any amount of tolerance393

exists in the neural representations.394

To create such a model, we started by defining two sets of encoding models, corresponding to two levels395

of the context dimension. In context 1, the target dimension was encoded through neural channels with396

homogeneous features (i.e., evenly spaced position, same maximum activity, same width), as shown at the397

top of Figure 7a. In context 2, the target dimension was encoded through neural channels with completely398

randomized features, which is exemplified at the bottom of Figure 7a. Then, we produced false positive399

invariance by optimizing the weights of the measurement model such that the voxel-wise activity values were400

similar across the two levels of the context dimension (Figure 7a). Finally, we sampled data from both models401

and used them as input to a linear SVM classifier. As in the preceding empirical analyses, the decoder was402

trained on data from the first level model and tested on independent data from both the first and second403

level models (Figure 7b). This entire procedure was repeated 200 times per simulation run, and we present404

the average results across simulations. We performed twenty simulation runs, where we gradually increased405

the measurement noise in each voxel (standard deviation going from 1 to 20, in steps of 1).406

Figure 7c shows the decoding accuracy results from this simulation. The most important values are407

represented by the blue curves, which represent performance of the classifier in the non-trained level of408

the context dimension. Whenever accuracy is above chance, represented by the dotted line, the cross-409

classification test leads to a conclusion of invariance in a situation where no invariance exists (i.e., false410
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positive invariance). The cross-classification accuracy score was much higher than chance across all levels411

of noise, even as measurement noise was drastically increased. The purple line in Figure 7d shows the412

proportion of false positives for the cross-classification test, which consistently remained above the nominal413

α = .05, represented by the dotted line, across all levels of noise that produced above-chance decoding. Only414

when decoding accuracy drops to chance levels (a case where the test would not be applied in an empirical415

setting) the cross-classification test stops producing false positives.416

These results suggest that a suitable selection of measurement model is sufficient for inducing false417

positives in the cross-classification test, even when the underlying encoding distributions themselves show418

absolutely no tolerance. The next question is whether using additional tests against the null of invariance419

can lead to more valid conclusions.420

The light blue line in 7d shows the proportion of tests correctly rejecting the null of invariance for the421

classification accuracy invariance test. The test is very sensitive to measurement noise, having good power422

(about 80%) only at the smallest levels of measurement noise. Figure 7d shows the proportion of each type423

of conclusion in Table 1 (specificity/sensitivity in teal, invariance/tolerance in red, and no conclusion in424

black) reached from jointly testing against specificity and invariance, by using the cross-classification and425

classification accuracy invariance tests, respectively. This strategy does lead to more valid conclusions at426

either low or high levels of noise, but at intermediate levels the strategy fails and produces a high proportion427

of conclusions for tolerance. Note that these intermediate levels of noise produce decoding accuracy around428

40%-60%, which are realistic values for a four-alternative classification task. The reason for the increase429

in conclusions of tolerance at intermediate levels of noise is related to the differential sensitivity of the430

tests to noise. As seen in Figure 7d, the power of the classification accuracy invariance test to correctly431

detect evidence against invariance drops rapidly with increments in noise, whereas the power of the cross-432

classification test to incorrectly detect evidence against specificity drops more slowly. Thus, at intermediate433

levels of noise, the cross-classification test still provides false evidence against sensitivity at a high rate,434

whereas the more noise-sensitive classification accuracy invariance test has rapidly dropped in its ability to435

provide evidence against invariance. Note, however, that this is likely to be related to the specific setup of436

our simulation, in which a measurement model was found that increased the likelihood of false invariance at437

the level of measured patterns of activity.438

The green line in Figure 7c shows the proportion of tests correctly rejecting the null of invariance for the439

decoding separability test. The first notable result is the high sensitivity of the decoding separability test to440

violations of invariance. At all levels of noise, the test detected such violations in almost all simulation runs.441

Note that the test is sensitive even when decoding accuracy has dropped to chance. All these features of442

the test are expected from the theory used to develop it [4]. Higher sensitivity than accuracy-based tests is443
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expected because the test uses information from the full distribution of decision variables from the decoder.444

Robustness in the face of measurement noise is expected because although noise reduces high-frequency445

differences between distributions, it preserves differences at lower frequencies (see [4]). We must note that446

this simulation probably over-estimates the test’s sensitivity, as our experimental results showed that the447

test often misses significance in real data.448

Figure 7f shows the proportion of each type of conclusion in Table 1 (specificity/sensitivity in teal,449

invariance/tolerance in red, and no conclusion in black) reached from jointly testing against specificity and450

invariance, by using the cross-classification and decoding separability tests, respectively. In this case, invalid451

conclusions of tolerance are never reached. Counterintuitively, valid conclusions of sensitivity increase over452

inconclusive results as noise increases. The reason is that cross-classification is more sensitive to noise than453

decoding separability.454

Overall, the results from this simulation provide further evidence favoring our hypotheses, showing that455

cross-classification can lead to false positive conclusions of tolerance when absolutely no tolerance exists in456

the underlying neural code, and that the addition of tests against invariance leads to more valid conclusions.457

The results suggest that decoding separability should be preferred over classification accuracy invariance to458

test against invariance, as was expected from theory [4].459

Evaluating the Pervasiveness of the False Positive Invariance Problem460

A critical reader might argue that the conditions leading to false positive invariance in the first simulation,461

namely the explicit selection of the measurement weights that produce similar voxel-wise activity patterns462

across levels of the context dimension, are unlikely to occur in real fMRI experiments. The true measurement463

process is not trained to make activity values similar across different levels of irrelevant dimensions. How464

pervasive is the false positive invariance problem uncovered in the first simulation? Here we show that,465

against intuition, the problem is quite pervasive.466

In the standard encoding model used in our simulations, the mean response of neural channel c to467

stimulus si, presented in context j, is given by a tuning function fjc(si) (see subsection in Materials and468

Methods). We can collect the mean response of Nc channels in a population response vector fj(si) =469

[fj1(si), fj2(si), ...fjNc
(si)]. A number of stimulus values for the target dimension are presented in any470

experiment, indexed by i = 1, 2, ..., Ns. Without loss of generality, we can focus on an experiment with two471

stimulus contexts indexed by j = 1, 2, as in our simulation. The measured activity in voxel k to stimulus si in472

the first context is equal to f1(si)
Twk1, and in the second context is equal to f2(si)

Twk2. The measurement473

vectors wk1 and wk2 produce invariance in voxel k when they produce the same mean activity value:474
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Figure 7: (a) Encoding models used in simulation 1 and (b) steps taken in each repetition of simulation 1.
See main text for details. Panels c-f show decoding results from simulation 1. (c) Classifier accuracy scores for
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performance. (d) Proportion of positive tests of each type. The y-axis represents proportion of positives,
the x -axis represents measurement noise, the dotted line represents the accepted false discovery rate of 5%.
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0 = f1(si)
Twk1 − f2(si)

Twk2

0 =

⎡⎢⎣ f1(si)

−f2(si)

⎤⎥⎦
T ⎡⎢⎣ wk1

wk2

⎤⎥⎦
0 = f+(si)wk+,

where f+(si) is a row vector of concatenated mean population responses, and w+ is a column vector of475

concatenated weights.476

If we collect the vectors f+(si) in response to the experimental stimuli in a matrix:477

F+ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

f+(s1)

f+(s2)

...

f+(sN )

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

we get a set of homogeneous equations that can be solved for wk+ ̸= 0:478

0 = F+wk+ (1)

A measurement model produces false positive invariance when wk+ ̸= 0 is a solution of this equation for479

all voxels k. Another way to see this equation is that wk+ corresponds to the nullspace of matrix F+. The480

nullity-rank theorem tells us that the dimensionality of this nullspace, or nullity, equals the number of columns481

in F+ (i.e., the total number of channels in the model) minus its rank. The nullity gives us information482

about the size of the subspace of measurement models wk+ that produce false positive invariance. When the483

only solution for Equation 1 is the trivial solution wkc = 0, the nullity of F+ is zero. In this case, constraints484

in the encoding model and experimental design, summarized in F+, are such that there is no measurement485

model that can produce false positive invariance. This is the only case in which we would not have to486

worry about false positive invariance, but it has been the default assumption of researchers applying the487

cross-classification test in the literature. Note also that this analysis is only concerned with strict invariance488

and not with tolerance; even when false positive invariance cannot be produced by a measurement model,489

false positive tolerance may still be possible.490
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We are now in a good position to evaluate the pervasiveness of false positive invariance in the encoding491

scenario posed by our first simulation. We created encoding models just as indicated for simulation 1 (see492

Figure 7a), each time with a different number of stimuli and neural channels. The number of neural channels493

was varied from 5 to 30 in steps of 5, and the number of stimuli was varied from 2 to 20 in steps of 2. For494

each combination of neural channels and stimuli, we created 200 different encoding models, and computed495

the nullity of the mean population response matrix F+. As indicated earlier, the nullity represents the496

dimensionality of the subspace of measurement models that would produce false positive invariance. To497

ease comparison, Figure 8 shows the nullity divided by the dimensionality of the measurement model, or498

proportion nullity. This represents the proportion of the measurement space (in terms of dimensionality)499

that would produce false positive invariance. We found that there was no variability of results across the500

200 sampled models, so Figure 8 shows the unique value of proportion nullity found in each case.501

One can easily see from Figure 8 that the scenario posed in our first simulation is far from rare. On the502

contrary, with ten channels and four stimuli, as we used in that simulation, the proportion nullity is 0.8,503

meaning that the large majority of the possible measurement models will lead to false positive invariance.504

This result was not idiosyncratic to the parameters chosen for our simulation, with proportion nullity in505

general being quite high. The exception was a combination of a high number of stimuli and low number of506

channels, which is rare in experiments reported in the literature. Most neuroimaging studies using cross-507

classification to study invariance have presented 2-4 stimuli, a case in which the proportion nullity is at least508

0.6, and in most cases above 0.8.509

We must remind the reader that we are studying here an extreme case of context-specificity, under the510

assumption of no measurement noise, and an extreme case of false positive invariance, rather than tolerance.511

For these reasons, we can consider our results a lower bound on the size of the false positive invariance512

problem. More realistic scenarios involving context-sensitivity, high measurement noise, or evaluation of513

tolerance rather than strict invariance can all be expected to worsen the problem beyond what is shown in514

our results.515

We see two clear trends in Figure 8. First, proportion nullity –and therefore, the problem of false positive516

invariance– drops linearly with number of stimuli included in the study. Experimenters can reduce the risk517

of false positive invariance by increasing the number of stimulus levels for the target dimension. Second,518

proportion nullity increases in a negatively accelerated fashion with increments in the number of neural519

channels. The number of neural channels represents our assumption of how many unique neural tuning520

functions underlie the data or, in other words, how well-covered is the stimulus dimension by the encoding521

neural population. In realistic scenarios, this value will be much higher than any of those shown in Figure 8.522

However, it is common to find applications of the standard encoding model in computational neuroimaging523
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Figure 8: Pervasiveness of the problem of false positive invariance for the extreme case of context-specificity
studied in simulation 1. Proportion nullity represents the proportion of all dimensions in the measurement
space that would produce false positive invariance, and therefore the size of the false positive invariance
problem. The values reported were always the same for a given combination of number of neural channels
and number of stimuli, across 200 randomly sampled encoding models.

that assume 6-15 channels [e.g., 19, 20, 21, 22].524

Simulation 2: False Positive Invariance Resulting From Similarly Tuned Neural Subpopulations525

Across Contexts526

A critical reader may again argue against the results just presented, indicating that although the space527

of possible measurement models leading to false positive invariance is large in most published studies, most528

of those models would never be observed in nature. Only a small proportion of all possible measurement529

models might be truly at play in neuroimaging studies, and those could be contained within the space of530

models for which false positive invariance is not an issue. Although this is an extremely optimistic position,531

and we think that it would be unwise for scientists to take it, we would like to strengthen our conclusions532

by studying a realistic encoding scenario, likely to be implemented in the brain.533

There are many known cases in which neurons that are sensitive to a particular stimulus feature are534

spatially clustered at sub-millimeter scales. In those cases, while there is spatially distributed information535

about stimulus features, this information is not immediately visible at the typical resolution of an fMRI536

study. For example, V1 neurons that are sensitive to the same spatial frequency, color, ocular dominance,537

and orientation all cluster at the sub-millimeter scale [23, 24, 25, 26]. Although advances in high-field fMRI538

can in some cases uncover such sub-millimeter organization [e.g., 27], information can also be spatially539
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distributed without any clustering (e.g., “salt-and-pepper” codes; see [28, 29]), at scales that are unlikely to540

be reached with fMRI at even higher field strengths than those currently available [30, 31].541

In cases such as these, across voxels we would expect to find relatively homogeneous distributions of542

selectivities. Our ability to use voxel-level decoding to detect whether and how features are encoded depends543

critically on small random variations in mixing; that is, in the proportion of each type of neuron present544

within each voxel. Indeed, small differences in mixing across voxels is a mechanism proposed to underlie545

decoding of orientation information from V1 [32, 33, 34, 35, 36], like that shown in our experimental study.546

This sub-voxel distribution of information, which may underlie the success of many fMRI decoding studies,547

can also easily lead to false-positive invariance when the cross-classification test (or other tests of the null548

of specificity) is used in isolation. Small differences in mixing might be enough to promote above-chance549

decoding of a stimulus feature, because decoding algorithms are specifically trained to detect differences in550

the target feature. On the other hand, decoding algorithms are not trained to detect changes in context. Any551

small differences in mixing that might provide information about context-specificity would be lost, and the552

decoding algorithm would be very likely to generalize performance across changes in stimulus context. We553

find an example of this in our own experiment. There, classification of spatial position generalized perfectly554

across changes in grating orientation, as shown in Figure 3, despite the fact that the voxels contained555

information about differences in orientation, as determined by above-chance decoding of that dimension (see556

Figure 4).557

In the present simulation, we wanted to study the sensitivity of different fMRI decoding tests to changes558

in mixing carrying information about context-sensitivity. With this goal in mind, we created a model in559

which a target dimension is encoded in a completely context-specific manner, with one subpopulation of560

neurons responding whenever the context dimension is at level 1, and a different subpopulation of neurons561

responding whenever the context dimension is at level 2. Both subpopulations were modeled using a standard562

homogeneous encoding model (see above), but note that this similarity in tuning functions is not equivalent563

to invariance, as each channel responded only at one of the levels of the context dimension. In other words,564

our simulation assumes that populations encoding the target dimension are completely separated across levels565

of the context dimension, but they encode the target dimension in a similar way (just as neurons in Figure 1d566

have two selectivity types across levels of the context dimension). As before, we report the averaged results567

from 200 simulations in each run. Measurement noise was set to a fixed level across simulations (s.d.=5,568

which in our previous simulation produced accuracies around 40%-50%, see Figure 7c). In each simulation569

run, we increased the difference in the measurement models for the two levels of the context dimension,570

by adding random noise to weights of the measurement model as illustrated in Figure 9a. The standard571

deviation of the weight noise was gradually increased from 0.05 to 0.5 (i.e., from 0.5 to 5 times the average572
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weight value), in steps of 0.05. That is, in the final models the contribution of each neuron type (e.g., neurons573

selective to a value of 0 in the target dimension) was widely different across levels of the context dimension.574

The results from this simulation are shown in Figure 9b-e. Panel b shows the accuracy of the classi-575

fier tested in the original training context (red line) and in the changed context (i.e., cross-classification576

performance; blue line). It can be seen that the cross-classification test is sensitive to mixing variations,577

as accuracy drops with increments in weight changes with context. However, accuracy remains well above578

chance even for the largest weight changes. Figure 9c shows the proportion of positive tests as a function of579

the magnitude of random weight changes (in standard deviations). The cross-classification test consistently580

showed false positives at a rate much higher than the nominal 5%. High levels of false-positive invariance581

were present even when the weight noise standard deviation was five times as large as the average weight582

values. These results suggest that, when two completely separate neural populations use similar codes to583

represent a target dimension across levels of an context dimension, false positive invariance is likely to be584

found not only with the small variations in mixing that one would usually expect from fMRI studies, but585

from very large variations in mixing.586

As before, the question now is whether this issue of false-positive invariance can be ameliorated by587

adding tests against the null of invariance. Using classification accuracy invariance, the results are not very588

promising. The light blue line in Figure 9c shows the power of this test to reject the null of invariance,589

which starts near zero with very small variations in weights (or mixing) and is quite low (~60% power)590

even at the largest weight variations. Figure 9d shows the proportion of each type of conclusion in Table 1591

(specificity/sensitivity in teal, invariance/tolerance in red, and no conclusion in black) reached from jointly592

testing against specificity and invariance, by using the cross-classification and classification accuracy invari-593

ance tests, respectively. First, the addition of classification accuracy invariance does improve the validity594

of conclusions. Comparing the purple curve in Figure 9c against the red curve in Figure 9d shows that595

the latter drops more steeply with size of weight changes. On the other hand, using cross-classification and596

classification accuracy invariance together still leads to a false positive rate above 5% across all the values597

of weight change simulated.598

On the other hand, using decoding separability the results are much better. The green line in Figure 9c599

shows that the power of this test to reject the null of invariance is near 100% across all levels of weight change.600

That is, the test is sensitive to even small changes in mixing resulting from changes in context. As explained601

before, this high power is a consequence of the test using the whole distribution of decision variables from602

the decoder, rather than only binary classification decisions. Figure 9e shows the proportion of each type of603

conclusion in Table 1 (specificity/sensitivity in teal, invariance/tolerance in red, and no conclusion in black)604

reached from jointly testing against specificity and invariance, by using the cross-classification and decoding605
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separability tests, respectively. First, the test has a higher power than classification accuracy invariance to606

reach the correct conclusion of context-sensitivity. More importantly, at low values of mixing, the test leads607

to inconclusive results rather than to the incorrect conclusion of invariance.608

Overall, this simulation confirms our previous conclusion and theoretical expectation that supplementing609

the cross-classification test with a test against the null of invariance increases the validity of conclusions about610

the underlying codes, and that decoding separability is superior to classification accuracy invariance for that611

goal. We have shown that this is the case in the realistic scenario in which two different populations encode612

the target dimension in a similar manner, and the fact that both populations are separated can be inferred613

only from small differences in their relative contribution to voxel activities. With such small differences in614

mixing (i.e., the smallest values of weight change in Figure 9a), using cross-classification alone leads to a615

conclusion of false positive invariance almost 100% of the time, the addition of the classification accuracy616

invariance test slightly reduces the issue, and the addition of the decoding separability test eliminates it, at617

least in our simulation. The results were similar at very large differences in mixing (i.e., the largest values618

of weight change in Figure 9a), where using cross-classification alone leads to a conclusion of false positive619

invariance about 30% of the time, the addition of the classification accuracy invariance test slightly reduces620

the issue, and the addition of the decoding separability test eliminates it, with the most likely conclusion621

being the ground truth of context-sensitive encoding. We must warn again, however, that the sensitivity of622

the decoding separability test is expected to be lower with experimental data, as it was in our own study.623

The main reason why decoding separability is so extremely powerful in our simulations is that they assumed624

the extreme case of completely context-specific codes.625

Simulation 3: On The Difficulty To Obtain A Valid Continuous Measure Of Invariance/Specificity626

As mentioned in the introduction and illustrated in Figure 1a, neural representations are likely to vary627

along a continuum between complete context invariance and specificity. Given this, it might be surprising628

to the reader that we advocate using inferential tests against the extremes of this continuum rather than629

proposing a single continuous measure of invariance/specificity. We believe that the influence of the mea-630

surement model makes it difficult to obtain a measure that is valid and precise, in the sense of providing631

information of exactly where in the continuum the underlying neural representations lie.632

To illustrate this point, here we propose a new measure of invariance/specificity–the invariance coefficient633

or ι–, show that this measure can provide information about continuous changes in invariance/specificity634

when computed directly on representations at the neural encoding level but it does a relatively poor job635

retaining that information when computed using decoding distributions obtained from indirect measures636

of neural activity. The measure, and ways to estimate it from multivariate activity patterns, is described637
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Figure 9: (a) Encoding model for simulation 2. See main text for details. Panels b-e show the decoding
results from simulation 2. (b) Classifier accuracy scores for model-generated data from both levels of the
context dimension. The y-axis represents accuracy scores, the x -axis represents magnitude of noise added
to measurement weights for the second level model, the dotted line is chance performance. Proportion of
positive tests of each type. The y-axis represents proportion of positives, the x -axis represents measurement
noise, the dotted line represents the accepted false discovery rate of 5%. (c-d) Proportion of each type of
conclusion in Table 1 (specificity/sensitivity in red, invariance/tolerance in blue, and no conclusion in green)
reached from jointly testing against specificity and invariance. The left panel (d) shows conclusions reached by
using the classification accuracy invariance test against invariance, and the right panel (e) shows conclusions
reached by using the decoding separability test against invariance. In both cases, the cross-classification test
is used against specificity.
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in detail in the Materials and Methods section (subsection Simulation 3: On The Difficulty To Obtain A638

Valid Continuous Measure Of Invariance/Specificity). It takes two probabilistic representations of the same639

stimulus in different contexts, and computes their proportion of overlap. Another interpretation of the640

measure is the ratio of how confusable over how discriminable the two representations are. To understand641

why, note that the optimal strategy to classify a random sample X as belonging to one distribution or the642

other is to choose the distribution for which X has highest likelihood. An example of an optimal classification643

bound is given by the teal dotted line in Figure 10 (in a multidimensional space this bound is not required to644

be a line). With this in mind, and assuming that the distributions are approximately symmetric, note that ι645

corresponds to the ratio of the sum (across the two distributions) of the probabilities of incorrect classification646

(red area in Figure 10) over the sum of probabilities of correct classification (blue plus red areas in Figure647

10). Note that here we are referring to classification of a random vector or variable as presented in context 1648

or 2, or context decoding rather than stimulus decoding, which is the focus in the rest of our manuscript and649

in the literature at large. When ι = 0, the two distributions are perfectly discriminable, a case of extreme650

context-specificity. When ι = 1, the two distributions are perfectly confusable, a case of context-invariance.651

Values between these extremes provide a continuous and interpretable measure of context-tolerance (or its652

inverse, context-sensitivity).653

We can estimate this measure for representations at the level of neural encoding, represented by ι̂e,654

and also for decision variables at the level of decoding from indirect measures of activity, represented by ι̂d.655

Importantly, ι̂d can be computed from values obtained from a number of decoders. In line with the rest of this656

work and the literature at large, we computed a first version of ι̂d using a support vector classifier trained657

to decode the stimulus value in the target dimension. More in line with our theoretical interpretation658

of the index, we computed a second version of ι̂d using a support vector classifier trained to decode the659

context in which the stimulus was presented. We reasoned that focusing on discrimination of contexts rather660

than stimuli would produce a more valid measure, in the sense of reflecting the true underlying level of661

invariance/specificity as measured at the level of encoding.662

We performed a simulation in which the encoding model properties were continuously modified from com-663

plete invariance to complete specificity (for a description of methods; see subsection Simulation 3: On The664

Difficulty To Obtain A Valid Continuous Measure Of Invariance/Specificity in the Materials and Methods sec-665

tion). The simulation was repeated 200 times, each time randomly choosing the level of invariance/specificity666

of the encoding model. Our goal was to answer the following questions: How well does ι̂e capture continuous667

variation in invariance/specificity built into the encoding model? How well do the two versions of ι̂d capture668

the true variability in invariance as measured from neural representations at the level of encoding (i.e., what669

is their construct validity)?670
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The results of this simulation are presented in Figure 10. Figure 10b shows the correlation between the671

continuous level of change implemented in the encoding model and the invariance coefficient computed at the672

level of encoding. The correlation was quite high at -0.767, p<.001, and the relation between the variables673

seems linear. Thus, when computed at the level of neural encoding, the invariance coefficient can capture674

continuous changes in invariance implemented in the encoding model.675

Figures 10c-d show the correlation between the two versions of the decoding invariance coefficient ι̂d and676

the encoding invariance coefficient ι̂e. In line with our interpretation, the measure based on stimulus decoding677

has no construct validity with a correlation with the true measure of -0.036, p>.1, whereas the measure based678

on context decoding has a moderate construct validity with a correlation with the true measure of 0.376,679

p<.001. We conclude that the best way to compute this specific measure is by focusing on decoding of the680

context in which a stimulus is presented, which should be done after it has been determined that information681

about the target dimension is available in a brain region via a traditional stimulus decoding analysis.682

With that being said, even the better version of ι̂d clearly has validity issues, as it can capture only683

14.17% of the variability in invariance measured in the underlying neural representations. Figure 10b shows684

that a major issue with ι̂d is that it overestimates invariance, having a range between 0.4 and 1.0, whereas685

the true values range from 0.0 to 1.0. In addition, high values of invariance (>0.8) are estimated across686

the whole range of values of ι̂e. This is of course a consequence of the loss of information imposed by the687

measurement model, and particularly the ability of the model to induce false invariance already discussed.688

Specific features of the measurement model are likely to influence the measure’s construct validity. Our689

goal here was not to explore all these possibilities, but rather to present the measure and illustrate how the690

measurement model limits our ability to precisely measure invariance. We believe that issues with validity691

are likely to arise from any other index computed from indirect measurements of neural activity.692

Discussion693

Here, we have provided empirical and computational evidence supporting two insights about decoding694

tests of invariance reached with the help of neurocomputational theory [4]. First, that tests aimed at695

evaluating evidence against the null of context-specificity, and for the alternative of context-invariance, may696

be prone to false positives due to the way in which the underlying neural representations are transformed697

into measurements. Second, that jointly performing tests against the nulls of invariance and specificity allows698

one to reach more precise and valid conclusions about the underlying representations.699

In the empirical study, we performed decoding of orientation and spatial position from fMRI activity700

patterns recorded in V1, a case in which properties of the underlying neural code are known. The cross-701
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Figure 10: (a) Illustration of the L1 (blue) and A C (red) distances between two distributions. The green
dotted line represents the optimal classification bound (i.e., the value with equal likelihood to belong to
either distribution). The proposed invariance coefficient represents the proportion of overlap between the
two distributions (red area over the sum of red and blue areas). (b) Correlation between the continuous level
of change implemented in the encoding model and ι̂e . Panels (c) and (d) show the construct validity of the
two versions of ι̂d (i.e., their correlation with the true value ι̂e): one version computed by decoding stimulus
values (panel c) and another by decoding level of context (panel d).

classification test gave strong evidence for the incorrect conclusion that, in V1, encoding of spatial position702

is tolerant/invariant to changes in orientation, as well as some evidence for the incorrect conclusion that703

orientation is tolerant/invariant to changes in spatial position. We found that the addition of theoretically-704

derived tests of invariance leads to more valid conclusions regarding the underlying code.705

The results of two simulations strengthened the conclusions from the empirical study, by showing that they706

hold even in the extreme case of completely context-specific encoding. In the first simulation, we showed that707

cross-classification can lead to false positive conclusions of tolerance when absolutely no tolerance exists in the708

underlying neural code, and that the addition of tests against invariance leads to more valid conclusions. We709

also showed, through theoretical analysis and further simulations, that this problem is likely to be pervasive,710

rather than resulting from a hand-picked proof of concept. In our second simulation, we showed that the711

same results are found in simulations of realistic encoding scenarios.712

Based on our empirical and computational results, we conclude that the cross-classification test can lead713

to invalid conclusions about the invariance of neural representations. Applying the test by itself should be714

avoided, and previous research using the test should be re-evaluated in light of our results. Instead, we715

propose to routinely test against the null of invariance whenever the cross-classification test is applied. Even716

if a researcher is unconvinced by the pervasiveness of the problem highlighted in our study and simulations,717

the cost of running these additional tests is extremely low.718

Note that we have purposefully relied on our own data and simulations to make the point that using the719

cross-classification test alone can lead to invalid conclusions about invariance. This is because our intention720

is not to single-out specific studies that have used cross-classification in the past, but rather to alert users721
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of this test, and the neuroscientific community at large, that its results should be taken with caution until722

further tests against context-invariance or evidence from direct measurements of neural activity are also723

available. We believe that the problems with cross-classification highlighted here are serious enough that724

researchers should re-evaluate all published claims of invariance stemming from this test in light of new725

analyses and/or data.726

As expected from theory, we found that the decoding separability test is sensitive to violations of invari-727

ance that cannot be captured by the classification accuracy invariance test. In particular, when decoding728

accuracy is near ceiling or floor values, only the decoding separability test can detect violations of invariance729

by relying on the more fine-grained information available in the full decoding probability distributions, rather730

than on the coarse information available in accuracy estimates. The reason behind this superiority is simple:731

the decoding separability test uses information from the full distribution of decoder decision variables, and732

much of this information is lost once that distribution is binarized for classification. A similar conclusion733

was reached by Walther et al. [37], who found that the reliability of continuous neural dissimilarity measures734

was higher than that of classification accuracies, and concluded that this was due to the loss of information735

inherent to the latter. We believe that focusing on full decoding distributions can help us to move from using736

decoding to test whether information is encoded in a particular area, to using decoding to test how infor-737

mation is encoded. Additional examples of this approach have linked uncertainty in decoding distributions738

to behavior [38], and have correlated the variability in decoding distributions to behavioral responses [39].739

We also showed through simulation that the measurement transformation limits our ability to obtain a740

valid continuous index of invariance/specificity when computed from indirect measures of neural activity.741

Even when computed under ideal circumstances (small changes imposed by the measurement model and742

200 presentations of each stimulus), the decoding invariance coefficient could capture only 14.17% of the743

variability in invariance measured in the underlying neural representations. While we did not explore all744

possibilities, our simulation results help us make the point that precise measurement of invariance/specificity745

from neuroimaging data is a difficult task.746

Alternative measures of neural activity and data analysis techniques747

Because our empirical study involved fMRI, we have framed the discussion here mostly in terms of that748

neuroimaging technique. Note, however, that our theoretical and simulation results hold for studies using any749

indirect or aggregate measure of neural activity, which includes M/EEG, ECoG, and LFPs, among others.750

Indeed, the linearized measurement model common in the fMRI literature and used in our simulations is also751

commonly used in those other techniques [e.g., 40, 41, 42]. Of course, the level of aggregation and spatial752
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specificity of a technique will modify the gravity of the problem for any specific technique. However, as753

noted earlier, information can be spatially distributed in the brain without any clustering [28, 29] and thus754

the issue of false positive invariance may be present to a certain degree with any aggregate indirect measure755

of neural activity.756

Similarly, our conclusions are unlikely to be limited only to decoding data analyses. Other approaches,757

such as forward and inverted encoding modeling (for reviews, see [43, 44]) and representational similarity758

analysis [45] are likely to suffer from similar issues. The reason is that the possibility of artificially increasing759

the appearance of invariant representations is inherent to the transformation from the neural space to the760

measurement space (see Figure 1b). That is, the problem lies within the measured patterns of activity761

themselves, rather than with the analyses performed over those activity patterns. Any analysis aimed to762

obtain evidence of invariance is likely to be based on the observation of high similarity of activity patterns763

across changes in context, and that similarity can be artificially increased by the measurement model.764

That being said, analysis methods such as inverted encoding modeling have been developed to provide765

evidence of changes in neural representation that result from changes in some experimental factor, naturally766

lending themselves to the detection of evidence for context specificity (i.e., against invariance). Inverted767

encoding modeling has indeed been applied in such a way [e.g., 46], and this application can be considered768

analogous to the decoding tests against invariance studied here, rather than to the more problematic cross-769

classification test. However, inverted encoding modeling is a parametric approach and as such it can fail770

to yield valid conclusions when the assumptions of the model are incorrect (e.g., wrong selection of tuning771

functions; see [47]). On the other hand, tests based on decoding are nonparametric, yielding valid conclusions772

without making any assumptions about encoding or measurement (see [4]).773

The decoding separability test advocated here is based on the calculation of a distance measure. Specif-774

ically, the absolute distance (i.e., the L1 distance) between distributions of decision variables obtained from775

a linear classifier. A large number of other distance measures have been used and evaluated in representa-776

tional similarity analysis [48, 37], and it is not clear to what extent such measures might provide evidence777

against invariance that is as good or better than the L1 distance. Preliminary results of simulation studies778

suggest that distance measures vary widely in their construct validity; that is, their ability to reflect the779

true underlying distances between neural representations at the level of encoding [49]. The L1 measure is780

among those with highest construct validity, but other good measures according to this criterion are the781

inner product, Mahalanobis, and euclidean distances. We prefer the L1 distance in the decoding separability782

test mainly because we have previously shown that the use of this distance allows the test to provide valid783

inferences about underlying deviations from invariance at the level of neural encoding [4]. Similar proofs784

have not been provided for other measures, which is not to say that they are not possible. The Mahalanobis785
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distance is of particular interest, as it has been shown to provide superior reliability in previous studies [37].786

A disadvantage of this measure is that it computes a distance between distributions based solely on their787

mean and variance, implicitly assuming that those distributions are multivariate normal. On the other hand,788

the L1-based decoding separability test does not need to make any assumptions about the distribution of789

the data, besides assuming that measurement error is additive, and it can detect differences between dis-790

tributions in higher-order moments that are impossible to detect using Mahalanobis (see discussion on the791

multivariate general linear model in [4]).792

Recommendations For Researchers793

Our results have consistently shown that there is an inherent disadvantage with tests aimed at providing794

evidence for invariance (or rather, against context-specificity), which tend to yield false positives. However,795

findings of invariant representation are interesting to many neuroscientists and they could inform theories796

of neural processing. We recommend those researchers both to use the double-test strategy developed here797

and to be extremely cautious regarding conclusions of invariance obtained from any indirect or aggregated798

measures of neural activity (fMRI, EEG, ECoG, LFPs, etc.), which should be held as tentative until evidence799

from direct measurements of neural activity are available.800

The same is not true about tests aimed at providing evidence for context specificity (or rather, against801

context-invariance): in this case, the tests are much more likely to yield valid conclusions, and no protection802

is needed against false positives. But note that a positive test against context invariance only provides803

evidence for the valid inference that the underlying representations are not invariant. The representation804

can still be anywhere else in the continuum depicted in Figure 1a. Therefore, the two-test strategy would805

still provide additional evidence regarding the underlying representations, at the quite low cost of running806

one additional test on the same data.807

In sum, we recommend all researchers to use a two-test strategy when attempting to make inferences808

about invariance/specificity from indirect measures of neural activity, and to interpret the results of the809

tests using Table 1. We also recommend to use the decoding separability test to test against the null810

of invariance. In theory, this test can capture evidence against invariance that is not available from the811

classification accuracy invariance test, and here we found that this is indeed the case in some real-world812

examples (e.g., decoding of spatial position across changes in orientation from V1).813

That being said, researchers should understand that application of the decoding separability test is most814

useful with large datasets that ensure accurate estimation of full decoding distributions. Our empirical815

results were obtained using a design in which a large dataset was obtained from each participant. We816
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recommend that researchers use the same kind of design. Most datasets used in the past to study invariance817

do not fit that description, instead having a small number of stimulus presentations and/or not having818

explicitly separate datasets for training and testing. We expect that researchers will be faced with such819

non-ideal datasets, either because they want to reanalyze data obtained in the past or because budgetary820

considerations limit the number of stimulus presentations that can be included in a study. To deal with821

such suboptimal datasets, researchers can use the classification accuracy invariance test against the null of822

invariance, which requires a smaller number of stimulus presentations than the decoding separability test,823

because it calls for the estimation of single values (accuracies) rather than the estimation of whole densities.824

In addition, the dataset can be used more efficiently by estimating accuracies through leave-one-out cross-825

validation.826

Our results regarding the pervasiveness of the false positive invariance problem (Figure 8) show that this827

problem can be greatly reduced by including a large number of stimuli spanning the stimulus dimension under828

study. This is an important theoretical insight, as number of unique stimulus values is a design factor under829

the researcher’s control. We recommend that researchers use as many unique stimulus values as possible in830

their designs.831

Limitations And Future Work832

During a study with a large number of trials the neural representations under study might themselves833

change. Factors such as fatigue, adaptation, and familiarization could all produce changes in brain repre-834

sentation. Because our interest is not on all aspects of neural representation, but only on context speci-835

ficity/invariance, the key question here is whether a long experiment would produce changes in the neural836

representation of a stimulus that are specific to one context and not others. We believe that this is unlikely837

to be the case in any study with two features. First, a balanced design, in which each stimulus is presented838

equally often in different contexts across the whole experiment. With a balanced design, factors such as839

fatigue, adaptation, and familiarization should influence the stimulus representation equally across contexts.840

The influence of some of those factors may also be reduced by dividing the study into multiple short sessions841

separated by long intervals (e.g., one day or more). Second, when a behavioral task is used to keep partici-842

pants’ attention on the stimuli, the task should be unrelated to the stimulus features under study, to avoid843

potential adaptive changes in representation due to learning, selective attention, etc. The study presented844

here satisfies both of these criteria and therefore we believe that its length was unlikely to bias the results.845

Another potential limitation of our empirical study has to do with segmentation of V1, which in our846

study was carried out using an algorithm [50] that focuses on the analysis of cortical folds, rather than on847

37



the results of a functional localizer. The evidence shows that this algorithm has a precision that is equivalent848

to up to 25 minutes of functional mapping. Thus, we could have performed a functional localizer longer than849

25 minutes in order to increase the precision of V1 segmentation. We did not see value in that approach, as850

the neighboring area V2 is also retinotopic (spatial position and size of receptive fields is similar for V1 and851

V2 near their border) and encodes orientation similarly to V1, meaning that our predictions for V2 would852

be similar to those for V1.853

The study of invariance could benefit from the development of a test against context-specificity to replace854

the cross-classification test, which is relatively insensitive due to its reliance on decoding accuracy. This new855

test should aim to evaluate the null hypothesis that the neural representation of a target stimulus property is856

completely different in two different contexts, showing non-overlapping distributions of neural activity. The857

development and validation of such a measure is not trivial, and we must leave it to future research. We at858

least know that a sensitive measure would rely on something different from the decoding distribution of the859

target variable, and therefore it would follow a different logic than the decoding separability test developed860

in previous work [4]. Figure 11 shows why this is the case. The two main axes represent measurements in two861

different voxels, and each ellipse represents the distribution of voxel activity patterns for a target stimulus862

property presented in two different contexts. It can be seen that the two distributions are completely non-863

overlapping in the multivariate space of voxel patterns. However, when the two distributions are projected864

onto the decoded variable they show a non-zero overlap, represented by the yellow rectangular area. Note865

how changing the direction of the decoded variable does not necessarily result in no overlap. Also, simply866

measuring the overlap at the voxel level ameliorates but does not solve the issue, because the measurement867

model may also artificially introduce overlap in the distributions (Figure 1c).868

An important question left open is whether tests against the null of invariance might be prone to false869

positives, as is the case for tests against the null of specificity. Within the theoretical framework adopted870

here, the answer is “no”, as in theory it is impossible for any measurement model to transform invariant871

representations into non-invariant activity patterns (see Figure 1c, top panel). However, in fMRI studies,872

activity patterns must be estimated from the BOLD response through deconvolution or other means (see873

Materials and Methods). If changing context influences the hemodynamic response function (HRF), then874

this would in turn influence activity estimates, producing apparent context-sensitivity even if the underlying875

neural representation is fully invariant. Factors known to influence the HRF include stimulus duration [51],876

separate scans [52], inter-trial interval [53], stress level [54], and levels of some neurotransmitters [55, 56, 57].877

Exploring which changes in the HRF could influence the results of tests against invariance is beyond the878

scope of this work, but researchers should design their studies so that factors known to influence the HRF879

do not co-vary with changes in context.880
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Figure 11: The decoding distributions along the decoded variable cannot be used to obtain a valid test of
no overlap between neural representations across two contexts. The main axes represent measurements at
the voxel level, and each ellipse represents the distribution of neural activity (after transformation by the
measurement model) for a target stimulus property presented in two different contexts. The two distributions
are completely non-overlapping at the level of the multivariate voxel patterns. However, when the two
distributions are projected onto the decoded variable, they show a non-zero overlap represented by the
yellow area.

Beyond the specific case of decoding tests of invariance, the present study shows the dangers of over-881

reliance on operational tests that have only face validity, particularly in the study of neural representation882

through indirect measures obtained through neuroimaging. Our study joins other recent reports in the883

literature [22, 47] in showing that the application of sophisticated data analysis tools can lead to the wrong884

conclusions when problems of identifiability (e.g., between neural and measurement factors) inherent to885

neuroimaging are not taken into account. We believe that theoretical and simulation work will play an886

important part in the future of neuroimaging, both to point out areas in which our methods might run into887

issues, as well as showing us potential solutions.888

Materials and Methods889

Participants890

Five healthy volunteers (ages 19–27, three female) from Florida International University participated in891

the experiment; all had normal or corrected-to-normal vision. The study protocol was approved by Florida892

International University’s Institutional Review Board and by the Center for Imaging Science Steering Com-893

mittee. All subjects gave written consent to experimental procedures before participating in the experiment.894
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Stimuli895

All stimuli were generated using Psychopy v.1.85.0 [58]. Images were displayed on a 40" Nordic Neurolab896

LCD InroomViewing Device, placed at the rear entrance of the scanner bore. Subjects viewed the screen897

via an angled mirror attached to the head coil. Visual stimuli were full-contrast square-wave gratings with898

a spatial frequency of 1.5 cycles per degree of visual angle [similar to 59, 60, 61], a frequency known to drive899

V1 responses strongly [62], shown through a wedge-shaped aperture window that spanned from 1.5° to 10° of900

eccentricity and 100° of polar angle (Figure 2). The aperture window had four possible locations: top-right,901

bottom-right, top-left, and bottom-left. The square-wave gratings were oriented in one of four angles for902

each trial: 0°, 45°, 90°, 135°. The phase of the gratings was randomly changed every 250ms, to reduce retinal903

adaptation and afterimages.904

Task and Procedures905

To ensure that the data used to train a classifier in decoding analyses (see below) was independent from906

the data used to test the classifier and compute measures of performance, training trials and testing trials907

were presented on separate acquisition runs. Training and testing runs were identical in all aspects except908

one: the positions of the aperture window were restricted to top-right and bottom-left for the training runs,909

while testing runs included all four positions (Figure 2). During stimulus presentation, the phase of the910

grating was randomly shifted every 250 ms. The orientation of each grating was randomly chosen on each911

trial, while the spatial position of the window changed sequentially in a pre-determined manner. In training912

runs, the aperture window switched between 20° and 200° on every trial. In testing runs, the aperture window913

cycled through top-right, bottom-left, bottom-right, and top-left, in that order. For both training and testing914

runs, each combination of spatial position (two or four levels) and orientation (four levels) was presented 35915

times in a single acquisition session. Each subject went through 4 identical acquisition sessions to yield a916

total of 135 presentations of a given combination of orientation and spatial position (see all combinations in917

Figure 2) for both training and testing trials types. This large longitudinal sample size (3,240 trials total per918

participant) was chosen to focus our analyses on data at the level of individual participants (see Statistical919

Analyses below).920

On each trial, a single grating was presented for 3s, followed by a 3s inter-trial interval. All runs began921

with a 10s fixation period and ended with a 1 min rest period. The training runs lasted for 5 mins and922

43 secs, and the test runs lasted for 10 mins and 13s. Due to experimenter error during data acquisition,923

a portion of training trials were lost for participants 1 and 2. To compensate for the reduced number of924

training trials, we collected an additional session of data from subject 2, resulting in about 123 training925
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trials and 112 testing trials per stimulus. For subject 1, we simply set aside half of the testing trials for926

training purposes and used the other half for testing; the number of testing trials for non-trained values of927

the context dimension remained the same as for all other participants.928

The participants’ task was to look at a small black ring presented in the center of the screen [similar to929

59]. The black ring had a small gap that randomly switched position throughout the trial. Participants were930

asked to continuously report the side of the gap (left or right) by pressing the corresponding button. The931

task had the purpose of forcing participants to fixate at the center of the screen, and to draw attention away932

from the stimuli.933

Functional Imaging934

Imaging was performed with a Siemens Magnetom Prisma 3T whole-body MRI system located at the935

Center for Imaging Science, Florida International University. A volume RF coil (transmit) and a 32-channel936

receive array were used to acquire both functional and anatomical images. Each subject participated in937

four identical MRI sessions. During each session, a high-resolution 3D anatomical T1-weighted volume938

(MPRAGE; TR 2.4s; TI 1.1s; TE 2.9 ms; flip angle 7°; voxel size 1×1×1 mm; FOV 256 mm; 176 sagittal939

slices) was obtained, which served as the reference volume to align all functional images. During the main940

experiment, functional images were collected using a T2*-weighted EPI sequence (TR 1.5 s; TE 30 ms;941

flip angle 52°; sensitivity encoding with acceleration factor of 4). We collected 60 transversal slices, with942

resolution of 2.4×2.4×2.4 mm, and FOV of 219mm. The first six volumes in each run were discarded to943

allow T1 magnetization to reach steady state.944

Statistical Analyses945

All data analyses, including multi-voxel decoding and tests of invariance, were performed on the individual946

data of each participant. In designing our experiment, we favored collection of a large amount of data per947

participant (3,240 trials, about 8 hours of scanning) rather than a large number of participants. Each separate948

analysis can be considered a replication of a single-subject experiment. With our sample sizes (n=135 per949

stimulus), our tests can detect a 6% difference from chance in classifier performance with 85% power, an 8%950

drop in classifier performance with >80% power, and kernel density estimate error is maximally reduced,951

according to simulation studies [63].952
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Region of Interest953

The boundaries of V1 are commonly found using a functional localizer procedure. However, previous work954

has shown such boundaries can be accurately estimated from cortical folds, without the need for a functional955

localizer [50]. Additionally, evidence shows that the definition of V1 boundaries using the algorithm proposed956

by Hinds et al. [50] has a precision that is equivalent to 10-25 minutes of functional mapping [64]. Therefore,957

we applied the Hinds et al. [50] algorithm, implemented in Freesurfer 6.0 [65], to the anatomical T1-weighted958

images, to define the boundaries of V1 in each participant and obtain an ROI mask. The obtained V1 mask959

was then converted into a binary mask, and transformed to the individual’s functional scan space (the960

averaged volume of the first functional run was used as a target) using linear registration with FLIRT.961

BOLD Data Preprocessing962

Data were processed and analyzed using nipype Python wrappers for FSL [66, 67]. Basic preprocessing of963

functional data included skull stripping, slice time correction, and head motion correction using MCFLIRT.964

All functional runs for a given subject were then aligned to an averaged volume of the first functional run for965

the same subject. This step ensured that the entire time-series for each subject lay in the same co-ordinate966

space. The aligned time-series was then concatenated into a single time-series file for further processing. The967

concatenated series for each subject was de-trended using a Savitzky-Golay filter with a polynomial order of968

3 and a window length of 81 secs [68].969

Deconvolution970

Using the obtained V1 mask, time-series from V1 voxels were extracted for further analysis. Single-trial971

activity estimates were obtained via a data-driven deconvolution technique in which deconvolved neural972

activation values and a model of the hemodynamic response function (HRF) are estimated together [68].973

Unlike other methods that hold the shape of the HRF constant across voxels, this technique allows the shape974

of the HRF to be different in each voxel, resulting in more accurate activity estimates. The model is im-975

plemented via the hrf_estimation Python package v. 1.1 (https://pypi.org/project/hrf_estimation/).976

The hrf_estimation package presents 10 different options for HRF modeling, with varying options for the977

HRF basis function and for the General Linear Model estimation technique. To select the optimal combina-978

tion of HRF and estimation method, we performed a cross-validated decoding analysis using data from the979

training runs of a single participant (data from the testing runs was not used in this pre-analysis). First, we980

generated activity estimates from all possible model combinations (estimation method and HRF). Then, for981

each model, we trained and tested an SVM classifier to decode orientations from a portion of the training982
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set, and tested the classifier with the remaining data. We chose the Rank-1 General Linear Model with a983

3-basis-functions HRF model, based on the fact that it yielded the highest testing accuracy score.984

Decoding Analysis985

To decode stimulus types based on voxel-wise activity patterns, we used a Nu-support vector machine986

(NuSVC) classifier with a linear basis function implemented via the Python package scikit-learn v. 0.19.1987

[69]. We used the de-convolved activity patterns from V1 voxels as inputs to the classifier, while trial-specific988

stimulus values (either orientation or spatial position) were provided as labels.989

To decode orientation, we employed two separate classifiers, corresponding to the two different spatial990

positions (context dimension) at which the oriented gratings were presented during the training runs of the991

experiment (see Figure 2). Each classifier was trained to decode grating orientation (0°, 45°, 90°, and 135°)992

using only trials in which a specific spatial position was presented. However, the classifier was then tested993

with data collected from independent test runs at all four spatial positions. This resulted in an accuracy994

estimate at the training position, as well as at the other three spatial positions. For example, to train the995

first classifier, we gathered all trials that were presented at the top-right spatial position. After normalizing996

the data, the classifier was trained using leave-one-run-out cross-validation with data from the training runs.997

Cross-validation was used to optimized the Nu parameter of the classifier, to obtain the highest accuracies998

within the training set. A new classifier was then trained on all the training data using the chosen Nu999

parameter. This classifier was then tested with data from testing runs.1000

To decode spatial position, we employed four separate classifiers corresponding to the four levels of1001

grating orientation (context dimension) that were presented during the training runs of the experiment.1002

Each classifier was trained to decode spatial position (top-right vs bottom-left, see boxed stimuli in Figure1003

2) using only trials in which a specific grating orientation was presented. However, the classifier was then1004

tested with data collected from independent test runs across all levels of grating orientation. This resulted1005

in an accuracy estimate for the training grating orientation, as well as the other three levels of grating1006

orientation. As in the orientation decoding procedure, we divided the data into independent training and1007

test sets, performed normalization, and optimized the classifier’s Nu parameter via leave-one-run-out cross-1008

validation. One important difference is that spatial position decoding involved a two-class classification1009

problem, where the classifiers had to discriminate between the top-right and bottom-left spatial position of1010

the stimulus window (the only two positions presented during training trials, see boxed stimuli in Figure 2).1011

As the classifier was not trained to classify the bottom-right or top-left spatial positions, we dropped those1012

trials from the testing data set in this analysis. This ensured that the model fitting and testing procedures1013

remained consistent across both decoding analyses.1014
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fMRI Decoding Tests1015

We applied three decoding tests to our data: the cross-classification test, the classification accuracy1016

invariance test, and the decoding separability test. All tests where applied to the results of the two decoding1017

analyses above: decoding of orientation and spatial position. In the descriptions below, the target dimension1018

refers to the decoded stimulus values, and the context dimension refers to the stimulus values irrelevant for1019

decoding that only changed from training to testing.1020

All the tests described below were implemented in Python expanded with SciPy v. 1.1.0 (https://www.1021

scipy.org/) and Statsmodels v. 0.9.0 (https://www.statsmodels.org/). Plots were created using the1022

Matplotlib library v. 2.2.2 (https://matplotlib.org/)1023

Cross-classification Test. We implemented the cross-classification invariance test [e.g., 1, 2, 3] by train-1024

ing a linear SVM, as described above, to classify levels of the target dimension (grating orientation or spatial1025

position) while holding the level of the context dimension constant. For example, to decode orientation we1026

start by training the SVM classifier to predict orientation in a given spatial position. Then, we test the1027

accuracy of the classifier with data from independent test sets at the training position, as well as three other1028

spatial positions (i.e., different levels of the context dimension). We tested whether each of these accuracies1029

was above the chance level of 25% correct using a binomial test, and corrected the resulting p-values for1030

multiple comparisons using the Holm-Sidak method.1031

Classification Accuracy Invariance Test. This test used the same estimates of classification accuracy1032

described for the cross-classification test, but uses them to check whether there was a significant drop in1033

performance from the training to the testing context values. We first performed an omnibus Chi-Square test1034

of the null hypothesis that accuracy does not depend on level of the context dimension. In addition, we1035

tested accuracy at each testing context value against the training context value using a pairwise z test for1036

proportions, and corrected the resulting p-values for multiple comparisons using the Holm-Sidak method.1037

Decoding Separability Test. Decoding separability is defined as the case where the decoding distribution1038

of a stimulus does not change across different levels of the context dimension. The distance between the two1039

distributions was measured through the L1 norm:1040

L1 =

ˆ
|p1 (z)− p2 (z)| dz, (2)

where p1 and p2 represent the distributions of decoded values at levels 1 and 2 of the context dimension,1041

respectively.1042
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For each combination of values of the relevant and context dimensions, we obtained decision variables from1043

the trained SVM linear classifier. These decision variables were used to estimate the decoding distribution1044

using kernel density estimates (KDEs). A gaussian kernel and automatic bandwidth determination were1045

used as implemented in the SciPy function gaussian_kde. Let p̂ij (z) represent the KDE for a stimulus1046

with value i on the target dimension and value j on the context dimension, evaluated at point z. Each1047

p̂ij (z) was evaluated at values of z going from -3 to 6, in 0.01 steps, indexed by k, which were confirmed to1048

cover the range of observed decision variable values. Then an estimate of the summed L1 distances indicating1049

deviations from decoding separability was computed from all four KDEs obtained, according to the following1050

equation:1051

L1Gj =
∑
i

∑
k

|p̂i1 (zk)− p̂ij (zk)| . (3)

, where j = 1 is the training level of the context dimension. The L1Gj (with G standing for global) simply1052

takes an estimate of the L1 distance (obtained by discretizing the continuous decision variable z ) defined1053

in Equation 2 for each value of the relevant dimension, and then sums them together. We computed L1Gj1054

separately for each value of the context dimension, or j ̸= 1.1055

We used a permutation test to test whether each L1Gj statistic was significantly larger than expected1056

by chance. In this test, the level of the context dimension j was randomly re-assigned to all data points,1057

KDEs were estimated, and the L1Gj was computed according to Equation 3. This process was repeated 5,0001058

times, to obtain an empirical distribution for the statistic, from which accurate p-values were computed1059

using the procedure proposed by [70]. The resulting p-values were corrected for multiple comparisons using1060

the Holm-Sidak method.1061

Simulations1062

The simulations described below were implemented in Python 2.6 extended with Numpy v. 1.16.2 (https:1063

//numpy.org/). The decoding analysis of simulated data was performed exactly as described for fMRI data1064

in the sections Decoding Analysis and fMRI Decoding Tests above, with the exception that the Nu parameter1065

of the SVM was set to the default value of 0.5 rather than optimized based on cross-validation.1066

Model1067

In our simulations, we used a standard population encoding model and a linear measurement model.1068

Both are common choices in the computational neuroimaging literature (for a review, see [43]), both in1069

recent simulation work [e.g., 71, 47, 22], as well as in model-based data analysis [e.g., 19, 72, 21, 38]. We1070
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assumed a circular dimension with values ranging from -90 to 90, as is the case of grating orientation, but1071

our conclusions apply to non-circular dimensions as well.1072

Encoding Model We used standard encoding models to represent the activity patterns of populations1073

of neurons within a given voxel. Our encoding model was composed of several independent channels, rep-1074

resenting any number of neurons that have similar stimulus preferences. Each channel is highly tuned to a1075

specific value along the target stimulus dimension, such that the channel’s response becomes attenuated as1076

we move away from the preferred value. The tuning function of a single channel is represented by a Gaussian1077

function:1078

fc(s) = rmax
c exp(−1

2
(
s− sc
ωc

)2), (4)

, where rmax
c represents the maximum neural activity for channel c, the mean sc represents the channel’s1079

preferred stimulus, and the standard deviation ωc represents the width of the tuning function. The height of1080

the tuning functions at any value along the stimulus dimension (i.e., fc(s)) represents the average response1081

of the channels to that particular stimuli.1082

We assume that the response of each channel rc is a random variable with Poisson distribution:1083

P (rc|s) =
fc (s)

rc e−fc(s)

rc!
. (5)

The full encoding model was composed of ten channels with activity described by Equations 4 and 5.1084

Unless indicated otherwise below, we used a homogeneous population model, in which the parameters sc1085

were evenly distributed across all possible values of the dimension (i.e., from -90 to 90 degrees), and other1086

parameters were fixed to the same values for all channels: rmax
c = 10, ωc = 15.1087

Figure 12a shows an example of the encoding process. When a face with a value of 75% maleness is1088

presented to the model, the channel encoding distribution produces a vector of responses. Each element in1089

this vector corresponds to the response of a particular channel. The channels with the strongest preference1090

for the value 75% show the highest response in this vector. Since the response of neural populations are1091

known to be noisy, channel noise is added to each element of the response vector. The final output is a noisy1092

vector of channel responses that change slightly for repeated presentations of the same stimulus.1093

Measurement Model Because neuroimaging studies produce only indirect measures of neural activity, a1094

measurement model is required to link the neural responses of the encoding model with voxel-wise activity1095

values. The measurement model is described by the following equation:1096
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Figure 12: (a) Population encoding model, consisting of a set of channels that are tuned to specific stimulus
values along a given dimension (e.g., maleness). When a stimulus with a particular value on the maleness
dimension is presented, the channels respond according to their stimulus preferences. The channel responses
are then perturbed by random channel noise. The final output represents a vector of noisy firing rates in
response to a particular stimulus. (b) Linear measurement model. The measurement model provides a link
between neural encoding channels and voxel-wise activity measures. Activity in each voxel (represented by
cubes) is a linear combination of neural channel responses (r = [r1, r2, r3, ...rK ]), plus independent random
measurement noise (represented by the dice next to each cube).
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a = rW + ϵ, (6)

where a is a row vector of voxel activity values, r is a row vector of neural responses sampled from the1097

encoding model (i.e., from Equation 5), W is a weight matrix were each column wv represents the linear1098

measurement model for a different voxel av, and ϵ is a random normal row vector with mean 0 and covariance1099

matrix with σ in the diagonal and zeros elsewhere. The value of σ was varied in Simulation 1 and was fixed1100

to 5 in Simulation 2 (see below).1101

Equation 6 indicates that the activity in each voxel is a linear combination of neural channel responses,1102

plus some random measurement noise. As shown in Figure 12b, the model for each voxel was composed of1103

a finite number of encoding channels that independently contributed to the aggregate signal of the voxel1104

according to a set of weights. The values of the weights were randomly and uniformly sampled from 0 to 1,1105

and then normalized by column, so that weights in wv would add up to one. This way, the weights can be1106

interpreted as the relative contribution of each channel to a voxel’s activity.1107

We simulated a total of 100 voxels. In each simulated trial, the encoding model was presented with a1108

given stimulus and produced a random vector of neural responses r as explained in the previous section,1109

which were then used as input to the measurement model to obtain a random vector of voxel activities a.1110

Simulation 1: False Positive Invariance Resulting From Features Of The Measurement Model1111

The model underlying this simulation was created so that the encoding of the target dimension (e.g.,1112

orientation) was completely different across two levels of the context dimension (e.g., spatial position). That1113

is, two separate encoding models were created for the two levels of the context dimension. The first context1114

model consisted of a homogeneous population code. The second context model was composed of channels1115

whose tuning parameters were completely randomized. For each channel, the position parameter sc was1116

randomly sampled from a uniform distribution covering all values in the dimension, rmax
c was similarly1117

sampled from values between 5 and 20, and ωc from values between 5 and 25. The randomized second1118

context model was extremely unlikely to share any properties with the first context model (compare the top1119

and bottom encoding models in Figure 7b).1120

The measurement weights of the first context model, W1, were randomly sampled. On the other hand,1121

the measurement weights for the second context model, W2, were chosen so that the activity patterns1122

generated by any stimulus presented to this second level model would be as similar as possible as those1123

presented to the first level model. To do this, we presented the context 1 model with the preferred stimulus1124

of each channel sc 20 times, and each time sampled data from 100 voxels. We then presented the context1125
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2 model with the same stimuli a single time, and recorded a vector of average responses from the encoding1126

model using Equation 4 (i.e., neural channel responses without any noise). Finally, for each voxel, the vectors1127

of weights in W2 were obtained via Lasso regression, where voxel-wise activity patterns produced by the1128

first context model were used as outputs to be predicted from the average neural activities obtained from1129

the second context model. Using Lasso regression, as implemented in sklearn, allowed us to constrain the1130

weights to be positive. The regularization parameter of the regression model was not optimized, but fixed1131

to a value of 0.01.1132

As shown in Figure 7b, each simulation started by creating such a model (step 1), and continued by1133

sampling data from it (step 2). To get that data, we presented the model with four stimuli, with values of1134

-45°, 0°, 45°, and 90°, and sampled voxel activity patterns from it. Each stimulus presentation was repeated1135

20 times. We sampled data this way both from the first and second level models constructed as indicated1136

above. Data was sampled twice from the first level model, to obtain training and testing data sets, and only1137

once from the second level model, to obtain a testing data set only. We then performed a cross-classification1138

test on the resulting data (steps 3 and 4 in Figure 7b), following the same procedures as with the experimental1139

data explained above, with the exception that the Nu parameter of the SVM was fixed to the default value1140

of 0.5. Each simulation was repeated 200 times. The results presented represent average statistics across all1141

simulations, obtained from the testing data sets.1142

Finally, we repeated the group of simulations a total of 20 times, each time with a different value for the1143

level of voxel measurement noise σ, going from 1 to 20.1144

Simulation 2: False Positive Invariance Resulting From Similarly Tuned Neural Subpopulations1145

Across Contexts1146

We created a model in which a target dimension is encoded in a completely context-specific manner, with1147

one subpopulation of neurons responding in context 1, and a different subpopulation of neurons responding1148

in context 2. The weights wv for context 1 were randomly generated, as explained above. To create the1149

measurement model for context 2, we first obtained a vector e of random values sampled from a normal1150

distribution with mean zero and standard deviation equal to σe. This random vector was added to wv (step1151

2), and then the values were made positive through rectification and normalized to add up to one (step 3).1152

Once the model was generated, the simulation was carried out following the same additional steps as in1153

Simulation 1, numbered 2 to 4 in Figure 7b. The only difference was that σ = 5 in the measurement model,1154

whereas the value of σe was varied from 0 to 0.5. At the highest values of σe, the standard deviation of the1155

changes in weights in the measurement model was 500% the average value of those weights (0.1).1156
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Simulation 3: On The Difficulty To Obtain A Valid Continuous Measure Of Invariance/Specificity1157

In Equation 2, we have used the L1 distance as a measure of context-sensitivity and as the basis for the1158

decoding separability test:1159

L1 =

ˆ
|p1 (x)− p2 (x)| dx, (7)

where p1 and p2 represent the probabilistic representation of a stimulus at levels 1 and 2 of the context1160

dimension, respectively. In the current context, the random variable x represents a variable or vector encoding1161

the presented stimulus, which can be a vector of firing rates at the level of the encoding model, a vector of1162

measurements at the level of indirect activity values (e.g., a voxel activity pattern), and a decision variable1163

at the level of decoding.1164

The L1 distance can be interpreted as the area in blue in Figure 10. Martinez-Camblor et al. [73]1165

proposed the complementary distance A C between two distributions:1166

A C =

ˆ
min (p1(x), p2(x)) dx, (8)

which is the area in red in Figure 10. One can think of these two indexes as complementary.1167

We use both A C and L1 to define an invariance coefficient ι:1168

ι =
A C

L1 + A C
(9)

We can compute ι for the encoding distributions, ιe, for the distributions at the level of measurement1169

channels, ιm, and for the decoding distributions, ιd. An issue in the computation of these indexes is that some1170

of them require integration over high-dimensional joint densities. We can estimate such integrals through1171

MonteCarlo methods, in which an estimate of the following definite integral:1172

ˆ b

a

p(x)dx

is obtained by drawing N random samples uniformly within the {a, b} segment and calculating:1173

(b− a)
1

N

N∑
i=0

p (Xi)

For an appropriate choice of a and b (i.e., such that values of p1 (x) and p2 (x) outside the interval are1174

close to zero), the invariance coefficient ι is approximately:1175
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ι ≈
´ b
a
min (p1(x), p2(x)) d´ b

a
|p1(x), p2(x)| dx+

´ b
a
min (p1(x), p2(x)) dx

we can get an estimate ι̂ by using the MonteCarlo estimates of A C and L1:1176

ι̂ =
(b− a) 1

N

∑N
i=0 min (p1(Xi), p2(Xi))

(b− a) 1
N

∑N
i=0 |p1(Xi)− p2(Xi)|+ (b− a) 1

N

∑N
i=0 min (p1(Xi), p2(Xi))

ι̂ =

∑N
i=0 min (p1(Xi), p2(Xi))∑N

i=0 |p1(Xi)− p2(Xi)|+min (p1(Xi), p2(Xi))

ι̂ =

∑N
i=0 min (p1(Xi), p2(Xi))∑N
i=0 max (p1(Xi), p2(Xi))

(10)

In the multidimensional case, the samples become vectors xi, and p1 (xi) and p2 (xi) are joint probability1177

distributions, but Equation 10 still applies.1178

Because we can compute an invariance index for both encoding distributions ι̂e and decoding distributions1179

ι̂d, it is possible to evaluate the validity of ι̂d as a measure of invariance in the underlying representation1180

ι̂e, defined as the correlation between both indexes across a number of different encoding and measurement1181

models.1182

We performed a simulation with that goal in mind. The encoding model consisted of only 5 channels1183

evenly spaced along the target encoded dimension. This reduced the dimensionality of the underlying neural1184

representation, which allowed us to precisely estimate ι̂e using the MonteCarlo procedure described above1185

without a prohibitive sample size. The homogeneous standard encoding model was used in context 1, just1186

as described for the previous simulation. To continuously vary the level of invariance in the encoding model,1187

the model in context 2 was the same as the model in context 1, but each channel’s preferred stimulus and1188

width were randomly shifted up or down by a value of η and η/3, respectively, were η represents the level of1189

change in the encoding model with a change in context. The measurement model for both levels of context1190

was built using the same procedure described for simulation 2, with σe fixed to 0.1 corresponding to the1191

average weight value.1192

In each iteration of our simulation, we created the encoding and measurement models as just described,1193

with a value of η randomly chosen between 0 and 6, a range of values that produced values of ι̂e between zero1194

and one according to preliminary simulations. To estimate ι̂e, we used the previously described MonteCarlo1195

procedure with a sample size N = 200, 000. Each sample consisted of a random vector of neural activity1196

values r, which was used to evaluate p1 (r) and p2 (r) using Equation 5 and assuming independent channels1197
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(i.e., p1 (r|s = 0) =
∏

c p1 (r|s = 0)). According to preliminary simulations, the chosen sample size ensured1198

convergence of the MonteCarlo estimate ι̂e to a stable value across many values of η. We also sampled 2001199

activity patterns from the measurement model at four values of the encoding dimension, including 0, and1200

at each of the two contexts. We used these samples to estimate two versions of ι̂d. For the first version, we1201

focused on stimulus decoding. We used half of the sampled patterns to train a support vector classifier to1202

decode the stimulus presented in context 1 (using the same procedures described for previous simulations),1203

and presented the trained classifier with 100 test patterns obtained for a stimulus value of 0, presented both1204

in context 1 and 2. The classifier decision variables obtained from those two test sets were used to estimate1205

two decoding distributions, using kernel density estimation as described in section Decoding Separability1206

Test.. The two decoding distributions were then used to compute ι̂d, using discretization of the density as1207

described for L1Gj (see Equation Decoding Separability Test. and surrounding text). The second version of1208

ι̂d was obtained by focusing on context decoding ; that is, training a support vector classifier to decode the1209

context in which stimulus 0 was presented. As before, the classifier was trained with half of the sampled1210

patterns and then presented with 100 test patterns obtained for a stimulus value of 0, presented both in1211

context 1 and 2. Finally, ι̂d was computed from decoding distributions obtained through kernel density1212

estimation.1213

We repeated the previously-described procedure for 200 iterations, each time recording the values of η,1214

ι̂e, and the two versions of ι̂d. We used the resulting values to compute Pearson correlations between η, ι̂e,1215

and ι̂d.1216
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